1
|
Hsieh CL, Chang LY, Chen PJ, Yeh SH. HBV polymerase recruits the phosphatase PP1 to dephosphorylate HBc-Ser170 to complete encapsidation. PLoS Pathog 2025; 21:e1012905. [PMID: 39932960 PMCID: PMC11813143 DOI: 10.1371/journal.ppat.1012905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 01/14/2025] [Indexed: 02/13/2025] Open
Abstract
The HBV core (HBc) protein contains an N-terminal domain (NTD) for capsid assembly and an arginine-rich C-terminal domain (CTD) for pregenomic RNA (pgRNA) encapsidation. Phosphorylation of the HBc CTD, especially at Ser162 and Ser170, is essential for nucleation with the polymerase (Pol) to initiate pgRNA encapsidation. As capsids mature, the HBc CTD undergoes dephosphorylation, suggesting the involvement of a phosphatase in the late stage of encapsidation, which remains to be determined. Using a C-S170 antibody specific for non-phosphorylated HBc-Ser170, we observed a transition from a phosphorylated to a dephosphorylated state during pgRNA packaging. The Pol-dependent dephosphorylation of HBc-Ser170 was confirmed by the substitution of one single amino acid at Val782 in the RNase H domain, which abolished the dephosphorylation of HBc-Ser170. Immunoprecipitation, mass spectrometry analyses, and the protein structural analyses showed that the recruitment of the host phosphatase PP1 is dependent on the Pol-Val782 domain. This recruitment does not require HBc but does require Pol via epsilon RNA signal, suggesting that the Pol-pgRNA complex plays a key role in PP1 recruitment. Pol-pgRNA-PP1-mediated dephosphorylation of HBc-Ser170 is essential for the completion of pgRNA encapsidation and appears to be associated with late endosomes/multivesicular bodies (MVBs). Therefore, HBV Pol may play a dual role by initially bringing pgRNA to phosphorylated HBc and recruiting PP1 for later completion of RNA packaging into the capsids. These findings not only decipher the mechanism by which Pol-mediated dephosphorylation of HBc regulates pgRNA encapsulation, but also reveal the possibility of PP1 as a potential target for antiviral development.
Collapse
Affiliation(s)
- Chi-Ling Hsieh
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Li-Yang Chang
- Graduate Institute of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Pei-Jer Chen
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Center of Precision Medicine, National Taiwan University, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shiou-Hwei Yeh
- Graduate Institute of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
- Center of Precision Medicine, National Taiwan University, Taipei, Taiwan
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
2
|
Oropeza CE, Tarnow G, Sridhar A, Taha TY, Shalaby RE, McLachlan A. The Regulation of HBV Transcription and Replication. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1179:39-69. [PMID: 31741333 DOI: 10.1007/978-981-13-9151-4_3] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Hepatitis B virus (HBV) is a major human pathogen lacking a reliable curative therapy. Current therapeutics target the viral reverse transcriptase/DNA polymerase to inhibit viral replication but generally fail to resolve chronic HBV infections. Due to the limited coding potential of the HBV genome, alternative approaches for the treatment of chronic infections are desperately needed. An alternative approach to the development of antiviral therapeutics is to target cellular gene products that are critical to the viral life cycle. As transcription of the viral genome is an essential step in the viral life cycle, the selective inhibition of viral RNA synthesis is a possible approach for the development of additional therapeutic modalities that might be used in combination with currently available therapies. To address this possibility, a molecular understanding of the relationship between viral transcription and replication is required. The first step is to identify the transcription factors that are the most critical in controlling the levels of HBV RNA synthesis and to determine their in vivo role in viral biosynthesis. Mapping studies in cell culture utilizing reporter gene constructs permitted the identification of both ubiquitous and liver-enriched transcription factors capable of modulating transcription from the four HBV promoters. However, it was challenging to determine their relative importance for viral biosynthesis in the available human hepatoma replication systems. This technical limitation was addressed, in part, by the development of non-hepatoma HBV replication systems where viral biosynthesis was dependent on complementation with exogenously expressed transcription factors. These systems revealed the importance of specific nuclear receptors and hepatocyte nuclear factor 3 (HNF3)/forkhead box A (FoxA) transcription factors for HBV biosynthesis. Furthermore, using the HBV transgenic mouse model of chronic viral infection, the importance of various nuclear receptors and FoxA isoforms could be established in vivo. The availability of this combination of systems now permits a rational approach toward the development of selective host transcription factor inhibitors. This might permit the development of a new class of therapeutics to aid in the treatment and resolution of chronic HBV infections, which currently affects approximately 1 in 30 individuals worldwide and kills up to a million people annually.
Collapse
Affiliation(s)
- Claudia E Oropeza
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Grant Tarnow
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Abhayavarshini Sridhar
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Taha Y Taha
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Rasha E Shalaby
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Department of Microbiology and Immunology, Faculty of Medicine, Tanta University, Egypt, Egypt
| | - Alan McLachlan
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
3
|
Tramontano E, Corona A, Menéndez-Arias L. Ribonuclease H, an unexploited target for antiviral intervention against HIV and hepatitis B virus. Antiviral Res 2019; 171:104613. [PMID: 31550450 DOI: 10.1016/j.antiviral.2019.104613] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 12/18/2022]
Abstract
Ribonucleases H (RNases H) are endonucleolytic enzymes, evolutionarily related to retroviral integrases, DNA transposases, resolvases and numerous nucleases. RNases H cleave RNA in RNA/DNA hybrids and their activity plays an important role in the replication of prokaryotic and eukaryotic genomes, as well as in the replication of reverse-transcribing viruses. During reverse transcription, the RNase H activity of human immunodeficiency virus (HIV) and hepatitis B virus (HBV) degrades the viral genomic RNA to facilitate the synthesis of viral double-stranded DNA. HIV and HBV reverse transcriptases contain DNA polymerase and RNase H domains that act in a coordinated manner to produce double-stranded viral DNA. Although RNase H inhibitors have not been developed into licensed drugs, recent progress has led to the identification of a number of small molecules with inhibitory activity at low micromolar or even nanomolar concentrations. These compounds can be classified into metal-chelating active site inhibitors and allosteric inhibitors. Among them, α-hydroxytropolones, N-hydroxyisoquinolinediones and N-hydroxypyridinediones represent chemotypes active against both HIV and HBV RNases H. In this review we summarize recent developments in the field including the identification of novel RNase H inhibitors, compounds with dual inhibitory activity, broad specificity and efforts to decrease their toxicity.
Collapse
Affiliation(s)
- Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy.
| | - Angela Corona
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Luis Menéndez-Arias
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid), Madrid, Spain.
| |
Collapse
|
4
|
Synergistic Interactions between Hepatitis B Virus RNase H Antagonists and Other Inhibitors. Antimicrob Agents Chemother 2017; 61:AAC.02441-16. [PMID: 27956427 DOI: 10.1128/aac.02441-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 12/07/2016] [Indexed: 12/15/2022] Open
Abstract
Combination therapies are standard for management of human immunodeficiency virus (HIV) and hepatitis C virus (HCV) infections; however, no such therapies are established for human hepatitis B virus (HBV). Recently, we identified several promising inhibitors of HBV RNase H (here simply RNase H) activity that have significant activity against viral replication in vitro Here, we investigated the in vitro antiviral efficacy of combinations of two RNase H inhibitors with the current anti-HBV drug nucleoside analog lamivudine, with HAP12, an experimental core protein allosteric modulator, and with each other. Anti-HBV activities of the compounds were tested in a HepG2-derived cell line by monitoring intracellular core particle DNA levels, and cytotoxicity was assessed by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay. The antiviral efficiencies of the drug combinations were evaluated using the median-effect equation derived from the mass-action law principle and combination index theorem of Chou and Talalay. We found that combinations of two RNase H inhibitors from different chemical classes were synergistic with lamivudine against HBV DNA synthesis. Significant synergism was also observed for the combination of the two RNase H inhibitors. Combinations of RNase H inhibitors with HAP12 had additive antiviral effects. Enhanced cytotoxicity was not observed in the combination experiments. Because of these synergistic and additive effects, the antiviral activity of combinations of RNase H inhibitors with drugs that act by two different mechanisms and with each other can be achieved by administering the compounds in combination at doses below the respective single drug doses.
