1
|
Wang H, Qi Z, Wang J, He Z, Lu L, Chen Z, Shao Y, Wang G, Wang Z, Tu J, Song X. Rapid and visual detection of transmissible gastroenteritis virus using a CRISPR/Cas12a system combined with loop-mediated isothermal amplification. BMC Vet Res 2025; 21:234. [PMID: 40170086 PMCID: PMC11963519 DOI: 10.1186/s12917-025-04711-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/24/2025] [Indexed: 04/03/2025] Open
Abstract
BACKGROUND Transmissible gastroenteritis (TGE) is a highly contagious intestinal disease caused by transmissible gastroenteritis virus (TGEV). The primary techniques for identifying TGEV involve enzyme-linked immunosorbent assay (ELISA), polymerase chain reaction (PCR), and fluorescent quantitative PCR (qPCR). However, these approaches are complex, demanding specialized tools and significant time. Therefore, a precise, swift, and effective differential diagnosis method is crucial for TGEV prevention. In recent years, clustered regularly interspaced short palindromic repeats (CRISPR) and Cas-associated proteins have become popular for their high specificity, unique cleavage activity, and ease of detection. CRISPR-Cas12a, a novel RNA-guided nucleic acid endonuclease, is emerging as a powerful molecular scissor. RESULTS In this study, we designed three pairs of crRNA targeting the N gene of TGEV. Following the selection of the most appropriate crRNA, we established the loop-mediated isothermal (LAMP) amplification method with a sensitivity of 102 copies/µL. And based on this, we established the CRISPR-Cas12a fluorescence assay with a sensitivity of 100 copies/µL. Furthermore, we established a CRISPR/Cas12a lateral-flow dipstick assay with a sensitivity of 102 copies/µL. Importantly, none of these methods exhibited cross-reactivity with other related viruses, enabling quicker and more straightforward observation of experimental results. CONCLUSIONS We have successfully developed a CRISPR-Cas12a fluorescence assay and a CRISPR/Cas12a lateral-flow dipstick assay for clinical TGEV detection. Overall, we created a portable, quick, and sensitive TGEV assay with strong specificity utilizing the CRISPR-Cas12a system.
Collapse
Affiliation(s)
- Haiyang Wang
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, P.R. China
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, P.R. China
| | - Zhao Qi
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, P.R. China
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, P.R. China
| | - Jiale Wang
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, P.R. China
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, P.R. China
| | - Zhenjie He
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, P.R. China
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, P.R. China
| | - Liting Lu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, P.R. China
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, P.R. China
| | - Zhe Chen
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, P.R. China
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, P.R. China
| | - Ying Shao
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, P.R. China
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, P.R. China
| | - Guijun Wang
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, P.R. China
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, P.R. China
| | - Zhenyu Wang
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, P.R. China
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, P.R. China
| | - Jian Tu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, P.R. China
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, P.R. China
| | - Xiangjun Song
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, P.R. China.
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, P.R. China.
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, China.
| |
Collapse
|
2
|
Girgis S, Xu Z, Oikonomopoulos S, Fedorova AD, Tchesnokov EP, Gordon CJ, Schmeing TM, Götte M, Sonenberg N, Baranov PV, Ragoussis J, Hobman TC, Pelletier J. Evolution of naturally arising SARS-CoV-2 defective interfering particles. Commun Biol 2022; 5:1140. [PMID: 36302891 PMCID: PMC9610340 DOI: 10.1038/s42003-022-04058-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/30/2022] [Indexed: 11/23/2022] Open
Abstract
Defective interfering (DI) particles arise during virus propagation, are conditional on parental virus for replication and packaging, and interfere with viral expansion. There is much interest in developing DIs as anti-viral agents. Here we characterize DI particles that arose following serial passaging of SARS-CoV-2 at high multiplicity of infection. The prominent DIs identified have lost ~84% of the SARS-CoV-2 genome and are capable of attenuating parental viral titers. Synthetic variants of the DI genomes also interfere with infection and can be used as conditional, gene delivery vehicles. In addition, the DI genomes encode an Nsp1-10 fusion protein capable of attenuating viral replication. These results identify naturally selected defective viral genomes that emerged and stably propagated in the presence of parental virus. Genomes from defective interfering (DI) particles following serial passaging of SARS-CoV-2 reveal a fusion protein that attenuates viral replication. Synthetic, recombinant DI genomes are designed to interfere with SARS-CoV-2 replication.
Collapse
Affiliation(s)
- Samer Girgis
- Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Zaikun Xu
- Department of Cell Biology, U Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Spyros Oikonomopoulos
- McGill Genome Centre, Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Alla D Fedorova
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland.,SFI Centre for Research Training in Genomics Data Science, University College Cork, Cork, Ireland
| | - Egor P Tchesnokov
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Calvin J Gordon
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - T Martin Schmeing
- Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Matthias Götte
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6, Canada.,Rosalind and Morris Goodman Cancer Institute, Montreal, QC, H3A 1A3, Canada
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Jiannis Ragoussis
- McGill Genome Centre, Department of Human Genetics, McGill University, Montreal, QC, Canada.,Department of Bioengineering, McGill University, Montreal, QC, Canada
| | - Tom C Hobman
- Department of Cell Biology, U Alberta, Edmonton, AB, T6G 2H7, Canada. .,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, T6G 2E1, Canada. .,Li Ka Shing Institute of Virology, U Alberta, Edmonton, AB, T6G 2E1, Canada. .,Women & Children's Health Research Institute, U Alberta, Edmonton, AB, T6G 1C9, Canada.
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6, Canada. .,Rosalind and Morris Goodman Cancer Institute, Montreal, QC, H3A 1A3, Canada. .,Department of Oncology, McGill University, Montreal, QC, H3A 1G5, Canada.
| |
Collapse
|
3
|
Yao S, Narayanan A, Majowicz SA, Jose J, Archetti M. A synthetic defective interfering SARS-CoV-2. PeerJ 2021; 9:e11686. [PMID: 34249513 PMCID: PMC8255065 DOI: 10.7717/peerj.11686] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/07/2021] [Indexed: 11/20/2022] Open
Abstract
Viruses thrive by exploiting the cells they infect, but in order to replicate and infect other cells they must produce viral proteins. As a result, viruses are also susceptible to exploitation by defective versions of themselves that do not produce such proteins. A defective viral genome with deletions in protein-coding genes could still replicate in cells coinfected with full-length viruses. Such a defective genome could even replicate faster due to its shorter size, interfering with the replication of the virus. We have created a synthetic defective interfering version of SARS-CoV-2, the virus causing the Covid-19 pandemic, assembling parts of the viral genome that do not code for any functional protein but enable the genome to be replicated and packaged. This synthetic defective genome replicates three times faster than SARS-CoV-2 in coinfected cells, and interferes with it, reducing the viral load of infected cells by half in 24 hours. The synthetic genome is transmitted as efficiently as the full-length genome, suggesting the location of the putative packaging signal of SARS-CoV-2. A version of such a synthetic construct could be used as a self-promoting antiviral therapy: by enabling replication of the synthetic genome, the virus would promote its own demise.
Collapse
Affiliation(s)
- Shun Yao
- Department of Biology, Pennsylvania State University, University Park, United States of America
| | - Anoop Narayanan
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, University Park, United States of America
| | - Sydney A Majowicz
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, University Park, United States of America
| | - Joyce Jose
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, University Park, United States of America.,The Huck Institutes for the Life Sciences, Pennsylvania State University, University Park, United States of America
| | - Marco Archetti
- Department of Biology, Pennsylvania State University, University Park, United States of America.,The Huck Institutes for the Life Sciences, Pennsylvania State University, University Park, United States of America
| |
Collapse
|
4
|
Gan Y, Tan F, Yi R, Zhou X, Li C, Zhao X. Research Progress on Coronavirus Prevention and Control in Animal-Source Foods. J Multidiscip Healthc 2020; 13:743-751. [PMID: 32801737 PMCID: PMC7414935 DOI: 10.2147/jmdh.s265059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/21/2020] [Indexed: 11/23/2022] Open
Abstract
Coronaviruses (CoVs) are common pathogens that can infect both animals and humans, thereby posing a threat to global public health. CoV infection mostly occurs during winter and spring in temperate countries; the virus has high transmission efficiency and may have severe infection outcomes. The recent SARS-CoV-2 outbreak exhibited transboundary transmission due to international transportation, trade, and economic exchange. Animal hosts provide a persistent source for CoVs and their recombination. Domestic camels have been shown to be one of the hosts of CoVs, while livestock, poultry and other warm-blooded animals may act as intermediate hosts for CoVs. This paper outlines the biological and epidemiological characteristics and diagnosis of CoVs and describes the origin, transmission route, animal-source food risk, and control measures for CoVs. Such knowledge can be used to prevent CoVs from harming consumers through animal-sourced foods and can help to prevent new zoonoses from occurring. This work will provide a reference for strengthening the controls on the production process in meat production companies, thereby improving food safety.
Collapse
Affiliation(s)
- Yi Gan
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, People’s Republic of China
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, People’s Republic of China
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, People’s Republic of China
| | - Fang Tan
- Department of Public Health, Our Lady of Fatima University, Valenzuela, Philippines
| | - Ruokun Yi
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, People’s Republic of China
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, People’s Republic of China
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, People’s Republic of China
| | - Xianrong Zhou
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, People’s Republic of China
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, People’s Republic of China
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, People’s Republic of China
| | - Chong Li
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, People’s Republic of China
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, People’s Republic of China
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, People’s Republic of China
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, People’s Republic of China
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, People’s Republic of China
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, People’s Republic of China
| |
Collapse
|
5
|
Viehweger A, Krautwurst S, Lamkiewicz K, Madhugiri R, Ziebuhr J, Hölzer M, Marz M. Direct RNA nanopore sequencing of full-length coronavirus genomes provides novel insights into structural variants and enables modification analysis. Genome Res 2019; 29:1545-1554. [PMID: 31439691 DOI: 10.1101/483693] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 08/05/2019] [Indexed: 05/24/2023]
Abstract
Sequence analyses of RNA virus genomes remain challenging owing to the exceptional genetic plasticity of these viruses. Because of high mutation and recombination rates, genome replication by viral RNA-dependent RNA polymerases leads to populations of closely related viruses, so-called "quasispecies." Standard (short-read) sequencing technologies are ill-suited to reconstruct large numbers of full-length haplotypes of (1) RNA virus genomes and (2) subgenome-length (sg) RNAs composed of noncontiguous genome regions. Here, we used a full-length, direct RNA sequencing (DRS) approach based on nanopores to characterize viral RNAs produced in cells infected with a human coronavirus. By using DRS, we were able to map the longest (∼26-kb) contiguous read to the viral reference genome. By combining Illumina and Oxford Nanopore sequencing, we reconstructed a highly accurate consensus sequence of the human coronavirus (HCoV)-229E genome (27.3 kb). Furthermore, by using long reads that did not require an assembly step, we were able to identify, in infected cells, diverse and novel HCoV-229E sg RNAs that remain to be characterized. Also, the DRS approach, which circumvents reverse transcription and amplification of RNA, allowed us to detect methylation sites in viral RNAs. Our work paves the way for haplotype-based analyses of viral quasispecies by showing the feasibility of intra-sample haplotype separation. Even though several technical challenges remain to be addressed to exploit the potential of the nanopore technology fully, our work illustrates that DRS may significantly advance genomic studies of complex virus populations, including predictions on long-range interactions in individual full-length viral RNA haplotypes.
