1
|
Mouzannar K, Schauer A, Liang TJ. The Post-Transcriptional Regulatory Element of Hepatitis B Virus: From Discovery to Therapy. Viruses 2024; 16:528. [PMID: 38675871 PMCID: PMC11055085 DOI: 10.3390/v16040528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
The post-transcriptional regulatory element (PRE) is present in all HBV mRNAs and plays a major role in their stability, nuclear export, and enhancement of viral gene expression. Understanding PRE's structure, function, and mode of action is essential to leverage its potential as a therapeutic target. A wide range of PRE-based reagents and tools have been developed and assessed in preclinical and clinical settings for therapeutic and biotechnology applications. This manuscript aims to provide a systematic review of the characteristics and mechanism of action of PRE, as well as elucidating its current applications in basic and clinical research. Finally, we discuss the promising opportunities that PRE may provide to antiviral development, viral biology, and potentially beyond.
Collapse
Affiliation(s)
- Karim Mouzannar
- Liver Diseases Branch, National Institute of Diabetics and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA;
| | | | - T. Jake Liang
- Liver Diseases Branch, National Institute of Diabetics and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA;
| |
Collapse
|
2
|
Abstract
Hepatitis B virus (HBV) is a non-cytopathic, hepatotropic virus with the potential to cause a persistent infection, ultimately leading to cirrhosis and hepatocellular carcinoma. Over the past four decades, the basic principles of HBV gene expression and replication as well as the viral and host determinants governing infection outcome have been largely uncovered. Whereas HBV appears to induce little or no innate immune activation, the adaptive immune response mediates both viral clearance as well as liver disease. Here, we review our current knowledge on the immunobiology and pathogenesis of HBV infection, focusing in particular on the role of CD8+ T cells and on several recent breakthroughs that challenge current dogmas. For example, we now trust that HBV integration into the host genome often serves as a relevant source of hepatitis B surface antigen (HBsAg) expression during chronic infection, possibly triggering dysfunctional T cell responses and favouring detrimental immunopathology. Further, the unique haemodynamics and anatomy of the liver - and the changes they frequently endure during disease progression to liver fibrosis and cirrhosis - profoundly influence T cell priming, differentiation and function. We also discuss why therapeutic approaches that limit the intrahepatic inflammatory processes triggered by HBV-specific T cells might be surprisingly beneficial for patients with chronic infection.
Collapse
|
3
|
Broennimann K, Ricardo-Lax I, Adler J, Michailidis E, de Jong YP, Reuven N, Shaul Y. RNR-R2 Upregulation by a Short Non-Coding Viral Transcript. Biomolecules 2021; 11:biom11121822. [PMID: 34944466 PMCID: PMC8698843 DOI: 10.3390/biom11121822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 01/12/2023] Open
Abstract
DNA viruses require dNTPs for replication and have developed different strategies to increase intracellular dNTP pools. Hepatitis B virus (HBV) infects non-dividing cells in which dNTPs are scarce and the question is how viral replication takes place. Previously we reported that the virus induces the DNA damage response (DDR) pathway culminating in RNR-R2 expression and the generation of an active RNR holoenzyme, the key regulator of dNTP levels, leading to an increase in dNTPs. How the virus induces DDR and RNR-R2 upregulation is not completely known. The viral HBx open reading frame (ORF) was believed to trigger this pathway. Unexpectedly, however, we report here that the production of HBx protein is dispensable. We found that a small conserved region of 125 bases within the HBx ORF is sufficient to upregulate RNR-R2 expression in growth-arrested HepG2 cells and primary human hepatocytes. The observed HBV mRNA embedded regulatory element is named ERE. ERE in isolation is sufficient to activate the ATR-Chk1-E2F1-RNR-R2 DDR pathway. These findings demonstrate a non-coding function of HBV transcripts to support its propagation in non-cycling cells.
Collapse
Affiliation(s)
- Karin Broennimann
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel; (K.B.); (I.R.-L.); (J.A.); (N.R.)
| | - Inna Ricardo-Lax
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel; (K.B.); (I.R.-L.); (J.A.); (N.R.)
- Laboratory of Virology and Infectious Disease, Rockefeller University, New York, NY 10065, USA; (E.M.); (Y.P.d.J.)
| | - Julia Adler
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel; (K.B.); (I.R.-L.); (J.A.); (N.R.)
| | - Eleftherios Michailidis
- Laboratory of Virology and Infectious Disease, Rockefeller University, New York, NY 10065, USA; (E.M.); (Y.P.d.J.)
| | - Ype P. de Jong
- Laboratory of Virology and Infectious Disease, Rockefeller University, New York, NY 10065, USA; (E.M.); (Y.P.d.J.)
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Nina Reuven
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel; (K.B.); (I.R.-L.); (J.A.); (N.R.)
| | - Yosef Shaul
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel; (K.B.); (I.R.-L.); (J.A.); (N.R.)
- Correspondence: ; Tel.: +972-8-934-2320
| |
Collapse
|
4
|
Stadler D, Kächele M, Jones AN, Hess J, Urban C, Schneider J, Xia Y, Oswald A, Nebioglu F, Bester R, Lasitschka F, Ringelhan M, Ko C, Chou W, Geerlof A, van de Klundert MA, Wettengel JM, Schirmacher P, Heikenwälder M, Schreiner S, Bartenschlager R, Pichlmair A, Sattler M, Unger K, Protzer U. Interferon-induced degradation of the persistent hepatitis B virus cccDNA form depends on ISG20. EMBO Rep 2021; 22:e49568. [PMID: 33969602 PMCID: PMC8183418 DOI: 10.15252/embr.201949568] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 12/16/2022] Open
Abstract
Hepatitis B virus (HBV) persists by depositing a covalently closed circular DNA (cccDNA) in the nucleus of infected cells that cannot be targeted by available antivirals. Interferons can diminish HBV cccDNA via APOBEC3-mediated deamination. Here, we show that overexpression of APOBEC3A alone is not sufficient to reduce HBV cccDNA that requires additional treatment of cells with interferon indicating involvement of an interferon-stimulated gene (ISG) in cccDNA degradation. Transcriptome analyses identify ISG20 as the only type I and II interferon-induced, nuclear protein with annotated nuclease activity. ISG20 localizes to nucleoli of interferon-stimulated hepatocytes and is enriched on deoxyuridine-containing single-stranded DNA that mimics transcriptionally active, APOBEC3A-deaminated HBV DNA. ISG20 expression is detected in human livers in acute, self-limiting but not in chronic hepatitis B. ISG20 depletion mitigates the interferon-induced loss of cccDNA, and co-expression with APOBEC3A is sufficient to diminish cccDNA. In conclusion, non-cytolytic HBV cccDNA decline requires the concerted action of a deaminase and a nuclease. Our findings highlight that ISGs may cooperate in their antiviral activity that may be explored for therapeutic targeting.
Collapse
|
5
|
Rodriguez-Garcia E, Zabaleta N, Gil-Farina I, Gonzalez-Aparicio M, Echeverz M, Bähre H, Solano C, Lasa I, Gonzalez-Aseguinolaza G, Hommel M. AdrA as a Potential Immunomodulatory Candidate for STING-Mediated Antiviral Therapy That Required Both Type I IFN and TNF-α Production. THE JOURNAL OF IMMUNOLOGY 2020; 206:376-385. [PMID: 33298616 DOI: 10.4049/jimmunol.2000953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/09/2020] [Indexed: 01/12/2023]
Abstract
Several dinucleotide cyclases, including cyclic GMP-AMP synthase, and their involvement in STING-mediated immunity have been extensively studied. In this study, we tested five bacterial diguanylate cyclases from the Gram-negative bacterium Salmonella Enteritidis, identifying AdrA as the most potent inducer of a STING-mediated IFN response. AdrA wild-type (wt) or its inactive version AdrA mutant (mut) were delivered by an adenovirus (Ad) vector. Dendritic cells obtained from wt mice and infected in vitro with Ad vector containing AdrA wt, but not mut, had increased activation markers and produced large amounts of several immunostimulatory cytokines. For dendritic cells derived from STING-deficient mice, no activation was detected. The potential antiviral activity of AdrA was addressed in hepatitis B virus (HBV)-transgenic and adenovirus-associated virus (AAV)-HBV mouse models. Viremia in serum of Ad AdrA wt-treated mice was reduced significantly compared with that in Ad AdrA mut-injected mice. The viral load in the liver at sacrifice was in line with this finding. To further elucidate the molecular mechanism(s) by which AdrA confers its antiviral function, the response in mice deficient in STING or its downstream effector molecules was analyzed. wt and IFN-αR (IFNAR)-/- animals were additionally treated with anti-TNF-α (Enbrel). Interestingly, albeit less pronounced than in wt mice, in IFNAR-/- and Enbrel-treated wt mice, a reduction of serum viremia was achieved-an observation that was lost in anti-TNF-α-treated IFNAR-/- animals. No effect of AdrA wt was seen in STING-deficient animals. Thus, although STING is indispensable for the antiviral activity of AdrA, type I IFN and TNF-α are both required and act synergistically.
Collapse
Affiliation(s)
- Estefania Rodriguez-Garcia
- Terapia Génica y Regulación de la Expresión Génica, Centro de Investigación Médica Aplicada, Universidad de Navarra, 31008 Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
| | - Nerea Zabaleta
- Terapia Génica y Regulación de la Expresión Génica, Centro de Investigación Médica Aplicada, Universidad de Navarra, 31008 Pamplona, Spain
| | - Irene Gil-Farina
- Terapia Génica y Regulación de la Expresión Génica, Centro de Investigación Médica Aplicada, Universidad de Navarra, 31008 Pamplona, Spain
| | - Manuela Gonzalez-Aparicio
- Terapia Génica y Regulación de la Expresión Génica, Centro de Investigación Médica Aplicada, Universidad de Navarra, 31008 Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
| | - Maite Echeverz
- Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain.,Laboratorio Patogénesis Microbiana, Complejo Hospitalario de Navarra-Universidad Pública de Navarra, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain; and
| | - Heike Bähre
- Research Core Unit Metabolomics, Hannover Medical School, 30625 Hannover, Germany
| | - Cristina Solano
- Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain.,Laboratorio Patogénesis Microbiana, Complejo Hospitalario de Navarra-Universidad Pública de Navarra, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain; and
| | - Iñigo Lasa
- Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain.,Laboratorio Patogénesis Microbiana, Complejo Hospitalario de Navarra-Universidad Pública de Navarra, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain; and
| | - Gloria Gonzalez-Aseguinolaza
- Terapia Génica y Regulación de la Expresión Génica, Centro de Investigación Médica Aplicada, Universidad de Navarra, 31008 Pamplona, Spain; .,Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain.,Laboratorio Patogénesis Microbiana, Complejo Hospitalario de Navarra-Universidad Pública de Navarra, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain; and
| | - Mirja Hommel
- Terapia Génica y Regulación de la Expresión Génica, Centro de Investigación Médica Aplicada, Universidad de Navarra, 31008 Pamplona, Spain; .,Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain.,Laboratorio Patogénesis Microbiana, Complejo Hospitalario de Navarra-Universidad Pública de Navarra, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain; and
| |
Collapse
|
6
|
Abstract
RNA-binding proteins are important regulators of RNA metabolism and are of critical importance in all steps of the gene expression cascade. The role of aberrantly expressed RBPs in human disease is an exciting research field and the potential application of RBPs as a therapeutic target or a diagnostic marker represents a fast-growing area of research.Aberrant overexpression of the human RNA-binding protein La has been found in various cancer entities including lung, cervical, head and neck, and chronic myelogenous leukaemia. Cancer-associated La protein supports tumour-promoting processes such as proliferation, mobility, invasiveness and tumour growth. Moreover, the La protein maintains the survival of cancer cells by supporting an anti-apoptotic state that may cause resistance to chemotherapeutic therapy.The human La protein represents a multifunctional post-translationally modified RNA-binding protein with RNA chaperone activity that promotes processing of non-coding precursor RNAs but also stimulates the translation of selective messenger RNAs encoding tumour-promoting and anti-apoptotic factors. In our model, La facilitates the expression of those factors and helps cancer cells to cope with cellular stress. In contrast to oncogenes, able to initiate tumorigenesis, we postulate that the aberrantly elevated expression of the human La protein contributes to the non-oncogenic addiction of cancer cells. In this review, we summarize the current understanding about the implications of the RNA-binding protein La in cancer progression and therapeutic resistance. The concept of exploiting the RBP La as a cancer drug target will be discussed.