Collapse
|
5
|
Lu G, Villa JA, Donlin MJ, Edwards TC, Cheng X, Heier RF, Meyers MJ, Tavis JE. Hepatitis B virus genetic diversity has minimal impact on sensitivity of the viral ribonuclease H to inhibitors. Antiviral Res 2016; 135:24-30. [PMID: 27693161 DOI: 10.1016/j.antiviral.2016.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/12/2016] [Accepted: 09/19/2016] [Indexed: 02/07/2023]
Abstract
Hepatitis B virus (HBV) causes hepatitis, cirrhosis, liver failure, and liver cancer, but the current therapies that employ either nucelos(t)ide analogs or (pegylated)interferon α do not clear the infection in the large majority of patients. Inhibitors of the HBV ribonuclease H (RNaseH) that are being developed with the goal of producing anti-HBV drugs are promising candidates for use in combination with the nucleos(t)ide analogs to improve therapeutic efficacy. HBV is genetically very diverse, with at least 8 genotypes that differ by ≥8% at the sequence level. This diversity is reflected in the viral RNaseH enzyme, raising the possibility that divergent HBV genotypes or isolates may have varying sensitivity to RNaseH inhibitors. To evaluate this possibility, we expressed and purified 18 patient-derived RNaseHs from genotypes B, C, and D. Basal RNaseH activity and sensitivity to three novel RNaseH inhibitors from three different chemotypes were assessed. We also evaluated four consensus HBV RNaseHs to determine if such sequences would be suitable for use in antiviral drug screening. The patient-derived enzymes varied by over 10-fold in their basal RNaseH activities, but they were equivalently sensitive to each of the three inhibitors. Similarly, all four consensus HBV RNaseH enzymes were active and were equally sensitive to an RNaseH inhibitor. These data indicate that a wide range of RNaseH sequences would be suitable for use in antiviral drug screening, and that genotype- or isolate-specific genetic variations are unlikely to present a barrier during antiviral drug development against the HBV RNaseH.
Collapse
Affiliation(s)
- Gaofeng Lu
- Department of Molecular Microbiology and Immunology and Saint Louis University Liver Center, Saint Louis University School of Medicine, St. Louis, MO, USA; Department of Gastroenterology, The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Juan Antonio Villa
- Department of Molecular Microbiology and Immunology and Saint Louis University Liver Center, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Maureen J Donlin
- Department of Molecular Microbiology and Immunology and Saint Louis University Liver Center, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Tiffany C Edwards
- Department of Molecular Microbiology and Immunology and Saint Louis University Liver Center, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Xiaohong Cheng
- Department of Molecular Microbiology and Immunology and Saint Louis University Liver Center, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Richard F Heier
- Center for World Health and Medicine, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Marvin J Meyers
- Center for World Health and Medicine, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - John E Tavis
- Department of Molecular Microbiology and Immunology and Saint Louis University Liver Center, Saint Louis University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
6
|
Villa JA, Pike DP, Patel KB, Lomonosova E, Lu G, Abdulqader R, Tavis JE. Purification and enzymatic characterization of the hepatitis B virus ribonuclease H, a new target for antiviral inhibitors. Antiviral Res 2016; 132:186-95. [PMID: 27321664 DOI: 10.1016/j.antiviral.2016.06.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 06/10/2016] [Accepted: 06/12/2016] [Indexed: 01/05/2023]
Abstract
Hepatitis B virus (HBV) reverse transcription requires coordinated function of the reverse transcriptase and ribonuclease H (RNaseH) activities of the viral polymerase protein. The reverse transcriptase has been biochemically characterized, but technical difficulties have prevented both assessment of the RNaseH and development of high throughput inhibitor screens against the RNaseH. Expressing the HBV RNaseH domain with both maltose binding protein and hexahistidine tags led to stable, high-level accumulation of the RNaseH in bacteria. Nickel-affinity purification in the presence of Mg(2+) and ATP removed co-purifying bacterial chaperones and yielded nearly pure monomeric recombinant enzyme. The endonucleolytic RNaseH activity required an DNA:RNA duplex ≥14 nt, could not tolerate a stem-loop in either the RNA or DNA strands, and could tolerate a nick in the DNA strand but not a gap. The RNaseH had no obvious sequence specificity or positional dependence within the RNA, and it cut the RNA at multiple positions even within the minimal 14 nt duplex. The RNaseH also possesses a processive 3'-5' exoribonuclease activity that is slower than the endonucleolytic reaction. These results are consistent with the HBV reverse transcription mechanism that features an initial endoribonucleolytic cut, 3'-5' degradation of RNA, and a sequence-independent terminal RNA cleavage. These data provide support for ongoing anti-RNaseH drug discovery efforts.
Collapse
Affiliation(s)
- Juan Antonio Villa
- Department of Molecular Microbiology and Immunology and Saint Louis University Liver Center, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Daniel P Pike
- Department of Molecular Microbiology and Immunology and Saint Louis University Liver Center, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Kunjan B Patel
- Department of Molecular Microbiology and Immunology and Saint Louis University Liver Center, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Elena Lomonosova
- Department of Molecular Microbiology and Immunology and Saint Louis University Liver Center, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Gaofeng Lu
- Department of Molecular Microbiology and Immunology and Saint Louis University Liver Center, Saint Louis University School of Medicine, St. Louis, MO 63104, USA; Department of Gastroenterology, The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Roz Abdulqader
- Department of Molecular Microbiology and Immunology and Saint Louis University Liver Center, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - John E Tavis
- Department of Molecular Microbiology and Immunology and Saint Louis University Liver Center, Saint Louis University School of Medicine, St. Louis, MO 63104, USA.
| |
Collapse
|
7
|
Zhang P, Liu F, Guo F, Zhao Q, Chang J, Guo JT. Characterization of novel hepadnaviral RNA species accumulated in hepatoma cells treated with viral DNA polymerase inhibitors. Antiviral Res 2016; 131:40-8. [PMID: 27083116 DOI: 10.1016/j.antiviral.2016.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/07/2016] [Accepted: 04/10/2016] [Indexed: 12/21/2022]
Abstract
Inhibitors of hepadnaviral DNA polymerases are predicted to inhibit both minus and plus strand of viral DNA synthesis and arrest viral DNA replication at the stage of pregenomic (pg) RNA-containing nucleocapsids. However, analyses of the RNA species of human and duck hepatitis B viruses (HBV and DHBV, respectively) in hepatoma cells treated with viral DNA polymerase inhibitors revealed the genesis of novel RNA species migrating slightly faster than the full-length pgRNA. The DNA polymerase inhibitor-induced accumulation of these RNA species were abolished in the presence of alpha-interferon or HBV nucleocapsid assembly inhibitors. Moreover, they were protected from microccocal nuclease digestion and devoid of a poly-A tail. These characteristics suggest that the novel RNA species are most likely generated from RNase H cleavage of encapsidated pgRNA, after primer translocation and synthesis of the 5' terminal portion of minus strand DNA. In support of this hypothesis, DNA polymerase inhibitor treatment of chicken hepatoma cells transfected with a DHBV genome encoding an RNase H inactive DNA polymerase (E696H) failed to produce such RNA species. Our results thus suggest that the currently available DNA polymerase inhibitors do not efficiently arrest minus strand DNA synthesis at the early stage in hepatocytes. Hence, development of novel antiviral agents that more potently suppress viral DNA synthesis or viral nucleocapsid assembly inhibitors that are mechanistically complementary to the currently available DNA polymerase inhibitors are warranted.
