1
|
Wöhrl BM. Structural and Functional Aspects of Foamy Virus Protease-Reverse Transcriptase. Viruses 2019; 11:v11070598. [PMID: 31269675 PMCID: PMC6669543 DOI: 10.3390/v11070598] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 12/15/2022] Open
Abstract
Reverse transcription describes the process of the transformation of single-stranded RNA into double-stranded DNA via an RNA/DNA duplex intermediate, and is catalyzed by the viral enzyme reverse transcriptase (RT). This event is a pivotal step in the life cycle of all retroviruses. In contrast to orthoretroviruses, the domain structure of the mature RT of foamy viruses is different, i.e., it harbors the protease (PR) domain at its N-terminus, thus being a PR-RT. This structural feature has consequences on PR activation, since the enzyme is monomeric in solution and retroviral PRs are only active as dimers. This review focuses on the structural and functional aspects of simian and prototype foamy virus reverse transcription and reverse transcriptase, as well as special features of reverse transcription that deviate from orthoretroviral processes, e.g., PR activation.
Collapse
Affiliation(s)
- Birgitta M Wöhrl
- Lehrstuhl Biopolymere, Universität Bayreuth, D-95440 Bayreuth, Germany.
| |
Collapse
|
2
|
Cross- and Co-Packaging of Retroviral RNAs and Their Consequences. Viruses 2016; 8:v8100276. [PMID: 27727192 PMCID: PMC5086612 DOI: 10.3390/v8100276] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/03/2016] [Accepted: 10/03/2016] [Indexed: 12/23/2022] Open
Abstract
Retroviruses belong to the family Retroviridae and are ribonucleoprotein (RNP) particles that contain a dimeric RNA genome. Retroviral particle assembly is a complex process, and how the virus is able to recognize and specifically capture the genomic RNA (gRNA) among millions of other cellular and spliced retroviral RNAs has been the subject of extensive investigation over the last two decades. The specificity towards RNA packaging requires higher order interactions of the retroviral gRNA with the structural Gag proteins. Moreover, several retroviruses have been shown to have the ability to cross-/co-package gRNA from other retroviruses, despite little sequence homology. This review will compare the determinants of gRNA encapsidation among different retroviruses, followed by an examination of our current understanding of the interaction between diverse viral genomes and heterologous proteins, leading to their cross-/co-packaging. Retroviruses are well-known serious animal and human pathogens, and such a cross-/co-packaging phenomenon could result in the generation of novel viral variants with unknown pathogenic potential. At the same time, however, an enhanced understanding of the molecular mechanisms involved in these specific interactions makes retroviruses an attractive target for anti-viral drugs, vaccines, and vectors for human gene therapy.
Collapse
|
3
|
Hamann MV, Lindemann D. Foamy Virus Protein-Nucleic Acid Interactions during Particle Morphogenesis. Viruses 2016; 8:v8090243. [PMID: 27589786 PMCID: PMC5035957 DOI: 10.3390/v8090243] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/19/2016] [Accepted: 08/22/2016] [Indexed: 12/24/2022] Open
Abstract
Compared with orthoretroviruses, our understanding of the molecular and cellular replication mechanism of foamy viruses (FVs), a subfamily of retroviruses, is less advanced. The FV replication cycle differs in several key aspects from orthoretroviruses, which leaves established retroviral models debatable for FVs. Here, we review the general aspect of the FV protein-nucleic acid interactions during virus morphogenesis. We provide a summary of the current knowledge of the FV genome structure and essential sequence motifs required for RNA encapsidation as well as Gag and Pol binding in combination with details about the Gag and Pol biosynthesis. This leads us to address open questions in FV RNA engagement, binding and packaging. Based on recent findings, we propose to shift the point of view from individual glycine-arginine-rich motifs having functions in RNA interactions towards envisioning the FV Gag C-terminus as a general RNA binding protein module. We encourage further investigating a potential new retroviral RNA packaging mechanism, which seems more complex in terms of the components that need to be gathered to form an infectious particle. Additional molecular insights into retroviral protein-nucleic acid interactions help us to develop safer, more specific and more efficient vectors in an era of booming genome engineering and gene therapy approaches.
Collapse
Affiliation(s)
- Martin V Hamann
- Institute of Virology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.
- CRTD/DFG-Center for Regenerative Therapies Dresden, Technische Universität Dresden, 01307 Dresden, Germany.
| | - Dirk Lindemann
- Institute of Virology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.
- CRTD/DFG-Center for Regenerative Therapies Dresden, Technische Universität Dresden, 01307 Dresden, Germany.
| |
Collapse
|
4
|
Liu W, Lei J, Liu Y, Slavkovic Lukic D, Räthe AM, Bao Q, Kehl T, Bleiholder A, Hechler T, Löchelt M. Feline foamy virus-based vectors: advantages of an authentic animal model. Viruses 2013; 5:1702-18. [PMID: 23857307 PMCID: PMC3738957 DOI: 10.3390/v5071702] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 06/13/2013] [Accepted: 06/25/2013] [Indexed: 02/07/2023] Open
Abstract
New-generation retroviral vectors have potential applications in vaccination and gene therapy. Foamy viruses are particularly interesting as vectors, because they are not associated to any disease. Vector research is mainly based on primate foamy viruses (PFV), but cats are an alternative animal model, due to their smaller size and the existence of a cognate feline foamy virus (FFV). The potential of replication-competent (RC) FFV vectors for vaccination and replication-deficient (RD) FFV-based vectors for gene delivery purposes has been studied over the past years. In this review, the key achievements and functional evaluation of the existing vectors from in vitro cell culture systems to out-bred cats will be described. The data presented here demonstrate the broad application spectrum of FFV-based vectors, especially in pathogen-specific prophylactic and therapeutic vaccination using RD vectors in cats and in classical gene delivery. In the cat-based system, FFV-based vectors provide an advantageous platform to evaluate and optimize the applicability, efficacy and safety of foamy virus (FV) vectors, especially the understudied aspect of FV cell and organ tropism.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Martin Löchelt
- Department of Genome Modifications, Research Program Infection and Cancer, German Cancer Research Center, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany; E-Mails: (W.L.); (J.L.); (Y.L.); (D.S.L.); (A.-M.R.); (Q.B.); (T.K.); (A.B.); (T.H.)
| |
Collapse
|
5
|
Park J, Mergia A. Preparation of simian foamy virus type-1 vectors. Cold Spring Harb Protoc 2011; 2011:2011/9/pdb.prot065516. [PMID: 21880822 DOI: 10.1101/pdb.prot065516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Foamy viruses (FVs) are nonpathogenic retroviruses that offer opportunities for efficient and safe gene transfer in various cell types from different species. These viruses have unique replication mechanisms that are distinct from other retroviruses, which may give an advantage to FV-mediated gene transfer. This protocol describes a method for simian foamy virus type-1 (SFV-1) vector preparation and concentration. A transient transfection of vector and packaging constructs allows generation of the SFV-1 vector with titers of 10(7)/mL. The vectors can be further concentrated by 100-200-fold without significant loss of vector titer.