Collapse
Affiliation(s)
- Adrian Viehweger
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany
- European Virus Bioinformatics Center, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Sebastian Krautwurst
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany
- European Virus Bioinformatics Center, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Kevin Lamkiewicz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany
- European Virus Bioinformatics Center, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Ramakanth Madhugiri
- Institute of Medical Virology, Justus Liebig University Gießen, 35390 Gießen, Germany
| | - John Ziebuhr
- European Virus Bioinformatics Center, Friedrich Schiller University Jena, 07743 Jena, Germany
- Institute of Medical Virology, Justus Liebig University Gießen, 35390 Gießen, Germany
| | - Martin Hölzer
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany
- European Virus Bioinformatics Center, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Manja Marz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany
- European Virus Bioinformatics Center, Friedrich Schiller University Jena, 07743 Jena, Germany
- Leibniz Institute on Aging-Fritz Lipmann Institute, 07743 Jena, Germany
| |
Collapse
|
6
|
Viehweger A, Krautwurst S, Lamkiewicz K, Madhugiri R, Ziebuhr J, Hölzer M, Marz M. Direct RNA nanopore sequencing of full-length coronavirus genomes provides novel insights into structural variants and enables modification analysis. Genome Res 2019; 29:1545-1554. [PMID: 31439691 PMCID: PMC6724671 DOI: 10.1101/gr.247064.118] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 08/05/2019] [Indexed: 01/09/2023]
Abstract
Sequence analyses of RNA virus genomes remain challenging owing to the exceptional genetic plasticity of these viruses. Because of high mutation and recombination rates, genome replication by viral RNA-dependent RNA polymerases leads to populations of closely related viruses, so-called “quasispecies.” Standard (short-read) sequencing technologies are ill-suited to reconstruct large numbers of full-length haplotypes of (1) RNA virus genomes and (2) subgenome-length (sg) RNAs composed of noncontiguous genome regions. Here, we used a full-length, direct RNA sequencing (DRS) approach based on nanopores to characterize viral RNAs produced in cells infected with a human coronavirus. By using DRS, we were able to map the longest (∼26-kb) contiguous read to the viral reference genome. By combining Illumina and Oxford Nanopore sequencing, we reconstructed a highly accurate consensus sequence of the human coronavirus (HCoV)-229E genome (27.3 kb). Furthermore, by using long reads that did not require an assembly step, we were able to identify, in infected cells, diverse and novel HCoV-229E sg RNAs that remain to be characterized. Also, the DRS approach, which circumvents reverse transcription and amplification of RNA, allowed us to detect methylation sites in viral RNAs. Our work paves the way for haplotype-based analyses of viral quasispecies by showing the feasibility of intra-sample haplotype separation. Even though several technical challenges remain to be addressed to exploit the potential of the nanopore technology fully, our work illustrates that DRS may significantly advance genomic studies of complex virus populations, including predictions on long-range interactions in individual full-length viral RNA haplotypes.
Collapse
Affiliation(s)
- Adrian Viehweger
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany.,European Virus Bioinformatics Center, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Sebastian Krautwurst
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany.,European Virus Bioinformatics Center, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Kevin Lamkiewicz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany.,European Virus Bioinformatics Center, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Ramakanth Madhugiri
- Institute of Medical Virology, Justus Liebig University Gießen, 35390 Gießen, Germany
| | - John Ziebuhr
- European Virus Bioinformatics Center, Friedrich Schiller University Jena, 07743 Jena, Germany.,Institute of Medical Virology, Justus Liebig University Gießen, 35390 Gießen, Germany
| | - Martin Hölzer
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany.,European Virus Bioinformatics Center, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Manja Marz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany.,European Virus Bioinformatics Center, Friedrich Schiller University Jena, 07743 Jena, Germany.,Leibniz Institute on Aging-Fritz Lipmann Institute, 07743 Jena, Germany
| |
Collapse
|
7
|
Abstract
Coronaviruses have exceptionally large RNA genomes of approximately 30 kilobases. Genome replication and transcription is mediated by a multisubunit protein complex comprised of more than a dozen virus-encoded proteins. The protein complex is thought to bind specific cis-acting RNA elements primarily located in the 5'- and 3'-terminal genome regions and upstream of the open reading frames located in the 3'-proximal one-third of the genome. Here, we review our current understanding of coronavirus cis-acting RNA elements, focusing on elements required for genome replication and packaging. Recent bioinformatic, biochemical, and genetic studies suggest a previously unknown level of conservation of cis-acting RNA structures among different coronavirus genera and, in some cases, even beyond genus boundaries. Also, there is increasing evidence to suggest that individual cis-acting elements may be part of higher-order RNA structures involving long-range and dynamic RNA-RNA interactions between RNA structural elements separated by thousands of nucleotides in the viral genome. We discuss the structural and functional features of these cis-acting RNA elements and their specific functions in coronavirus RNA synthesis.
Collapse
Affiliation(s)
- R Madhugiri
- Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany
| | - M Fricke
- Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Jena, Germany
| | - M Marz
- Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Jena, Germany; FLI Leibniz Institute for Age Research, Jena, Germany
| | - J Ziebuhr
- Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
8
|
Almazán F, Sola I, Zuñiga S, Marquez-Jurado S, Morales L, Becares M, Enjuanes L. Reprint of: Coronavirus reverse genetic systems: infectious clones and replicons. Virus Res 2014; 194:67-75. [PMID: 25261606 PMCID: PMC7114485 DOI: 10.1016/j.virusres.2014.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Coronaviruses (CoVs) infect humans and many animal species, and are associated with respiratory, enteric, hepatic, and central nervous system diseases. The large size of the CoV genome and the instability of some CoV replicase gene sequences during its propagation in bacteria, represent serious obstacles for the development of reverse genetic systems similar to those used for smaller positive sense RNA viruses. To overcome these limitations, several alternatives to more conventional plasmid-based approaches have been established in the last 13 years. In this report, we briefly review and discuss the different reverse genetic systems developed for CoVs, paying special attention to the severe acute respiratory syndrome CoV (SARS-CoV).
Collapse
Affiliation(s)
- Fernando Almazán
- Department of Molecular and Cell Biology. Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, C/ Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Isabel Sola
- Department of Molecular and Cell Biology. Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, C/ Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Sonia Zuñiga
- Department of Molecular and Cell Biology. Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, C/ Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Silvia Marquez-Jurado
- Department of Molecular and Cell Biology. Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, C/ Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Lucia Morales
- Department of Molecular and Cell Biology. Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, C/ Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Martina Becares
- Department of Molecular and Cell Biology. Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, C/ Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Luis Enjuanes
- Department of Molecular and Cell Biology. Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, C/ Darwin 3, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
9
|
Madhugiri R, Fricke M, Marz M, Ziebuhr J. RNA structure analysis of alphacoronavirus terminal genome regions. Virus Res 2014; 194:76-89. [PMID: 25307890 PMCID: PMC7114417 DOI: 10.1016/j.virusres.2014.10.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 09/30/2014] [Accepted: 10/01/2014] [Indexed: 02/07/2023]
Abstract
Review of current knowledge of cis-acting RNA elements essential to coronavirus replication. Identification of RNA structural elements in alphacoronavirus terminal genome regions. Discussion of intra- and intergeneric conservation of genomic cis-acting RNA elements in alpha- and betacoronaviruses.
Coronavirus genome replication is mediated by a multi-subunit protein complex that is comprised of more than a dozen virally encoded and several cellular proteins. Interactions of the viral replicase complex with cis-acting RNA elements located in the 5′ and 3′-terminal genome regions ensure the specific replication of viral RNA. Over the past years, boundaries and structures of cis-acting RNA elements required for coronavirus genome replication have been extensively characterized in betacoronaviruses and, to a lesser extent, other coronavirus genera. Here, we review our current understanding of coronavirus cis-acting elements located in the terminal genome regions and use a combination of bioinformatic and RNA structure probing studies to identify and characterize putative cis-acting RNA elements in alphacoronaviruses. The study suggests significant RNA structure conservation among members of the genus Alphacoronavirus but also across genus boundaries. Overall, the conservation pattern identified for 5′ and 3′-terminal RNA structural elements in the genomes of alpha- and betacoronaviruses is in agreement with the widely used replicase polyprotein-based classification of the Coronavirinae, suggesting co-evolution of the coronavirus replication machinery with cognate cis-acting RNA elements.
Collapse
Affiliation(s)
- Ramakanth Madhugiri
- Institute of Medical Virology, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany
| | - Markus Fricke
- Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany
| | - Manja Marz
- Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany
| | - John Ziebuhr
- Institute of Medical Virology, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany.
| |
Collapse
|
10
|
Almazán F, Sola I, Zuñiga S, Marquez-Jurado S, Morales L, Becares M, Enjuanes L. Coronavirus reverse genetic systems: infectious clones and replicons. Virus Res 2014; 189:262-70. [PMID: 24930446 PMCID: PMC4727449 DOI: 10.1016/j.virusres.2014.05.026] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 05/27/2014] [Accepted: 05/28/2014] [Indexed: 01/09/2023]
Abstract
Coronaviruses (CoVs) infect humans and many animal species, and are associated with respiratory, enteric, hepatic, and central nervous system diseases. The large size of the CoV genome and the instability of some CoV replicase gene sequences during its propagation in bacteria, represent serious obstacles for the development of reverse genetic systems similar to those used for smaller positive sense RNA viruses. To overcome these limitations, several alternatives to more conventional plasmid-based approaches have been established in the last 13 years. In this report, we briefly review and discuss the different reverse genetic systems developed for CoVs, paying special attention to the severe acute respiratory syndrome CoV (SARS-CoV).