Collapse
Affiliation(s)
- Gunhild Sommer
- Department for Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Regensburg, Regensburg, Germany
| | - Tilman Heise
- Department for Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
7
|
Sommer G, Sendlmeier C, Heise T. Salt-Dependent Modulation of the RNA Chaperone Activity of RNA-Binding Protein La. Methods Mol Biol 2020; 2106:121-136. [PMID: 31889254 DOI: 10.1007/978-1-0716-0231-7_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
It is well established that the RNA-binding protein La has RNA chaperone activity. Recent work suggests that the La protein has two distinct RNA chaperone domains (RCD-A and RCD-B) assisting structural changes in diverse groups of RNA molecules such as RNA polymerase III transcripts (e.g., pre-tRNA, U6 snRNA), cellular messenger, and viral RNAs. In this protocol we focus on the RNA chaperone domain RCD-B, which is located in the carboxy-terminal domain of La. It has been shown that this RNA chaperone domain assists structural changes in predicted RNA hairpins folded in the 5'-untranslated regions of cyclin D1 and Bcl2 mRNAs. Besides RNA helicases, which are implicated in melting RNA hairpin structures in an ATP-dependent manner, RNA chaperones fulfil a similar function in an ATP-independent manner. Aiming to study the RNA chaperon activity of La, we established a La-dependent molecular beacon-based RNA chaperone assay and systematically tested the various salt conditions. Herein we describe the assay format and design to study the salt dependency of RNA chaperones. This protocol can be easily adapted to test the RNA chaperone activity of other RNA-binding proteins and to optimize assay conditions.
Collapse
Affiliation(s)
- Gunhild Sommer
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital of Regensburg, Regensburg, Germany
| | - Christina Sendlmeier
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital of Regensburg, Regensburg, Germany
| | - Tilman Heise
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital of Regensburg, Regensburg, Germany.
| |
Collapse
|
8
|
Abstract
With a yearly death toll of 880,000, hepatitis B virus (HBV) remains a major health problem worldwide, despite an effective prophylactic vaccine and well-tolerated, effective antivirals. HBV causes chronic hepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. The viral genome persists in infected hepatocytes even after long-term antiviral therapy, and its integration, though no longer able to support viral replication, destabilizes the host genome. HBV is a DNA virus that utilizes a virus-encoded reverse transcriptase to convert an RNA intermediate, termed pregenomic RNA, into the relaxed circular DNA genome, which is subsequently converted into a covalently closed circular DNA (cccDNA) in the host cell nucleus. cccDNA is maintained in the nucleus of the infected hepatocyte as a stable minichromosome and functions as the viral transcriptional template for the production of all viral gene products, and thus, it is the molecular basis of HBV persistence. The nuclear cccDNA pool can be replenished through recycling of newly synthesized, DNA-containing HBV capsids. Licensed antivirals target the HBV reverse transcriptase activity but fail to eliminate cccDNA, which would be required to cure HBV infection. Elimination of HBV cccDNA is so far only achieved by antiviral immune responses. Thus, this review will focus on possible curative strategies aimed at eliminating or crippling the viral cccDNA. Newer insights into the HBV life cycle and host immune response provide novel, potentially curative therapeutic opportunities and targets.
Collapse
|
9
|
Li MH, Yi W, Zhang L, Lu Y, Lu HH, Shen G, Wu SL, Hao HX, Gao YJ, Chang M, Liu RY, Hu LP, Cao WH, Chen QQ, Li JN, Wan G, Xie Y. Predictors of sustained functional cure in hepatitis B envelope antigen-negative patients achieving hepatitis B surface antigen seroclearance with interferon-alpha-based therapy. J Viral Hepat 2019; 26 Suppl 1:32-41. [PMID: 31380582 DOI: 10.1111/jvh.13151] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/15/2019] [Indexed: 12/17/2022]
Abstract
Hepatitis B surface antigen (HBsAg) loss is considered a functional cure in chronic hepatitis B (CHB). However, the durability of HBsAg loss after stopping treatment remains unknown. This study aimed to assess the sustained functional cure achieved by interferon therapy in hepatitis B envelope antigen (HBeAg)-negative CHB patients. In this prospective study, 176 HBeAg-negative CHB patients with functional cure were enrolled for 12 weeks of cessation treatment, and treatment information and baseline data were collected. Hepatitis B virus (HBV) biomarkers and clinical biochemical indicators were evaluated every 3 months; liver imaging examinations were performed every 3-6 months during the 48-week follow-up. The sustained functional cure was evaluated. After the 48-week follow-up, the sustained functional cure rate was 86.63%. The cumulative rates of HBsAg reversion and HBV DNA reversion were 12.79% and 2.33%, respectively. Consolidation treatment ≥ 12 weeks after HBsAg loss achieved a significantly higher rate of sustained functional cure and significantly lower rate of HBsAg reversion than consolidation treatment < 12 weeks (76.19% vs 90.00%, P = 0.022 and 23.81% vs 9.23%, P = 0.014, respectively). Patients with hepatitis B surface antibody (HBsAb) had higher rate of sustained functional cure than patients achieving HBsAg loss but without HBsAb (89.86% vs 73.53%, P = 0.012). Consolidation treatment ≥ 12 weeks (odds ratio [OR] 16.478; 95% confidence interval [CI], 2.135-127.151; P = 0.007) and high HBsAb levels (OR 8.312; 95% CI, 1.824-37.881; P = 0.006) were independent predictors of sustained functional cure. Results suggested that 12 weeks of consolidation therapy after HBsAg clearance and elevated HBsAb levels help to improve functional cure.
Collapse
Affiliation(s)
- Ming-Hui Li
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Wei Yi
- Department of Gynecology and Obstetrics, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Lu Zhang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yao Lu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Hui-Hui Lu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Ge Shen
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Shu-Ling Wu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Hong-Xiao Hao
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yuan-Jiao Gao
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Min Chang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Ru-Yu Liu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Lei-Ping Hu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Wei-Hua Cao
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Qi-Qi Chen
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Jun-Nan Li
- Scientific Research and Education Department, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Gang Wan
- Medical Records and Statistics Department, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yao Xie
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Tong S, Pan J, Tang J. Study on the structure optimization and anti-hepatitis B virus activity of novel human La protein inhibitor HBSC11. J Med Virol 2019; 91:1818-1829. [PMID: 31241178 PMCID: PMC6771476 DOI: 10.1002/jmv.25528] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 06/17/2019] [Indexed: 12/23/2022]
Abstract
In our previous study, Methyl pyrazolo[1,5‐a] pyridine‐2‐carboxylate (HBSC11) was shown to combine with La protein, which conferred anti‐hepatitis B virus (HBV) effects. The purpose of this study was to optimize, synthesize, and evaluate the anti‐HBV activity of HBSC11. The methyl group of HBSC11 was substituted with hydrophobic, hydrophilic, and tricyclic groups to generate novel HBV inhibitors with desirable potency. On in vitro evaluation, several derivatives exhibited good anti‐HBV activity compared with control. In particular, compound 5a reduced the level of HBV antigen by approximately 50%, which was similar to the activity of entecavir. In a mouse model, 5a showed 98.9% inhibition rate for HBV DNA, 57.4% for HBsAg, and 46.4% for HBeAg; the corresponding rates in the control group were 90.8, 3.8, and 9.8%, respectively. In addition, prediction of binding modes and physicochemical properties showed that 5a formed hydrogen bonds with La protein and conformed well to the Lipinski's rule of five. Our results suggest that 5a is a potential new anti‐HBV drug. La protein protects HBV RNA from destruction by combining with HBV RNA and covers up the RNA cleavage site. HBSC11 (Methyl pyrazolo[1,5‐a] pyridine‐2‐carboxylate) is a novel La protein inhibitor which we identified as previous. 10 derivatives (3a‐3f, 5a‐5d) were obtained by 2 sections‐scaffold and kept the active site form leading compound HBSC11. Candidate compound 5a exhibited potent anti‐HBV activity with safety concentration and satisfied physicochemical properties.
Collapse
Affiliation(s)
- Shuangmei Tong
- Department of Pharmacy, The Obstetrics & Gynecology Hospital of Fudan University, Shanghai, China
| | - Jiaqian Pan
- Department of Pharmacy, The Obstetrics & Gynecology Hospital of Fudan University, Shanghai, China
| | - Jing Tang
- Department of Pharmacy, The Obstetrics & Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
11
|
Hu J, Cheng J, Tang L, Hu Z, Luo Y, Li Y, Zhou T, Chang J, Guo JT. Virological Basis for the Cure of Chronic Hepatitis B. ACS Infect Dis 2019; 5:659-674. [PMID: 29893548 DOI: 10.1021/acsinfecdis.8b00081] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hepatitis B virus (HBV) has infected one-third of world population, and 240 million people are chronic carriers, to whom a curative therapy is still not available. Similar to other viruses, persistent HBV infection relies on the virus to exploit host cell functions to support its replication and efficiently evade host innate and adaptive antiviral immunity. Understanding HBV replication and concomitant host cell interactions is thus instrumental for development of therapeutics to disrupt the virus-host interactions critical for its persistence and cure chronic hepatitis B. Although the currently available cell culture systems of HBV infection are refractory to genome-wide high throughput screening of key host cellular factors essential for and/or regulating HBV replication, classic one-gene (or pathway)-at-a-time studies in the last several decades have already revealed many aspects of HBV-host interactions. An overview of the landscape of HBV-hepatocyte interaction indicates that, in addition to more tightly suppressing viral replication by directly targeting viral proteins, disruption of key viral-host cell interactions to eliminate or inactivate the covalently closed circular (ccc) DNA, the most stable HBV replication intermediate that exists as an episomal minichromosome in the nucleus of infected hepatocyte, is essential to achieve a functional cure of chronic hepatitis B. Moreover, therapeutic targeting of integrated HBV DNA and their transcripts may also be required to induce hepatitis B virus surface antigen (HBsAg) seroclearance and prevent liver carcinogenesis.