Collapse
Affiliation(s)
- Pinghu Zhang
- Jiangsu Key Laboratory of New Drug Screening & Jiangsu Center for Pharmacodynamics Research and Evaluation & State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, PA, USA
| | - Fei Liu
- Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, PA, USA
| | - Fang Guo
- Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, PA, USA
| | - Qiong Zhao
- Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, PA, USA
| | - Jinhong Chang
- Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, PA, USA
| | - Ju-Tao Guo
- Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, PA, USA.
| |
Collapse
|
8
|
Zhao XL, Yang JR, Lin SZ, Ma H, Guo F, Yang RF, Zhang HH, Han JC, Wei L, Pan XB. Serum viral duplex-linear DNA proportion increases with the progression of liver disease in patients infected with HBV. Gut 2016; 65:502-11. [PMID: 26045139 DOI: 10.1136/gutjnl-2014-308989] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 05/19/2015] [Indexed: 02/07/2023]
Abstract
OBJECTIVE HBV has two forms of genomic DNA, relaxed-circular DNA (rcDNA) and duplex-linear DNA (dlDNA). Compared to rcDNA, dlDNA has been demonstrated to integrate more frequently into host cellular chromosomes, which may have oncogenic consequences. However, the dlDNA proportion relative to total HBV DNA and its clinical significance in patients remain to be investigated. DESIGN Based on the structural difference between rcDNA and dlDNA, we developed a peptide nucleic acid (PNA)-mediated quantitative real-time PCR (qPCR) clamping assay to measure the proportions of dlDNA in total HBV DNA in sera obtained from patients with chronic hepatitis B (CHB), liver cirrhosis (LC) or LC-developed hepatocellular carcinoma (HCC). The factors that influence the proportion of dlDNA were also investigated. RESULTS The average dlDNA proportion was approximately 7% in the sera of chronic HBV-infected patients and was elevated in CHB patients with abnormal levels of alanine aminotransferase. The sera dlDNA proportions increased to approximately 14% and 20% in the patients with LC and HCC, respectively. Interferon-α treatment slightly increased the dlDNA proportion in the responders; and nucleotide analogue therapy spuriously elevated the proportion. Moreover, treatment of human hepatoma cells supporting HBV replication with inflammatory cytokines significantly altered the dlDNA proportion in vitro. CONCLUSIONS Using a novel PNA-mediated qPCR clamping assay, we first showed that serum dlDNA proportions progressively increased during the development of HBV-related liver diseases. The dlDNA proportion can be regulated by inflammatory cytokines, suggesting an association among inflammation, increased production of HBV dlDNA and development of HCC.
Collapse
Affiliation(s)
- Xing-Liang Zhao
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, P.R. China
| | - Jian-Rong Yang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Sheng-Zhang Lin
- Department of Hepato-Biliary-Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Hui Ma
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, P.R. China
| | - Fang Guo
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, P.R. China Department of Microbiology and Immunology, Drexel Institute for Biotechnology and Virology Research, Drexel University College of Medicine, Doylestown, Pennsylvania, USA
| | - Rui-Feng Yang
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, P.R. China
| | - Heng-Hui Zhang
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, P.R. China
| | - Jin-Chao Han
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, P.R. China
| | - Lai Wei
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, P.R. China
| | - Xiao-Ben Pan
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, P.R. China
| |
Collapse
|
9
|
Hu J, Seeger C. Hepadnavirus Genome Replication and Persistence. Cold Spring Harb Perspect Med 2015; 5:a021386. [PMID: 26134841 DOI: 10.1101/cshperspect.a021386] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hallmarks of the hepadnavirus replication cycle are the formation of covalently closed circular DNA (cccDNA) and the reverse transcription of a pregenomic RNA (pgRNA) in core particles leading to synthesis of the relaxed circular DNA (rcDNA) genome. cccDNA, the template for viral RNA transcription, is the basis for the persistence of these viruses in infected hepatocytes. In this review, we summarize the current state of knowledge on the mechanisms of hepadnavirus reverse transcription and the biochemical and structural properties of the viral reverse transcriptase (RT). We highlight important gaps in knowledge regarding cccDNA biosynthesis and stability. In addition, we discuss the impact of current antiviral therapies on viral persistence, particularly on cccDNA.
Collapse
Affiliation(s)
- Jianming Hu
- Department of Microbiology and Immunology, Penn State University College of Medicine, Hershey, Pennsylvania 17033
| | | |
Collapse
|
10
|
Zlotnick A, Venkatakrishnan B, Tan Z, Lewellyn E, Turner W, Francis S. Core protein: A pleiotropic keystone in the HBV lifecycle. Antiviral Res 2015; 121:82-93. [PMID: 26129969 DOI: 10.1016/j.antiviral.2015.06.020] [Citation(s) in RCA: 203] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/22/2015] [Accepted: 06/26/2015] [Indexed: 12/21/2022]
Abstract
Hepatitis B Virus (HBV) is a small virus whose genome has only four open reading frames. We argue that the simplicity of the virion correlates with a complexity of functions for viral proteins. We focus on the HBV core protein (Cp), a small (183 residue) protein that self-assembles to form the viral capsid. However, its functions are a little more complicated than that. In an infected cell Cp modulates almost every step of the viral lifecycle. Cp is bound to nuclear viral DNA and affects its epigenetics. Cp correlates with RNA specificity. Cp assembles specifically on a reverse transcriptase-viral RNA complex or, apparently, nothing at all. Indeed Cp has been one of the model systems for investigation of virus self-assembly. Cp participates in regulation of reverse transcription. Cp signals completion of reverse transcription to support virus secretion. Cp carries both nuclear localization signals and HBV surface antigen (HBsAg) binding sites; both of these functions appear to be regulated by contents of the capsid. Cp can be targeted by antivirals - while self-assembly is the most accessible of Cp activities, we argue that it makes sense to engage the broader spectrum of Cp function. This article forms part of a symposium in Antiviral Research on "From the discovery of the Australia antigen to the development of new curative therapies for hepatitis B: an unfinished story."
Collapse
Affiliation(s)
- Adam Zlotnick
- Molecular & Cellular Biology, Indiana University, Bloomington, IN, United States.
| | | | - Zhenning Tan
- Assembly BioSciences, Bloomington, IN, United States; Assembly BioSciences, San Francisco, CA, United States
| | - Eric Lewellyn
- Assembly BioSciences, Bloomington, IN, United States; Assembly BioSciences, San Francisco, CA, United States
| | - William Turner
- Assembly BioSciences, Bloomington, IN, United States; Assembly BioSciences, San Francisco, CA, United States
| | - Samson Francis
- Molecular & Cellular Biology, Indiana University, Bloomington, IN, United States; Assembly BioSciences, Bloomington, IN, United States; Assembly BioSciences, San Francisco, CA, United States
| |
Collapse
|
11
|
Tavis JE, Lomonosova E. The hepatitis B virus ribonuclease H as a drug target. Antiviral Res 2015; 118:132-8. [PMID: 25862291 DOI: 10.1016/j.antiviral.2015.04.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 03/30/2015] [Accepted: 04/02/2015] [Indexed: 12/20/2022]
Abstract
Chronic hepatitis B virus (HBV) infection is a leading cause of hepatitis, liver failure, and hepatocellular carcinoma. An outstanding vaccine is available; however, the number of infections remains high. Current anti-HBV treatments with interferon α and nucleos(t)ide analogs clear the infection in only a small minority of patients, and either induce serious side-effects or are of very long duration. HBV is a small, enveloped DNA virus that replicates by reverse transcription via an RNA intermediate. The HBV ribonuclease H (RNaseH) is essential for viral replication, but it has not been exploited as a drug target. Recent low-throughput screening of compound classes with anti-Human Immunodeficiency Virus RNaseH activity led to identification of HBV RNaseH inhibitors in three different chemical families that block HBV replication. These inhibitors are promising candidates for development into new anti-HBV drugs. The RNaseH inhibitors may help improve treatment efficacy enough to clear the virus from the liver when used in combination with existing anti-HBV drugs and/or with other novel inhibitors under development. This article forms part of a symposium in Antiviral Research on "An unfinished story: from the discovery of the Australia antigen to the development of new curative therapies for hepatitis B."