Collapse
Affiliation(s)
- Fernando Almazán
- Department of Molecular and Cell Biology. Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, C/ Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Isabel Sola
- Department of Molecular and Cell Biology. Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, C/ Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Sonia Zuñiga
- Department of Molecular and Cell Biology. Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, C/ Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Silvia Marquez-Jurado
- Department of Molecular and Cell Biology. Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, C/ Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Lucia Morales
- Department of Molecular and Cell Biology. Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, C/ Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Martina Becares
- Department of Molecular and Cell Biology. Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, C/ Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Luis Enjuanes
- Department of Molecular and Cell Biology. Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, C/ Darwin 3, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
11
|
Transmissible gastroenteritis coronavirus genome packaging signal is located at the 5' end of the genome and promotes viral RNA incorporation into virions in a replication-independent process. J Virol 2013; 87:11579-90. [PMID: 23966403 DOI: 10.1128/jvi.01836-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Preferential RNA packaging in coronaviruses involves the recognition of viral genomic RNA, a crucial process for viral particle morphogenesis mediated by RNA-specific sequences, known as packaging signals. An essential packaging signal component of transmissible gastroenteritis coronavirus (TGEV) has been further delimited to the first 598 nucleotides (nt) from the 5' end of its RNA genome, by using recombinant viruses transcribing subgenomic mRNA that included potential packaging signals. The integrity of the entire sequence domain was necessary because deletion of any of the five structural motifs defined within this region abrogated specific packaging of this viral RNA. One of these RNA motifs was the stem-loop SL5, a highly conserved motif in coronaviruses located at nucleotide positions 106 to 136. Partial deletion or point mutations within this motif also abrogated packaging. Using TGEV-derived defective minigenomes replicated in trans by a helper virus, we have shown that TGEV RNA packaging is a replication-independent process. Furthermore, the last 494 nt of the genomic 3' end were not essential for packaging, although this region increased packaging efficiency. TGEV RNA sequences identified as necessary for viral genome packaging were not sufficient to direct packaging of a heterologous sequence derived from the green fluorescent protein gene. These results indicated that TGEV genome packaging is a complex process involving many factors in addition to the identified RNA packaging signal. The identification of well-defined RNA motifs within the TGEV RNA genome that are essential for packaging will be useful for designing packaging-deficient biosafe coronavirus-derived vectors and providing new targets for antiviral therapies.
Collapse
|
12
|
Bentley K, Armesto M, Britton P. Infectious Bronchitis Virus as a Vector for the Expression of Heterologous Genes. PLoS One 2013; 8:e67875. [PMID: 23840781 PMCID: PMC3694013 DOI: 10.1371/journal.pone.0067875] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 05/23/2013] [Indexed: 01/31/2023] Open
Abstract
The avian coronavirus infectious bronchitis virus (IBV) is the causative agent of the respiratory disease infectious bronchitis of domestic fowl, and is controlled by routine vaccination. To explore the potential use of IBV as a vaccine vector a reverse genetics system was utilised to generate infectious recombinant IBVs (rIBVs) expressing the reporter genes enhanced green fluorescent protein (eGFP) or humanised Renilla luciferase (hRluc). Infectious rIBVs were obtained following the replacement of Gene 5 or the intergenic region (IR) with eGFP or hRluc, or the replacement of ORFs 3a and 3b with hRluc. The replacement of Gene 5 with an IBV codon-optimised version of the hRluc gene also resulted in successful rescue of infectious rIBV. Reporter gene expression was confirmed by fluorescence microscopy, or luciferase activity assays, for all successfully rescued rIBVs following infection of primary chick kidney (CK) cells. The genetic stability of rIBVs was analysed by serial passage on CK cells. Recombinant IBV stability varied depending on the genome region being replaced, with the reporter genes maintained up to at least passage 8 (P8) following replacement of Gene 5, P7 for replacement of the IR and P5 for replacement of ORFs 3a and 3b. Codon-optimisation of the hRluc gene, when replacing Gene 5, resulted in an increase in genome stability, with hRluc expression stable up to P10 compared to P8 for standard hRluc. Repeated passaging of rIBVs expressing hRluc at an MOI of 0.01 demonstrated an increase in stability, with hRluc expression stable up to at least P12 following the replacement of Gene 5. This study has demonstrated that heterologous genes can be incorporated into, and expressed from a range of IBV genome locations and that replacement of accessory Gene 5 offers a promising target for realising the potential of IBV as a vaccine vector for other avian pathogens.
Collapse
Affiliation(s)
- Kirsten Bentley
- Compton Laboratory, Avian Viral Diseases, The Pirbright Institute, Compton, Newbury, Berkshire, United Kingdom
| | - Maria Armesto
- Compton Laboratory, Avian Viral Diseases, The Pirbright Institute, Compton, Newbury, Berkshire, United Kingdom
| | - Paul Britton
- Compton Laboratory, Avian Viral Diseases, The Pirbright Institute, Compton, Newbury, Berkshire, United Kingdom
- * E-mail:
| |
Collapse
|
13
|
Cruz JLG, Sola I, Becares M, Alberca B, Plana J, Enjuanes L, Zuñiga S. Coronavirus gene 7 counteracts host defenses and modulates virus virulence. PLoS Pathog 2011; 7:e1002090. [PMID: 21695242 PMCID: PMC3111541 DOI: 10.1371/journal.ppat.1002090] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 04/12/2011] [Indexed: 12/14/2022] Open
Abstract
Transmissible gastroenteritis virus (TGEV) genome contains three accessory genes: 3a, 3b and 7. Gene 7 is only present in members of coronavirus genus a1, and encodes a hydrophobic protein of 78 aa. To study gene 7 function, a recombinant TGEV virus lacking gene 7 was engineered (rTGEV-Δ7). Both the mutant and the parental (rTGEV-wt) viruses showed the same growth and viral RNA accumulation kinetics in tissue cultures. Nevertheless, cells infected with rTGEV-Δ7 virus showed an increased cytopathic effect caused by an enhanced apoptosis mediated by caspase activation. Macromolecular synthesis analysis showed that rTGEV-Δ7 virus infection led to host translational shut-off and increased cellular RNA degradation compared with rTGEV-wt infection. An increase of eukaryotic translation initiation factor 2 (eIF2α) phosphorylation and an enhanced nuclease, most likely RNase L, activity were observed in rTGEV-Δ7 virus infected cells. These results suggested that the removal of gene 7 promoted an intensified dsRNA-activated host antiviral response. In protein 7 a conserved sequence motif that potentially mediates binding to protein phosphatase 1 catalytic subunit (PP1c), a key regulator of the cell antiviral defenses, was identified. We postulated that TGEV protein 7 may counteract host antiviral response by its association with PP1c. In fact, pull-down assays demonstrated the interaction between TGEV protein 7, but not a protein 7 mutant lacking PP1c binding motif, with PP1. Moreover, the interaction between protein 7 and PP1 was required, during the infection, for eIF2α dephosphorylation and inhibition of cell RNA degradation. Inoculation of newborn piglets with rTGEV-Δ7 and rTGEV-wt viruses showed that rTGEV-Δ7 virus presented accelerated growth kinetics and pathology compared with the parental virus. Overall, the results indicated that gene 7 counteracted host cell defenses, and modified TGEV persistence increasing TGEV survival. Therefore, the acquisition of gene 7 by the TGEV genome most likely has provided a selective advantage to the virus.
Collapse
Affiliation(s)
- Jazmina L. G. Cruz
- Centro Nacional de Biotecnología, CNB, CSIC, Department of Molecular and Cell Biology, Darwin 3, Campus Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Isabel Sola
- Centro Nacional de Biotecnología, CNB, CSIC, Department of Molecular and Cell Biology, Darwin 3, Campus Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Martina Becares
- Centro Nacional de Biotecnología, CNB, CSIC, Department of Molecular and Cell Biology, Darwin 3, Campus Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | | | | | - Luis Enjuanes
- Centro Nacional de Biotecnología, CNB, CSIC, Department of Molecular and Cell Biology, Darwin 3, Campus Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
- * E-mail:
| | - Sonia Zuñiga
- Centro Nacional de Biotecnología, CNB, CSIC, Department of Molecular and Cell Biology, Darwin 3, Campus Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| |
Collapse
|
14
|
Abstract
Transmissible gastroenteritis virus (TGEV) genome contains three accessory genes: 3a, 3b and 7. Gene 7 is only present in members of coronavirus genus a1, and encodes a hydrophobic protein of 78 aa. To study gene 7 function, a recombinant TGEV virus lacking gene 7 was engineered (rTGEV-Δ7). Both the mutant and the parental (rTGEV-wt) viruses showed the same growth and viral RNA accumulation kinetics in tissue cultures. Nevertheless, cells infected with rTGEV-Δ7 virus showed an increased cytopathic effect caused by an enhanced apoptosis mediated by caspase activation. Macromolecular synthesis analysis showed that rTGEV-Δ7 virus infection led to host translational shut-off and increased cellular RNA degradation compared with rTGEV-wt infection. An increase of eukaryotic translation initiation factor 2 (eIF2α) phosphorylation and an enhanced nuclease, most likely RNase L, activity were observed in rTGEV-Δ7 virus infected cells. These results suggested that the removal of gene 7 promoted an intensified dsRNA-activated host antiviral response. In protein 7 a conserved sequence motif that potentially mediates binding to protein phosphatase 1 catalytic subunit (PP1c), a key regulator of the cell antiviral defenses, was identified. We postulated that TGEV protein 7 may counteract host antiviral response by its association with PP1c. In fact, pull-down assays demonstrated the interaction between TGEV protein 7, but not a protein 7 mutant lacking PP1c binding motif, with PP1. Moreover, the interaction between protein 7 and PP1 was required, during the infection, for eIF2α dephosphorylation and inhibition of cell RNA degradation. Inoculation of newborn piglets with rTGEV-Δ7 and rTGEV-wt viruses showed that rTGEV-Δ7 virus presented accelerated growth kinetics and pathology compared with the parental virus. Overall, the results indicated that gene 7 counteracted host cell defenses, and modified TGEV persistence increasing TGEV survival. Therefore, the acquisition of gene 7 by the TGEV genome most likely has provided a selective advantage to the virus.
Collapse
|
15
|
Vlasova AN, Halpin R, Wang S, Ghedin E, Spiro DJ, Saif LJ. Molecular characterization of a new species in the genus Alphacoronavirus associated with mink epizootic catarrhal gastroenteritis. J Gen Virol 2011; 92:1369-1379. [PMID: 21346029 PMCID: PMC3168282 DOI: 10.1099/vir.0.025353-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 02/17/2011] [Indexed: 01/19/2023] Open
Abstract
A coronavirus (CoV) previously shown to be associated with catarrhal gastroenteritis in mink (Mustela vison) was identified by electron microscopy in mink faeces from two fur farms in Wisconsin and Minnesota in 1998. A pan-coronavirus and a genus-specific RT-PCR assay were used initially to demonstrate that the newly discovered mink CoVs (MCoVs) were members of the genus Alphacoronavirus. Subsequently, using a random RT-PCR approach, full-genomic sequences were generated that further confirmed that, phylogenetically, the MCoVs belonged to the genus Alphacoronavirus, with closest relatedness to the recently identified but only partially sequenced (fragments of the polymerase, and full-length spike, 3c, envelope, nucleoprotein, membrane, 3x and 7b genes) ferret enteric coronavirus (FRECV) and ferret systemic coronavirus (FRSCV). The molecular data presented in this study provide the first genetic evidence for a new coronavirus associated with epizootic catarrhal gastroenteritis outbreaks in mink and demonstrate that MCoVs possess high genomic variability and relatively low overall nucleotide sequence identities (91.7 %) between contemporary strains. Additionally, the new MCoVs appeared to be phylogenetically distant from human (229E and NL63) and other alphacoronaviruses and did not belong to the species Alphacoronavirus 1. It is proposed that, together with the partially sequenced FRECV and FRSCV, they comprise a new species within the genus Alphacoronavirus.
