1
|
Abstract
Viral population numbers are extremely large compared with those of their host species. Population bottlenecks are frequent during the life cycle of viruses and can reduce viral populations transiently to very few individuals. Viruses have to confront several types of constraints that can be divided into basal, cell-dependent, and organism-dependent constraints. Viruses overcome them exploiting a number of molecular mechanisms, with an important contribution of population numbers and genome variation. The adaptive potential of viruses is reflected in modifications of cell tropism and host range, escape to components of the host immune response, and capacity to alternate among different host species, among other phenotypic changes. Despite a fitness cost of most mutations required to overcome a selective constraint, viruses can find evolutionary pathways that ensure their survival in equilibrium with their hosts.
Collapse
|
2
|
Domingo E. Interaction of Virus Populations with Their Hosts. VIRUS AS POPULATIONS 2016. [PMCID: PMC7150142 DOI: 10.1016/b978-0-12-800837-9.00004-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Viral population numbers are extremely large compared with those of their host species. Population bottlenecks are frequent during the life cycle of viruses and can reduce viral populations transiently to very few individuals. Viruses have to confront several types of constraints that can be divided in basal, cell-dependent, and organism-dependent constraints. Viruses overcome them exploiting a number of molecular mechanisms, with an important contribution of population numbers and genome variation. The adaptive potential of viruses is reflected in modifications of cell tropism and host range, escape to components of the host immune response, and capacity to alternate among different host species, among other phenotypic changes. Despite a fitness cost of most mutations required to overcome a selective constraint, viruses can find evolutionary pathways that ensure their survival in equilibrium with their hosts.
Collapse
|
3
|
Delgado CL, Núñez E, Yélamos B, Gómez-Gutiérrez J, Peterson DL, Gavilanes F. Spectroscopic Characterization and Fusogenic Properties of PreS Domains of Duck Hepatitis B Virus. Biochemistry 2012; 51:8444-54. [DOI: 10.1021/bi3008406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Carmen L. Delgado
- Departamento de Bioquímica
y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, Madrid 28040, Spain
| | - Elena Núñez
- Departamento de Bioquímica
y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, Madrid 28040, Spain
| | - Belén Yélamos
- Departamento de Bioquímica
y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, Madrid 28040, Spain
| | - Julián Gómez-Gutiérrez
- Departamento de Bioquímica
y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, Madrid 28040, Spain
| | - Darrell L. Peterson
- Department of Biochemistry and
Molecular Biology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia 23298, United
States
| | - Francisco Gavilanes
- Departamento de Bioquímica
y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, Madrid 28040, Spain
| |
Collapse
|
4
|
Khawaja G, Buronfosse T, Jamard C, Abdul F, Guerret S, Zoulim F, Luxembourg A, Hannaman D, Evans CF, Hartmann D, Cova L. In vivo electroporation improves therapeutic potency of a DNA vaccine targeting hepadnaviral proteins. Virology 2012; 433:192-202. [PMID: 22921316 DOI: 10.1016/j.virol.2012.07.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 06/01/2012] [Accepted: 07/16/2012] [Indexed: 12/15/2022]
Abstract