Collapse
Affiliation(s)
- Jin Hu
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, 1 Tian-tan Xi-li, Beijing, 100050, China
| | - Junjun Cheng
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| | - Liudi Tang
- Microbiology and Immunology Graduate Program, Drexel University College of Medicine, 2900 West Queen Lane, Philadelphia, Pennsylvania 19129, United States
| | - Zhanying Hu
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| | - Yue Luo
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
- Institute of Hepatology, Second Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China
| | - Yuhuan Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, 1 Tian-tan Xi-li, Beijing, 100050, China
| | - Tianlun Zhou
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| | - Jinhong Chang
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| | - Ju-Tao Guo
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| |
Collapse
|
12
|
Townsend EC, Zhang GY, Ali R, Firke M, Moon MS, Han MAT, Fram B, Glenn JS, Kleiner DE, Koh C, Heller T. The balance of type 1 and type 2 immune responses in the contexts of hepatitis B infection and hepatitis D infection. J Gastroenterol Hepatol 2019; 34:764-775. [PMID: 30695096 PMCID: PMC8237314 DOI: 10.1111/jgh.14617] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/10/2019] [Accepted: 01/22/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIM Hepatitis delta virus (HDV) infection is the most rapidly progressive chronic viral hepatitis. Little is understood about the immune responses to HDV. This study aims to characterize the systemic immune environments of hepatitis B virus (HBV) and HDV patients at various disease stages. METHODS A total of 129 subjects were evaluated: 53 HBV, 43 HDV, and 33 healthy controls. HBV and HDV subjects were categorized by aspartate aminotransferase to platelet ratio index (APRI) into mild (APRI < 0.5), moderate, and severe (APRI > 1.0). Serum cytokines and immune markers were assessed at a single treatment-naïve time-point. RESULTS Type 1 cytokines are elevated in both HBV and HDV. Both groups show higher tumor necrosis factor-α (TNF-α), interleukin (IL)-12p40, and C-X-C motif chemokine ligand 9 when compared with controls (all P < 0.05). However, only HBV group displayed elevated γ-interferon compared with controls. Type 2 cytokines are elevated in HBV. HBV group shows higher IL-4, IL-13, and C-C motif chemokine ligand (CCL) 26 compared with healthy controls and HDV. Chemokines CCL2 and CCL13 are lower in HDV. When assessing ratios, HDV displays higher γ-interferon/IL-4, TNF-α/IL-4, and TNF-α/IL-13 ratios than HBV and controls. CONCLUSION Hepatitis B virus and HDV subjects show similarly elevated type 1 cytokines. HDV subjects display relatively lower type 2 cytokines. These differences in the systemic immune environments, particularly the predominance of type 1 responses, may contribute to the comparatively rapid progression of HDV disease. Characterization of the imbalance in type 1 and type 2 immunity unique HDV has the potential to provide immunological insights for designing therapeutic targets in HDV-associated disease progression.
Collapse
Affiliation(s)
- Elizabeth C Townsend
- Liver Diseases Branch, National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, Maryland
| | - Grace Y Zhang
- Liver Diseases Branch, National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, Maryland
| | - Rabab Ali
- Liver Diseases Branch, National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, Maryland
| | - Marian Firke
- Liver Diseases Branch, National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, Maryland
| | - Mi Sun Moon
- Liver Diseases Branch, National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, Maryland
| | - Ma Ai Thanda Han
- Liver Diseases Branch, National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, Maryland
| | - Benjamin Fram
- Department of Medicine, Stanford University, Stanford
| | - Jeffrey S Glenn
- Department of Medicine, Stanford University, Stanford,Department of Microbiology and Immunology, Stanford University, Stanford,Department of Medicine, Veterans Administration Medical Center, Palo Alto, California, USA
| | - David E Kleiner
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland
| | - Christopher Koh
- Liver Diseases Branch, National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, Maryland
| | - Theo Heller
- Liver Diseases Branch, National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, Maryland
| |
Collapse
|
13
|
Kim DH, Park ES, Lee AR, Park S, Park YK, Ahn SH, Kang HS, Won JH, Ha YN, Jae B, Kim DS, Chung WC, Song MJ, Kim KH, Park SH, Kim SH, Kim KH. Intracellular interleukin-32γ mediates antiviral activity of cytokines against hepatitis B virus. Nat Commun 2018; 9:3284. [PMID: 30115930 PMCID: PMC6095909 DOI: 10.1038/s41467-018-05782-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 07/26/2018] [Indexed: 02/07/2023] Open
Abstract
Cytokines are involved in early host defense against pathogen infections. In particular, tumor necrosis factor (TNF) and interferon-gamma (IFN-γ) have critical functions in non-cytopathic elimination of hepatitis B virus (HBV) in hepatocytes. However, the molecular mechanisms and mediator molecules are largely unknown. Here we show that interleukin-32 (IL-32) is induced by TNF and IFN-γ in hepatocytes, and inhibits the replication of HBV by acting intracellularly to suppress HBV transcription and replication. The gamma isoform of IL-32 (IL-32γ) inhibits viral enhancer activities by downregulating liver-enriched transcription factors. Our data are validated in both an in vivo HBV mouse model and primary human hepatocytes. This study thus suggests that IL-32γ functions as intracellular effector in hepatocytes for suppressing HBV replication to implicate a possible mechanism of non-cytopathic viral clearance. Cytokines such as TNF and IFN-γ are important for immunity against hepatitis B virus (HBV). Here the authors show that interleukin-32 gamma (IL-32γ) acts downstream of TNF and IFN-γ as an intracellular effector, and that IL-32γ negatively regulates host factors contributing to HBV transcription to promote HBV clearance.
Collapse
Affiliation(s)
- Doo Hyun Kim
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Eun-Sook Park
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Ah Ram Lee
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Soree Park
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Yong Kwang Park
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Sung Hyun Ahn
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Hong Seok Kang
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Ju Hee Won
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Yea Na Ha
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - ByeongJune Jae
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Dong-Sik Kim
- Division of HBP Surgery and Liver Transplantation, Department of Surgery, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Woo-Chang Chung
- Virus-Host Interactions Laboratory, Division of Biotechnology, Department of Biosystems and Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Moon Jung Song
- Virus-Host Interactions Laboratory, Division of Biotechnology, Department of Biosystems and Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Kee-Hwan Kim
- Department of Surgery, Uijeongbu St. Mary's Hospital, Catholic Central Laboratory of Surgery, College of Medicine, The Catholic University of Korea, Seoul 11765, Republic of Korea
| | - Seung Hwa Park
- Department of Anatomy, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Soo-Hyun Kim
- Laboratory of Cytokine Immunology, Veterinary School, Konkuk University, Seoul 05029, Republic of Korea
| | - Kyun-Hwan Kim
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea. .,KU Open Innovation Center, Research Institute of Medical Sciences, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
14
|
Abstract
Even with an effective vaccine, an estimated 240 million people are chronically infected with hepatitis B virus (HBV) worldwide. Current antiviral therapies, including interferon and nucleot(s)ide analogues, rarely cure chronic hepatitis B. Animal models are very crucial for understanding the pathogenesis of chronic hepatitis B and developing new therapeutic drugs or strategies. HBV can only infect humans and chimpanzees, with the use of chimpanzees in HBV research strongly restricted. Thus, most advances in HBV research have been gained using mouse models with HBV replication or infection or models with HBV-related hepadnaviral infection. This review summarizes the animal models currently available for the study of HBV infection.
Collapse
Affiliation(s)
- Wei-Na Guo
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei 430022, China
| | - Bin Zhu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei 430022, China
| | - Ling Ai
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei 430022, China
| | - Dong-Liang Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei 430022, China
| | - Bao-Ju Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei 430022, China.
| |
Collapse
|
15
|
SUMO Modification of the RNA-Binding Protein La Regulates Cell Proliferation and STAT3 Protein Stability. Mol Cell Biol 2017; 38:MCB.00129-17. [PMID: 29084811 DOI: 10.1128/mcb.00129-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 10/19/2017] [Indexed: 01/06/2023] Open
Abstract
The cancer-associated RNA-binding protein La is posttranslationally modified by phosphorylation and sumoylation. Sumoylation of La regulates not only the trafficking of La in neuronal axons but also its association with specific mRNAs. Depletion of La in various types of cancer cell lines impairs cell proliferation; however, the molecular mechanism whereby La supports cell proliferation is not clearly understood. In this study, we address the question of whether sumoylation of La contributes to cell proliferation of HEK293 cells. We show that HEK293 cells stably expressing green fluorescent protein (GFP)-tagged wild-type La (GFP-LaWT) grow faster than cells expressing a sumoylation-deficient mutant La (GFP-LaSD), suggesting a proproliferative function of La in HEK293 cells. Further, we found that STAT3 protein levels were reduced in GFP-LaSD cells due to an increase in STAT3 ubiquitination and that overexpression of STAT3 partially restored cell proliferation. Finally, we present RNA sequencing data from RNA immunoprecipitations (RIPs) and report that mRNAs associated with the cell cycle and ubiquitination are preferentially bound by GFP-LaWT and are less enriched in GFP-LaSD RIPs. Taken together, results of our study support a novel mechanism whereby sumoylation of La promotes cell proliferation by averting ubiquitination-mediated degradation of the STAT3 protein.
Collapse
|
16
|
Zhou T, Block T, Liu F, Kondratowicz AS, Sun L, Rawat S, Branson J, Guo F, Steuer HM, Liang H, Bailey L, Moore C, Wang X, Cuconatti A, Gao M, Lee ACH, Harasym T, Chiu T, Gotchev D, Dorsey B, Rijnbrand R, Sofia MJ. HBsAg mRNA degradation induced by a dihydroquinolizinone compound depends on the HBV posttranscriptional regulatory element. Antiviral Res 2017; 149:191-201. [PMID: 29133129 DOI: 10.1016/j.antiviral.2017.11.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 11/01/2017] [Accepted: 11/07/2017] [Indexed: 12/23/2022]
Abstract
In pursuit of novel therapeutics targeting the hepatitis B virus (HBV) infection, we evaluated a dihydroquinolizinone compound (DHQ-1) that in the nanomolar range reduced the production of virion and surface protein (HBsAg) in tissue culture. This compound also showed broad HBV genotype coverage, but was inactive against a panel of DNA and RNA viruses of other species. Oral administration of DHQ-1 in the AAV-HBV mouse model resulted in a significant reduction of serum HBsAg as soon as 4 days following the commencement of treatment. Reduction of HBV markers in both in vitro and in vivo experiments was related to the reduced amount of viral RNA including pre-genomic RNA (pgRNA) and 2.4/2.1 kb HBsAg mRNA. Nuclear run-on and subcellular fractionation experiments indicated that DHQ-1 mediated HBV RNA reduction was the result of accelerated viral RNA degradation in the nucleus, rather than the consequence of inhibition of transcription initiation. Through mutagenesis of HBsAg gene sequences, we found induction of HBsAg mRNA decay by DHQ-1 required the presence of the HBV posttranscriptional regulatory element (HPRE), with a 109 nucleotides sequence within the central region of the HPRE alpha sub-element being the most critical. Taken together, the current study shows that a small molecule can reduce the overall levels of HBV RNA, especially the HBsAg mRNA, and viral surface proteins. This may shed light on the development of a new class of HBV therapeutics.