Collapse
Affiliation(s)
- Anastasia N. Vlasova
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA
| | - Rebecca Halpin
- Viral Genomics Group, The J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD 20850, USA
| | - Shiliang Wang
- Viral Genomics Group, The J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD 20850, USA
| | - Elodie Ghedin
- Viral Genomics Group, The J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD 20850, USA
- Department of Computational and Systems Biology, Center for Vaccine Research, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, Pittsburgh, PA 15261, USA
| | - David J. Spiro
- Viral Genomics Group, The J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD 20850, USA
| | - Linda J. Saif
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA
| |
Collapse
|
16
|
Dufour D, Mateos-Gomez PA, Enjuanes L, Gallego J, Sola I. Structure and functional relevance of a transcription-regulating sequence involved in coronavirus discontinuous RNA synthesis. J Virol 2011; 85:4963-73. [PMID: 21389138 PMCID: PMC3126183 DOI: 10.1128/jvi.02317-10] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 02/26/2011] [Indexed: 11/20/2022] Open
Abstract
Transmissible gastroenteritis coronavirus (TGEV) genomic RNA transcription generates 5'- and 3'-coterminal subgenomic mRNAs. This process involves a discontinuous step during the synthesis of minus-sense RNA that is modulated by transcription-regulating sequences located at the 3' end of the leader (TRS-L) and also preceding each viral gene (TRS-Bs). TRSs include a highly conserved core sequence (CS) (5'-CUAAAC-3') and variable flanking sequences. It has been previously proposed that TRS-Bs act as attenuation or stop signals during the synthesis of minus-sense RNAs. The nascent minus-stranded RNA would then be transferred by a template switch process to the TRS-L, which acts as the acceptor RNA. To study whether the TRS-L is structured and to determine whether this structure has a functional impact on genomic and subgenomic viral RNA synthesis, we have used a combination of nuclear magnetic resonance (NMR) spectroscopy and UV thermal denaturation approaches together with site-directed mutagenesis and in vivo transcriptional analyses. The results indicated that a 36-nucleotide oligomer encompassing the wild-type TRS-L forms a structured hairpin closed by an apical AACUAAA heptaloop. This loop contains most of the CS and is isolated from a nearby internal loop by a short Watson-Crick base-paired stem. TRS-L mutations altering the structure and the stability of the TRS-L hairpin affected replication and transcription, indicating the requirement of a functional RNA hairpin structure in these processes.
Collapse
Affiliation(s)
- David Dufour
- Centro de Investigación Príncipe Felipe, Avda. Autopista del Saler 16, 46012 Valencia, Spain
- Instituto de Investigación Viña Giner, Universidad Católica de Valencia, Quevedo 2, 46001 Valencia, Spain
| | - Pedro A. Mateos-Gomez
- Centro Nacional de Biotecnología, CSIC, Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Luis Enjuanes
- Centro Nacional de Biotecnología, CSIC, Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain
| | - José Gallego
- Centro de Investigación Príncipe Felipe, Avda. Autopista del Saler 16, 46012 Valencia, Spain
- Instituto de Investigación Viña Giner, Universidad Católica de Valencia, Quevedo 2, 46001 Valencia, Spain
| | - Isabel Sola
- Centro Nacional de Biotecnología, CSIC, Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
17
|
Assembly of alphavirus replication complexes from RNA and protein components in a novel trans-replication system in mammalian cells. J Virol 2011; 85:4739-51. [PMID: 21389137 DOI: 10.1128/jvi.00085-11] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
For positive-strand RNA viruses, the viral genomic RNA also acts as an mRNA directing the translation of the replicase proteins of the virus. Replication takes place in association with cytoplasmic membranes, which are heavily modified to create specific replication compartments. Here we have expressed by plasmid DNA transfection the large replicase polyprotein of Semliki Forest virus (SFV) in mammalian cells from a nonreplicating mRNA and provided a separate RNA containing the replication signals. The replicase proteins were able to efficiently and specifically replicate the template in trans, leading to accumulation of RNA and marker gene products expressed from the template RNA. The replicase proteins and double-stranded RNA replication intermediates localized to structures similar to those seen in SFV-infected cells. Using correlative light electron microscopy (CLEM) with fluorescent marker proteins to relocate those transfected cells, in which active replication was ongoing, abundant membrane modifications, representing the replication complex spherules, were observed both at the plasma membrane and in intracellular endolysosomes. Thus, replication complexes are faithfully assembled and localized in the trans-replication system. We demonstrated, using CLEM, that the replication proteins alone or a polymerase-negative polyprotein mutant together with the template did not give rise to spherule formation. Thus, the trans-replication system is suitable for cell biological dissection and examination in a mammalian cell environment, and similar systems may be possible for other positive-strand RNA viruses.
Collapse
|
18
|
Sola I, Mateos-Gomez PA, Almazan F, Zuñiga S, Enjuanes L. RNA-RNA and RNA-protein interactions in coronavirus replication and transcription. RNA Biol 2011; 8:237-48. [PMID: 21378501 PMCID: PMC3230552 DOI: 10.4161/rna.8.2.14991] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 01/17/2011] [Accepted: 01/19/2011] [Indexed: 02/07/2023] Open
Abstract
Coronavirus (CoV) RNA synthesis includes the replication of the viral genome, and the transcription of sgRNAs by a discontinuous mechanism. Both processes are regulated by RNA sequences such as the 5' and 3' untranslated regions (UTRs), and the transcription regulating sequences (TRSs) of the leader (TRS-L) and those preceding each gene (TRS-Bs). These distant RNA regulatory sequences interact with each other directly and probably through protein-RNA and protein-protein interactions involving viral and cellular proteins. By analogy to other plus-stranded RNA viruses, such as polioviruses, in which translation and replication switch involves a cellular factor (PCBP) and a viral protein (3CD) it is conceivable that in CoVs the switch between replication and transcription is also associated with the binding of proteins that are specifically recruited by the replication or transcription complexes. Complexes between RNA motifs such as TRS-L and the TRS-Bs located along the CoV genome are probably formed previously to the transcription start, and most likely promote template-switch of the nascent minus RNA to the TRS-L region. Many cellular proteins interacting with regulatory CoV RNA sequences are members of the heterogeneous nuclear ribonucleoprotein (hnRNP) family of RNA-binding proteins, involved in mRNA processing and transport, which shuttle between the nucleus and the cytoplasm. In the context of CoV RNA synthesis, these cellular ribonucleoproteins might also participate in RNA-protein complexes to bring into physical proximity TRS-L and distant TRS-B, as proposed for CoV discontinuous transcription. In this review, we summarize RNA-RNA and RNA-protein interactions that represent modest examples of complex quaternary RNA-protein structures required for the fine-tuning of virus replication. Design of chemically defined replication and transcription systems will help to clarify the nature and activity of these structures.
Collapse
Affiliation(s)
- Isabel Sola
- Department of Molecular and Cell Biology, CNB, CSIC, Cantoblanco, Madrid, Spain
| | | | | | | | | |
Collapse
|
19
|
Li JQ, Cheng J, Lan X, Li XR, Li W, Yin XP, Li BY, Yang B, Li ZY, Zhang Y, Liu JX. Complete genomic sequence of transmissible gastroenteritis virus TS and 3' end sequence characterization following cell culture. Virol Sin 2010; 25:213-24. [PMID: 20960296 PMCID: PMC7090398 DOI: 10.1007/s12250-010-3108-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 04/14/2010] [Indexed: 11/29/2022] Open
Abstract
The complete genome sequence of transmissible Gastroenteritis virus (TGEV) strain TS, previously isolated from Gansu province, was cloned and compared with published sequence data from other TGEV strains. Phylogenetic tree analysis based on the amino acid and nucleotide sequences of the S gene showed that the TGEV strains were divided into 3 clusters. TGEV TS showed a close evolutionary relationship to the American Miller cluster but had a 5′ non-translated region (NTR) sequence closely related to the American Purdue cluster. Continued culture in different cell types indicated that TGEV TS virulence could be attenuated after fifty passages in Porcine kidney (PK-15) cells, and that the Porcine kidney cell line IB-RS-2 (IBRS) was not suitable for culture of the TGEV strain TS.
Collapse
Affiliation(s)
- Jian-qiang Li
- Key laboratory of Animal Virology of Ministry of Agriculture, State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 China
- Lanzou Institute of Biological Products, Lanzhou, 730070 China
| | - Jie Cheng
- Key laboratory of Animal Virology of Ministry of Agriculture, State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 China
| | - Xi Lan
- Key laboratory of Animal Virology of Ministry of Agriculture, State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 China
| | - Xue-rui Li
- Key laboratory of Animal Virology of Ministry of Agriculture, State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 China
| | - Wei Li
- Lanzou Institute of Biological Products, Lanzhou, 730070 China
| | - Xiang-ping Yin
- Key laboratory of Animal Virology of Ministry of Agriculture, State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 China
| | - Bao-yu Li
- Key laboratory of Animal Virology of Ministry of Agriculture, State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 China
| | - Bin Yang
- Key laboratory of Animal Virology of Ministry of Agriculture, State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 China
| | - Zhi-yong Li
- Key laboratory of Animal Virology of Ministry of Agriculture, State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 China
| | - Yun Zhang
- Key laboratory of Animal Virology of Ministry of Agriculture, State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 China
| | - Ji-xing Liu
- Key laboratory of Animal Virology of Ministry of Agriculture, State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 China
| |
Collapse
|
20
|
RNA Higher-Order Structures Within the Coronavirus 5′ and 3′ Untranslated Regions and Their Roles in Viral Replication. MOLECULAR BIOLOGY OF THE SARS-CORONAVIRUS 2010. [PMCID: PMC7176159 DOI: 10.1007/978-3-642-03683-5_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The 5′ and 3′ untranslated regions (UTRs) of all coronaviruses contain RNA higher-order structures which play essential roles in viral transcription and replication. In this chapter we present our current knowledge of how those cis-acting elements were defined and their functional roles in viral transcription and replication. Cellular proteins which have been shown binding to those cis-acting elements and potentially support the RNA discontinuous synthesis model are also discussed. A conserved RNA structure model for the 5′ and 3′ UTRs of group 2 coronaviruses is presented with the known cellular protein binding sites.