Collapse
Affiliation(s)
- John E Tavis
- Department of Molecular Microbiology and Immunology, Saint Louis University Liver Center, United States.
| | - Elena Lomonosova
- Department of Molecular Microbiology and Immunology, Saint Louis University Liver Center, United States
| |
Collapse
|
12
|
Residues Arg703, Asp777, and Arg781 of the RNase H domain of hepatitis B virus polymerase are critical for viral DNA synthesis. J Virol 2013; 88:154-63. [PMID: 24131721 DOI: 10.1128/jvi.01916-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hepatitis B virus (HBV) synthesizes its DNA genome through reverse transcription, which is catalyzed by viral polymerase (Pol). Previous studies suggested that the RNase H domain of hepadnaviral Pol may contribute to multiple steps of the viral genome replication, such as RNA encapsidation and viral DNA synthesis. However, specific residues of the RNase H domain that contribute to viral reverse transcription have not been determined. Therefore, we employed charged-to-alanine scanning mutagenesis to generate a set of single-substitution mutants of the RNase H domain and then analyzed their ability to support viral reverse transcription. Southern blot analysis showed that three mutants (R703A, D777A, and R781A mutants) yielded significantly reduced amounts of viral DNAs. However, none of these mutants were defective in RNA encapsidation. The data indicated that in the R703A and D777A mutants, minus-strand DNA synthesis was incomplete due to loss of catalytic activity of RNase H. In contrast, in the R781A mutant, the minus-strand DNA synthesis was near complete to some extent, while the plus-strand DNA synthesis (i.e., relaxed circular DNA) was severely impaired due to the defect in RNase H activity. Overall, our analysis revealed that three charged residues of the HBV Pol RNase H domain contribute to the catalysis of RNase H in removing the RNA template, but not in the RNA encapsidation.
Collapse
|
13
|
Jones SA, Hu J. Hepatitis B virus reverse transcriptase: diverse functions as classical and emerging targets for antiviral intervention. Emerg Microbes Infect 2013; 2:e56. [PMID: 26038488 PMCID: PMC3820986 DOI: 10.1038/emi.2013.56] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 07/21/2013] [Indexed: 12/12/2022]
Abstract
Hepatitis B virus (HBV) infection remains a global health problem with over 350 million chronically infected, causing an increased risk of cirrhosis and hepatocellular carcinoma. Current antiviral chemotherapy for HBV infection include five nucleos(t)ide analog reverse transcriptase inhibitors (NRTIs) that all target one enzymatic activity, DNA strand elongation, of the HBV polymerase (HP), a specialized reverse transcriptase (RT). NRTIs are not curative and long-term treatment is associated with toxicity and the emergence of drug resistant viral mutations, which can also result in vaccine escape. Recent studies on the multiple functions of HP have provided important mechanistic insights into its diverse roles during different stages of viral replication, including interactions with viral pregenomic RNA, RNA packaging into nucleocapsids, protein priming, minus- and plus-strand viral DNA synthesis, RNase H-mediated degradation of viral RNA, as well as critical host interactions that regulate the multiple HP functions. These diverse functions provide ample opportunities to develop novel HP-targeted antiviral treatments that should contribute to curing chronic HBV infection.
Collapse
Affiliation(s)
- Scott A Jones
- Department of Microbiology and Immunology, The Penn State University College of Medicine, Hershey , PA 17033, USA
| | - Jianming Hu
- Department of Microbiology and Immunology, The Penn State University College of Medicine, Hershey , PA 17033, USA
| |
Collapse
|
14
|
Hu Y, Cheng X, Cao F, Huang A, Tavis JE. β-Thujaplicinol inhibits hepatitis B virus replication by blocking the viral ribonuclease H activity. Antiviral Res 2013; 99:221-9. [DOI: 10.1016/j.antiviral.2013.06.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 06/07/2013] [Accepted: 06/11/2013] [Indexed: 12/16/2022]
|
15
|
Torres C, Fernández MDB, Flichman DM, Campos RH, Mbayed VA. Influence of overlapping genes on the evolution of human hepatitis B virus. Virology 2013; 441:40-8. [PMID: 23541083 DOI: 10.1016/j.virol.2013.02.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 02/05/2013] [Accepted: 02/28/2013] [Indexed: 12/23/2022]
Abstract
The aim of this work was to analyse the influence of overlapping genes on the evolution of hepatitis B virus (HBV). A differential evolutionary behaviour among genetic regions and clinical status was found. Dissimilar levels of conservation of the different protein regions could derive from alternative mechanisms to maintain functionality. We propose that, in overlapping regions, selective constraints on one of the genes could drive the substitution process. This would allow protein conservation in one gene by synonymous substitutions while mechanisms of tolerance to the change operate in the overlapping gene (e.g. usage of amino acids with high-degeneracy codons, differential codon usage and replacement by physicochemically similar amino acids). In addition, differential selection pressure according to the HBeAg status was found in all genes, suggesting that the immune response could be one of the factors that would constrain viral replication by interacting with different HBV proteins during the HBeAg(-) stage.
Collapse
Affiliation(s)
- Carolina Torres
- Cátedra de Virología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina; CONICET, Argentina
| | | | | | | | | |
Collapse
|
16
|
TP-RT domain interactions of duck hepatitis B virus reverse transcriptase in cis and in trans during protein-primed initiation of DNA synthesis in vitro. J Virol 2012; 86:6522-36. [PMID: 22514346 DOI: 10.1128/jvi.00086-12] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The hepadnavirus reverse transcriptase (RT) has the unique ability to initiate viral DNA synthesis using RT itself as a protein primer. Protein priming requires complex interactions between the N-terminal TP (terminal protein) domain, where the primer (a specific Y residue) resides, and the central RT domain, which harbors the polymerase active site. While it normally utilizes the cis-linked TP to prime DNA synthesis (cis-priming), we found that the duck hepatitis B virus (DHBV) RT domain, in the context of the full-length RT protein or a mini-RT construct containing only truncated TP and RT domains, could additionally use a separate TP or RT domain in trans as a primer (trans-priming). trans interaction could also be demonstrated by the inhibitory effect (trans-inhibition) on cis-priming by TP and RT domain sequences provided in trans. Protein priming was further shown to induce RT conformational changes that resulted in TP-RT domain dissociation, altered priming site selection, and a gain of sensitivity to a pyrophosphate analog inhibitor. trans-priming, trans-inhibition, and trans-complementation, which requires separate TP and RT domains to reconstitute a functional RT protein, were employed to define the sequences in the TP and RT domains that could mediate physical or functional inter- and intradomain interactions. These results provide new insights into TP-RT domain interactions and conformational dynamics during protein priming and suggest novel means to inhibit protein priming by targeting these interactions and the associated conformational transitions.
Collapse
|
17
|
The arginine clusters of the carboxy-terminal domain of the core protein of hepatitis B virus make pleiotropic contributions to genome replication. J Virol 2010; 85:1298-309. [PMID: 21084467 DOI: 10.1128/jvi.01957-10] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The carboxy-terminal domain (CTD) of the core protein of hepatitis B virus is not necessary for capsid assembly. However, the CTD does contribute to encapsidation of pregenomic RNA (pgRNA). The contribution of the CTD to DNA synthesis is less clear. This is the case because some mutations within the CTD increase the proportion of spliced RNA to pgRNA that are encapsidated and reverse transcribed. The CTD contains four clusters of consecutive arginine residues. The contributions of the individual arginine clusters to genome replication are unknown. We analyzed core protein variants in which the individual arginine clusters were substituted with either alanine or lysine residues. We developed assays to analyze these variants at specific steps throughout genome replication. We used a replication template that was not spliced in order to study the replication of only pgRNA. We found that alanine substitutions caused defects at both early and late steps in genome replication. Lysine substitutions also caused defects, but primarily during later steps. These findings demonstrate that the CTD contributes to DNA synthesis pleiotropically and that preserving the charge within the CTD is not sufficient to preserve function.