Collapse
|
6
|
Lindemann D, Rethwilm A. Foamy virus biology and its application for vector development. Viruses 2011; 3:561-85. [PMID: 21994746 PMCID: PMC3185757 DOI: 10.3390/v3050561] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 04/21/2011] [Accepted: 04/23/2011] [Indexed: 01/12/2023] Open
Abstract
Spuma- or foamy viruses (FV), endemic in most non-human primates, cats, cattle and horses, comprise a special type of retrovirus that has developed a replication strategy combining features of both retroviruses and hepadnaviruses. Unique features of FVs include an apparent apathogenicity in natural hosts as well as zoonotically infected humans, a reverse transcription of the packaged viral RNA genome late during viral replication resulting in an infectious DNA genome in released FV particles and a special particle release strategy depending capsid and glycoprotein coexpression and specific interaction between both components. In addition, particular features with respect to the integration profile into the host genomic DNA discriminate FV from orthoretroviruses. It appears that some inherent properties of FV vectors set them favorably apart from orthoretroviral vectors and ask for additional basic research on the viruses as well as on the application in Gene Therapy. This review will summarize the current knowledge of FV biology and the development as a gene transfer system.
Collapse
Affiliation(s)
- Dirk Lindemann
- Institut für Virologie, Medizinische Fakultät “Carl Gustav Carus”, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
- DFG-Center for Regenerative Therapies Dresden (CRTD)—Cluster of Excellence, Biotechnology Center, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Axel Rethwilm
- Institut für Virologie und Immunbiologie, Universität Würzburg, 97078 Würzburg, Germany; E-Mail:
| |
Collapse
|
7
|
Regulation of foamy virus protease activity by viral RNA: a novel and unique mechanism among retroviruses. J Virol 2011; 85:4462-9. [PMID: 21325405 DOI: 10.1128/jvi.02211-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Foamy viruses (FVs) synthesize the Pol precursor protein from a specific transcript. Thus, in contrast to what was found for orthoretroviruses, e.g., human immunodeficiency virus, no Gag-Pol precursor protein is synthesized. Foamy viral Pol consists of a protease (PR) domain, a reverse transcriptase domain, and an integrase domain and is processed into a mature protease-reverse transcriptase (PR-RT) fusion protein and the integrase. Protease activity has to be strictly regulated in order to avoid premature Gag and Pol processing before virus assembly. We have demonstrated recently that FV protease is an inactive monomer with a very weak dimerization tendency and postulated protease activation through dimerization. Here, we identify a specific protease-activating RNA motif (PARM) located in the pol region of viral RNA which stimulates PR activity in vitro and in vivo, revealing a novel and unique mechanism of retroviral protease activation. This mechanism is strikingly different to that of orthoretroviruses, where the protease can be activated even in the absence of viral RNA during the assembly of virus-like particles. Although it has been shown that the integrase domain is important for Pol uptake, activation of the foamy virus protease is integrase independent. We show that at least two foamy virus PR-RT molecules bind to the PARM and only RNAs containing the PARM result in significant activation of the protease. DNA harboring the PARM is not capable of protease activation. Structure determination of the PARM by selective 2' hydroxyl acylation analyzed by primer extension (SHAPE) revealed a distinct RNA folding, important for protease activation and thus virus maturation.
Collapse
|
8
|
Abstract
Foamy virus (FV) vectors are efficient gene delivery vehicles that have shown great promise for gene therapy in preclinical animal models. FVs or spumaretroviruses are not endemic in humans, but are prevalent in nonhuman primates and in other mammals. They have evolved means for efficient horizontal transmission in their host species without pathology. FV vectors have several unique properties that make them well suited for therapeutic gene transfer including a desirable safety profile, a broad tropism, a large transgene capacity, and the ability to persist in quiescent cells. They mediate efficient and stable gene transfer to hematopoietic stem cells (HSCs) in mouse models, and in the canine large animal model. Analysis of FV vector integration sites in vitro and in hematopoietic repopulating cells shows they have a unique integration profile, and suggests they may be safer than gammaretroviruses or lentiviral vectors. Here, properties of FVs relevant to the safety and efficacy of FV vectors are discussed. The development of FV vector systems is described, and studies evaluating their potential in vitro, and in small and large animal models, is reviewed.
Collapse
Affiliation(s)
- Grant D Trobridge
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA.
| |
Collapse
|
9
|
Liu W, Backes P, Löchelt M. Importance of the major splice donor and redefinition of cis-acting sequences of gutless feline foamy virus vectors. Virology 2009; 394:208-17. [PMID: 19775717 DOI: 10.1016/j.virol.2009.08.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 08/07/2009] [Accepted: 08/19/2009] [Indexed: 12/18/2022]
Abstract
Foamy virus vectors are potent alternatives to lenti- and gamma-retroviral vectors for gene therapy. To construct and optimize gutless feline foamy virus (FFV) replication-deficient (RD) vectors, viral elements essential for optimal efficient marker gene transduction were characterized and fine-mapped and packaging clones constructed. For these purposes, new Gag and Pol expression clones which allow efficient expression of packaging proteins and vectors carrying deletions in coding and non-coding regions of the genome were constructed and functionally evaluated. These studies demonstrate that the 5' major splice donor (5' SD) is indispensable for RD vectors while defined mutations introduced to inactivate the gag start codon improve transgene delivery efficiency. Based on these findings, new gutless FFV vectors were generated yielding un-concentrated vector titers above 10(5) transducing units (TU)/ml. By minimizing the second cis-acting sequence in the pol gene, only 3.8 kb viral sequences are maintained in the novel gutless FFV RD vectors.