Collapse
|
21
|
Shen H, Fang SG, Chen B, Chen G, Tay FPL, Liu DX. Towards construction of viral vectors based on avian coronavirus infectious bronchitis virus for gene delivery and vaccine development. J Virol Methods 2009; 160:48-56. [PMID: 19409420 PMCID: PMC7112882 DOI: 10.1016/j.jviromet.2009.04.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Revised: 04/14/2009] [Accepted: 04/20/2009] [Indexed: 01/17/2023]
Abstract
Manipulation of the coronavirus genome to accommodate and express foreign genes is an attractive approach for gene delivery and vaccine development. By using an infectious cloning system developed recently for the avian coronavirus infectious bronchitis virus (IBV), the enhanced green fluorescent protein (EGFP) gene, the firefly luciferase gene and several host and viral genes (eIF3f, SARS ORF6, Dengue virus 1 core protein gene) were inserted into various positions of the IBV genome, and the effects on gene expression, virus recovery, and stability in cell culture were studied. Selected viruses were also inoculated into chicken embryos for studies of foreign gene expression at different tissue level. The results demonstrated the stability of recombinant viruses depends on the intrinsic properties of the foreign gene itself as well as the position at which the foreign genes were inserted. For unstable viruses, the loss of expression of the inserted genes was found to result from a large deletion of the inserted gene and even IBV backbone sequences. This represents a promising system for development of coronavirus-based gene delivery vectors and vaccines against coronavirus and other viral infections in chicken.
Collapse
Affiliation(s)
- Hongyuan Shen
- Institute of Molecular and Cell Biology, Proteos, Singapore, Singapore
| | | | | | | | | | | |
Collapse
|
22
|
Galán C, Sola I, Nogales A, Thomas B, Akoulitchev A, Enjuanes L, Almazán F. Host cell proteins interacting with the 3' end of TGEV coronavirus genome influence virus replication. Virology 2009; 391:304-14. [PMID: 19580983 PMCID: PMC7118768 DOI: 10.1016/j.virol.2009.06.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 05/25/2009] [Accepted: 06/03/2009] [Indexed: 11/29/2022]
Abstract
Coronavirus RNA synthesis is performed by a multienzymatic replicase complex together with cellular factors. This process requires the specific recognition of RNA cis-acting signals located at the ends of the viral genome. To identify cellular proteins involved in coronavirus RNA synthesis, transmissible gastroenteritis coronavirus (TGEV) genome ends, harboring essential cis-acting signals for replication, were used as baits for RNA affinity protein purification. Ten proteins were preferentially pulled down with either the 5' or 3' ends of the genome and identified by proteomic analysis. Nine of them, including members of the heterogeneous ribonucleoprotein family of proteins (hnRNPs), the poly(A)-binding protein (PABP), the p100 transcriptional co-activator protein and two aminoacyl-tRNA synthetases, showed a preferential binding to the 3' end of the genome, whereas only the polypyrimidine tract-binding protein (PTB) was preferentially pulled down with the 5' end of the genome. The potential function of the 3' end-interacting proteins in virus replication was studied by analyzing the effect of their silencing using a TGEV-derived replicon and the infectious virus. Gene silencing of PABP, hnRNP Q, and glutamyl-prolyl-tRNA synthetase (EPRS) caused a significant 2 to 3-fold reduction of viral RNA synthesis. Interestingly, the silencing of glyceraldehyde 3-phosphate dehydrogenase (GAPDH), initially used as a control gene, caused a 2 to 3-fold increase in viral RNA synthesis in both systems. These data suggest that PABP, hnRNP Q, and EPRS play a positive role in virus infection that could be mediated through their interaction with the viral 3' end, and that GAPDH has a negative effect on viral infection.
Collapse
Affiliation(s)
- Carmen Galán
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología, CSIC, C/Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
23
|
Ben Abdeljelil N, Delmas B, Mardassi H. Replication and packaging of an infectious bursal disease virus segment A-derived minigenome. Virus Res 2008; 136:146-51. [PMID: 18562033 DOI: 10.1016/j.virusres.2008.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2008] [Revised: 04/29/2008] [Accepted: 05/03/2008] [Indexed: 10/22/2022]
Abstract
A synthetic cytomegalovirus (CMV) promoter-driven cDNA minigenome containing the enhanced green fluorescence protein (EGFP) gene as a reporter was derived from the genomic segment A of infectious bursal disease virus (IBDV). The 5'-end of the minigenome was fused to the transcription start site of the immediate early CMV promoter, and the hepatitis delta virus (HDV) ribozyme sequence was added at its 3'-end. We show that co-transfection of the minigenome with a plasmid encoding the IBDV RNA-dependent RNA polymerase VP1, results in a consistent increase of the EGFP expression, as measured by fluorescence microscopy and flow cytometry assays. Replication of the minigenome-derived transcript was evidenced by real-time RT-PCR analyses targeted to both the plus- and minus-sense strands. When cells were infected with IBDV and transfected with the plasmid carrying the minigenome, the minigenome was packaged and EGFP was found to be expressed in a second cycle of infection. These results show the potential use of this system as a new tool to characterize IBDV replication and genome packaging.
Collapse
Affiliation(s)
- N Ben Abdeljelil
- Unit of Typing and Genetics of Mycobacteria, Institut Pasteur de Tunis, 13, Place Pasteur, B.P. 74, 1002 Tunis-Belvédère, Tunisie
| | | | | |
Collapse
|
24
|
Perlman S, Holmes KV. Replication and expression analysis of PRRSV defective RNA. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 581:445-8. [PMID: 17037576 PMCID: PMC7123548 DOI: 10.1007/978-0-387-33012-9_80] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Affiliation(s)
- Stanley Perlman
- Department of Pediatrics, University of Iowa, 52242 Iowa City, IA USA
| | - Kathryn V. Holmes
- Department of Microbiology, University of Colorado Health Sciences Center at Fitzsimons, 80045-8333 Aurora, CO USA
| |
Collapse
|
25
|
Zhang J, Yamada O, Yoshida H, Sakamoto T, Araki H, Shimotohno K. Helper virus-independent trans-replication of hepatitis C virus-derived minigenome. Biochem Biophys Res Commun 2006; 352:170-6. [PMID: 17112469 PMCID: PMC7117360 DOI: 10.1016/j.bbrc.2006.10.188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Accepted: 10/31/2006] [Indexed: 01/08/2023]
Abstract
We have previously described a synthetic T7-driven cDNA minigenome containing the antisense sequence of luciferase gene and internal ribosome entry site of encephalomyocarditis virus flanked by 5′- and 3′-end sequences of hepatitis C virus (HCV) that contain cis-acting replication elements. Synthesis of minus-strand RNA from the artificial minigenome was determined by using Huh-7 cells harboring autonomously replicating HCV subgenome as a helper for provision of functional replication components. To further confirm and extend these studies, we investigated here whether the minigenome replication system could be reconstituted by transfection of naïve Huh-7 cells with plasmid expressing nonstructural (NS) proteins. Reporter assay and Northern blot analysis revealed that trans-expression of NS proteins from 3 to 5 resulted in high level of luciferase activity and synthesized minus-strand RNA. The analogous result was also obtained with the minigenome derived from HCV 2a, and both HCV 1b- and 2a-derived NS protein were able to support the chimeric minigenomes whose 5′- or 3′-end was replaced by the respective region of the heterologous virus. These results provide a basis for establishing the reverse genetic system that is helpful to study cis- and trans-acting factors involved in HCV RNA replication.
Collapse
Affiliation(s)
- Jing Zhang
- Research and Development Center, FUSO Pharmaceutical Industries, LTD., 2-3-30 Morinomiya, Joto-ku, Osaka 536-8523, Japan.
| | | | | | | | | | | |
Collapse
|
26
|
Zhang X, Hasoksuz M, Spiro D, Halpin R, Wang S, Stollar S, Janies D, Hadya N, Tang Y, Ghedin E, Saif L. Complete genomic sequences, a key residue in the spike protein and deletions in nonstructural protein 3b of US strains of the virulent and attenuated coronaviruses, transmissible gastroenteritis virus and porcine respiratory coronavirus. Virology 2006; 358:424-35. [PMID: 17023013 PMCID: PMC1850758 DOI: 10.1016/j.virol.2006.08.051] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 08/17/2006] [Accepted: 08/31/2006] [Indexed: 11/28/2022]
Abstract
Transmissible gastroenteritis virus (TGEV) isolates that have been adapted to passage in cell culture maintain their infectivity in vitro but may lose their pathogenicity in vivo. To better understand the genomic mechanisms for viral attenuation, we sequenced the complete genomes of two virulent TGEV strains and their attenuated counterparts: virulent TGEV Miller M6 and attenuated TGEV Miller M60 and virulent TGEV Purdue and attenuated TGEV Purdue P115, together with the ISU-1 strain of porcine respiratory coronavirus (PRCV-ISU-1), a naturally occurring TGEV deletion mutant with an altered respiratory tropism and reduced virulence. Pairwise comparison at both the nucleotide (nt) and amino acid (aa) levels between virulent and attenuated TGEV strains identified a common change in nt 1753 of the spike gene, resulting in a serine to alanine mutation at aa position 585 of the spike proteins of the attenuated TGEV strains. Alanine was also present in this protein in PRCV-ISU-1. Particularly noteworthy, the serine to alanine mutation resides in the region of the major antigenic site A/B (aa 506-706) that elicits neutralizing antibodies and within the domain mediating the cell surface receptor aminopeptidase N binding (aa 522-744). Comparison of the predicted polypeptide products of ORF3b showed significant deletions in the naturally attenuated PRCV-ISU-1 and TGEV Miller M60; these deletions occurred at a common break point, suggesting a related mechanism of recombination that may affect viral virulence or tropism. Sequence comparisons at both genomic and protein levels indicated that PRCV-ISU-1 had a closer relationship with TGEV Miller strains than Purdue strains. Phylogenetic analyses showed that virulence is an evolutionarily labile trait in TGEV and that TGEV strains as a group share a common ancestor with PRCV.
Collapse
Affiliation(s)
- Xinsheng Zhang
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Ave., Wooster, OH 44691, USA
| | - Mustafa Hasoksuz
- Istanbul University, Faculty of Veterinary Medicine, Department of Virology, Avcilar, 34320, Istanbul, Turkey
| | - David Spiro
- The Institute for Genomic Research (TIGR), Rockville, MD 20850, USA
| | - Rebecca Halpin
- The Institute for Genomic Research (TIGR), Rockville, MD 20850, USA
| | - Shiliang Wang
- The Institute for Genomic Research (TIGR), Rockville, MD 20850, USA
| | - Sarah Stollar
- The Institute for Genomic Research (TIGR), Rockville, MD 20850, USA
| | - Daniel Janies
- Department of Biomedical Informatics, The Ohio State University Medical Center, Columbus, OH 44691, USA
| | - Nagesh Hadya
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Ave., Wooster, OH 44691, USA
| | - Yuxin Tang
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Ave., Wooster, OH 44691, USA
| | - Elodie Ghedin
- The Institute for Genomic Research (TIGR), Rockville, MD 20850, USA
| | - Linda Saif
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Ave., Wooster, OH 44691, USA
- Corresponding author. Fax: +1 330 263 3677.
| |
Collapse
|
27
|
Tzeng WP, Frey TK. C-E1 fusion protein synthesized by rubella virus DI RNAs maintained during serial passage. Virology 2006; 356:198-207. [PMID: 16938325 PMCID: PMC2694048 DOI: 10.1016/j.virol.2006.07.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Revised: 06/23/2006] [Accepted: 07/13/2006] [Indexed: 10/26/2022]
Abstract
Rubella virus (RUB) replicons are derivatives of the RUB infectious cDNA clone that retain the nonstructural open reading frame (NS-ORF) that encodes the replicase proteins but not the structural protein ORF (SP-ORF) that encodes the virion proteins. RUB defective interfering (DI) RNAs contain deletions within the SP-ORF and thus resemble replicons. DI RNAs often retain the 5' end of the capsid protein (C) gene that has been shown to modulate virus-specific RNA synthesis. However, when replicons either with or without the C gene were passaged serially in the presence of wt RUB as a source of the virion proteins, it was found that neither replicon was maintained and DI RNAs were generated. The majority DI RNA species contained in-frame deletions in the SP-ORF leading to a fusion between the 5' end of the C gene and the 3' end of the E1 glycoprotein gene. DI infectious cDNA clones were constructed and transcripts from these DI infectious cDNA clones were maintained during serial passage with wt RUB. The C-E1 fusion protein encoded by the DI RNAs was synthesized and was required for maintenance of the DI RNA during serial passage. This is the first report of a functional novel gene product resulting from deletion during DI RNA generation. Thus far, the role of the C-E1 fusion protein in maintenance of DI RNAs during serial passage remained elusive as it was found that the fusion protein diminished rather than enhanced DI RNA synthesis and was not incorporated into virus particles.