Collapse
|
18
|
Feng H, Hu KH. Structural characteristics and molecular mechanism of hepatitis B virus reverse transcriptase. Virol Sin 2009. [DOI: 10.1007/s12250-009-3076-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
19
|
Nassal M. Hepatitis B viruses: reverse transcription a different way. Virus Res 2008; 134:235-49. [PMID: 18339439 DOI: 10.1016/j.virusres.2007.12.024] [Citation(s) in RCA: 292] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 11/28/2007] [Accepted: 12/05/2007] [Indexed: 02/07/2023]
Abstract
Hepatitis B virus (HBV), the causative agent of B-type hepatitis in humans, is the type member of the Hepadnaviridae, hepatotropic DNA viruses that replicate via reverse transcription. Beyond long-established differences to retroviruses in gene expression and overall replication strategy newer work has uncovered additional distinctions in the mechanism of reverse transcription per se. These include protein-priming by the unique extra terminal protein domain of the reverse transcriptase (RT) utilizing an RNA hairpin for de novo initiation of first strand DNA synthesis, and the strict dependence of this process on cellular chaperones. Recent in vitro reconstitution systems enabled first biochemical insights into this multifactorial reaction, complemented by high resolution structural information on the RNA, though not yet the protein, level. Genetic approaches have revealed long-distance interactions in the nucleic acid templates as an important factor enabling the puzzling template switches required to produce the relaxed circular (RC) DNA found in infectious virions. Finally, the failure of even potent HBV RT inhibitors to eliminate nuclear covalently closed circular (ccc) DNA, the functional equivalent of integrated proviral DNA, has spurred a renewed interest in the mechanism of cccDNA generation. These new developments are in the focus of this review.
Collapse
Affiliation(s)
- Michael Nassal
- University Hospital Freiburg, Internal Medicine 2/Molecular Biology, Hugstetter Str. 55, D-79106 Freiburg, Germany.
| |
Collapse
|
20
|
Haines KM, Loeb DD. The sequence of the RNA primer and the DNA template influence the initiation of plus-strand DNA synthesis in hepatitis B virus. J Mol Biol 2007; 370:471-80. [PMID: 17531265 PMCID: PMC1991300 DOI: 10.1016/j.jmb.2007.04.057] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 04/18/2007] [Accepted: 04/19/2007] [Indexed: 12/01/2022]
Abstract
For hepadnaviruses, the RNA primer for plus-strand DNA synthesis is generated by the final RNase H cleavage of the pregenomic RNA at an 11 nt sequence called DR1 during the synthesis of minus-strand DNA. This RNA primer initiates synthesis at one of two distinct sites on the minus-strand DNA template, resulting in two different end products; duplex linear DNA or relaxed circular DNA. Duplex linear DNA is made when initiation of synthesis occurs at DR1. Relaxed circular DNA, the major product, is made when the RNA primer translocates to the sequence complementary to DR1, called DR2 before initiation of DNA synthesis. We studied the mechanism that determines the site of the final RNase H cleavage in hepatitis B virus (HBV). We showed that the sites of the final RNase H cleavage are always a fixed number of nucleotides from the 5' end of the pregenomic RNA. This finding is similar to what was found previously for duck hepatitis B virus (DHBV), and suggests that all hepadnaviruses use a similar mechanism. Also, we studied the role of complementarity between the RNA primer and the acceptor site at DR2 in HBV. By increasing the complementarity, we were able to increase the level of priming at DR2 over that seen in the wild-type virus. This finding suggests that the level of initiation of plus-strand DNA synthesis at DR2 is sub-maximal for wild-type HBV. Finally, we studied the role of the sequence at the 5' end of the RNA primer that is outside of the DR sequence. We found that substitutions or insertions in this region affected the level of priming at DR1 and DR2.
Collapse
Affiliation(s)
- Kathleen M. Haines
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, 1400 University Ave., Madison, WI 53706
| | - Daniel D. Loeb
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, 1400 University Ave., Madison, WI 53706
| |
Collapse
|
21
|
Lewellyn EB, Loeb DD. Base pairing between cis-acting sequences contributes to template switching during plus-strand DNA synthesis in human hepatitis B virus. J Virol 2007; 81:6207-15. [PMID: 17409141 PMCID: PMC1900078 DOI: 10.1128/jvi.00210-07] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Accepted: 03/26/2007] [Indexed: 11/20/2022] Open
Abstract
Hepadnaviruses utilize two template switches (primer translocation and circularization) during synthesis of plus-strand DNA to generate a relaxed-circular (RC) DNA genome. In duck hepatitis B virus (DHBV) three cis-acting sequences, 3E, M, and 5E, contribute to both template switches through base pairing, 3E with the 3' portion of M and 5E with the 5' portion of M. Human hepatitis B virus (HBV) also contains multiple cis-acting sequences that contribute to the accumulation of RC DNA, but the mechanisms through which these sequences contribute were previously unknown. Three of the HBV cis-acting sequences (h3E, hM, and h5E) occupy positions equivalent to those of the DHBV 3E, M, and 5E. We present evidence that h3E and hM contribute to the synthesis of RC DNA through base pairing during both primer translocation and circularization. Mutations that disrupt predicted base pairing inhibit both template switches while mutations that restore the predicted base pairing restore function. Therefore, the h3E-hM base pairing appears to be a conserved requirement for template switching during plus-strand DNA synthesis of HBV and DHBV. Also, we show that base pairing is not sufficient to explain the mechanism of h3E and hM, as mutating sequences adjacent to the base pairing regions inhibited both template switches. Finally, we did not identify predicted base pairing between h5E and the hM region, indicating a possible difference between HBV and DHBV. The significance of these similarities and differences between HBV and DHBV will be discussed.
Collapse
Affiliation(s)
- Eric B Lewellyn
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, 1400 University Ave., Madison, WI 53706, USA
| | | |
Collapse
|
22
|
Nguyen DH, Gummuluru S, Hu J. Deamination-independent inhibition of hepatitis B virus reverse transcription by APOBEC3G. J Virol 2007; 81:4465-72. [PMID: 17314171 PMCID: PMC1900192 DOI: 10.1128/jvi.02510-06] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The APOBEC3 family of mammalian cytidine deaminases, including APOBEC3G (A3G), has been shown to function as innate antiviral factors against retroviruses and can also suppress the replication of the hepatitis B virus (HBV). The mechanism by which A3G inhibits HBV replication remains to be elucidated. In this study, we show that the inhibitory effect of APOBEC3 proteins on HBV replication was mainly at the DNA level, with only a minor effect on viral RNA packaging. The anti-HBV effect of A3G was independent of the DNA-editing function, and the mode of inhibition was not due to HBV DNA degradation. The editing-independent antiviral activity of A3G could target DNA-RNA hybrids as well as single-stranded DNA. Finally, we show that there was a preferential decrease in the accumulation of longer minus-strand DNA by A3G, compared to the shorter minus-strand DNA, and suggest that A3G exerts its inhibitory effect at very early stages during viral reverse transcription.
Collapse
Affiliation(s)
- David H Nguyen
- Department of Microbiology and Immunology-H107, The Pennsylvania State University, College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | | | | |
Collapse
|
23
|
Pollicino T, Raffa G, Costantino L, Lisa A, Campello C, Squadrito G, Levrero M, Raimondo G. Molecular and functional analysis of occult hepatitis B virus isolates from patients with hepatocellular carcinoma. Hepatology 2007; 45:277-285. [PMID: 17256766 DOI: 10.1002/hep.21529] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
UNLABELLED Occult HBV infection is characterized by the persistence of HBV DNA in the liver of individuals negative for HBV surface antigen (HBsAg). Occult HBV may exist in the hepatocytes as a free genome, although the factors responsible for the very low viral replication and gene expression usually observed in this peculiar kind of infection are mostly unknown. Aims of this study were to investigate whether the viral genomic variability might account for the HBsAg negativity and the inhibition of the viral replication in occult HBV carriers, and to verify in vitro the replication capability of occult HBV strains. We studied liver viral isolates from 17 HBV patients, 13 with occult infection and 4 HBsAg-positive. Full-length HBV genomes from each case were amplified and directly sequenced. Additionally, full-length HBV DNA from eight occult-HBV and two HBsAg-positive cases were cloned and sequenced. Finally, three entire, linear HBV genomes from occult cases were transiently transfected in HuH7 cells. Direct sequencing showed the absence of mutations capable of interfering with viral replication and gene expression in the major viral population of each case. Cloning experiments showed highly divergent HBV strains both in HBsAg-positive and HBsAg-negative individual cases (range of divergence 1.4%-7.1%). All of the 3 transfected full-length HBV isolates showed normal patterns of replication in vitro. CONCLUSION Multiple viral variants accumulate in the liver of occult HBV-infected patients. Occult HBV strains are replication-competent in vitro, suggesting that host, rather than viral factors are responsible for cryptic HBV infection.