Collapse
Affiliation(s)
- Tianlun Zhou
- Baruch S. Blumberg Institute, Department of Translational Medicine, Doylestown, PA 18902, United States.
| | - Timothy Block
- Baruch S. Blumberg Institute, Department of Translational Medicine, Doylestown, PA 18902, United States
| | - Fei Liu
- Arbutus BioPharma, 701 Veterans Circle, Warminster, PA 18974, United States
| | - Andrew S Kondratowicz
- Arbutus BioPharma, 100 - 8900 Glenlyon Parkway, Burnaby, British Columbia V5J 5J8, Canada
| | - Liren Sun
- Baruch S. Blumberg Institute, Department of Translational Medicine, Doylestown, PA 18902, United States
| | - Siddhartha Rawat
- Baruch S. Blumberg Institute, Department of Translational Medicine, Doylestown, PA 18902, United States
| | - Jeffrey Branson
- Baruch S. Blumberg Institute, Department of Translational Medicine, Doylestown, PA 18902, United States
| | - Fang Guo
- Arbutus BioPharma, 701 Veterans Circle, Warminster, PA 18974, United States
| | | | - Hongyan Liang
- Baruch S. Blumberg Institute, Department of Translational Medicine, Doylestown, PA 18902, United States
| | - Lauren Bailey
- Arbutus BioPharma, 701 Veterans Circle, Warminster, PA 18974, United States
| | - Chris Moore
- Arbutus BioPharma, 701 Veterans Circle, Warminster, PA 18974, United States
| | - Xiaohe Wang
- Arbutus BioPharma, 701 Veterans Circle, Warminster, PA 18974, United States
| | - Andy Cuconatti
- Arbutus BioPharma, 701 Veterans Circle, Warminster, PA 18974, United States
| | - Min Gao
- Arbutus BioPharma, 701 Veterans Circle, Warminster, PA 18974, United States
| | - Amy C H Lee
- Arbutus BioPharma, 100 - 8900 Glenlyon Parkway, Burnaby, British Columbia V5J 5J8, Canada
| | - Troy Harasym
- Arbutus BioPharma, 100 - 8900 Glenlyon Parkway, Burnaby, British Columbia V5J 5J8, Canada
| | - Tim Chiu
- Arbutus BioPharma, 100 - 8900 Glenlyon Parkway, Burnaby, British Columbia V5J 5J8, Canada
| | - Dimitar Gotchev
- Arbutus BioPharma, 701 Veterans Circle, Warminster, PA 18974, United States
| | - Bruce Dorsey
- Arbutus BioPharma, 701 Veterans Circle, Warminster, PA 18974, United States
| | - Rene Rijnbrand
- Arbutus BioPharma, 701 Veterans Circle, Warminster, PA 18974, United States
| | - Michael J Sofia
- Arbutus BioPharma, 701 Veterans Circle, Warminster, PA 18974, United States.
| |
Collapse
|
17
|
Takaki H, Oshiumi H, Shingai M, Matsumoto M, Seya T. Development of mouse models for analysis of human virus infections. Microbiol Immunol 2017; 61:107-113. [PMID: 28370181 DOI: 10.1111/1348-0421.12477] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 03/23/2017] [Indexed: 01/09/2023]
Abstract
Viruses usually exhibit strict species-specificity as a result of co-evolution with the host. Thus, in mouse models, a great barrier exists for analysis of infections with human-tropic viruses. Mouse models are unlikely to faithfully reproduce the human immune response to viruses or viral compounds and it is difficult to evaluate human therapeutic efficacy with antiviral reagents in mouse models. Humans and mice essentially have different immune systems, which makes it difficult to extrapolate mouse results to humans. In addition, apart from immunological reasons, viruses causing human diseases do not always infect mice because of species tropism. One way to determine tropism would be a virus receptor that is expressed on affected cells. The development of gene-disrupted mice and Tg mice, which express human receptor genes, enables us to analyze several viral infections in mice. Mice are, indeed, susceptible to human viruses when artificially infected in receptor-supplemented mice. Although the mouse cells less efficiently permit viral replication than do human cells, the models for analysis of human viruses have been established in vivo as well as in vitro, and explain viral pathogenesis in the mouse systems. In most systems, however, nucleic acid sensors and type I interferon suppress viral propagation to block the appearance of infectious manifestation. We herein review recent insight into in vivo antiviral responses induced in mouse infection models for typical human viruses.
Collapse
Affiliation(s)
- Hiromi Takaki
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo
| | - Hiroyuki Oshiumi
- Department of Immunology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto
| | - Masashi Shingai
- Laboratory for Biologics Development, Research Center for Zoonosis Control, GI-CoRE Global Station for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Misako Matsumoto
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo
| | - Tsukasa Seya
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo
| |
Collapse
|
18
|
Control of Hepatitis B Virus by Cytokines. Viruses 2017; 9:v9010018. [PMID: 28117695 PMCID: PMC5294987 DOI: 10.3390/v9010018] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/13/2017] [Accepted: 01/13/2017] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) infection remains a major public health problem worldwide with more than 240 million individuals chronically infected. Current treatments can control HBV replication to a large extent, but cannot eliminate HBV infection. Cytokines have been shown to control HBV replication and contribute to HBV cure in different models. Cytokines play an important role in limiting acute HBV infection in patients and mediate a non-cytolytic clearance of the virus. In this review, we summarize the effects of cytokines and cytokine-induced cellular signaling pathways on different steps of the HBV life cycle, and discuss possible strategies that may contribute to the eradication of HBV through innate immune activation.
Collapse
|
19
|
Li Y, Wu Y, Zheng X, Cong J, Liu Y, Li J, Sun R, Tian ZG, Wei HM. Cytoplasm-Translocated Ku70/80 Complex Sensing of HBV DNA Induces Hepatitis-Associated Chemokine Secretion. Front Immunol 2016; 7:569. [PMID: 27994596 PMCID: PMC5136554 DOI: 10.3389/fimmu.2016.00569] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/22/2016] [Indexed: 12/11/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection remains a serious disease, mainly due to its severe pathological consequences, which are difficult to cure using current therapies. When the immune system responds to hepatocytes experiencing rapid HBV replication, effector cells (such as HBV-specific CD8+ T cells, NK cells, NKT cells, and other subtypes of immune cells) infiltrate the liver and cause hepatitis. However, the precise recruitment of these cells remains unclear. In the present study, we found that the cytoplasm-translocated Ku70/80 complex in liver-derived cells sensed cytosolic HBV DNA and promoted hepatitis-associated chemokine secretion. Upon sensing HBV DNA, DNA-dependent protein kinase catalytic subunit and PARP1 were assembled. Then, IRF1 was activated and translocated into the nucleus, which upregulated CCL3 and CCL5 expression. Because CCR5, a major chemokine receptor for CCL3 and CCL5, is known to be critical in hepatitis B, Ku70/80 sensing of HBV DNA likely plays a critical role in immune cell recruitment in response to HBV infection.
Collapse
Affiliation(s)
- Young Li
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, China; University of Science and Technology of China, Hefei, China
| | - Yang Wu
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, China; University of Science and Technology of China, Hefei, China
| | - Xiaohu Zheng
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, China; University of Science and Technology of China, Hefei, China
| | - Jingjing Cong
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, China; University of Science and Technology of China, Hefei, China
| | - Yanyan Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University , Hefei , China
| | - Jiabin Li
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University , Hefei , China
| | - Rui Sun
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, China; University of Science and Technology of China, Hefei, China; Hefei National Laboratory for Physical Sciences at Microscale, Hefei, China
| | - Zhigang G Tian
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, China; University of Science and Technology of China, Hefei, China; Hefei National Laboratory for Physical Sciences at Microscale, Hefei, China
| | - Haiming M Wei
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, China; University of Science and Technology of China, Hefei, China; Hefei National Laboratory for Physical Sciences at Microscale, Hefei, China
| |
Collapse
|
20
|
Lamontagne RJ, Bagga S, Bouchard MJ. Hepatitis B virus molecular biology and pathogenesis. HEPATOMA RESEARCH 2016; 2:163-186. [PMID: 28042609 PMCID: PMC5198785 DOI: 10.20517/2394-5079.2016.05] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
As obligate intracellular parasites, viruses need a host cell to provide a milieu favorable to viral replication. Consequently, viruses often adopt mechanisms to subvert host cellular signaling processes. While beneficial for the viral replication cycle, virus-induced deregulation of host cellular signaling processes can be detrimental to host cell physiology and can lead to virus-associated pathogenesis, including, for oncogenic viruses, cell transformation and cancer progression. Included among these oncogenic viruses is the hepatitis B virus (HBV). Despite the availability of an HBV vaccine, 350-500 million people worldwide are chronically infected with HBV, and a significant number of these chronically infected individuals will develop hepatocellular carcinoma (HCC). Epidemiological studies indicate that chronic infection with HBV is the leading risk factor for the development of HCC. Globally, HCC is the second highest cause of cancer-associated deaths, underscoring the need for understanding mechanisms that regulate HBV replication and the development of HBV-associated HCC. HBV is the prototype member of the Hepadnaviridae family; members of this family of viruses have a narrow host range and predominately infect hepatocytes in their respective hosts. The extremely small and compact hepadnaviral genome, the unique arrangement of open reading frames, and a replication strategy utilizing reverse transcription of an RNA intermediate to generate the DNA genome are distinguishing features of the Hepadnaviridae. In this review, we provide a comprehensive description of HBV biology, summarize the model systems used for studying HBV infections, and highlight potential mechanisms that link a chronic HBV-infection to the development of HCC. For example, the HBV X protein (HBx), a key regulatory HBV protein that is important for HBV replication, is thought to play a cofactor role in the development of HBV-induced HCC, and we highlight the functions of HBx that may contribute to the development of HBV-associated HCC.
Collapse
Affiliation(s)
- R. Jason Lamontagne
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- The Wistar Institute, Philadelphia, PA 19104, USA
| | - Sumedha Bagga
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Michael J. Bouchard
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| |
Collapse
|
21
|
Experimental in vitro and in vivo models for the study of human hepatitis B virus infection. J Hepatol 2016; 64:S17-S31. [PMID: 27084033 DOI: 10.1016/j.jhep.2016.02.012] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/29/2016] [Accepted: 02/10/2016] [Indexed: 12/13/2022]
Abstract
Chronic infection with the hepatitis B virus (HBV) affects an estimate of 240 million people worldwide despite the availability of a preventive vaccine. Medication to repress viral replication is available but a cure is rarely achieved. The narrow species and tissue tropism of the virus and the lack of reliable in vitro models and laboratory animals susceptible to HBV infection, have limited research progress in the past. As a result, several aspects of the HBV life cycle as well as the network of virus host interactions occurring during the infection are not yet understood. Only recently, the identification of the functional cellular receptor enabling HBV entry has opened new possibilities to establish innovative infection systems. Regarding the in vivo models of HBV infection, the classical reference was the chimpanzee. However, because of the strongly restricted use of great apes for HBV research, major efforts have focused on the development of mouse models of HBV replication and infection such as the generation of humanized mice. This review summarizes the animal and cell culture based models currently available for the study of HBV biology. We will discuss the benefits and caveats of each model and present a selection of the most important findings that have been retrieved from the respective systems.