Collapse
Affiliation(s)
- Weibin Liu
- Division of Genome Modifications and Carcinogenesis, Focus Infection and Cancer, German Cancer Research Center, (F020), Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
10
|
Wiktorowicz T, Peters K, Armbruster N, Steinert AF, Rethwilm A. Generation of an improved foamy virus vector by dissection of cis-acting sequences. J Gen Virol 2009; 90:481-487. [PMID: 19141459 DOI: 10.1099/vir.0.006312-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In contrast to other retroviruses, foamy viruses (FVs) generate their Pol protein precursor independently of the Gag protein from a spliced mRNA. The exact mechanism of Pol protein incorporation into the viral capsid is poorly understood. Previously, we showed that Pol encapsidation critically depends on the packaging of (pre-) genomic RNA and identified two distinct signals within the cis-acting sequences (CASI and CASII), Pol encapsidation sequences (PESI and PESII), which are required for Pol capsid incorporation. Here, we investigated whether the presence of PESI and PESII in an FV vector is sufficient for Pol encapsidation and whether the rather extended CASII element can be shortened without loss of functionality. Our results indicate that (i) the presence of PESI and II are not sufficient for Pol encapsidation, (ii) prototype FV vectors with a shortened CASII element retain Pol incorporation and full functionality, in particular upon transducing fibroblasts and primary human mesenchymal stem cells, (iii) the presence of the central poly purine tract significantly increased the transduction rates of FV vectors and (iv) Pol encapsidation and RNA packaging can be clearly separated. In essence, we designed a new FV vector that bears approximately 850 bp less of CAS than previously established vectors and is fully functional when analysed to transduce cell lines and primary human cells.
Collapse
Affiliation(s)
- Tatiana Wiktorowicz
- Universität Würzburg, Institut für Virologie und Immunbiologie, Würzburg, Germany
| | - Katrin Peters
- University of California, International Laboratory of Molecular Biology for Tropical Disease Agents, School of Veterinary Medicine, Davis, USA.,Universität Würzburg, Institut für Virologie und Immunbiologie, Würzburg, Germany
| | - Nicole Armbruster
- Universität Würzburg, Orthopaedic Center for Musculoskeletal Research, Orthopaedic Clinic König-Ludwig-Haus, Würzburg, Germany.,Universität Würzburg, Institut für Virologie und Immunbiologie, Würzburg, Germany
| | - Andre F Steinert
- Universität Würzburg, Orthopaedic Center for Musculoskeletal Research, Orthopaedic Clinic König-Ludwig-Haus, Würzburg, Germany
| | - Axel Rethwilm
- Universität Würzburg, Institut für Virologie und Immunbiologie, Würzburg, Germany
| |
Collapse
|
11
|
Ma Z, Qiao WT, Xuan CH, Xie JH, Chen QM, Geng YQ. Detection and analysis of bovine foamy virus infection by an indicator cell line. Acta Pharmacol Sin 2007; 28:994-1000. [PMID: 17588335 DOI: 10.1111/j.1745-7254.2007.00563.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM To determine the infectivity and replication strategy of bovine foamy virus (BFV) in different cultured cells using the BFV indicator cell line (BICL) system. METHODS BFV infection was induced by the co-culture method or the transient transfection of the infectious BFV plasmid [pCMV (cytomegalovirus) - BFV] clone. The infectivity of BFV was monitored by the percentage of green fluorescent protein-positive cells in the BICL. The effect of reverse transcriptase inhibitor zidovudine (AZT) on BFV replication was also evaluated in the BICL. RESULTS The titer of BFV in fetal bovine lung cells was 4-5-folds more than that in either 293T or HeLa (Cells from Henrietta lacks) cells using the co-culture method, and in the meantime was significantly higher than that produced by the infectious clone pCMV-BFV in the same cells. AZT had only a minor effect on viral titers when added to cells prior to the virus infection. In contrast, viral titers reduced sharply to the level of the negative control when the virus was produced from cells in the presence of AZT. CONCLUSIONS BICL can be used for the titration of the BFV viral infection in non-cytopathic condition. In addition, we provide important evidence to show that reverse transcription is essential for BFV replication at a late step of viral infection.
Collapse
Affiliation(s)
- Zhe Ma
- Laboratory of Molecular Virology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
Foamy virus Pol precursor protein processing by the viral protease occurs at only one site, releasing a protease-reverse transcriptase and an integrase protein. To examine whether the cleavage of the Pol precursor protein is necessary for enzymatic activities and efficient viral replication, several mutations were generated around the cleavage site. All cleavage site mutants synthesize wild-type levels of Pol precursor protein. Mutants containing more than two amino acid substitutions around the cleavage site exhibit no detectable Pol processing. The Pol cleavage site is not required for the production of infectious particles in a single round of infection, but is important for subsequent rounds of viral infection. Mutations around the cleavage site affected the enzymatic activities of the protease and reverse transcriptase and prevented replication after two rounds of infection. Interestingly, Pol encapsidation is significantly reduced in some of the mutants.
Collapse
Affiliation(s)
- Jacqueline Roy
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109-1024, USA
| | | |
Collapse
|
13
|
Bastone P, Bravo IG, Löchelt M. Feline foamy virus-mediated marker gene transfer: identification of essential genetic elements and influence of truncated and chimeric proteins. Virology 2006; 348:190-9. [PMID: 16443252 DOI: 10.1016/j.virol.2005.12.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Revised: 11/22/2005] [Accepted: 12/16/2005] [Indexed: 11/16/2022]
Abstract
Retroviral vectors derived from foamy or spumaretroviruses are considered promising tools for targeted gene delivery and vaccination purposes. In order to fully exploit this potential, we identified essential cis-acting sequences on the feline foamy virus (FFV) genome by constructing and analyzing a series of FFV-based replication-deficient vector genomes. Cis-acting sequences essentially required for marker gene transfer were found to be localized at two sites on the FFV genome: (i) in the 5'-untranslated region and close to the gag ATG and (ii) in the central part of the pol gene. The presence of two cis-acting sequences and their relative location on the FFV genome are similar but not identical to the functionally corresponding elements described for simian and primate foamy viruses.