This preclinical study investigated the therapeutic efficacy of electroporation (EP)-based delivery of plasmid DNA (pDNA) encoding viral proteins (envelope, core) and IFN-γ in the duck model of chronic hepatitis B virus (DHBV) infection. Importantly, only DNA EP-therapy resulted in a significant decrease in mean viremia titers and in intrahepatic covalently closed circular DNA (cccDNA) levels in chronic DHBV-carrier animals, compared with standard needle pDNA injection (SI). In addition, DNA EP-therapy stimulated in all virus-carriers a humoral response to DHBV preS protein, recognizing a broader range of major antigenic regions, including neutralizing epitopes, compared with SI. DNA EP-therapy led also to significant higher intrahepatic IFN-γ RNA levels in DHBV-carriers compared to other groups, in the absence of adverse effects. We provide the first evidence on DNA EP-therapy benefit in terms of hepadnaviral infection clearance and break of immune tolerance in virus-carriers, supporting its clinical application for chronic hepatitis B.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/biosynthesis
- Antibodies, Viral/immunology
- Chronic Disease
- DNA, Circular/genetics
- DNA, Circular/immunology
- Disease Models, Animal
- Ducks
- Electroporation
- Epitopes
- Hepadnaviridae Infections/immunology
- Hepadnaviridae Infections/prevention & control
- Hepadnaviridae Infections/veterinary
- Hepadnaviridae Infections/virology
- Hepatitis B Vaccines/administration & dosage
- Hepatitis B Vaccines/immunology
- Hepatitis B Virus, Duck/immunology
- Hepatitis, Viral, Animal/immunology
- Hepatitis, Viral, Animal/prevention & control
- Hepatitis, Viral, Animal/virology
- Immune Tolerance
- Immunity, Humoral
- Interferon-gamma/biosynthesis
- Interferon-gamma/immunology
- Plasmids
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
- Viral Core Proteins/genetics
- Viral Core Proteins/immunology
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
- Viremia/immunology
- Viremia/prevention & control
- Viremia/veterinary
- Viremia/virology
Collapse
|
5
|
Saade F, Buronfosse T, Pradat P, Abdul F, Cova L. Enhancement of neutralizing humoral response of DNA vaccine against duck hepatitis B virus envelope protein by co-delivery of cytokine genes. Vaccine 2008; 26:5159-64. [DOI: 10.1016/j.vaccine.2008.03.086] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
6
|
Gudima S, Meier A, Dunbrack R, Taylor J, Bruss V. Two potentially important elements of the hepatitis B virus large envelope protein are dispensable for the infectivity of hepatitis delta virus. J Virol 2007; 81:4343-7. [PMID: 17251287 PMCID: PMC1866104 DOI: 10.1128/jvi.02478-06] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Previous studies have attempted to clarify the roles of the pre-S1 and pre-S2 domains of the large envelope protein of hepatitis B virus (HBV) in attachment and entry into susceptible cells. Difficulties arise in that these domains contain regions involved in the nucleocapsid assembly of HBV and overlapping with the coding regions of the viral polymerase and RNA sequences required for reverse transcription. Such difficulties can be circumvented with hepatitis delta virus (HDV), which needs the HBV large envelope protein only for infectivity. Thus, mutated HBV envelope proteins were examined for their effects on HDV infectivity. Changing the C-terminal region of pre-S1 critical for HBV assembly allowed the envelopment of HDV and had no effect on infectivity in primary human hepatocytes. Similarly, a deletion of the 12 amino acids of a putative translocation motif (TLM) in pre-S2 had no effect. Thus, these two regions are not necessary for HDV infectivity and, by inference, are not needed for HBV attachment and entry into susceptible cells.