Collapse
|
22
|
Isorce N, Testoni B, Locatelli M, Fresquet J, Rivoire M, Luangsay S, Zoulim F, Durantel D. Antiviral activity of various interferons and pro-inflammatory cytokines in non-transformed cultured hepatocytes infected with hepatitis B virus. Antiviral Res 2016; 130:36-45. [PMID: 26971407 DOI: 10.1016/j.antiviral.2016.03.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 12/12/2022]
Abstract
In HBV-infected patients, therapies with nucleoside analogues or IFNα remain ineffective in eradicating the infection. Our aim was to re-analyze the anti-HBV activity of a large panel of IFNs and cytokines in vitro using non-transformed cultured hepatocytes infected with HBV, to identify new immune-therapeutic options. HepaRG cells and primary human hepatocytes were infected with HBV and, when infection was established, treated with various concentrations of different IFNs or inflammatory cytokines. Viral parameters were evaluated by quantifying HBV nucleic acids by qPCR and Southern Blot, and secreted HBV antigens were evaluated using ELISA. The cytokines tested were type-I IFNs, IFNγ, type-III IFNs, TNFα, IL-6, IL-1β, IL-18 as well as nucleos(t)ide analogues tenofovir and ribavirin. Cytokines and drugs, with the exception of IL-18 and ribavirin, exhibited a suppressive effect on HBV replication at least as strong as, but often stronger than, IFNα. The cytokine presenting the highest effect on HBV DNA was IL-1β, which exerted its inhibition within picomolar range. Importantly, we noticed differential effects on other parameters (HBV RNA, HBeAg, HBsAg) between both IFNs and inflammatory cytokines, thus suggesting different mechanisms of action. The combination of IL-1β and already used therapies, i.e. IFNα or tenofovir, demonstrated a stronger or similar anti-HBV activity. IL-1β was found to have a very potent antiviral effect against HBV in vitro. HBV was previously shown to promptly inhibit IL-1β production in Kupffer cells. Strategies aiming at unlocking this inhibition and restoring local production of IL-1β may help to further inhibit HBV replication in vivo.
Collapse
Affiliation(s)
- Nathalie Isorce
- INSERM U1052, Cancer Research Centre of Lyon (CRCL), 69424 Lyon Cedex 03, France; University of Lyon, Université Claude Bernard (UCBL), UMR_S1052, 69008 Lyon, France; LabEx DEVweCAN, 69008 Lyon, France
| | - Barbara Testoni
- INSERM U1052, Cancer Research Centre of Lyon (CRCL), 69424 Lyon Cedex 03, France; University of Lyon, Université Claude Bernard (UCBL), UMR_S1052, 69008 Lyon, France; LabEx DEVweCAN, 69008 Lyon, France
| | - Maëlle Locatelli
- INSERM U1052, Cancer Research Centre of Lyon (CRCL), 69424 Lyon Cedex 03, France; University of Lyon, Université Claude Bernard (UCBL), UMR_S1052, 69008 Lyon, France; LabEx DEVweCAN, 69008 Lyon, France
| | - Judith Fresquet
- INSERM U1052, Cancer Research Centre of Lyon (CRCL), 69424 Lyon Cedex 03, France; University of Lyon, Université Claude Bernard (UCBL), UMR_S1052, 69008 Lyon, France; LabEx DEVweCAN, 69008 Lyon, France
| | | | - Souphalone Luangsay
- INSERM U1052, Cancer Research Centre of Lyon (CRCL), 69424 Lyon Cedex 03, France; University of Lyon, Université Claude Bernard (UCBL), UMR_S1052, 69008 Lyon, France; LabEx DEVweCAN, 69008 Lyon, France
| | - Fabien Zoulim
- INSERM U1052, Cancer Research Centre of Lyon (CRCL), 69424 Lyon Cedex 03, France; University of Lyon, Université Claude Bernard (UCBL), UMR_S1052, 69008 Lyon, France; LabEx DEVweCAN, 69008 Lyon, France; Hospices Civils de Lyon (HCL), Liver Departement of Croix-Rousse Hospital, 69002 Lyon, France; Institut Universitaire de France (IUF), 75005 Paris, France.
| | - David Durantel
- INSERM U1052, Cancer Research Centre of Lyon (CRCL), 69424 Lyon Cedex 03, France; University of Lyon, Université Claude Bernard (UCBL), UMR_S1052, 69008 Lyon, France; LabEx DEVweCAN, 69008 Lyon, France.
| |
Collapse
|
23
|
|
24
|
Iannacone M, Guidotti LG. Mouse Models of Hepatitis B Virus Pathogenesis. Cold Spring Harb Perspect Med 2015; 5:cshperspect.a021477. [PMID: 26292984 DOI: 10.1101/cshperspect.a021477] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The host range of hepatitis B virus (HBV) is limited to humans and chimpanzees. As discussed in the literature, numerous studies in humans and chimpanzees have generated a great deal of information on the mechanisms that cause viral clearance, viral persistence, and disease pathogenesis during acute or chronic HBV infection. Relevant pathogenetic studies have also been performed in those few species representing natural hosts of hepadnaviruses that are related to HBV, such as the woodchuck hepatitis virus and the duck hepatitis virus. Further insight has been gained from multidisciplinary studies in transgenic or humanized chimeric mouse models expressing and/or replicating HBV to varying degrees. We provide here a concise summary of the available HBV mouse models as well as of the contributions of these models to our understanding of HBV pathogenesis.
Collapse
Affiliation(s)
- Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Luca G Guidotti
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy Department of Immunology & Microbial Sciences, The Scripps Research Institute, La Jolla, California 92037
| |
Collapse
|
25
|
Isorce N, Lucifora J, Zoulim F, Durantel D. Immune-modulators to combat hepatitis B virus infection: From IFN-α to novel investigational immunotherapeutic strategies. Antiviral Res 2015; 122:69-81. [PMID: 26275801 DOI: 10.1016/j.antiviral.2015.08.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 08/11/2015] [Indexed: 02/07/2023]
Abstract
Chronic hepatitis B virus (HBV) infection remains a major challenge for clinicians, as there are only two types of approved therapies: interferon-alpha (IFN-α) or its pegylated form, Peg-IFN-α and nucleoside analogs (e.g. tenofovir, entecavir...). The first are used as finite-duration treatments of around 48-52 weeks, while the second must be taken life-long to prevent rebound. Other immune-modulators, including other types of recombinant IFNs and cytokines/chemokines, could be developed for treating chronic hepatitis B. Alternatively, strategies aimed either at restoring or favoring the endogenous production of IFNs, cytokines and/or chemokines, or at alleviating HBV-mediated inhibitory processes could also be envisaged. In this article, we review current investigational, preclinical and clinical efforts to implement immune-modulatory components in the therapy of chronic hepatitis B. This review forms part of a symposium in Antiviral Research on "An unfinished story: from the discovery of the Australia antigen to the development of new curative therapies for hepatitis B".
Collapse
Affiliation(s)
- Nathalie Isorce
- INSERM, U1052, CNRS UMR_5286, Cancer Research Centre of Lyon (CRCL), Lyon, France; University of Lyon, Université Claude Bernard (UCBL), Lyon, France
| | - Julie Lucifora
- INSERM, U1052, CNRS UMR_5286, Cancer Research Centre of Lyon (CRCL), Lyon, France; University of Lyon, Université Claude Bernard (UCBL), Lyon, France
| | - Fabien Zoulim
- INSERM, U1052, CNRS UMR_5286, Cancer Research Centre of Lyon (CRCL), Lyon, France; University of Lyon, Université Claude Bernard (UCBL), Lyon, France; Labex DEVweCAN, Lyon, France; Hospices Civils de Lyon (HCL), Croix-Rousse Hospital, Lyon, France
| | - David Durantel
- INSERM, U1052, CNRS UMR_5286, Cancer Research Centre of Lyon (CRCL), Lyon, France; University of Lyon, Université Claude Bernard (UCBL), Lyon, France; Labex DEVweCAN, Lyon, France.
| |
Collapse
|
26
|
Li J, Ge J, Ren S, Zhou T, Sun Y, Sun H, Gu Y, Huang H, Xu Z, Chen X, Xu X, Zhuang X, Song C, Jia F, Xu A, Yin X, Du SX. Hepatitis B surface antigen (HBsAg) and core antigen (HBcAg) combine CpG oligodeoxynucletides as a novel therapeutic vaccine for chronic hepatitis B infection. Vaccine 2015; 33:4247-54. [PMID: 25858855 DOI: 10.1016/j.vaccine.2015.03.079] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 03/16/2015] [Accepted: 03/24/2015] [Indexed: 12/12/2022]
Abstract
Hepatitis B virus infection is a non-cytopathic hepatotropic virus which can lead to chronic liver disease and hepatocellular carcinoma. Traditional therapies fail to provide sustained control of viral replication and liver damage in most patients. As an alternative strategy, immunotherapeutic approaches have shown promising efficacy in the treatment of chronic hepatitis B patients. Here, we investigated the efficacy of a novel therapeutic vaccine formulation consisting of two HBV antigens, HBsAg and HBcAg, and CpG adjuvant. This vaccine formulation elicits forceful humoral responses directed against HBsAg/HBcAg, and promotes a Th1/Th2 balance response against HBsAg and a Th1-biased response against HBcAg in both C57BL/6 and HBV transgenic mice. Vigorous cellular immune response was also detected in HBV transgenic mice, for a significantly higher number of HBs/HBc-specific IFN-γ secreting CD4+ and CD8+ T cells was generated. Moreover, vaccinated mice elicited significantly intense in vivo CTL attack, reduced serum HBsAg level without causing liver damage in HBV transgenic mice. In summary, this study demonstrates a novel therapeutic vaccine with the potential to elicit vigorous humoral and cellular response, overcoming tolerance in HBV transgenic mice.