Collapse
Affiliation(s)
- Wen-Pin Tzeng
- Department of Biology, Georgia State University, University Plaza, Atlanta, GA 30303, USA
| | | |
Collapse
|
28
|
Abstract
Coronaviruses are large, enveloped RNA viruses of both medical and veterinary importance. Interest in this viral family has intensified in the past few years as a result of the identification of a newly emerged coronavirus as the causative agent of severe acute respiratory syndrome (SARS). At the molecular level, coronaviruses employ a variety of unusual strategies to accomplish a complex program of gene expression. Coronavirus replication entails ribosome frameshifting during genome translation, the synthesis of both genomic and multiple subgenomic RNA species, and the assembly of progeny virions by a pathway that is unique among enveloped RNA viruses. Progress in the investigation of these processes has been enhanced by the development of reverse genetic systems, an advance that was heretofore obstructed by the enormous size of the coronavirus genome. This review summarizes both classical and contemporary discoveries in the study of the molecular biology of these infectious agents, with particular emphasis on the nature and recognition of viral receptors, viral RNA synthesis, and the molecular interactions governing virion assembly.
Collapse
Affiliation(s)
- Paul S Masters
- Wadsworth Center, New York State Department of Health, Albany, 12201, USA
| |
Collapse
|
29
|
Galán C, Enjuanes L, Almazán F. A point mutation within the replicase gene differentially affects coronavirus genome versus minigenome replication. J Virol 2006; 79:15016-26. [PMID: 16306572 PMCID: PMC1316003 DOI: 10.1128/jvi.79.24.15016-15026.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During the construction of the transmissible gastroenteritis virus (TGEV) full-length cDNA clone, a point mutation at position 637 that was present in the defective minigenome DI-C was maintained as a genetic marker. Sequence analysis of the recovered viruses showed a reversion at this position to the original virus sequence. The effect of point mutations at nucleotide 637 was analyzed by reverse genetics using a TGEV full-length cDNA clone and cDNAs from TGEV-derived minigenomes. The replacement of nucleotide 637 of TGEV genome by a T, as in the DI-C sequence, or an A severely affected virus recovery from the cDNA, yielding mutant viruses with low titers and small plaques compared to those of the wild type. In contrast, T or A at position 637 was required for minigenome rescue in trans by the helper virus. No relationship between these observations and RNA secondary-structure predictions was found, indicating that mutations at nucleotide 637 most likely had an effect at the protein level. Nucleotide 637 occupies the second codon position at amino acid 108 of the pp1a polyprotein. This position is predicted to map in the N-terminal polyprotein papain-like proteinase (PLP-1) cleavage site at the p9/p87 junction. Replacement of G-637 by A, which causes a drastic amino acid change (Gly to Asp) at position 108, affected PLP-1-mediated cleavage in vitro. A correlation was found between predicted cleaving and noncleaving mutations and efficient virus rescue from cDNA and minigenome amplification, respectively.
Collapse
Affiliation(s)
- Carmen Galán
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma, Cantoblanco. Darwin St. 3, 28049 Madrid, Spain
| | | | | |
Collapse
|
30
|
Perlman S, Holmes KV. Differential role of N-terminal polyprotein processing in coronavirus genome replication and minigenome amplification. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 581:79-83. [PMID: 17037508 PMCID: PMC7123267 DOI: 10.1007/978-0-387-33012-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Stanley Perlman
- Department of Pediatrics, University of Iowa, 52242 Iowa City, IA USA
| | - Kathryn V. Holmes
- Department of Microbiology, University of Colorado Health Sciences Center at Fitzsimons, 80045-8333 Aurora, CO USA
| |
Collapse
|
31
|
Neuman BW, Stein DA, Kroeker AD, Churchill MJ, Kim AM, Kuhn P, Dawson P, Moulton HM, Bestwick RK, Iversen PL, Buchmeier MJ. Inhibition, escape, and attenuated growth of severe acute respiratory syndrome coronavirus treated with antisense morpholino oligomers. J Virol 2005; 79:9665-76. [PMID: 16014928 PMCID: PMC1181598 DOI: 10.1128/jvi.79.15.9665-9676.2005] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The recently emerged severe acute respiratory syndrome coronavirus (SARS-CoV) is a potent pathogen of humans and is capable of rapid global spread. Peptide-conjugated antisense morpholino oligomers (P-PMO) were designed to bind by base pairing to specific sequences in the SARS-CoV (Tor2 strain) genome. The P-PMO were tested for their capacity to inhibit production of infectious virus as well as to probe the function of conserved viral RNA motifs and secondary structures. Several virus-targeted P-PMO and a random-sequence control P-PMO showed low inhibitory activity against SARS coronavirus. Certain other virus-targeted P-PMO reduced virus-induced cytopathology and cell-to-cell spread as a consequence of decreasing viral amplification. Active P-PMO were effective when administered at any time prior to peak viral synthesis and exerted sustained antiviral effects while present in culture medium. P-PMO showed low nonspecific inhibitory activity against translation of nontargeted RNA or growth of the arenavirus lymphocytic choriomeningitis virus. Two P-PMO targeting the viral transcription-regulatory sequence (TRS) region in the 5' untranslated region were the most effective inhibitors tested. After several viral passages in the presence of a TRS-targeted P-PMO, partially drug-resistant SARS-CoV mutants arose which contained three contiguous base point mutations at the binding site of a TRS-targeted P-PMO. Those partially resistant viruses grew more slowly and formed smaller plaques than wild-type SARS-CoV. These results suggest PMO compounds have powerful therapeutic and investigative potential toward coronavirus infection.
Collapse
Affiliation(s)
- Benjamin W Neuman
- The Scripps Research Institute, Division of Virology, Department of Neuropharmacology, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Zhang J, Yamada O, Sakamoto T, Yoshida H, Araki H, Shimotohno K. Exploiting cis-acting replication elements to direct hepatitis C virus-dependent transgene expression. J Virol 2005; 79:5923-32. [PMID: 15857978 PMCID: PMC1091670 DOI: 10.1128/jvi.79.10.5923-5932.2005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We describe here a novel targeting gene therapy strategy to direct gene expression responsive to hepatitis C virus (HCV). The goal was approached by engineering a construct containing the antisense sequence of the transgene and internal ribosome entry site of encephalomyocarditis virus flanked by 5'- and 3'-end sequences of HCV cDNA that contain cis-acting replication elements. Thus, expression of the transgene is only promoted when the minus-strand RNA has been synthesized by the functional replication machinery present in infected cells. Reporter assay and strand-specific reverse transcription-PCR showed selective transgene expression in Huh-7 cells harboring an autonomously replicating HCV subgenome but remaining silent in uninfected cells. Furthermore, using the cytosine deaminase suicide gene as a transgene coupled with recombinant adenovirus delivery, we demonstrated that cytosine deaminase was specifically expressed in replicon cells, resulting in marked chemosensitization of replicon cells to the cytotoxic effects of flucytosine. This new targeting strategy could be extended to other single-stranded RNA viruses encoding the unique RNA-dependent RNA polymerase that has no parallel in mammalian cells.
Collapse
Affiliation(s)
- Jing Zhang
- Research & Development Center, FUSO Pharmaceutical Industries, LTD., 2-3-30 Morinomiya, Joto-ku, Osaka 536-8523, Japan.
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
In addition to the SARS coronavirus (treated separately elsewhere in this volume), the complete genome sequences of six species in the coronavirus genus of the coronavirus family [avian infectious bronchitis virus-Beaudette strain (IBV-Beaudette), bovine coronavirus-ENT strain (BCoV-ENT), human coronavirus-229E strain (HCoV-229E), murine hepatitis virus-A59 strain (MHV-A59), porcine transmissible gastroenteritis-Purdue 115 strain (TGEV-Purdue 115), and porcine epidemic diarrhea virus-CV777 strain (PEDV-CV777)] have now been reported. Their lengths range from 27,317 nt for HCoV-229E to 31,357 nt for the murine hepatitis virus-A59, establishing the coronavirus genome as the largest known among RNA viruses. The basic organization of the coronavirus genome is shared with other members of the Nidovirus order (the torovirus genus, also in the family Coronaviridae, and members of the family Arteriviridae) in that the nonstructural proteins involved in proteolytic processing, genome replication, and subgenomic mRNA synthesis (transcription) (an estimated 14–16 end products for coronaviruses) are encoded within the 5′-proximal two-thirds of the genome on gene 1 and the (mostly) structural proteins are encoded within the 3′-proximal one-third of the genome (8–9 genes for coronaviruses). Genes for the major structural proteins in all coronaviruses occur in the 5′ to 3′ order as S, E, M, and N. The precise strategy used by coronaviruses for genome replication is not yet known, but many features have been established. This chapter focuses on some of the known features and presents some current questions regarding genome replication strategy, the cis-acting elements necessary for genome replication [as inferred from defective interfering (DI) RNA molecules], the minimum sequence requirements for autonomous replication of an RNA replicon, and the importance of gene order in genome replication.