Collapse
Affiliation(s)
- Patrizia Bastone
- Department Genome Modifications and Carcinogenesis, Focus Infection and Cancer, German Cancer Research Centre, Heidelberg, Germany
| | | | | |
Collapse
|
14
|
Trobridge GD, Miller DG, Jacobs MA, Allen JM, Kiem HP, Kaul R, Russell DW. Foamy virus vector integration sites in normal human cells. Proc Natl Acad Sci U S A 2006; 103:1498-503. [PMID: 16428288 PMCID: PMC1360565 DOI: 10.1073/pnas.0510046103] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Foamy viruses (FVs) or spumaviruses are retroviruses that have been developed as vectors, but their integration patterns have not been described. We have performed a large-scale analysis of FV integration sites in unselected human fibroblasts (n = 1,008) and human CD34(+) hematopoietic cells (n = 1,821) by using a bacterial shuttle vector and a comparable analysis of lentiviral vector integration sites in CD34(+) cells (n = 1,331). FV vectors had a distinct integration profile relative to other types of retroviruses. They did not integrate preferentially within genes, despite a modest preference for integration near transcription start sites and a significant preference for CpG islands. The genomewide distribution of FV vector proviruses was nonrandom, with both clusters and gaps. Transcriptional profiling showed that gene expression had little influence on integration site selection. Our findings suggest that FV vectors may have desirable integration properties for gene therapy applications.
Collapse
Affiliation(s)
- Grant D Trobridge
- Department of Medicine, Division of Hematology, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Peters K, Wiktorowicz T, Heinkelein M, Rethwilm A. RNA and protein requirements for incorporation of the Pol protein into foamy virus particles. J Virol 2005; 79:7005-13. [PMID: 15890940 PMCID: PMC1112116 DOI: 10.1128/jvi.79.11.7005-7013.2005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Foamy viruses (FVs) generate their Pol protein precursor molecule independently of the Gag protein from a spliced mRNA. This mode of expression raises the question of the mechanism of Pol protein incorporation into the viral particle (capsid). We previously showed that the packaging of (pre)genomic RNA is essential for Pol encapsidation (M. Heinkelein, C. Leurs, M. Rammling, K. Peters, H. Hanenberg, and A. Rethwilm, J. Virol. 76:10069-10073, 2002). Here, we demonstrate that distinct sequences in the RNA, which we termed Pol encapsidation sequences (PES), are required to incorporate Pol protein into the FV capsid. Two PES were found, which are contained in the previously identified cis-acting sequences necessary to transfer an FV vector. One PES is located in the U5 region of the 5' long terminal repeat and one at the 3' end of the pol gene region. Neither element has any significant effect on RNA packaging. However, deletion of either PES resulted in a significant reduction in Pol encapsidation. On the protein level, we show that only the Pol precursor, but not the individual reverse transcriptase (RT) and integrase (IN) subunits, is incorporated into FV particles. However, enzymatic activities of the protease (PR), RT, or IN are not required. Our results strengthen the view that in FVs, (pre)genomic RNA functions as a bridging molecule between Gag and Pol precursor proteins.
Collapse
Affiliation(s)
- Katrin Peters
- Institut für Virologie und Immunbiologie, Universität Würzburg, Versbacher Str. 7, 97078 Würzburg, Germany
| | | | | | | |
Collapse
|
16
|
Abstract
Gene therapy is a promising novel treatment for a variety of human diseases. Successful application of gene therapy requires the availability of vehicles with the ability to efficiently deliver and express genes. Viral vectors are efficient means of transferring a gene of interest into target cells. Current available vehicles for gene transfer are either inefficient or potentially unsafe for human gene therapy applications. Foamy viruses offer a fresh alternative vector system for gene transfer with the potential to overcome the concerns of the current vectors. Foamy viruses are nonpathogenic and have a broad host range with the ability to infect various types of cells from different species. Foamy virus replication is distinct and may provide an edge for foamy virus vector usage over other retroviral vectors. These features offer the foamy vectors unique opportunities to deliver several genes into a number of different cell types in vivo safely and efficiently. The principal problems for the design of foamy virus vectors have been solved, and several foamy virus vectors that efficiently transduce a variety of cell types are available. This chapter reviews specific features of foamy virus vector systems and recent advances in the development and use of these vectors.
Collapse
Affiliation(s)
- A Mergia
- Department of Pathobiology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA.
| | | |
Collapse
|
17
|
Phung HTT, Tohya Y, Shimojima M, Kato K, Miyazawa T, Akashi H. Establishment of a GFP-based indicator cell line to quantitate feline foamy virus. J Virol Methods 2003; 109:125-31. [PMID: 12711054 DOI: 10.1016/s0166-0934(03)00062-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To quantitate infectious feline foamy virus (FeFV), Crandell feline kidney (CRFK) cells were transfected with the gfp gene under the control of the FeFV long terminal repeat (LTR) for establishing an indicator cell line named FFG cells. The FeFV activates promoter activity of the LTR to express green fluorescent protein (GFP) upon infection. The titers determined by GFP-positive FFG cells (GFP-based assay) were higher than those determined by the cytopathic effects-positive CRFK cells (CPE-based assay). The titers determined by the GFP-based assay reached a plateau at 3-4 days post infection (d.p.i.), while those by the CPE-based assay reached 6-8 d.p.i. When stock viruses of various FeFV strains were titrated by both assays, titers determined by both assays correlated well with each other. The results show that the GFP-based assay is simpler and more rapid and sensitive than the CPE-based assay. Using the GFP-based assay, we examined the in vitro host range of FeFV. It was found that FeFV can productively infect various cell lines derived from cats, dogs, chickens, a human and a bat.