Collapse
Affiliation(s)
- Jianqiang Li
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, Nanjing 210042, China.
| | - Jun Ge
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, Nanjing 210042, China
| | - Sulin Ren
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, Nanjing 210042, China
| | - Tong Zhou
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, Nanjing 210042, China
| | - Ying Sun
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, Nanjing 210042, China
| | - Honglin Sun
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, Nanjing 210042, China
| | - Yue Gu
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, Nanjing 210042, China
| | - Hongying Huang
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, Nanjing 210042, China
| | - Zhenxing Xu
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, Nanjing 210042, China
| | - Xiaoxiao Chen
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, Nanjing 210042, China
| | - Xiaowei Xu
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, Nanjing 210042, China; State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoqian Zhuang
- Jiangsu Simcere Pharmaceutical R&D Co., Ltd., Nanjing 210042, China
| | - Cuiling Song
- Jiangsu Simcere Pharmaceutical R&D Co., Ltd., Nanjing 210042, China
| | - Fangmiao Jia
- Jiangsu Simcere Pharmaceutical R&D Co., Ltd., Nanjing 210042, China
| | - Aiguo Xu
- Jiangsu Simcere Pharmaceutical R&D Co., Ltd., Nanjing 210042, China
| | - Xiaojin Yin
- Jiangsu Simcere Pharmaceutical R&D Co., Ltd., Nanjing 210042, China
| | - Sean X Du
- Jiangsu Simcere Pharmaceutical R&D Co., Ltd., Nanjing 210042, China
| |
Collapse
|
27
|
Wang YL, Liou GG, Lin CH, Chen ML, Kuo TM, Tsai KN, Huang CC, Chen YL, Huang LR, Chou YC, Chang C. The inhibitory effect of the hepatitis B virus singly-spliced RNA-encoded p21.5 protein on HBV nucleocapsid formation. PLoS One 2015; 10:e0119625. [PMID: 25785443 PMCID: PMC4364729 DOI: 10.1371/journal.pone.0119625] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 01/20/2015] [Indexed: 12/29/2022] Open
Abstract
Hepatitis B virus (HBV) is the smallest DNA virus and the major cause of acute and chronic hepatitis. The 3.2 kb HBV viral genome generates four major species of unspliced viral transcript as well as several alternatively spliced RNAs. A 2.2 kb singly-spliced RNA is the most abundant spliced RNA and is widely expressed among all HBV genotypes. The expression of the singly-spliced RNA, as well as that of its encoded protein HBSP, is strongly associated with hepatopathology during HBV infection. Here, we report a novel inhibitory role of a p21.5 protein, which is encoded by a 2.2 kb singly-spliced RNA, in the modulation of HBV replication. We show that overexpression of the singly-spliced RNA is able to efficiently inhibit HBV replication. Furthermore, a mutation in the ATG start codon of the precore region completely abolishes the inhibitory effect of the singly-spliced RNA, indicating that a viral protein (p21.5) derived from the singly-spliced RNA is the mediator of the inhibition. Furthermore, p21.5 is able to form a homodimer that interacts with core dimers forming hybrid viral assembly components. Sucrose gradient fractionation revealed that co-expression of p21.5 resulted in a spread distribution pattern of core proteins ranging from low to high sucrose densities. When compared with p22, p21.5 is almost ten times more efficient at destabilizing HBV nucleocapsid assembly in Huh7 cells overexpressing either p21.5 or p22 protein. Moreover, in vivo expression of p21.5 protein by tail vein injection was found to decrease the amount of nucleocapsid in the livers of HBV-expressing BALB/c mice. In conclusion, our study reveals that the HBV 2.2 kb singly-spliced RNA encodes a 21.5 kDa viral protein that significantly interferes with the assembly of nucleocapsids during HBV nucleocapsid formation. These findings provide a possible strategy for elimination of HBV particles inside cells.
Collapse
Affiliation(s)
- Yi-Ling Wang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Gan-Guang Liou
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Chao-Hsiung Lin
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan
| | - Mong-Liang Chen
- Center for Molecular Medicine, China Medical University and Hospital, Taichung, Taiwan
| | - Tzer-Min Kuo
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Kuen-Nan Tsai
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Chien-Choao Huang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Ya-Ling Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Li-Rung Huang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Yu-Chi Chou
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- * E-mail: (CC); (YCC)
| | - Chungming Chang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
- * E-mail: (CC); (YCC)
| |
Collapse
|
28
|
Abstract
Natural killer (NK) cells become activated during viral infections and can play roles in such infections by attacking virus-infected cells or by regulating adaptive immune responses. Experimental models suggest that NK cells may also have the capacity to restrain virus-induced cancers. Here, we discuss the seven viruses linked to human cancers and the evidence of NK cell involvement in these systems.
Collapse
Affiliation(s)
- Rabinarayan Mishra
- Department of Pathology, University of Massachusetts Medical School, 368 Plantation Street, AS9-2051, Worcester, MA 01605
| | - Raymond Welsh
- Department of Pathology, University of Massachusetts Medical School, 368 Plantation Street, AS9-2051, Worcester, MA 01605
| | - Eva Szomolanyi-Tsuda
- Department of Pathology, University of Massachusetts Medical School, 368 Plantation Street, AS9-2051, Worcester, MA 01605
| |
Collapse
|
29
|
Tzeng HT, Tsai HF, Chyuan IT, Liao HJ, Chen CJ, Chen PJ, Hsu PN. Tumor necrosis factor-alpha induced by hepatitis B virus core mediating the immune response for hepatitis B viral clearance in mice model. PLoS One 2014; 9:e103008. [PMID: 25047809 PMCID: PMC4105421 DOI: 10.1371/journal.pone.0103008] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 06/24/2014] [Indexed: 02/06/2023] Open
Abstract
Persistent hepatitis B viral (HBV) infection results in chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma (HCC). An efficient control of virus infections requires the coordinated actions of both innate and adaptive immune responses. In order to define the role of innate immunity effectors against HBV, viral clearance was studied in a panel of immunodeficient mouse strains by the hydrodynamic injection approach. Our results demonstrate that HBV viral clearance is not changed in IFN-α/β receptor (IFNAR), RIG-I, MDA5, MYD88, NLRP3, ASC, and IL-1R knock-out mice, indicating that these innate immunity effectors are not required for HBV clearance. In contrast, HBV persists in the absence of tumor necrosis factor-alpha (TNF-α) or in mice treated with the soluble TNF receptor blocker, Etanercept. In these mice, there was an increase in PD-1-expressing CD8+ T-cells and an increase of serum HBV DNA, HBV core, and surface antigen expression as well as viral replication within the liver. Furthermore, the induction of TNF-α in clearing HBV is dependent on the HBV core, and TNF blockage eliminated HBV core-induced viral clearance effects. Finally, the intra-hepatic leukocytes (IHLs), but not the hepatocytes, are the cell source responsible for TNF-α production induced by HBcAg. These results provide evidences for TNF-α mediated innate immune mechanisms in HBV clearance and explain the mechanism of HBV reactivation during therapy with TNF blockage agents.
Collapse
Affiliation(s)
- Horng-Tay Tzeng
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hwei-Fang Tsai
- Department of Internal Medicine, Taipei Medical University Shuang Ho Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - I-Tsu Chyuan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsiu-Jung Liao
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chun-Jen Chen
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Pei-Jer Chen
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ping-Ning Hsu
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
30
|
Dandri M, Lütgehetmann M. Mouse models of hepatitis B and delta virus infection. J Immunol Methods 2014; 410:39-49. [PMID: 24631647 DOI: 10.1016/j.jim.2014.03.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/03/2014] [Accepted: 03/04/2014] [Indexed: 01/05/2023]
Abstract
Liver disease associated to persistent infection with the hepatitis B virus (HBV) continues to be a major health problem of global impact. Therapeutic regimens currently available can efficiently suppress HBV replication; however, the unique replication strategies employed by HBV permit the virus to persist within the infected hepatocytes. As a consequence, relapse of viral activity is commonly observed after cessation of treatment with polymerase inhibitors. Among the HBV chronically infected patients, more than 15million patients are estimated to be co-infected with the hepatitis delta virus (HDV), a defective satellite virus that needs the HBV envelope for propagation. No specific drugs are currently available against HDV, while nucleos(t)ide analogs are not effective against HDV replication. Since chronic HBV/HDV co-infection leads to the most severe form of chronic viral hepatitis in men, a better understanding of the molecular mechanisms of HDV-mediated pathogenesis and the development of improved therapeutic approaches is urgently needed. The obvious limitations imposed by the use of great apes and the paucity of robust experimental models of HBV infection have hindered progresses in understanding the complex network of virus-host interactions that are established in the course of HBV and HDV infections. This review focuses on summarizing recent advances obtained with well-established and more innovative experimental mouse models, giving emphasis on the strength of infection systems based on the reconstitution of the murine liver with human hepatocytes, as tools for elucidating the whole life cycle of HBV and HDV, as well as for studies on interactions with the infected human hepatocytes and for preclinical drug evaluation.
Collapse
Affiliation(s)
- Maura Dandri
- I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; German Center for Infection Research, Hamburg-Lübeck-Borstel Partner Site, Germany.
| | - Marc Lütgehetmann
- I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute of Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
31
|
Abstract
The liver is the largest organ in the body and is generally regarded by nonimmunologists as having little or no lymphoid function. However, such is far from accurate. This review highlights the importance of the liver as a lymphoid organ. Firstly, we discuss experimental data surrounding the role of liver as a lymphoid organ. The liver facilitates tolerance rather than immunoreactivity, which protects the host from antigenic overload of dietary components and drugs derived from the gut and it is instrumental to fetal immune tolerance. Loss of liver tolerance leads to autoaggressive phenomena, which if not controlled by regulatory lymphoid populations, may lead to the induction of autoimmune liver diseases. Liver-related lymphoid subpopulations also act as critical antigen-presenting cells. The study of the immunological properties of liver and delineation of the microenvironment of the intrahepatic milieu in normal and diseased livers provides a platform to understand the hierarchy of a series of detrimental events that lead to immune-mediated destruction of the liver and the rejection of liver allografts. The majority of emphasis within this review will be on the normal mononuclear cell composition of the liver. However, within this context, we will discuss selected, but not all, immune-mediated liver disease and attempt to place these data in the context of human autoimmunity.
Collapse
Affiliation(s)
- Dimitrios P Bogdanos
- Institute of Liver Studies, Transplantation Immunology and Mucosal Biology, King's College London School of Medicine at King's College Hospital, London, UK
| | | | | |
Collapse
|
32
|
Rehermann B. Pathogenesis of chronic viral hepatitis: differential roles of T cells and NK cells. Nat Med 2013; 19:859-68. [PMID: 23836236 DOI: 10.1038/nm.3251] [Citation(s) in RCA: 375] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 05/30/2013] [Indexed: 02/08/2023]
Abstract
Chronic hepatitis B virus (HBV) and hepatitis C virus (HCV) infections account for 57% of cases of liver cirrhosis and 78% of cases of primary liver cancer worldwide and cause a million deaths per year. Although HBV and HCV differ in their genome structures, replication strategies and life cycles, they have common features, including their noncytopathic nature and their capacity to induce chronic liver disease, which is thought to be immune mediated. However, the rate of disease progression from chronic hepatitis to cirrhosis varies greatly among infected individuals, and the factors that regulate it are largely unknown. This review summarizes our current understanding of the roles of antigen-specific and nonspecific immune cells in the pathogenesis of chronic hepatitis B and C and discusses recent findings that identify natural killer cells as regulators of T cell function and liver inflammation.
Collapse
Affiliation(s)
- Barbara Rehermann
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA.
| |
Collapse
|
33
|
Dandri M, Lütgehetmann M, Petersen J. Experimental models and therapeutic approaches for HBV. Semin Immunopathol 2012; 35:7-21. [PMID: 22898798 DOI: 10.1007/s00281-012-0335-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Accepted: 07/31/2012] [Indexed: 12/12/2022]
Abstract
Liver disease associated to persistent infection with the hepatitis B virus (HBV) continues to be a major health problem of global impact. In spite of the existence of an effective vaccine, approximately 360 million people are chronically infected worldwide, who are at high risk of developing liver cirrhosis and hepatocellular carcinoma. Although current therapeutic regimens can efficiently suppress viral replication, the unique replication strategies employed by HBV permit the virus to persist within the infected hepatocytes. As a consequence, relapse of viral activity is commonly observed after cessation of treatment with polymerase inhibitors. The narrow host range of HBV has hindered progresses in understanding specific steps of HBV replication and the development of more effective therapeutic strategies aiming at achieving sustained viral control and, eventually, virus eradication. This review will focus on summarizing recent advances obtained with well-established and more innovative experimental models, giving emphasis on the strength of the different systems as tools for elucidating distinct aspects of HBV persistence and for the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Maura Dandri
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | | | | |
Collapse
|
34
|
Ishikawa T. Immunoregulation of hepatitis B virus infection--rationale and clinical application. NAGOYA JOURNAL OF MEDICAL SCIENCE 2012; 74:217-32. [PMID: 23092095 PMCID: PMC4831231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 06/05/2012] [Indexed: 11/29/2022]
Abstract
Hepatitis B virus (HBV) is susceptible to the cellular immune responses, especially to the signal of interferon (IFN)-gamma. The action of IFN-gamma is pleiotropic, and causes downregulation of HBV in protein, RNA, and possibly DNA levels. Therefore, therapeutic vaccination to induce cellular immune responses to HBV is a promising approach for controlling chronic HBV infection. A number of clinical trials with this approach have been conducted to date, however, they have not been as successful as initially expected. T-cell exhaustion induced by the excessive HBV antigens caused by persistent infection is thought to be one of the main causes of poor responses to therapeutic vaccination. In this review, the mechanisms behind immunoregulation of HBV replication and immunodysfunction during chronic HBV infection are summarized, and novel approaches to improve the efficacy of therapeutic vaccination, from basic research to clinical trials, are introduced.