Collapse
Affiliation(s)
- Severin Gudima
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111-2497, USA, and Department of Virology, University of Göttingen, Germany
| | | | | | | | | |
Collapse
|
7
|
Abstract
Hepadnaviridae is a family of hepatotropic DNA viruses that is divided into the genera orthohepadnavirus of mammals and avihepadnavirus of birds. All members of this family can cause acute and chronic hepatic infection, which in the case of human hepatitis B virus (HBV) constitutes a major global health problem. Although our knowledge about the molecular biology of these highly liver-specific viruses has profoundly increased in the last two decades, the mechanisms of attachment and productive entrance into the differentiated host hepatocytes are still enigmatic. The difficulties in studying hepadnaviral entry were primarily caused by the lack of easily accessible in vitro infection systems. Thus, for more than twenty years, differentiated primary hepatocytes from the respective species were the only in vitro models for both orthohepadnaviruses (e.g. HBV) and avihepadnaviruses (e.g. duck hepatitis B virus [DHBV]). Two important discoveries have been made recently regarding HBV: (1) primary hepatocytes from tree-shrews; i.e., Tupaia belangeri, can be substituted for primary human hepatocytes, and (2) a human hepatoma cell line (HepaRG) was established that gains susceptibility for HBV infection upon induction of differentiation in vitro. A number of potential HBV receptor candidates have been described in the past, but none of them have been confirmed to function as a receptor. For DHBV and probably all other avian hepadnaviruses, carboxypeptidase D (CPD) has been shown to be indispensable for infection, although the exact role of this molecule is still under debate. While still restricted to the use of primary duck hepatocytes (PDH), investigations performed with DHBV provided important general concepts on the first steps of hepadnaviral infection. However, with emerging data obtained from the new HBV infection systems, the hope that DHBV utilizes the same mechanism as HBV only partially held true. Nevertheless, both HBV and DHBV in vitro infection systems will help to: (1) functionally dissect the hepadnaviral entry pathways, (2) perform reverse genetics (e.g. test the fitness of escape mutants), (3) titrate and map neutralizing antibodies, (4) improve current vaccines to combat acute and chronic infections of hepatitis B, and (5) develop entry inhibitors for future clinical applications.
Collapse
Affiliation(s)
- Dieter Glebe
- Institute of Medical Virology, Justus-Liebig University of Giessen, Frankfurter Strasse 107, D-35392 Giessen, Germany.
| | | |
Collapse
|
8
|
Narayan R, Buronfosse T, Schultz U, Chevallier-Gueyron P, Guerret S, Chevallier M, Saade F, Ndeboko B, Trepo C, Zoulim F, Cova L. Rise in gamma interferon expression during resolution of duck hepatitis B virus infection. J Gen Virol 2006; 87:3225-3232. [PMID: 17030856 DOI: 10.1099/vir.0.82170-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Gamma interferon (IFN-γ) expression plays a crucial role in the control of mammalian hepatitis B virus (HBV) infection. However, the role of duck INF-γ (DuIFN-γ) in the outcome of duck HBV (DHBV) infection, a reference model for hepadnavirus replication studies, has not yet been investigated. This work explored the dynamics of DuIFN-γ expression in liver and peripheral blood mononuclear cells (PBMCs) during resolution of DHBV infection in adolescent ducks in relation to serum and liver markers of virus replication, histological changes and humoral response induction. DHBV infection of 3-week-old ducks resulted in transient expression of intrahepatic preS protein (days 3–14) and mild histological changes. Low-level viraemia was detected only during the first 10 days of infection and was accompanied by early anti-preS antibody response induction. Importantly, a strong increase in intrahepatic DuIFN-γ RNA was detected by real-time RT-PCR at days 6–14, which coincided with a sharp decrease in both viral DNA and preS protein in the liver. Interestingly, liver DuIFN-γ expression remained augmented to the end of the follow-up period (day 66) and correlated with portal lymphocyte infiltration and persistence of trace quantities of intrahepatic DHBV DNA in animals that had apparently completely resolved the infection. Moreover, in infected ducks, a moderate increase was detected in the levels of DuIFN-γ in PBMCs (days 12–14), which coincided with the peak in liver DuIFN-γ RNA levels. These data reveal that increased DuIFN-γ expression in liver and PBMCs is concomitant with viral clearance, characterizing the resolution of infection, and provide new insights into the host–virus interactions that control DHBV infection.