Collapse
Affiliation(s)
- Hang T T Phung
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Zucali JR, Ciccarone T, Kelley V, Park J, Johnson CM, Mergia A. Transduction of umbilical cord blood CD34+ NOD/SCID-repopulating cells by simian foamy virus type 1 (SFV-1) vector. Virology 2002; 302:229-35. [PMID: 12441067 DOI: 10.1006/viro.2002.1604] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Foamy viruses are nonpathogenic retroviruses that offer unique opportunities for gene transfer into various cell types including hematopoietic stem cells. We used a simian foamy virus type 1 vector (SFV-1) containing a LacZ reporter gene with a titer of 1-5 x 10(6) viral particles/ml that was free of replication-competent retrovirus to transduce human umbilical cord blood CD34+ cells. Transduced CD34+ cord blood cells were transplanted into NOD/SCID mice and plated in serum-free methylcellulose culture to determine the transduction efficiency of human hematopoietic progenitor cells. A transduction efficiency of about 20% was obtained. At 6-10 weeks posttransplantation, human hematopoietic cell engraftment and marking were determined. Marrow from transplanted mice demonstrated human cell engraftment by the presence of human (CD45+) cells containing both CD19+ lymphoid and CD33+ myeloid cells. Serial sampling of NOD/SCID bone marrow revealed the presence of 6.7-14.0% CD45+ cells at 6 weeks posttransplant as compared to 3.6-27.2% CD45+ cells at 9-10 weeks posttransplant. Human progenitors examined from NOD/SCID bone marrow cells 9 weeks posttransplant revealed from 7.4 to 25.9% of the colonies exhibiting X-gal staining. Our study demonstrates the ability of a simian foamy virus vector to transduce the SCID-repopulating cell and offers a promising new gene delivery system for use in hematopoietic stem cell gene therapy.
Collapse
Affiliation(s)
- James R Zucali
- Department of Medicine, College of Medicine, University of Florida, Gainesville, 32610, USA
| | | | | | | | | | | |
Collapse
|
19
|
Park J, Nadeau PE, Mergia A. A minimal genome simian foamy virus type 1 vector system with efficient gene transfer. Virology 2002; 302:236-44. [PMID: 12441068 DOI: 10.1006/viro.2002.1636] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Foamy viruses have several inherent features for the opportunity to develop efficient and versatile vectors for gene therapy. We have constructed a series of vectors and helper plasmids based on simian foamy virus type 1 (SFV-1) to establish the minimum vector genome required for efficient gene transduction. To characterize the efficiency of gene transduction by these vectors, the green fluorescent protein (GFP) coding sequence is linked to the human cytomegalovirus immediate gene promoter. Several deletion analyses of SFV-1 vectors revealed that the minimum genome with efficient GFP transduction contained the 5' untranslated region extending to the first 637 nucleotides of the gag gene, a 596 nucleotides of pol sequence from position 3137-3733, the 3' pol region at position 5200-5693, the 3' end polypurine tract, and the 3' LTR. An additional 1131 nucleotides can be removed from the 3' end LTR without affecting the efficiency of vector transduction. SFV-1 vector can therefore accommodate a minimum 8930 base-size heterologous DNA fragment. Furthermore, the efficiency of SFV-1 vector transduction was analyzed using different packaging plasmids. GFP transduction with packaging plasmid that contained the 5' R-U5 region of the LTR was compared with helper plasmids that had deletions in this region except for 22 nucleotides (positions 21-41), the first 61, 77, or 140 nucleotides of the R of the LTR. Transduction efficiencies were significantly reduced with the deletion mutations implicating that for optimum SFV-1 vector productions a packaging construct that includes the 5' R-U5 is required.
Collapse
Affiliation(s)
- Jeonghae Park
- Department of Pathobiology, University of Florida, Gainesville, 32610, USA
| | | | | |
Collapse
|
20
|
Trobridge G, Josephson N, Vassilopoulos G, Mac J, Russell DW. Improved foamy virus vectors with minimal viral sequences. Mol Ther 2002; 6:321-8. [PMID: 12231167 DOI: 10.1006/mthe.2002.0672] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Foamy virus (FV) vectors show promise for gene therapy applications. However, existing FV vectors either retain a significant portion of the wild-type virus genome or are produced at low titers. We describe a transient cotransfection system that produces high-titer FV vectors with minimal cis-acting regions. These vector genomes have deletions in the gag, pol, env, and bel1-3 accessory genes, as well as the LTR U3 region, but retain an essential 2.5-kb cis-acting region. In addition, stop codons were introduced into the remaining gag sequences to prevent expression of viral peptides and to eliminate dominant-negative effects of a Gag-Pol fusion protein. Although these deleted foamy (deltaphi) vectors were produced at relatively low titers with our prior packaging construct, we designed separate helper plasmids for Gag, Pol, and Env expression that allowed us to routinely produce helper-free, unconcentrated vector stocks with titers of over 10(5) transducing units/ml by four-plasmid transient transfection. The deltaphi vector stocks were then concentrated by ultracentrifugation to titers over 10(7) transducing units/ml. A deltaphi vector containing a 9.2-kb transgene cassette was produced at unconcentrated titers of over 10(5) transducing units/ml, demonstrating the utility of these deleted vectors for large therapeutic genes.
Collapse
Affiliation(s)
- Grant Trobridge
- Department of Medicine, Division of Hematology, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | |
Collapse
|
21
|
Trobridge G, Vassilopoulos G, Josephson N, Russell DW. Gene transfer with foamy virus vectors. Methods Enzymol 2002; 346:628-48. [PMID: 11883096 DOI: 10.1016/s0076-6879(02)46082-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- Grant Trobridge
- Division of Hematology, University of Washington, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
22
|
Heinkelein M, Dressler M, Jármy G, Rammling M, Imrich H, Thurow J, Lindemann D, Rethwilm A. Improved primate foamy virus vectors and packaging constructs. J Virol 2002; 76:3774-83. [PMID: 11907217 PMCID: PMC136074 DOI: 10.1128/jvi.76.8.3774-3783.2002] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Foamy virus (FV) vectors that have minimal cis-acting sequences and are devoid of residual viral gene expression were constructed and analyzed by using a packaging system based on transient cotransfection of vector and different packaging plasmids. Previous studies indicated (i) that FV gag gene expression requires the presence of the R region of the long terminal repeat and (ii) that RNA from packaging constructs is efficiently incorporated into vector particles. Mutants with changes in major 5' splice donor (SD) site located in the R region identified this sequence element as responsible for regulating gag gene expression by an unidentified mechanism. Replacement of the FV 5' SD with heterologous splice sites enabled expression of the gag and pol genes. The incorporation of nonvector RNA into vector particles could be reduced to barely detectable levels with constructs in which the human immunodeficiency virus 5' SD or an unrelated intron sequence was substituted for the FV 5' untranslated region and in which gag expression and pol expression were separated on two different plasmids. By this strategy, efficient vector transfer was achieved with constructs that have minimal genetic overlap.