Collapse
Affiliation(s)
- Tetsuya Ishikawa
- Division of Pathophysiological Laboratory Sciences, Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Japan.
| |
Collapse
|
35
|
Lütgehetmann M, Bornscheuer T, Volz T, Allweiss L, Bockmann JH, Pollok JM, Lohse AW, Petersen J, Dandri M. Hepatitis B virus limits response of human hepatocytes to interferon-α in chimeric mice. Gastroenterology 2011; 140:2074-83, 2083.e1-2. [PMID: 21376046 DOI: 10.1053/j.gastro.2011.02.057] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 01/06/2011] [Accepted: 02/18/2011] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Interferon (IFN)-α therapy is not effective for most patients with chronic hepatitis B virus (HBV) infection for reasons that are not clear. We investigated whether HBV infection reduced IFN-α-mediated induction of antiviral defense mechanisms in human hepatocytes. METHODS Human hepatocytes were injected into severe combined immune-deficient mice (SCID/beige) that expressed transgenic urokinase plasminogen activator under control of the albumin promoter. Some mice were infected with HBV; infected and uninfected mice were given injections of human IFN-α. Changes in viral DNA and expression of human interferon-stimulated genes (ISGs) were measured by real-time polymerase chain reaction, using human-specific primers, and by immunohistochemistry. RESULTS Median HBV viremia (0.8log) and intrahepatic loads of HBV RNA decreased 3-fold by 8 or 12 hours after each injection of IFN-α, but increased within 24 hours. IFN-α activated expression of human ISGs and nuclear translocation of signal transducers and activators of transcription-1 (STAT1) in human hepatocytes that repopulated the livers of uninfected mice. Although baseline levels of human ISGs were slightly increased in HBV-infected mice, compared with uninfected mice, IFN-α failed to increase expression of the ISGs OAS-1, MxA, MyD88, and TAP-1 (which regulates antigen presentation) in HBV-infected mice. IFN-α did not induce nuclear translocation of STAT1 in HBV-infected human hepatocytes. Administration of the nucleoside analogue entecavir (for 20 days) suppressed HBV replication but did not restore responsiveness to IFN-α. CONCLUSIONS HBV prevents induction of IFN-α signaling by inhibiting nuclear translocation of STAT1; this can interfere with transcription of ISGs in human hepatocytes. These effects of HBV might contribute to the limited effectiveness of endogenous and therapeutic IFN-α in patients and promote viral persistence.
Collapse
Affiliation(s)
- Marc Lütgehetmann
- Department of Internal Medicine, University Medical Hospital Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Myoung J, Ganem D. Active lytic infection of human primary tonsillar B cells by KSHV and its noncytolytic control by activated CD4+ T cells. J Clin Invest 2011; 121:1130-40. [PMID: 21339648 PMCID: PMC3049404 DOI: 10.1172/jci43755] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 01/12/2011] [Indexed: 12/31/2022] Open
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV) is a B-lymphotropic virus whose primary site of replication is the oropharynx. KSHV can infect both T and B cells from primary tonsillar explant cultures. However, T cells do not support lytic replication, while B cells spontaneously produce substantial amounts of infectious virus. Here, we provide evidence for a mechanism by which activated T cells may promote or stabilize latency of KSHV infection in B cells. When mixed cultures of B cells and activated T cells were exposed to KSHV, little spontaneous virus production was observed. Removing T cells from the mix or treating the mixed culture with immune suppressants enhanced virus production. Adding back activated T cells to purified infected B cells efficiently suppressed KSHV production, primarily due to CD4(+) T cells. This suppressive activity required T cell activation and direct cell-cell contact, but not prior exposure to KSHV antigen. Suppression was not MHC restricted and did not result in killing of the target cell. We therefore propose that oropharyngeal T cells activated by a variety of stimuli can recognize ligands on infected target B cells, leading to signaling events that prevent spontaneous lytic activation and promote latent infection in this compartment.
Collapse
Affiliation(s)
- Jinjong Myoung
- Howard Hughes Medical Institute, Department of Microbiology, UCSF, San Francisco, California 94143, USA
| | | |
Collapse
|
37
|
Inhibition of hepatitis B virus replication by MyD88 involves accelerated degradation of pregenomic RNA and nuclear retention of pre-S/S RNAs. J Virol 2010; 84:6387-99. [PMID: 20410269 DOI: 10.1128/jvi.00236-10] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Myeloid differentiation primary response protein 88 (MyD88), which can be induced by alpha interferon (IFN-alpha), has an antiviral activity against the hepatitis B virus (HBV). The mechanism of this antiviral activity remains poorly understood. Here, we report that MyD88 inhibited HBV replication in HepG2.2.15 cells and in a mouse model. The knockdown of MyD88 expression weakened the IFN-alpha-induced inhibition of HBV replication. Furthermore, MyD88 posttranscriptionally reduced the levels of viral RNA. Remarkably, MyD88 accelerated the decay of viral pregenomic RNA in the cytoplasm. Mapping analysis showed that the RNA sequence located in the 5'-proximal region of the pregenomic RNA was critical for the decay. In addition, MyD88 inhibited the nuclear export of pre-S/S RNAs via the posttranscriptional regulatory element (PRE). The retained pre-S/S RNAs were shown to degrade in the nucleus. Finally, we found that MyD88 inhibited the expression of polypyrimidine tract-binding protein (PTB), a key nuclear export factor for PRE-containing RNA. Taken together, our results define a novel antiviral mechanism against HBV mediated by MyD88.
Collapse
|
38
|
Chisari FV, Isogawa M, Wieland SF. Pathogenesis of hepatitis B virus infection. ACTA ACUST UNITED AC 2010; 58:258-66. [PMID: 20116937 DOI: 10.1016/j.patbio.2009.11.001] [Citation(s) in RCA: 297] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Accepted: 11/02/2009] [Indexed: 12/12/2022]
Abstract
The adaptive immune response is thought to be responsible for viral clearance and disease pathogenesis during hepatitis B virus infection. It is generally acknowledged that the humoral antibody response contributes to the clearance of circulating virus particles and the prevention of viral spread within the host while the cellular immune response eliminates infected cells. The T cell response to the hepatitis B virus (HBV) is vigorous, polyclonal and multispecific in acutely infected patients who successfully clear the virus and relatively weak and narrowly focussed in chronically infected patients, suggesting that clearance of HBV is T cell dependent. The pathogenetic and antiviral potential of the cytotoxic T lymphocyte (CTL) response to HBV has been proven by the induction of a severe necroinflammatory liver disease following the adoptive transfer of HBsAg specific CTL into HBV transgenic mice. Remarkably, the CTLs also purge HBV replicative intermediates from the liver by secreting type 1 inflammatory cytokines thereby limiting virus spread to uninfected cells and reducing the degree of immunopathology required to terminate the infection. Persistent HBV infection is characterized by a weak adaptive immune response, thought to be due to inefficient CD4+ T cell priming early in the infection and subsequent development of a quantitatively and qualitatively ineffective CD8+ T cell response. Other factors that could contribute to viral persistence are immunological tolerance, mutational epitope inactivation, T cell receptor antagonism, incomplete down-regulation of viral replication and infection of immunologically privileged tissues. However, these pathways become apparent only in the setting of an ineffective immune response, which is, therefore, the fundamental underlying cause. Persistent infection is characterized by chronic liver cell injury, regeneration, inflammation, widespread DNA damage and insertional deregulation of cellular growth control genes, which, collectively, lead to cirrhosis of the liver and hepatocellular carcinoma.
Collapse
Affiliation(s)
- F V Chisari
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
39
|
Activation of pattern recognition receptor-mediated innate immunity inhibits the replication of hepatitis B virus in human hepatocyte-derived cells. J Virol 2008; 83:847-58. [PMID: 18971270 DOI: 10.1128/jvi.02008-08] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recognition of virus infections by pattern recognition receptors (PRRs), such as Toll-like receptors (TLRs), retinoic acid-inducible gene I (RIG-I), and melanoma differentiation associated gene 5 (MDA5), activates signaling pathways, leading to the induction of inflammatory cytokines that limit viral replication. To determine the effects of PRR-mediated innate immune response on hepatitis B virus (HBV) replication, a 1.3mer HBV genome was cotransfected into HepG2 or Huh7 cells with plasmid expressing TLR adaptors, myeloid differentiation primary response gene 88 (MyD88), and TIR-domain-containing adaptor-inducing beta interferon (TRIF), or RIG-I/MDA5 adaptor, interferon promoter stimulator 1 (IPS-1). The results showed that expressing each of the three adaptors dramatically reduced the levels of HBV mRNA and DNA in both HepG2 and Huh7 cells. However, HBV replication was not significantly affected by treatment of HBV genome-transfected cells with culture media harvested from cells transfected with each of the three adaptors, indicating that the adaptor-induced antiviral response was predominantly mediated by intracellular factors rather than by secreted cytokines. Analyses of involved signaling pathways revealed that activation of NF-kappaB is required for all three adaptors to elicit antiviral response in both HepG2 and Huh7 cells. However, activation of interferon regulatory factor 3 is only essential for induction of antiviral response by IPS-1 in Huh7 cells, but not in HepG2 cells. Furthermore, our results suggest that besides NF-kappaB, additional signaling pathway(s) are required for TRIF to induce a maximum antiviral response against HBV. Knowing the molecular mechanisms by which PRR-mediated innate defense responses control HBV infections could potentially lead to the development of novel therapeutics that evoke the host cellular innate antiviral response to control HBV infections.