Collapse
MESH Headings
- Animals
- DNA, Viral/analysis
- DNA, Viral/genetics
- Ducks
- Hepadnaviridae Infections/blood
- Hepadnaviridae Infections/metabolism
- Hepadnaviridae Infections/veterinary
- Hepadnaviridae Infections/virology
- Hepatitis B Antibodies/blood
- Hepatitis B Surface Antigens/immunology
- Hepatitis B Surface Antigens/metabolism
- Hepatitis B Virus, Duck/isolation & purification
- Hepatitis, Viral, Animal/blood
- Hepatitis, Viral, Animal/metabolism
- Hepatitis, Viral, Animal/virology
- Interferon-gamma/genetics
- Interferon-gamma/metabolism
- Leukocytes, Mononuclear/metabolism
- Liver/metabolism
- Liver/virology
- Polymerase Chain Reaction
- RNA, Viral/analysis
- RNA, Viral/genetics
- Time Factors
- Viremia
Collapse
Affiliation(s)
| | - Thierry Buronfosse
- Ecole Nationale Vétérinaire, Marcy l'Etoile, France
- INSERM Unit 271, 151 Cours Albert Thomas, 69003 Lyon, France
| | - Ursula Schultz
- Department of Internal Medicine II/Molecular Biology, University Hospital, Freiburg, Germany
| | | | | | | | - Fadi Saade
- INSERM Unit 271, 151 Cours Albert Thomas, 69003 Lyon, France
| | | | - Christian Trepo
- INSERM Unit 271, 151 Cours Albert Thomas, 69003 Lyon, France
| | - Fabien Zoulim
- INSERM Unit 271, 151 Cours Albert Thomas, 69003 Lyon, France
| | - Lucyna Cova
- INSERM Unit 271, 151 Cours Albert Thomas, 69003 Lyon, France
| |
Collapse
|
9
|
Lin L, Prassolov A, Funk A, Quinn L, Hohenberg H, Frölich K, Newbold J, Ludwig A, Will H, Sirma H, Steinbach F. Evidence from nature: interspecies spread of heron hepatitis B viruses. J Gen Virol 2005; 86:1335-1342. [PMID: 15831944 DOI: 10.1099/vir.0.80789-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Heron hepatitis B viruses (HHBVs) in three subspecies of free-living great blue herons (Ardea herodias) from Florida, USA, were identified and characterized. Eight of 13 samples were positive in all assays used, whereas sera from egrets, which are also members of the family Ardeidae, were negative in the same assays. Comparative phylogenetic analysis of viral DNA sequences from the preS/S region of previously reported and novel HHBV strains isolated from captive grey herons (Germany) and free-ranging great blue herons (USA), respectively, revealed a strong conservation (95 % sequence similarity) with two separate clusters, implying a common ancestor of all strains. Our data demonstrate for the first time that different subspecies of herons are infected by HHBV and that these infections exist in non-captive birds. Phylogenetic analysis and the fact that the different heron species are geographically isolated populations suggest that lateral transmission, virus adaptation and environmental factors all play a role in HHBV spreading and evolution.
Collapse
Affiliation(s)
- Li Lin
- Heinrich-Pette-Institut für Experimentelle Virologie und Immunologie an der Universität Hamburg, PO Box 201652, 20206 Hamburg, Germany
| | - Alexej Prassolov
- Heinrich-Pette-Institut für Experimentelle Virologie und Immunologie an der Universität Hamburg, PO Box 201652, 20206 Hamburg, Germany
| | - Anneke Funk
- Heinrich-Pette-Institut für Experimentelle Virologie und Immunologie an der Universität Hamburg, PO Box 201652, 20206 Hamburg, Germany
| | - Laura Quinn
- Florida Keys Wild Bird Centre, Tavernier, FL 33070, USA
| | - Heinz Hohenberg
- Heinrich-Pette-Institut für Experimentelle Virologie und Immunologie an der Universität Hamburg, PO Box 201652, 20206 Hamburg, Germany
| | - Kai Frölich
- Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany
| | - John Newbold
- School of Medicine, University of North Carolina, Department of Microbiology and Immunology, Chapel Hill, NC 27599-7290, USA
| | - Arne Ludwig
- Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany
| | - Hans Will
- Heinrich-Pette-Institut für Experimentelle Virologie und Immunologie an der Universität Hamburg, PO Box 201652, 20206 Hamburg, Germany
| | - Hüseyin Sirma
- Heinrich-Pette-Institut für Experimentelle Virologie und Immunologie an der Universität Hamburg, PO Box 201652, 20206 Hamburg, Germany
| | - Falko Steinbach
- Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany
| |
Collapse
|