Collapse
Affiliation(s)
- D A Brian
- Departments of Microbiology and Pathobiology, University of Tennessee, College of Veterinary Medicine, Knoxville, TN 37996-0845, USA.
| | | |
Collapse
|
34
|
Baric RS, Sims AC. Development of mouse hepatitis virus and SARS-CoV infectious cDNA constructs. Curr Top Microbiol Immunol 2005; 287:229-52. [PMID: 15609514 PMCID: PMC7122489 DOI: 10.1007/3-540-26765-4_8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
The genomes of transmissible gastroenteritis virus (TGEV) and mouse hepatitis virus (MHV) have been generated with a novel construction strategy that allows for the assembly of very large RNA and DNA genomes from a panel of contiguous cDNA subclones. Recombinant viruses generated from these methods contained the appropriate marker mutations and replicated as efficiently as wild-type virus. The MHV cloning strategy can also be used to generate recombinant viruses that contain foreign genes or mutations at virtually any given nucleotide. MHV molecular viruses were engineered to express green fluorescent protein (GFP), demonstrating the feasibility of the systematic assembly approach to create recombinant viruses expressing foreign genes. The systematic assembly approach was used to develop an infectious clone of the newly identified human coronavirus, the serve acute respiratory syndrome virus (SARS-CoV). Our cloning and assembly strategy generated an infectious clone within 2 months of identification of the causative agent of SARS, providing a critical tool to study coronavirus pathogenesis and replication. The availability of coronavirus infectious cDNAs heralds a new era in coronavirus genetics and genomic applications, especially within the replicase proteins whose functions in replication and pathogenesis are virtually unknown.
Collapse
Affiliation(s)
- R S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7400, USA.
| | | |
Collapse
|
35
|
Abstract
This chapter describes the interactions between the different structural components of the viruses and discusses their relevance for the process of virion formation. Two key factors determine the efficiency of the assembly process: intracellular transport and molecular interactions. Many viruses have evolved elaborate strategies to ensure the swift and accurate delivery of the virion components to the cellular compartment(s) where they must meet and form (sub) structures. Assembly of viruses starts in the nucleus by the encapsidation of viral DNA, using cytoplasmically synthesized capsid proteins; nucleocapsids then migrate to the cytosol, by budding at the inner nuclear membrane followed by deenvelopment, to pick up the tegument proteins.
Collapse
Affiliation(s)
- Cornelis A M de Haan
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | | |
Collapse
|
36
|
Enjuanes L, Sola I, Alonso S, Escors D, Zúñiga S. Coronavirus reverse genetics and development of vectors for gene expression. Curr Top Microbiol Immunol 2005; 287:161-97. [PMID: 15609512 PMCID: PMC7120368 DOI: 10.1007/3-540-26765-4_6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023]
Abstract
Knowledge of coronavirus replication, transcription, and virus-host interaction has been recently improved by engineering of coronavirus infectious cDNAs. With the transmissible gastroenteritis virus (TGEV) genome the efficient (>40 microg per 106 cells) and stable (>20 passages) expression of the foreign genes has been shown. Knowledge of the transcription mechanism in coronaviruses has been significantly increased, making possible the fine regulation of foreign gene expression. A new family of vectors based on single coronavirus genomes, in which essential genes have been deleted, has emerged including replication-competent, propagation-deficient vectors. Vector biosafety is being increased by relocating the RNA packaging signal to the position previously occupied by deleted essential genes, to prevent the rescue of fully competent viruses that might arise from recombination events with wild-type field coronaviruses. The large cloning capacity of coronaviruses (>5 kb) and the possibility of engineering the tissue and species tropism to target expression to different organs and animal species, including humans, has increased the potential of coronaviruses as vectors for vaccine development and, possibly, gene therapy.
Collapse
Affiliation(s)
- L Enjuanes
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma, 28049 Cantoblanco, Madrid, Spain.
| | | | | | | | | |
Collapse
|
37
|
Almazán F, Galán C, Enjuanes L. The nucleoprotein is required for efficient coronavirus genome replication. J Virol 2004; 78:12683-8. [PMID: 15507657 PMCID: PMC525053 DOI: 10.1128/jvi.78.22.12683-12688.2004] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The construction of a set of transmissible gastroenteritis coronavirus (TGEV)-derived replicons as bacterial artificial chromosomes is reported. These replicons were generated by sequential deletion of nonessential genes for virus replication, using a modified TGEV full-length cDNA clone containing unique restriction sites between each pair of consecutive genes. Efficient activity of TGEV replicons was associated with the presence of the nucleoprotein provided either in cis or in trans. TGEV replicons were functional in several cell lines, including the human cell line 293T, in which no or very low cytopathic effect was observed, and expressed high amounts of heterologous protein.
Collapse
Affiliation(s)
- Fernando Almazán
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
38
|
Dove B, Cavanagh D, Britton P. Presence of an encephalomyocarditis virus internal ribosome entry site sequence in avian infectious bronchitis virus defective RNAs abolishes rescue by helper virus. J Virol 2004; 78:2711-21. [PMID: 14990691 PMCID: PMC353753 DOI: 10.1128/jvi.78.6.2711-2721.2004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2003] [Accepted: 11/18/2003] [Indexed: 11/20/2022] Open
Abstract
Avian infectious bronchitis virus (IBV) defective RNAs (D-RNAs) have been used for the expression of heterologous genes in a helper-virus-dependent expression system. The heterologous genes were expressed under the control of an IBV transcription-associated sequence (TAS) derived from gene 5 of IBV Beaudette. However, coronavirus D-RNA expression vectors display an inherent instability following serial passage with helper virus, resulting in the eventual loss of the heterologous genes. The use of the picornavirus encephalomyocarditis virus (EMCV) internal ribosome entry site (IRES) sequence to initiate gene translation was investigated as an alternative method to the coronavirus-mediated TAS-controlled heterologous gene expression system. IBV D-RNAs containing the chloramphenicol acetyltransferase (CAT) reporter gene, under EMCV IRES control, were assessed for IRES-mediated CAT protein translation. CAT protein was detected from T7-derived IBV D-RNA transcripts in a cell-free protein synthesis system and in situ in avian chick kidney (CK) cells following T7-derived D-RNA synthesis from a recombinant fowlpox virus expressing the bacteriophage T7 DNA-dependent RNA polymerase. However, CAT protein was not detected in CK cells from IRES-containing IBV D-RNAs, in which the IRES-CAT construct was inserted at two different positions within the D-RNA, in the presence of helper IBV. Northern blot analysis demonstrated that the IRES-containing D-RNAs were not rescued on serial passage with helper virus, indicating that the EMCV IRES sequence had a detrimental effect on IBV D-RNA rescue.
Collapse
Affiliation(s)
- Brian Dove
- Division of Molecular Biology, Institute for Animal Health, Compton Laboratory, Compton, Newbury, Berkshire RG20 7NN, United Kingdom
| | | | | |
Collapse
|
39
|
Escors D, Izeta A, Capiscol C, Enjuanes L. Transmissible gastroenteritis coronavirus packaging signal is located at the 5' end of the virus genome. J Virol 2003; 77:7890-902. [PMID: 12829829 PMCID: PMC161917 DOI: 10.1128/jvi.77.14.7890-7902.2003] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To locate the transmissible gastroenteritis coronavirus (TGEV) packaging signal, the incorporation of TGEV subgenomic mRNAs (sgmRNAs) into virions was first addressed. TGEV virions were purified by three different techniques, including an immunopurification using an M protein-specific monoclonal antibody. Detection of sgmRNAs in virions by specific reverse transcription-PCRs (RT-PCRs) was related to the purity of virus preparations. Interestingly, virus mRNAs were detected in partially purified virus but not in virus immunopurified using stringent conditions. Analyses by quantitative RT-PCR confirmed that virus mRNAs were not present in highly purified preparations. Lack of sgmRNA encapsidation was probably due to the absence of a packaging signal (Psi) within these mRNAs. This information plus that from the encapsidation of a collection of TGEV-derived minigenomes suggested that Psi is located at the 5' end of the genome. To confirm that this was the case, a set of minigenomes was expressed that included an expression cassette for an mRNA including the beta-glucuronidase gene (GUS) plus variable sequence fragments from the 5' end of the virus genome potentially including Psi. Insertion of the first 649 nucleotides (nt) of the TGEV genome led to the specific encapsidation of the mRNA, indicating that a Psi was located within this region which was absent from all of the other virus mRNAs. The presence of this packaging signal was further confirmed by showing the expression and rescue of the mRNA including the first 649 nt of the TGEV genome under control of the cytomegalovirus promoter in TGEV-infected cells. This mRNA was successfully amplified and encapsidated, indicating that the first 649 nt of TGEV genome also contained the 5' cis-acting replication signals. The encapsidation efficiency of this mRNA was about 30-fold higher than the genome encapsidation efficiency, as estimated by quantitative RT-PCR. In contrast, viral mRNAs presented significantly lower encapsidation efficiencies (about 100-fold) than those of the virus genome, strongly suggesting that TGEV mRNAs in fact lacked an alternative TGEV Psi.
Collapse
Affiliation(s)
- David Escors
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
40
|
Raman S, Bouma P, Williams GD, Brian DA. Stem-loop III in the 5' untranslated region is a cis-acting element in bovine coronavirus defective interfering RNA replication. J Virol 2003; 77:6720-30. [PMID: 12767992 PMCID: PMC156170 DOI: 10.1128/jvi.77.12.6720-6730.2003] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Higher-order structures in the 5' untranslated region (UTR) of plus-strand RNA viruses are known in many cases to function as cis-acting elements in RNA translation, replication, or transcription. Here we describe evidence supporting the structure and a cis-acting function in defective interfering (DI) RNA replication of stem-loop III, the third of four predicted higher-order structures mapping within the 210-nucleotide (nt) 5' UTR of the 32-kb bovine coronavirus (BCoV) genome. Stem-loop III maps at nt 97 through 116, has a calculated free energy of -9.1 kcal/mol in the positive strand and -3.0 kcal/mol in the negative strand, and has associated with it beginning at nt 100 an open reading frame (ORF) potentially encoding an 8-amino-acid peptide. Stem-loop III is presumed to function in the positive strand, but its strand of action has not been established. Stem-loop III (i) shows phylogenetic conservation among group 2 coronaviruses and appears to have a homolog in coronavirus groups 1 and 3, (ii) has in all coronaviruses for which sequence is known a closely associated short, AUG-initiated intra-5' UTR ORF, (iii) is supported by enzyme structure-probing evidence in BCoV RNA, (iv) must maintain stem integrity for DI RNA replication in BCoV DI RNA, and (v) shows a positive correlation between maintenance of the short ORF and maximal DI RNA accumulation in BCoV DI RNA. These results indicate that stem-loop III in the BCoV 5' UTR is a cis-acting element for DI RNA replication and that its associated intra-5' UTR ORF may function to enhance replication. It is postulated that these two elements function similarly in the virus genome.