Collapse
Affiliation(s)
- Martin Heinkelein
- Institut für Virologie und Immunbiologie, Universität Würzburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Wodrich H, Bohne J, Gumz E, Welker R, Kräusslich HG. A new RNA element located in the coding region of a murine endogenous retrovirus can functionally replace the Rev/Rev-responsive element system in human immunodeficiency virus type 1 Gag expression. J Virol 2001; 75:10670-82. [PMID: 11602709 PMCID: PMC114649 DOI: 10.1128/jvi.75.22.10670-10682.2001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nuclear export of incompletely spliced RNAs is a prerequisite for retroviral replication. Complex retroviruses like human immunodeficiency virus (HIV) encode a viral transport factor (Rev), which binds to its target sequence on the RNA genome and directs it into the Crm-1-mediated export pathway. Other retroviruses, like Mason-Pfizer monkey virus, contain cis-acting constitutive RNA transport elements (CTE) which achieve nuclear export of intron-containing RNA via cellular transport factors. Here, we describe the identification and characterization of a novel cis-acting orientation-dependent RNA expression element in the coding region of the murine intracisternal A-type particle (IAP) MIA14. This IAP expression element (IAPE) can functionally replace the Rev system in the expression of HIV-1 Gag proteins but functions independently of Crm-1. The presence of this element is needed for the expression of the IAP Gag proteins, indicating its biological significance. The IAPE can be functionally replaced by placing a CTE on the MIA14 RNA, further supporting its role in mRNA export. Northern blot analysis revealed that total RNA, as well as cytoplasmic RNA, was increased when the element was present. The element was mapped to a predicted stem-loop structure in the 3' part of the pol open reading frame. There was no overall homology between the IAPE and the CTE, but there was complete sequence identity between short putative single-stranded loops. Deletion of these loops from the IAPE severely reduced Rev-independent Gag expression.
Collapse
Affiliation(s)
- H Wodrich
- Heinrich-Pette-Institut, D-20251 Hamburg, Germany
| | | | | | | | | |
Collapse
|
24
|
Phung HT, Ikeda Y, Miyazawa T, Nakamura K, Mochizuki M, Izumiya Y, Sato E, Nishimura Y, Tohya Y, Takahashi E, Mikami T. Genetic analyses of feline foamy virus isolates from domestic and wild feline species in geographically distinct areas. Virus Res 2001; 76:171-81. [PMID: 11410316 DOI: 10.1016/s0168-1702(01)00275-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To know the genetic diversities and phylogenetic relationship among feline foamy virus (FeFV) isolates from domestic cats (Felis catus) and FeFV-related viruses from the Iriomote cats (Felis iriomotensis) and leopard cats (Felis bengalensis) in geographically distinct areas, we sequenced a partial gag-pol region of 17 strains and a partial env region of nine strains, and the U3 region of long terminal repeat of three strains of the viruses. FeFV-related viruses from the feral cats were quite similar to the FeFV from domestic cats in the sequenced regions. In the partial gag region, the identities of nucleotide sequences among the isolates were from 94 to 99%. In the partial env gene, the isolates were divided into two distinct genotypes (F17- and FUV-types) as reported by Winkler et al. (Virology 247 (1999) 144-151). More than 94% nucleotide identities were observed in the env region within a particular env genotype and about 75% nucleotide identities were noted between the two genotypes.
Collapse
Affiliation(s)
- H T Phung
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, 113-8657, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Cain D, Erlwein O, Grigg A, Russell RA, McClure MO. Palindromic sequence plays a critical role in human foamy virus dimerization. J Virol 2001; 75:3731-9. [PMID: 11264362 PMCID: PMC114864 DOI: 10.1128/jvi.75.8.3731-3739.2001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The retroviral RNA genome is dimeric, consisting of two identical strands of RNA linked near their 5' ends by a dimer linkage structure. Previously it was shown that human foamy virus (HFV) RNA transcribed in vitro contained three sites, designated SI, SII, and SIII, which contributed to the dimerization process (O. Erlwein, D. Cain, N. Fischer, A. Rethwilm, and M. O. McClure, Virology 229:251-258, 1997). To characterize these sites further, a series of mutants were designed and tested for their ability to dimerize in vitro. The primer binding site and a G tetrad in SI were dispensable for dimerization. However, a mutant that changed the 3' end of SI migrated slower on nondenaturing gels than wild-type RNA dimers. The sequence composition of the SII palindrome, consisting of 10 nucleotides, proved to be critical for in vitro dimerization, since mutations within this sequence or replacement of the sequence with a different palindrome of equal length impaired in vitro dimerization. The length of the palindrome also seems to play an important role. A moderate extension to 12 nucleotides was tolerated, whereas an extension to 16 nucleotides or more impaired dimerization. When nucleotides flanking the palindrome were mutated in a random fashion, dimerization was unaffected. Changing the SIII sequence also led to decreased dimer formation, confirming its contribution to the dimerization process. Interesting mutants were cloned into the infectious molecular clone of HFV, HSRV-2, and were transfected into BHK-21 cells. Mutations in SII that reduced dimerization in vitro also abolished virus replication. In contrast, constructs containing mutations in SI and SIII replicated to some extent in cell culture after an initial drop in viral replication. Analysis of the SIM1 mutant revealed reversion to the wild type but with the insertion of an additional two nucleotides. Analysis of cell-free virions demonstrated that both replication-competent and replication-defective mutants packaged nucleic acid. Thus, efficient dimerization is a critical step for HFV to generate infectious virus, but HFV RNA dimerization is not a prerequisite for packaging.