10
|
Funk A, Mhamdi M, Lin L, Will H, Sirma H. Itinerary of hepatitis B viruses: delineation of restriction points critical for infectious entry. J Virol 2004; 78:8289-300. [PMID: 15254201 PMCID: PMC446123 DOI: 10.1128/jvi.78.15.8289-8300.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Little is known about cellular determinants essential for human hepatitis B virus infection. Using the duck hepatitis B virus as a model, we first established a sensitive binding assay for both virions and subviral particles and subsequently elucidated the characteristics of the early viral entry steps. The infection itinerary was found to initiate with the attachment of viral particles to a low number of binding sites on hepatocytes (about 10(4) per cell). Virus internalization was fully accomplished in less than 3 h but was then followed by a period of unprecedented length, about 14 h, until completion of nuclear import of the viral genome. Steps subsequent to virus entry depended on both intact microtubules and their dynamic turnover but not on actin cytoskeleton. Notably, cytoplasmic trafficking of viral particles and emergence of nuclear covalently closed circular DNA requires microtubules during entry only at and for specific time periods. Taken together, these data disclose for the first time a series of steps and their kinetics that are essential for the entry of hepatitis B viruses into hepatocytes and are different from those of any other virus reported so far.
Collapse
Affiliation(s)
- Anneke Funk
- Department of General Virology, Heinrich-Pette-Institut, Hamburg, Germany
| | | | | | | | | |
Collapse
|
11
|
Funk A, Hohenberg H, Mhamdi M, Will H, Sirma H. Spread of hepatitis B viruses in vitro requires extracellular progeny and may be codetermined by polarized egress. J Virol 2004; 78:3977-83. [PMID: 15047813 PMCID: PMC374299 DOI: 10.1128/jvi.78.8.3977-3983.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Viruses can spread by different mechanisms: via intracellular particles through cell junctions to neighboring cells or via secreted virions to adjacent or remote cells. The observation of clusters of hepadnavirus-infected cells both in vivo and in primary hepatocytes neither proves the first mechanism nor excludes the second. In order to test which mechanism, if not both, is used by hepatitis B viruses in order to spread, we used primary duck hepatocytes and duck hepatitis B virus (DHBV) as an infection model. If extracellular progeny virus alone determines spreading, neutralizing antisera or drugs blocking virus binding to hepatocytes should abolish secondary infection. In order to test this, we used DHBV envelope-specific neutralizing antisera, as well as suramin, a known inhibitor of infection. Both reagents strongly reduced hepatocellular attachment of viral particles and almost completely abolished primary infection, whereas an ongoing intracellular infection was not affected as long as no progeny virus was released. In contrast, incubation of infected primary hepatocytes with these reagents during release of progeny virus completely prevented secondary infection. Moreover, the combination of electron and immunofluorescence microscopy analyses revealed the residence of viral particles in cytoplasmic vesicles preferentially located near the basolateral membrane of infected hepatocytes. Taken together, these data strongly suggest that hepatitis B viruses mainly spread by secreted, extracellular progeny and point to polarized egress of viral particles into intercellular compartments, which restricts their diffusion and favors transmission of virus to adjacent cells.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/administration & dosage
- Cells, Cultured
- Ducks
- Hepadnaviridae Infections/etiology
- Hepadnaviridae Infections/virology
- Hepatitis B Virus, Duck/immunology
- Hepatitis B Virus, Duck/pathogenicity
- Hepatitis B Virus, Duck/physiology
- Hepatitis, Viral, Animal/etiology
- Hepatitis, Viral, Animal/virology
- Hepatocytes/drug effects
- Hepatocytes/virology
- In Vitro Techniques
- Inclusion Bodies, Viral/ultrastructure
- Microscopy, Electron
- Neutralization Tests
- Suramin/pharmacology