Collapse
Affiliation(s)
- Teresa Pollicino
- Unit of Clinical and Molecular Hepatology, Department of Internal Medicine, University of Messina, Messina, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Basagoudanavar SH, Perlman DH, Hu J. Regulation of hepadnavirus reverse transcription by dynamic nucleocapsid phosphorylation. J Virol 2006; 81:1641-9. [PMID: 17135319 PMCID: PMC1797568 DOI: 10.1128/jvi.01671-06] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Reverse transcription, an essential step in the life cycle of all retroelements, is a complex, multistep process whose regulation is not yet clearly understood. We have recently shown that reverse transcription in the pararetrovirus duck hepatitis B virus is associated with complete dephosphorylation of the viral core protein, which forms the nucleocapsid wherein reverse transcription takes place. Here we present a genetic study of the role of this dynamic nucleocapsid phosphorylation in regulating viral reverse transcription. Detailed analyses of the reverse transcription products synthesized within nucleocapsids composed of core phosphorylation site mutants revealed that alanine substitutions, mimicking the nonphosphorylated state, completely blocked reverse transcription at a very early stage. In contrast, aspartate substitutions, mimicking the phosphorylated state, allowed complete first-strand DNA synthesis but were severely defective in accumulating mature double-stranded DNA. The latter defect was due to a combination of mutant nucleocapsid instability during maturation and a block in mature second-strand DNA synthesis. Thus, the reversible phosphorylation of the nucleocapsids regulates the ordered progression of reverse transcription.
Collapse
Affiliation(s)
- Suresh H Basagoudanavar
- Department of Microbiology and Immunology-H107, The Penn State University College of Medicine, 500 University Dr., Hershey, PA 17033, USA
| | | | | |
Collapse
|
25
|
Abraham TM, Loeb DD. Base pairing between the 5' half of epsilon and a cis-acting sequence, phi, makes a contribution to the synthesis of minus-strand DNA for human hepatitis B virus. J Virol 2006; 80:4380-7. [PMID: 16611897 PMCID: PMC1471998 DOI: 10.1128/jvi.80.9.4380-4387.2006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Accepted: 02/09/2006] [Indexed: 01/17/2023] Open
Abstract
Synthesis of minus-strand DNA of human hepatitis B virus (HBV) can be divided into three phases: initiation of DNA synthesis, the template switch, and elongation of minus-strand DNA. Although much is known about minus-strand DNA synthesis, the mechanism(s) by which this occurs has not been completely elucidated. Through a deletion analysis, we have identified a cis-acting element involved in minus-strand DNA synthesis that lies within a 27-nucleotide region between DR2 and the 3' copy of DR1. A subset of this region (termed Phi) has been hypothesized to base pair with the 5' half of epsilon (H. Tang and A. McLachlan, Virology, 303:199-210, 2002). To test the proposed model, we used a genetic approach in which multiple sets of variants that disrupted and then restored putative base pairing between the 5' half of epsilon and phi were analyzed. Primer extension analysis, using two primers simultaneously, was performed to measure encapsidated pregenomic RNA (pgRNA) and minus-strand DNA synthesized in cell culture. The efficiency of minus-strand DNA synthesis was defined as the amount of minus-strand DNA synthesized per encapsidation event. Our results indicate that base pairing between phi and the 5' half of epsilon contributes to efficient minus-strand DNA synthesis. Additional results are consistent with the idea that the primary sequence of phi and/or epsilon also contributes to function. How base pairing between phi and epsilon contributes to minus-strand DNA synthesis is not known, but a simple speculation is that phi base pairs with the 5' half of epsilon to juxtapose the donor and acceptor sites to facilitate the first-strand template switch.
Collapse
Affiliation(s)
- Teresa M Abraham
- McArdle Laboratory for Cancer Research, University of Wisconsin Medical School, 1400 University Ave., Madison, Wisconsin 53706, USA
| | | |
Collapse
|
26
|
Hacker HJ, Zhang W, Tokus M, Bock T, Schröder CH. Patterns of circulating hepatitis B virus serum nucleic acids during lamivudine therapy. Ann N Y Acad Sci 2004; 1022:271-81. [PMID: 15251972 DOI: 10.1196/annals.1318.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Lamivudine treatment of individuals with chronic HBV infection leads to a rapid decline of hepatitis B virus (HBV) serum DNA. Because HBV replication quickly reaches pretreatment values following cessation of the drug, we addressed the question of whether changes during therapy in composition and amount of discernible circulating viral DNA and RNA might provide an explanation for this phenomenon. Nucleic acids were extracted from serial serum samples of two chronically infected patients. The first patient was treated with lamivudine for 14 weeks, whereas the second one, who displayed an HBV virus with a core gene mutation, received lamivudine for 10 weeks. Three sequence segments of the HBV genome synthesized successively during replication, namely, X, C, and X-preC, were analyzed via competitive polymerase chain reaction (PCR) and reverse transcriptase (RT)/PCR. HBV transcripts were also analyzed for differential polyadenylation. At the start of treatment, identical DNA copy numbers (10(9)/mL) were found for all three segments in the first patient. C segment DNA displayed the expected rapid decline. X-preC, a target contiguous only on plus-strand DNA, behaved similarly. In contrast, the X segment DNA copy numbers showed a less pronounced decrease, remaining at higher values (10(7)/mL) than the C and X-preC segments (both about 2 x 10(5)/mL) at the end of therapy. X segment RNA displayed a persisting copy number of about 10(7)/mL, whereas C and X-preC RNA decreased to about 10(5) copies/mL. Polyadenylated HBV RNA, both full-length and truncated, initially persisted at 10(5) but decreased to 10(4) to 10(3) copies/mL at the end of treatment. As expected, C segment DNA and RNA were not detected in the second patient, whereas X and X-preC segments showed essentially the same pattern as the first patient, although at a slightly lower level. We conclude that: (1) actual numbers of HBV genome equivalents during lamivudine therapy can be assessed only via X segment DNA, because it is reverse transcribed first; (2) lamivudine induces coexistence of DNA and RNA for the C and X segments at similar levels, indicating drug-arrested intermediates of reverse-transcribed HBV DNA minus-strand; and (3) packaged HBV RNA lacks a poly(A) tail, whereas polyadenylated RNA is likely not packaged.