Collapse
Affiliation(s)
- Sharmila Raman
- Department of Microbiology, University of Tennessee, College of Veterinary Medicine, Knoxville, Tennessee 37996-0845, USA
| | | | | | | |
Collapse
|
41
|
Hackney K, Cavanagh D, Kaiser P, Britton P. In vitro and in ovo expression of chicken gamma interferon by a defective RNA of avian coronavirus infectious bronchitis virus. J Virol 2003; 77:5694-702. [PMID: 12719562 PMCID: PMC154032 DOI: 10.1128/jvi.77.10.5694-5702.2003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coronavirus defective RNAs (D-RNAs) have been used for site-directed mutagenesis of coronavirus genomes and for expression of heterologous genes. D-RNA CD-61 derived from the avian coronavirus infectious bronchitis virus (IBV) was used as an RNA vector for the expression of chicken gamma interferon (chIFN-gamma). D-RNAs expressing chIFN-gamma were shown to be capable of rescue, replication, and packaging into virions in a helper virus-dependent system following electroporation of in vitro-derived T7 RNA transcripts into IBV-infected cells. Secreted chIFN-gamma, under the control of an IBV transcription-associated sequence derived from gene 5 of the Beaudette strain, was expressed from two different positions within CD-61 and shown to be biologically active. In addition, following infection of 10-day-old chicken embryos with IBV containing D-RNAs expressing chIFN-gamma, the allantoic fluid was shown to contain biologically active chIFN-gamma, demonstrating that IBV D-RNAs can express heterologous genes in vivo.
Collapse
Affiliation(s)
- Karen Hackney
- Institute for Animal Health, Compton Laboratory, Compton, Newbury, Berkshire RG20 7NN, United Kingdom
| | | | | | | |
Collapse
|
42
|
Sola I, Alonso S, Sanchez C, Sanchez-Morgado JM, Enjuanes L. Expression of transcriptional units using transmissible gastroenteritis coronavirus derived minigenomes and full-length cDNA clones. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 494:447-51. [PMID: 11774506 DOI: 10.1007/978-1-4615-1325-4_65] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- I Sola
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
43
|
Enjuanes L, Sola I, Almazan F, Izeta A, Gonzalez JM, Alonso S. Coronavirus derived expression systems. Progress and problems. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 494:309-21. [PMID: 11774485 DOI: 10.1007/978-1-4615-1325-4_47] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- L Enjuanes
- Centro Nacional de Biotecnología, CSIC, Department of Molecular and Cell Biology, Campus Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
44
|
Almazan F, Gonzalez JM, Penzes Z, Izeta A, Calvo E, Enjuanes L. A strategy for the generation of an infectious transmissible gastroenteritis coronavirus from cloned cDNA. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 494:261-6. [PMID: 11774479 DOI: 10.1007/978-1-4615-1325-4_41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- F Almazan
- Centro Nacional de Biotecnología, CSIC, Department of Molecular and Cell Biology, Campus Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
45
|
Gonzalez JM, Almazan F, Penzes Z, Calvo E, Enjuanes L. Cloning of a transmissible gastroenteritis coronavirus full-length cDNA. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 494:533-6. [PMID: 11774519 DOI: 10.1007/978-1-4615-1325-4_77] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- J M Gonzalez
- Department of Molecular and Cell Biology, Centro Nacional de Biotechnología, CSIC, Campus Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
46
|
Brian DA. Nidovirus genome replication and subgenomic mRNA synthesis. Pathways followed and cis-acting elements required. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 494:415-28. [PMID: 11774502 DOI: 10.1007/978-1-4615-1325-4_62] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- D A Brian
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
47
|
González JM, Pénzes Z, Almazán F, Calvo E, Enjuanes L. Stabilization of a full-length infectious cDNA clone of transmissible gastroenteritis coronavirus by insertion of an intron. J Virol 2002; 76:4655-61. [PMID: 11932433 PMCID: PMC155106 DOI: 10.1128/jvi.76.9.4655-4661.2002] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The stable propagation of a full-length transmissible gastroenteritis coronavirus (TGEV) cDNA in Escherichia coli cells as a bacterial artificial chromosome has been considerably improved by the insertion of an intron to disrupt a toxic region identified in the viral genome. The viral RNA was expressed in the cell nucleus under the control of the cytomegalovirus promoter and the intron was efficiently removed during translocation of this RNA to the cytoplasm. The insertion in two different positions allowed stable plasmid amplification for at least 200 generations. Infectious TGEV was efficiently recovered from cells transfected with the modified cDNAs.
Collapse
Affiliation(s)
- José M González
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
48
|
Alonso S, Sola I, Teifke JP, Reimann I, Izeta A, Balasch M, Plana-Durán J, Moormann RJM, Enjuanes L. In vitro and in vivo expression of foreign genes by transmissible gastroenteritis coronavirus-derived minigenomes. J Gen Virol 2002; 83:567-579. [PMID: 11842252 DOI: 10.1099/0022-1317-83-3-567] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A helper-dependent expression system based on transmissible gastroenteritis coronavirus (TGEV) has been developed using a minigenome of 3.9 kb (M39). Expression of the reporter gene beta-glucuronidase (GUS) (2-8 microg per 10(6) cells) and the porcine respiratory and reproductive syndrome virus (PRRSV) ORF5 (1-2 microg per 10(6) cells) has been shown using a TGEV-derived minigenome. GUS expression levels increased about eightfold with the m.o.i. and were maintained for more than eight passages in cell culture. Nevertheless, instability of the GUS and ORF5 subgenomic mRNAs was observed from passages five and four, respectively. About a quarter of the cells in culture expressing the helper virus also produced the reporter gene as determined by studying GUS mRNA production by in situ hybridization or immunodetection to visualize the protein synthesized. Expression of GUS was detected in the lungs, but not in the gut, of swine immunized with the virus vector. Around a quarter of lung cells showing replication of the helper virus were also positive for the reporter gene. Interestingly, strong humoral immune responses to both GUS and PRRSV ORF5 were induced in swine with this virus vector. The large cloning capacity and the tissue specificity of the TGEV-derived minigenomes suggest that these virus vectors are very promising for vaccine development.
Collapse
Affiliation(s)
- Sara Alonso
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain1
| | - Isabel Sola
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain1
| | - Jens P Teifke
- Federal Research Centre for Virus Diseases of Animals, Friedrich-Loeffler-Institutes, Insel Riems, Germany2
| | - Ilona Reimann
- Federal Research Centre for Virus Diseases of Animals, Friedrich-Loeffler-Institutes, Insel Riems, Germany2
| | - Ander Izeta
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain1
| | | | | | - Rob J M Moormann
- Institute for Animal Science and Health, Lelystad, The Netherlands4
| | - Luis Enjuanes
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain1
| |
Collapse
|
49
|
Alonso S, Izeta A, Sola I, Enjuanes L. Transcription regulatory sequences and mRNA expression levels in the coronavirus transmissible gastroenteritis virus. J Virol 2002; 76:1293-308. [PMID: 11773405 PMCID: PMC135778 DOI: 10.1128/jvi.76.3.1293-1308.2002] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2001] [Accepted: 10/19/2001] [Indexed: 11/20/2022] Open
Abstract
The transcription regulatory sequences (TRSs) of the coronavirus transmissible gastroenteritis virus (TGEV) have been characterized by using a helper virus-dependent expression system based on coronavirus-derived minigenomes to study the synthesis of subgenomic mRNAs. The TRSs are located at the 5' end of TGEV genes and include a highly conserved core sequence (CS), 5'-CUAAAC-3', that is essential for mediating a 100- to 1,000-fold increase in mRNA synthesis when it is located in the appropriate context. The relevant sequences contributing to TRS activity have been studied by extending the CS 5' upstream and 3' downstream. Sequences from virus genes flanking the CS influenced transcription levels from moderate (10- to 20-fold variation) to complete mRNA synthesis silencing, as shown for a canonical CS at nucleotide (nt) 120 from the initiation codon of the S gene that did not lead to the production of the corresponding mRNA. An optimized TRS has been designed comprising 88 nt from the N gene TRS, the CS, and 3 nt 3' to the M gene CS. Further extension of the 5'-flanking nucleotides (i.e., by 176 nt) decreased subgenomic RNA levels. The expression of a reporter gene (beta-glucuronidase) by using the selected TRS led to the production of 2 to 8 microg of protein per 10(6) cells. The presence of an appropriate Kozak context led to a higher level of protein expression. Virus protein levels were shown to be dependent on transcription and translation regulation.
Collapse
MESH Headings
- 3' Flanking Region/physiology
- 5' Flanking Region/physiology
- Animals
- Base Sequence
- Binding Sites
- Cell Line
- Conserved Sequence/physiology
- Coronavirus M Proteins
- Coronavirus Nucleocapsid Proteins
- DNA, Viral
- Gene Expression Regulation, Viral
- Genes, Viral
- Genome, Viral
- Male
- Membrane Glycoproteins/genetics
- Molecular Sequence Data
- Mutagenesis, Insertional
- Nucleocapsid/genetics
- Nucleocapsid Proteins
- Open Reading Frames
- RNA, Messenger/biosynthesis
- RNA, Viral/biosynthesis
- Regulatory Sequences, Nucleic Acid/physiology
- Spike Glycoprotein, Coronavirus
- Swine
- Transcription, Genetic
- Transmissible gastroenteritis virus/genetics
- Viral Envelope Proteins/genetics
- Viral Matrix Proteins/genetics
Collapse
Affiliation(s)
- Sara Alonso
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
50
|
Tzeng WP, Chen MH, Derdeyn CA, Frey TK. Rubella virus DI RNAs and replicons: requirement for nonstructural proteins acting in cis for amplification by helper virus. Virology 2001; 289:63-73. [PMID: 11601918 DOI: 10.1006/viro.2001.1088] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A rubella virus (RUB) replicon was constructed by replacing the 3' proximal structural protein ORF (SP-ORF) in Robo402, a RUB infectious cDNA clone, with a reporter gene, green fluorescent protein (GFP). This replicon, RUBrep/GFP, mimics naturally occurring RUB defective-interfering (DI) RNAs generated during serial undiluted passage that maintain the 5' proximal nonstructural protein ORF (NS-ORF) but contain deletions in the SP-ORF. Following transfection of Vero cells with in vitro RNA transcripts from RUBrep/GFP, replicon replication occurred and the replicon was amplified and spread to other cells in the presence of standard helper virus. GFP expression was a much more sensitive indicator of replicon replication than was Northern analysis to detect replicon-specific RNAs. Most of a series of RUBrep/GFP constructs with deletions in the NS-ORF not only were incapable of self-replication, but were not amplified by standard helper virus. The only exception was a construct with an in-frame deletion between two NotI sites that removed nucleotides 1685-2192 of the genome; this construct did not express GFP by itself, but did express GFP in the presence of standard helper RUB and was spread to other cells. Thus, with the exception of this region, the NS-ORF is required in cis for amplification of RUB replicons by standard helper virus, explaining the selection of DI RNAs that maintain the NS-ORF. Surprisingly, when the NotI deletion was introduced into Robo402, a viable virus resulted that replicated only threefold less efficiently than did Robo402 virus. Thus, the NotI region of the NS-ORF is not necessary for virus replication. This deletion covers a region of the NS-ORF without predicted function, which therefore may function as a spacer or hinge between functional domains. Nevertheless, it was an unexpected finding that a small virus such as RUB could dispense with approximately 10% of its genome.
Collapse
Affiliation(s)
- W P Tzeng
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, USA
| | | | | | | |
Collapse
|