Collapse
|
40
|
Invernizzi P, Bianchi I, Locati M, Bonecchi R, Selmi C. Cytokines in Liver Health and Disease. LIVER IMMUNOLOGY 2008:83-93. [DOI: 10.1007/978-1-59745-518-3_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
41
|
Guidotti LG, Chisari FV. Immunobiology and pathogenesis of viral hepatitis. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2007; 1:23-61. [PMID: 18039107 DOI: 10.1146/annurev.pathol.1.110304.100230] [Citation(s) in RCA: 593] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Among the many viruses that are known to infect the human liver, hepatitis B virus (HBV) and hepatitis C virus (HCV) are unique because of their prodigious capacity to cause persistent infection, cirrhosis, and liver cancer. HBV and HCV are noncytopathic viruses and, thus, immunologically mediated events play an important role in the pathogenesis and outcome of these infections. The adaptive immune response mediates virtually all of the liver disease associated with viral hepatitis. However, it is becoming increasingly clear that antigen-nonspecific inflammatory cells exacerbate cytotoxic T lymphocyte (CTL)-induced immunopathology and that platelets enhance the accumulation of CTLs in the liver. Chronic hepatitis is characterized by an inefficient T cell response unable to completely clear HBV or HCV from the liver, which consequently sustains continuous cycles of low-level cell destruction. Over long periods of time, recurrent immune-mediated liver damage contributes to the development of cirrhosis and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Luca G Guidotti
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, California 92037, USA.
| | | |
Collapse
|
42
|
Abstract
The hepatitis B virus (HBV) is an enveloped, hepatotrophic, oncogenic hepadnavirus that is noncytopathic for hepatocytes. HBV infection results in a variety of outcomes that are determined by the quality, quantity, and kinetics of the host innate and adaptive immune responses. Whether HBV infection is cleared or persists as a progressive or nonprogressive liver disease is determined by both viral and host factors. Replicative intermediates can persist in the liver under immunologic control after resolution of acute or chronic hepatitis B, conferring a risk for reactivation following a course of immunosuppression or chemotherapy.
Collapse
Affiliation(s)
- John M Vierling
- Baylor College of Medicine, 1709 Dryden, Suite 1500, Houston, TX 77030, USA.
| |
Collapse
|
43
|
Thompson A, Locarnini S, Visvanathan K. The natural history and the staging of chronic hepatitis B: time for reevaluation of the virus-host relationship based on molecular virology and immunopathogenesis considerations? Gastroenterology 2007; 133:1031-5. [PMID: 17854605 DOI: 10.1053/j.gastro.2007.07.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
44
|
Abstract
Hepatitis B virus (HBV) causes acute and chronic necroinflammatory liver diseases and hepatocellular carcinoma (HCC). HBV replicates noncytopathically in the hepatocyte, and most of the liver injury associated with this infection reflects the immune response. While the innate immune response may not contribute significantly to the pathogenesis of liver disease or viral clearance, the adaptive immune response, particularly the cytotoxic T lymphocyte (CTL) response, contributes to both. Recent observations also reveal that antigen-nonspecific inflammatory cells enhance CTL-induced liver pathology and, more surprisingly, that platelets facilitate the intrahepatic accumulation of CTLs, suggesting that the host response to HBV infection is a highly complex but coordinated process. The notion that platelets contribute to liver disease and viral clearance by promoting the recruitment of virus-specific CTLs into the liver is a new concept in viral pathogenesis, which may prove useful to implement treatments of chronic HBV infection in man.
Collapse
Affiliation(s)
- Matteo Iannacone
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
- Immunopathogenesis of Liver Infections Unit, San Raffaele Scientific Institute, Via Olgettina 58, Milan, 20132, Italy
| | - Giovanni Sitia
- Immunopathogenesis of Liver Infections Unit, San Raffaele Scientific Institute, Via Olgettina 58, Milan, 20132, Italy
| | - Zaverio M. Ruggeri
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Luca G. Guidotti
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
- Immunopathogenesis of Liver Infections Unit, San Raffaele Scientific Institute, Via Olgettina 58, Milan, 20132, Italy
- *Correspondence should be addressed to: Luca G. Guidotti, The Scripps Research Institute, Department of Molecular and Experimental Medicine, 10550 North Torrey Pines Road, La Jolla, CA 92037, Tel. (858) 784-2758, FAX (858) 784-2960,
| |
Collapse
|
45
|
Reifenberg K, Hildt E, Lecher B, Wiese E, Nusser P, Ott S, Yamamura KI, Rutter G, Löhler J. IFNgamma expression inhibits LHBs storage disease and ground glass hepatocyte appearance, but exacerbates inflammation and apoptosis in HBV surface protein-accumulating transgenic livers. Liver Int 2006; 26:986-93. [PMID: 16953839 DOI: 10.1111/j.1478-3231.2006.01317.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND/AIMS Interferon gamma (IFNgamma) controls hepatitis B virus replication. As systemic application may cause severe adverse effects, approaches of liver-directed IFNgamma gene therapy may represent an attractive alternative for treatment of chronic viral hepatitis B and thus needs testing in vivo in suitable animal models. METHODS We therefore crossbred Alb-1HBV transgenic mice overexpressing the large HBV surface protein (LHBs) in their livers and developing LHBs storage disease and ground glass hepatocyte appearance with SAP-IFNgamma transgenic animals previously shown to exhibit constitutive hepatic IFNgamma expression, and analyzed the resulting double-transgenic offspring. RESULTS We found that IFNgamma coexpression significantly reduced hepatic LHBs expression and thereby inhibited hepatocellular LHBs storage disease and ground glass hepatocyte appearance. The beneficial antiviral IFNgamma effects as observed in Alb1-HBV SAP-IFNgamma double-transgenic livers were associated with significantly elevated serum ALT concentrations, massive mononuclear cell infiltrates, appearance of Councilman bodies, and increased alpha-PARP (poly(ADP-ribose) polymerase cleavage). CONCLUSIONS Exacerbation of hepatic necroinflammation and increased hepatocellular apoptosis rate in IFNgamma-expressing Alb1-HBV transgenic livers suggest that special precautions be taken for testing approaches of liver-specific IFNgamma expression in patients with chronic hepatitis B.
Collapse
Affiliation(s)
- Kurt Reifenberg
- Central Laboratory Animal Facility, University of Mainz, Mainz, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Dandri M, Volz T, Lutgehetmann M, Petersen J. Modeling infection with hepatitis B viruses in vivo. Future Virol 2006. [DOI: 10.2217/17460794.1.4.461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hepatitis B virus (HBV) is a human-specific liver pathogen whose viral cycle and mechanisms of pathogenesis are not yet fully understood. Along with invaluable infection studies in chimpanzees, avian and mammalian HBV-related viruses continue to offer ample opportunities for studies in their natural hosts. Yet, none of these hosts are commonly used laboratory animals; the lack of reliable in vitro infection systems and convenient animal models has severely hampered progress in HBV research. The need to perform studies in HBV-permissive hepatocytes has led researchers to create new, challenging human–mouse chimera infection models. The types of animal models currently available to perform infection studies with HBV are presented and discussed in this review.
Collapse
Affiliation(s)
- Maura Dandri
- University Hospital Hamburg, Department of Medicine, University of Hamburg, Eppendorf, Martinistr 52, D-20246 Hamburg, Germany
| | - Tassilo Volz
- University Hospital Hamburg, Department of Medicine, University of Hamburg, Eppendorf, Martinistr 52, D-20246 Hamburg, Germany
| | - Marc Lutgehetmann
- University Hospital Hamburg, Department of Medicine, University of Hamburg, Eppendorf, Martinistr 52, D-20246 Hamburg, Germany
| | - Jorg Petersen
- University Hospital Hamburg, Department of Medicine, University of Hamburg, Eppendorf, Martinistr 52, D-20246 Hamburg, Germany
| |
Collapse
|
47
|
Dandri M, Volz TK, Lütgehetmann M, Petersen J. Animal models for the study of HBV replication and its variants. J Clin Virol 2005; 34 Suppl 1:S54-62. [PMID: 16461225 DOI: 10.1016/s1386-6532(05)80011-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Enormous progresses in hepatitis B virus research have been made through the identification of avian and mammalian HBV related viruses, which offer ample opportunities for studies in naturally occurring hosts. However, none of these natural hosts belongs to the commonly used laboratory animals, and the development of various mouse strains carrying HBV transgenes offered unique opportunities to investigate some mechanisms of viral pathogenesis. Furthermore, the need to perform infection studies in a system harbouring HBV-permissive hepatocytes has lately led researchers to create new challenging human mouse chimera models of HBV infection. In this review, we will overview the type of animal models currently available in hepadnavirus research.
Collapse
Affiliation(s)
- M Dandri
- Department of Medicine, University Hospital Eppendorf University of Hamburg, Martinistr 52, D-20246 Hamburg, Germany
| | | | | | | |
Collapse
|
48
|
Affiliation(s)
- Stefan F Wieland
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
49
|
Schildgen O, Fiedler M, Dahmen U, Li J, Lohrengel B, Lu M, Roggendorf M. Fluctuation of the cytokine expression in the liver during the chronic woodchuck hepatitis virus (WHV) infection is not related to viral load. Immunol Lett 2005; 102:31-7. [PMID: 16046239 DOI: 10.1016/j.imlet.2005.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Revised: 06/20/2005] [Accepted: 06/21/2005] [Indexed: 11/28/2022]
Abstract
The woodchuck together with the woodchuck hepatitis virus (WHV) is an excellent model to study the pathogenesis of hepadnaviral infections. Chronic WHV infection causes severe liver disease and hepatocellular carcinoma in woodchucks. The mechanism of viral clearance is not fully understood, interferons seem to play a major role in down-regulating viral replication prior to elimination of infected hepatocytes. We investigated on the pattern of cytokine and T-cell-marker expression in livers of woodchucks chronically infected with WHV. RNase-protection-assay (RPA) was used to determine mRNA of woodchuck specific genes (TNF-alpha, IFN-gamma, IL-15, CD3, CD4, CD8). Serial liver biopsies were performed daily or weekly in eight chronic WHV-carrier woodchucks. Cytokine/T-cell-marker expression differed significantly between the time points up to +/-50% within each woodchuck. The different expression patterns of cytokines or T-cell-markers did not correlate to the (weak) fluctuations in the viremia but may explain the observed fluctuations in the WHV/HBV-load in chronically infected individuals. Furthermore, we observed associations between cytokine and T-cell-marker expression. The marginal fluctuations in viremia during the chronic infection may indicate, that, once the chronic hepadnaviral infection is established, cytokines/interferons expressed endogenously (i.e. not vector-borne or injected) play only a minor role.
Collapse
Affiliation(s)
- O Schildgen
- University Hospital Essen, Institute of Virology, Hufelandstrasse 55, D-45122 Essen, Germany.
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Hepatitis B virus (HBV) is one of the most prevalent viral pathogens of man with around 350 million chronically infected patients. It has been postulated that in persistently infected individuals the HBV-specific immune response is too weak to eliminate HBV from all infected hepatocytes, but sufficiently strong to continuously destroy HBV-infected hepatocytes and to induce chronic inflammatory liver disease. The primary aim in the treatment of chronic hepatitis B is to induce sustained disease remission and prevent serious complications like liver failure and/or hepatocellular carcinoma. The recent emergence of drug-resistant HBV mutants and post-treatment relapse as a consequence of nucleoside analogue monotherapy emphasizes that the principal goal should be to stimulate a successful immune response. In this paper we will focus on the immune response to HBV and we will review reported data on immunotherapeutic strategies like immunomodulatory drugs (cytokines and Thymic derivates) and vaccine therapies using currently available recombinant anti-HBV vaccines, lipopeptide-based T cell vaccine and newly developed genetic vaccines.
Collapse
Affiliation(s)
- D Sprengers
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | | |
Collapse
|