Collapse
Affiliation(s)
- Hans Jörg Hacker
- Department of Virus-Host Interactions, Deutsches Krebsforschungszentrum, Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
27
|
Parveen Z, Mukhtar M, Goodrich A, Acheampong E, Dornburg R, Pomerantz RJ. Cross-packaging of human immunodeficiency virus type 1 vector RNA by spleen necrosis virus proteins: construction of a new generation of spleen necrosis virus-derived retroviral vectors. J Virol 2004; 78:6480-8. [PMID: 15163741 PMCID: PMC416548 DOI: 10.1128/jvi.78.12.6480-6488.2004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The ability of the nonlentiviral retrovirus spleen necrosis virus (SNV) to cross-package the genomic RNA of the distantly related human immunodeficiency virus type 1 (HIV-1) and vice versa was analyzed. Such a model may allow us to further study HIV-1 replication and pathogenesis, as well as to develop safe gene therapy vectors. Our results suggest that SNV can cross-package HIV-1 genomic RNA but with lower efficiency than HIV-1 proteins. However, HIV-1-specific proteins were unable to cross-package SNV RNA. We also constructed SNV-based gag-pol chimeric variants by replacing the SNV integrase with the HIV-1 integrase, based on multiple sequence alignments and domain analyses. These analyses revealed that there are conserved domains in all retroviral integrase open reading frames (orf), despite the divergence in the primary sequences. The transcomplementation assays suggested that SNV proteins recognized one of the chimeric variants. This demonstrated that HIV-1 integrase is functional in the SNV gag-pol orf with a lower transduction efficiency, utilizing homologous (SNV) RNA, as well as the heterologous vector RNA of HIV-1. These findings suggest that homology in the conserved sequences of the integrase protein may not be fully competent in the replacement of protein(s) from one retrovirus to another, and there are likely several other factors involved in each of the steps related to replication, integration, and infection. However, further studies to dissect the gag-pol region will be critical for understanding the mechanisms involved in the cleavage of reverse transcriptase, RNase H, and integrase. These studies should provide further insight into the design and development of novel molecular approaches to block HIV-1 replication and to construct a new generation of SNV-based vectors.
Collapse
Affiliation(s)
- Zahida Parveen
- Dorrance H. Hamilton Laboratories, Center for Human Virology and Biodefense, Department of Medicine, Jefferson Medical College, Thomas Jefferson University, 1020 Locust St., Ste. 329, Philadelphia, PA 19107, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Zhang W, Hacker HJ, Tokus M, Bock T, Schröder CH. Patterns of circulating hepatitis B virus serum nucleic acids during lamivudine therapy. J Med Virol 2003; 71:24-30. [PMID: 12858405 DOI: 10.1002/jmv.10464] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We examined whether lamivudine treatment, in addition to the rapid decline of HBV serum DNA described in a large number of laboratories, causes changes in composition and amount of discernable circulating viral DNA and RNA. Nucleic acids were extracted from serial serum samples of a patient infected chronically and treated with lamivudine for 14 weeks. Three sequence segments of the HBV genome synthesized successively during replication, X, C, and X-preC, were analyzed by competitive PCR and RT/PCR. In addition, RNA was examined for differential polyadenylation. Before treatment, identical DNA copy numbers (10(9)/ml) were found in all three segments. C segment DNA displayed the expected rapid decline. X-preC, a target contiguous only on plus-strand DNA behaved similarly. In contrast, the X segment DNA copy numbers showed a less pronounced decrease remaining at higher values (10(7)/ml) than the C and X-preC segment (both about 2 x 10(5)/ml) at the end of therapy. X segment RNA displayed a persisting copy number of about 10(7)/ml, while C and X-preC RNA decreased to about 10(5) copies/ml. Polyadenylated HBV RNA, full-length and truncated, persisted initially at 10(5) but decreased to 10(4) to 10(3) copies/ml at the end of treatment. The major conclusions are the actual numbers of virus particles during lamivudine therapy can only be assessed via X segment DNA, since it is reverse transcribed first, and Lamivudine induced coexistence of DNA and RNA for the C and X segment at similar levels indicates drug-arrested intermediates of reverse transcribed HBV DNA minus-strand. Packaged RNA lacks a poly(A) tail whereas polyadenylated RNA is likely not packaged.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Virus-Host Interactions, Deutsches Krebsforschungszentrum Heidelberg, Germany
| | | | | | | | | |
Collapse
|
29
|
Cheng H, Zhang HZ, Shen WA, Liu YF, Ma FC. Expression of RNase H of human hepatitis B virus polymerase in Escherichia coli. World J Gastroenterol 2003; 9:513-5. [PMID: 12632508 PMCID: PMC4621572 DOI: 10.3748/wjg.v9.i3.513] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To amplify HBV-RNase H gene fragment and expression of RNase H for further use in the studies of HBV associated liver diseases.
METHODS: The encoding gene of HBV-RNase H was separately amplified for the first half and second half (H1 and H2) by PCR from full length HBV gene and cloned into pT7Blue-T vector. Clones were first screened by digestion with Xba I and Hind III enzyme for the correct size, and analyzed further by DNA sequencing. The RNase H1 and H2 fragments isolated from XbaI and Hind III digestion products of pT7 Blue-RNase H plasmid were ligated to the GSTag expressing vectors separately, and expressed in E.coli BL21. The expressed proteins were checked by PAGE gel and Western blot.
RESULTS: Both H1 and H2 nucleotide seqences consisting of known genes and proteins, in correct size, were further confirmed by Western blot to be the GST and RNase H1 or H2 fusion proteins.
CONCLUSION: The successful cloning and expression of HBV-RNase H will contribute to further research and application in HBV-associated diseases.
Collapse
Affiliation(s)
- Hong Cheng
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an 710033, Shaanxi Province, China.
| | | | | | | | | |
Collapse
|
30
|
Bordier BB, Marion PL, Ohashi K, Kay MA, Greenberg HB, Casey JL, Glenn JS. A prenylation inhibitor prevents production of infectious hepatitis delta virus particles. J Virol 2002; 76:10465-72. [PMID: 12239323 PMCID: PMC136538 DOI: 10.1128/jvi.76.20.10465-10472.2002] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Hepatitis delta virus (HDV) causes both acute and chronic liver disease throughout the world. Effective medical therapy is lacking. Previous work has shown that the assembly of HDV virus-like particles (VLPs) could be abolished by BZA-5B, a compound with farnesyltransferase inhibitory activity. Here we show that FTI-277, another farnesyltransferase inhibitor, prevented the production of complete, infectious HDV virions of two different genotypes. Thus, in spite of the added complexity and assembly determinants of infectious HDV virions compared to VLPs, the former are also sensitive to pharmacological prenylation inhibition. Moreover, production of HDV genotype III virions, which is associated with particularly severe clinical disease, was as sensitive to prenylation inhibition as was that of HDV genotype I virions. Farnesyltransferase inhibitors thus represent an attractive potential class of novel antiviral agents for use against HDV, including the genotypes associated with most severe disease.
Collapse
Affiliation(s)
- Bruno B Bordier
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, 269 Campus Drive, Palo Alto, CA 94305-5187, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Mueller-Hill K, Loeb DD. cis-Acting sequences 5E, M, and 3E interact to contribute to primer translocation and circularization during reverse transcription of avian hepadnavirus DNA. J Virol 2002; 76:4260-6. [PMID: 11932391 PMCID: PMC155103 DOI: 10.1128/jvi.76.9.4260-4266.2002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Hepadnaviral reverse transcription requires template switches for the genesis of relaxed circular (RC) DNA, the major genomic form in virions. Two template switches, primer translocation and circularization, are required during the synthesis of the second, or plus, strand of DNA. Studies of duck hepatitis B virus (DHBV) indicate that in addition to the requirement for repeated sequences at the donor and acceptor sites, template switching requires at least three other cis-acting sequences, 5E, M, and 3E. In this study we analyzed a series of variant heron hepatitis B viruses (HHBV) in which the regions of the genome that would be expected to contain 5E, M, and 3E were replaced with DHBV sequence. We found that all single and double chimeras were partially defective in the synthesis of RC DNA. In contrast, the triple chimera was able to synthesize RC DNA at a level comparable to that of unchanged HHBV. These results indicate that the three cis-acting sequences, 5E, M, and 3E, need to be compatible to contribute to RC DNA synthesis, suggesting that these sequences interact during plus-strand synthesis. Second, we found that the defect in RC DNA synthesis for several of the single and double chimeric viruses resulted from a partial defect in primer translocation/utilization and a partial defect in circularization. These findings indicate that the processes of primer translocation and circularization share a mechanism during which 5E, M, and 3E interact.