Collapse
Affiliation(s)
- D Cain
- Department of G.U. Medicine and Communicable Diseases, Jefferiss Research Trust Laboratories, Wright-Fleming Institute, Imperial College School of Medicine at St. Mary's, London W2 1PG, United Kingdom
| | | | | | | | | |
Collapse
|
26
|
Mergia A, Chari S, Kolson DL, Goodenow MM, Ciccarone T. The efficiency of simian foamy virus vector type-1 (SFV-1) in nondividing cells and in human PBLs. Virology 2001; 280:243-52. [PMID: 11162838 DOI: 10.1006/viro.2000.0773] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Current retroviral vectors based on murine leukemia virus (MuLV) are unable to efficiently transduce nondividing cells. Lentiviruses, such as the human immunodeficiency virus 1 (HIV-1) are efficient at transducing nondividing, growth-arrested, and post-mitotic cells, but due to complex safety considerations, they may have limited potential for human clinical gene transfer. For this reason, alternatives to MuLV and HIV-1 vectors need to be explored. In this paper, we have found that simian foamy virus vector (SFV-1) containing a CMV-LacZ expression cassette is able to efficiently transduce multiple cell types of various species that include epithelial, lymphoid, and hematopoietic-derived human cell lines and fibroblast cell lines of several species. Previously it was reported that foamy virus replication is cell cycle dependent (P. D. Bieniasz, R. A. Weiss, and M. O. McClure, 1995. J. Virol. 69, 7295-7299). However, others studies demonstrated nuclear import of viral DNA in arrested cells (A. Saibi, F. Puvion-Dutilleul, M. Schmid, J. Peries, and H. d. The 1997. J. Virol. 71, 1155-1161). Here, we show efficient LacZ transduction by SFV-1 vectors in several chemically arrested cell lines and terminally differentiated human neurons. SFV-1 vector can transduce cell lines arrested in G1/S phase of the cell cycle by aphidicolin treatment with similar efficiencies to that of dividing cells. The terminally differentiated human neural cell line, NT2N, was transduced with 30-50% efficiency, corroborating our data obtained with the arrested cell lines. To further examine whether the SFV-1 vector can efficiently deliver a gene into clinically important cells for gene therapy, we transduced primary human peripheral blood cells (PBLs) in the presence and absence of phytohemagglutanin (PHA) stimulation. We observed 81% transduction efficiency in non-stimulated PBLs and 87% in PHA-stimulated PBLs with vector infection carried out twice in 8 hours intervals at a multiplicity of infection of 1. Together, these data indicate that SFV-1 based retroviral vectors may provide a safe, efficient alternative to current onco- and lentiviral vectors for gene transfer in cells from a broad spectrum of lineages across species boundaries.
Collapse
Affiliation(s)
- A Mergia
- Department of Pathobiology, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32611, USA.
| | | | | | | | | |
Collapse
|
27
|
Pandya S, Klimatcheva E, Planelles V. Lentivirus and foamy virus vectors: novel gene therapy tools. Expert Opin Biol Ther 2001; 1:17-40. [PMID: 11727544 DOI: 10.1517/14712598.1.1.17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The aim of gene therapy is to modify the genetic material of living cells to achieve therapeutic benefit. Gene therapy involves the insertion of a functional gene into a cell, to replace an absent or defective gene, or to fight an infectious agent or a tumour. At present, a wide variety of somatic tissues are being explored for the introduction of foreign genes with a view towards treatment. A prime requirement for successful gene therapy is the sustained expression of the therapeutic gene without any adverse effect on the recipient. A highly desirable vector would be generated at high titres, integrate into target cells (including non-dividing cells) and have little or no associated immune reactions. Lentiviruses have the ability to infect dividing and non-dividing cells and, therefore, constitute ideal candidates for development of vectors for gene therapy. This review presents a description of available lentiviral vectors, including vector design, applications to disease treatment and safety considerations. In addition, general aspects of the biology of lentiviruses with relevance to vector development will be discussed. Recent investigations have revealed that foamy viruses, another group of retroviruses, are also capable of infecting non-dividing cells. Thus, foamy virus vectors are actively being developed in parallel to lentivirus vectors. This review will also include various aspects of the biology of foamy viruses with relevance to vector development.
Collapse
Affiliation(s)
- S Pandya
- Departments of Medicine and Microbiology and Immunology, University of Rochester Cancer Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | | | | |
Collapse
|
28
|
Jewell NA, Mansky LM. In the beginning: genome recognition, RNA encapsidation and the initiation of complex retrovirus assembly. J Gen Virol 2000; 81:1889-1899. [PMID: 10900025 DOI: 10.1099/0022-1317-81-8-1889] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Nancy A Jewell
- Molecular, Cellular, and Developmental Biology Graduate Program, Ohio State University, USA2
| | - Louis M Mansky
- Department of Molecular Virology, Immunology, and Medical Genetics, Center for Retrovirus Research, and Comprehensive Cancer Center, Ohio State University Medical Center, 2078 Graves Hall, 333 West 10th Ave, Columbus, OH 43210, USA1
| |
Collapse
|
29
|
Heinkelein M, Thurow J, Dressler M, Imrich H, Neumann-Haefelin D, McClure MO, Rethwilm A. Complex effects of deletions in the 5' untranslated region of primate foamy virus on viral gene expression and RNA packaging. J Virol 2000; 74:3141-8. [PMID: 10708430 PMCID: PMC111814 DOI: 10.1128/jvi.74.7.3141-3148.2000] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Due to various advantageous features there is current interest in retroviral vectors derived from primate foamy viruses (PFVs). Two PFV cis-acting sequences have been mapped in the 5' region of the RNA (pre-)genome and in the 3' pol genomic region. In order to genetically separate PFV packaging constructs from vector constructs, we investigated the effect of deletions in the 5' untranslated region (UTR) of PFV packaging constructs and vectors on gene expression and RNA incorporation into viral particles. Our results indicate that the 5' UTR serves different previously unknown functions. First, the R region of the long terminal repeat was found to be required for PFV gag gene expression. This regulation of gene expression appeared to be mainly posttranscriptional. Second, constructs with sequence deletions between the R region and the gag gene start codon packaged as much viral mRNA into particles as the undeleted construct, and RNA from such a 5'-UTR-deleted packaging construct was copackaged into vector-virus particles, together with vector RNA which was preferentially packaged. Finally, in the U5 region a sequence was identified that was required to allow cleavage of the Gag precursor protein by the pol gene-encoded protease, suggesting a role of RNA in PFV particle formation. Taken together, the results indicate that complex interactions of the viral RNA, capsid, and polymerase proteins take place during PFV particle formation and that a clear separation of PFV vector and packaging construct sequences may be difficult to achieve.
Collapse
Affiliation(s)
- M Heinkelein
- Institut für Virologie und Immunbiologie, Universität Würzburg, Wurzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
30
|
Romano G, Michell P, Pacilio C, Giordano A. Latest developments in gene transfer technology: achievements, perspectives, and controversies over therapeutic applications. Stem Cells 2000; 18:19-39. [PMID: 10661569 DOI: 10.1634/stemcells.18-1-19] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Over the last decade, more than 300 phase I and phase II gene-based clinical trials have been conducted worldwide for the treatment of cancer and monogenic disorders. Lately, these trials have been extended to the treatment of AIDS and, to a lesser extent, cardiovascular diseases. There are 27 currently active gene therapy protocols for the treatment of HIV-1 infection in the USA. Preclinical studies are currently in progress to evaluate the possibility of increasing the number of gene therapy clinical trials for cardiopathies, and of beginning new gene therapy programs for neurologic illnesses, autoimmuno diseases, allergies, regeneration of tissues, and to implement procedures of allogeneic tissues or cell transplantation. In addition, gene transfer technology has allowed for the development of innovative vaccine design, known as genetic immunization. This technique has already been applied in the AIDS vaccine programs in the USA. These programs aim to confer protective immunity against HIV-1 transmission to individuals who are at risk of infection. Research programs have also been considered to develop therapeutic vaccines for patients with AIDS and generate either preventive or therapeutic vaccines against malaria, tuberculosis, hepatitis A, B and C viruses, influenza virus, La Crosse virus, and Ebola virus. The potential therapeutic applications of gene transfer technology are enormous. However, the effectiveness of gene therapy programs is still questioned. Furthermore, there is growing concern over the matter of safety of gene delivery and controversy has arisen over the proposal to begin in utero gene therapy clinical trials for the treatment of inherited genetic disorders. From this standpoint, despite the latest significant achievements reported in vector design, it is not possible to predict to what extent gene therapeutic interventions will be effective in patients, and in what time frame.
Collapse
Affiliation(s)
- G Romano
- Kimmel Cancer Institute, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| | | | | | | |
Collapse
|
31
|
Meiering CD, Comstock KE, Linial ML. Multiple integrations of human foamy virus in persistently infected human erythroleukemia cells. J Virol 2000; 74:1718-26. [PMID: 10644342 PMCID: PMC111647 DOI: 10.1128/jvi.74.4.1718-1726.2000] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Foamy viruses are complex retroviruses whose replication strategy resembles that of conventional retroviruses. However, foamy virus replication also resembles that of hepadnaviruses in many respects. Because hepadnaviruses replicate in an integrase-independent manner, we were interested in investigating the characteristics of human foamy virus (HFV) integration. We have shown that HFV requires a functional integrase protein for infectivity. Our analyses have revealed that in single-cell clones derived from HFV-infected erythroleukemia-derived cells (H92), there were up to 20 proviral copies per host cell genome as determined by Southern blot and fluorescent in situ hybridization analysis. Use of specific probes has also shown that a majority of the proviruses contain the complete tas gene, which encodes the viral transactivator, and are not derived from Deltatas cDNAs, which have been shown to arise rapidly in infected cells. To demonstrate that the multiple proviral sequences are due to integration instead of recombination, we have sequenced the junctions between the proviral sequences and the host genome and found that the proviruses have authentic long terminal repeat ends and that each integration is at a different chromosomal site. A virus lacking the Gag nuclear localization signal accumulates fewer proviruses, suggesting that nuclear translocation is important for high proviral load. Since persistently infected H92 clones are not resistant to superinfection, the relative importance of an intracellular versus extracellular mechanism in proviral acquisition has yet to be determined.
Collapse
Affiliation(s)
- C D Meiering
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | |
Collapse
|
32
|
Callahan ME, Switzer WM, Matthews AL, Roberts BD, Heneine W, Folks TM, Sandstrom PA. Persistent zoonotic infection of a human with simian foamy virus in the absence of an intact orf-2 accessory gene. J Virol 1999; 73:9619-24. [PMID: 10516073 PMCID: PMC112999 DOI: 10.1128/jvi.73.11.9619-9624.1999] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although foamy viruses (FVs) are endemic among nonhuman primates, FV infection among humans is rare. Recently, simian foamy virus (SFV) infection was reported in 4 of 231 individuals occupationally exposed to primates (1.8%). Secondary transmission to spouses has not been seen, suggesting that while FV is readily zoonotic, humans may represent dead-end hosts. Among different simian species, SFV demonstrates significant sequence diversity within the U3 region of the long terminal repeat (LTR) and 3' accessory open reading frames (ORFs). To examine if persistent human SFV infection and apparent lack of secondary transmission are associated with genetic adaptations in FV regulatory regions, we conducted sequence analysis of the LTR, internal promoter, ORF-1, and ORF-2 on a tissue culture isolate and peripheral blood mononuclear cell samples from a human infected with SFV of African green monkey origin (SFV-3). Compared to the prototype SFV-3 sequence, the LTR, internal promoter, and FV transactivator (ORF-1) showed sequence conservation, suggesting that FV zoonosis is not dependent on host-specific adaptation to these transcriptionally important regions. However, ORF-2 contains a number of deleterious mutations predicted to result in premature termination of protein synthesis. ORF-2 codes in part for the 60-kDa Bet fusion protein, proposed to be involved in the establishment of persistent cellular SFV infections. These results suggest that persistent human infection by SFV and reduced transmissibility may be influenced by the absence of a functional ORF-2.
Collapse
Affiliation(s)
- M E Callahan
- HIV/AIDS Branch, Division of AIDS, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Foamy viruses are nonpathogenic retroviruses that offer several unique opportunities for gene transfer in various cell types from different species. We have previously demonstrated the utility of simian foamy virus type 1 (SFV-1) as a vector system by transient expression assay (M. Wu et al., J. Virol. 72:3451-3454, 1998). In this report, we describe the first stable packaging cell lines for foamy virus vectors based on SFV-1. We developed two packaging cell lines in which the helper DNA is placed under the control of either a constitutive cytomegalovirus (CMV) immediate-early gene or inducible tetracycline promoter for expression. Although the constitutive packaging expressing cell line had a higher copy number of packaging DNA, the inducible packaging cell line produced four times more vector particles. This result suggested that the structural gene products in the constitutively expressing packaging cell line were expressed at a level that is not toxic to the cells, and thus vector production was reduced. The SFV-1 vector in the presence of vesicular stomatitis virus envelope protein G (VSV-G) produced an insignificant level of transduction, indicating that foamy viruses could not be pseudotyped with VSV-G to generate high-titer vectors. The availability of stable packaging cell lines represents a step toward the use of an SFV-1 vector delivery system that will allow scaled-up production of vector stocks for gene therapy.
Collapse
Affiliation(s)
- M Wu
- Department of Pathobiology, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32610, USA
| | | |
Collapse
|