Collapse
MESH Headings
- Animals
- Avihepadnavirus/genetics
- Avihepadnavirus/metabolism
- DNA Primers
- DNA, Circular/biosynthesis
- DNA, Circular/genetics
- DNA, Viral/biosynthesis
- DNA, Viral/genetics
- Hepatitis Virus, Duck/genetics
- Hepatitis Virus, Duck/metabolism
- Recombination, Genetic
- Regulatory Sequences, Nucleic Acid
- Templates, Genetic
- Transcription, Genetic
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Karlyn Mueller-Hill
- McArdle Laboratory for Cancer Research, University of Wisconsin Medical School, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
32
|
Beck J, Nassal M. Reconstitution of a functional duck hepatitis B virus replication initiation complex from separate reverse transcriptase domains expressed in Escherichia coli. J Virol 2001; 75:7410-9. [PMID: 11462013 PMCID: PMC114976 DOI: 10.1128/jvi.75.16.7410-7419.2001] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hepatitis B viruses replicate through reverse transcription of an RNA intermediate, the pregenomic RNA (pgRNA). Replication is initiated de novo and requires formation of a ribonucleoprotein complex comprising the viral reverse transcriptase (P protein), an RNA stem-loop structure (epsilon) on the pgRNA, and cellular proteins, including the heat shock protein Hsp90, the cochaperone p23, and additional, as yet unknown, factors. Functional complexes catalyze the synthesis of a short DNA primer that is templated by epsilon and covalently linked to the terminal protein (TP) domain of P protein. Currently, the only system for generating such complexes in the test tube is in vitro translation of duck hepatitis B virus (DHBV) P protein in rabbit reticulocyte lysate (RRL), which also provides the necessary factors. However, its limited translation capacity precludes a closer analysis of the complex. To overcome this restriction we sought to produce larger amounts of DHBV P protein by expression in Escherichia coli, followed by complex reconstitution in RRL. Because previous attempts to generate full-length P protein in bacteria have failed we investigated whether separate expression of the TP and reverse transcriptase-RNase H (RT-RH) domains would allow higher yields and whether these domains could trans complement each other. Indeed, TP and, after minor C-terminal modifications, also RT-RH could be expressed in substantial amounts, and when added to RRL, they were capable of epsilon-dependent DNA primer synthesis, demonstrating posttranslational activation. This reconstitution system should pave the way for a detailed understanding of the unique hepadnaviral replication initiation mechanism.
Collapse
Affiliation(s)
- J Beck
- Department of Internal Medicine II/Molecular Biology, University Hospital Freiburg, D-79106 Freiburg, Germany.
| | | |
Collapse
|
33
|
Gong Y, Yao E, Tavis JE. Evidence that the RNAseH activity of the duck hepatitis B virus is unable to act on exogenous substrates. BMC Microbiol 2001; 1:12. [PMID: 11504562 PMCID: PMC37354 DOI: 10.1186/1471-2180-1-12] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2001] [Accepted: 07/19/2001] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The hepadnaviral reverse transcriptase can synthesize DNA on its native RNA template within viral cores but it is usually unable to synthesize DNA employing exogenous nucleic acids as a template. The mechanism of this template commitment is unknown. Here we provide evidence that the RNAseH activity of duck hepatitis B virus reverse transcriptase may also be unable to act on exogenous substrates. RESULTS RNAseH assays were performed under a wide variety of conditions employing substrate RNAs of Duck Hepatitis B Virus sequence annealed to complementary DNA oligonucleotides and permeabilized intracellular viral core particles. Temperature, pH, cation type, salt concentration, substrate concentration, and the sequences of the cleavage sites were varied, and the effects of ATP and dNTPs on RNAseH activity were examined. duck hepatitis B virus RNAseH activity was not detected under any of these conditions, although E. coli or Avian Myeloblastosis Virus RNAseH activity could be detected under all conditions. Access of the RNA substrate to the enzyme within the viral cores was confirmed. CONCLUSIONS These results imply that the RNAseH activity of the DHBV reverse transcriptase may not be able to degrade exogenous RNA:DNA heteroduplexes, although it can degrade heteroduplexes of the same sequence generated during reverse transcription of the endogenous RNA template. Therefore, the RNAseH activity appears to be "substrate committed" in a manner similar to the template commitment observed for the DNA polymerase activity.
Collapse
Affiliation(s)
- Yunhao Gong
- Viridae Clinical Sciences, 1134 Burrard St., Vancouver, B.C. V6Z 1Y8, Canada
| | - Ermei Yao
- Department of Molecular Microbiology and Immunology, St. Louis University School of Medicine, 1402 South Grand Blvd., St. Louis, MO 63104, USA
| | - John E Tavis
- Department of Molecular Microbiology and Immunology, St. Louis University School of Medicine, 1402 South Grand Blvd., St. Louis, MO 63104, USA
| |
Collapse
|
34
|
Lanford RE, Kim YH, Lee H, Notvall L, Beames B. Mapping of the hepatitis B virus reverse transcriptase TP and RT domains by transcomplementation for nucleotide priming and by protein-protein interaction. J Virol 1999; 73:1885-93. [PMID: 9971767 PMCID: PMC104429 DOI: 10.1128/jvi.73.3.1885-1893.1999] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hepadnavirus polymerases initiate reverse transcription in a protein-primed reaction. We previously described a complementation assay for analysis of the roles of the TP and RT domains of HBV reverse transcriptase (pol) in the priming reaction. Independently expressed TP and RT domains form a complex functional for in vitro priming reactions. To map the minimal functional TP and RT domains, we prepared baculoviruses expressing amino- and carboxyl-terminal deletions of both the TP and RT domains and analyzed the proteins for the ability to participate in transcomplementation for the priming reaction. The minimal TP domain spanned amino acids 20 to 175; however, very little activity was observed without a TP domain spanning amino acids 1 to 199. The minimal RT domain spanned amino acids 300 to 775; however, little activity was observed unless the carboxyl end of the RT domain extended to amino acid 800. Thus, most of the RNase H domain was required. In previous studies, we observed a TP inhibitory domain between amino acids 199 and 344. The current analysis narrowed this domain to residues 300 to 334, which is a portion of the minimal RT domain. In addition, the ability of TP and RT deletion mutants to form stable TP-RT complexes was examined in coimmunoprecipitation assays. The minimal TP and RT domains capable of protein-protein interaction were considerably smaller than the domains required for functional interaction in the transcomplementation assays, and unlike priming activity, TP-RT interaction did not require the epsilon RNA stem-loop. These studies help to further define the complex protein-protein interactions required in HBV genome replication.
Collapse
Affiliation(s)
- R E Lanford
- Department of Virology and Immunology, Southwest Foundation for Biomedical Research, San Antonio, Texas 78227, USA.
| | | | | | | | | |
Collapse
|
35
|
Sommer G, Günther S, Sterneck M, Otto S, Will H. A new class of defective hepatitis B virus genomes with an internal poly(dA) sequence. Virology 1997; 239:402-12. [PMID: 9434730 DOI: 10.1006/viro.1997.8898] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Sequence heterogeneity of hepatitis B virus (HBV) is increasingly recognized to play a role in virus-host interaction. We have used a recently established method for HBV full-length genome amplification to search for novel types of HBV variants and to investigate further the sequence heterogeneity of HBV genome populations. Using this method, a substantial fraction of HBV genomes much shorter than wildtype size was found in some sera and liver biopsies from infected patients. Cloning and sequencing of a number of these HBV genomes as well as hybridization studies revealed a new minor class of HBV genomes with an internal poly(dA) sequence approximately 60 to more than 100 nucleotides long in 4 of 10 patients. The 5'-ends of the internal poly(dA) sequences are located at positions corresponding to the authentic processing/polyadenylation sites of the RNA pregenome, whereas the positions of the 3'-ends are variable due to different sizes of adjacent deletions. These data suggest that the poly(A) tail of the pregenomic RNA is occasionally reverse transcribed by the HBV P-protein and during this process a deletion seems to be introduced into the DNA minus strand. We propose a mechanism by which this could be accomplished during DNA minus strand synthesis.
Collapse
Affiliation(s)
- G Sommer
- Heinrich-Pette-Institut für experimentalle Virologie und immunologie an, Universität Hamburg, Germany
| | | | | | | | | |
Collapse
|