- Virus Replication
Collapse
Affiliation(s)
- A Funk
- Department of General Virology, Heinrich-Pette-Institut für experimentelle Virologie und Immunologie an der Universität Hamburg, 20251 Hamburg, Germany
| | | | | | | | | |
Collapse
|
12
|
Thermet A, Robaczewska M, Rollier C, Hantz O, Trepo C, Deleage G, Cova L. Identification of antigenic regions of duck hepatitis B virus core protein with antibodies elicited by DNA immunization and chronic infection. J Virol 2004; 78:1945-53. [PMID: 14747559 PMCID: PMC369491 DOI: 10.1128/jvi.78.4.1945-1953.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The induction of humoral response in ducks by DNA-based immunization against duck hepatitis B virus (DHBV) core protein (DHBc) was investigated. In addition, the amino acid specificity of the induced response was compared by using peptide scanning to that elicited either by protein immunization or during chronic DHBV infection. Immunization of ducks with a plasmid expressing DHBc protein led to the induction of a long-lasting antibody response able to specifically recognize viral protein in chronically infected duck livers. Peptide scanning analysis of anti-DHBc response induced during chronic DHBV infection allowed us to identify six major antigenic regions (AR1 to AR6). The reactivity spectrum of duck sera elicited by protein immunization appeared narrower and was restricted to only four of these antigenic regions in spite of higher anti-DHBc antibody titers. Interestingly, anti-DHBc antibodies induced by DNA-based immunization recognized five of six antigenic regions, and the epitope pattern was broader and more closely related to that observed in chronic viral infections. To gain more insight into the location of antigenic regions, we built a three-dimensional (3-D) model of DHBc protein based on human and duck core sequence alignment data and the HBc 3-D crystal structure. The results suggest that two identified antigenic regions (AR2, amino acids [aa] (64)T-P(84), and AR5, aa (183)A-R(210)) are located at positions on the protein surface equivalent to those of the two HBc major epitopes. Moreover, we identified another antigenic region (AR3, aa (99)I-I(112)) that was recognized by all sera from chronically infected, DNA- or protein-immunized ducks within the large 45-aa insertion in DHBc protein, suggesting that this region, which lacks HBc, is externally exposed.
Collapse
Affiliation(s)
- A Thermet
- INSERM U271, 69424 Lyon Cedex 03, France
| | | | | | | | | | | | | |
Collapse
|
13
|
Baranowski E, Ruiz-Jarabo CM, Pariente N, Verdaguer N, Domingo E. Evolution of cell recognition by viruses: a source of biological novelty with medical implications. Adv Virus Res 2004; 62:19-111. [PMID: 14719364 PMCID: PMC7119103 DOI: 10.1016/s0065-3527(03)62002-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The picture beginning to form from genome analyses of viruses, unicellular organisms, and multicellular organisms is that viruses have shared functional modules with cells. A process of coevolution has probably involved exchanges of genetic information between cells and viruses for long evolutionary periods. From this point of view present-day viruses show flexibility in receptor usage and a capacity to alter through mutation their receptor recognition specificity. It is possible that for the complex DNA viruses, due to a likely limited tolerance to generalized high mutation rates, modifications in receptor specificity will be less frequent than for RNA viruses, albeit with similar biological consequences once they occur. It is found that different receptors, or allelic forms of one receptor, may be used with different efficiency and receptor affinities are probably modified by mutation and selection. Receptor abundance and its affinity for a virus may modulate not only the efficiency of infection, but also the capacity of the virus to diffuse toward other sites of the organism. The chapter concludes that receptors may be shared by different, unrelated viruses and that one virus may use several receptors and may expand its receptor specificity in ways that, at present, are largely unpredictable.
Collapse
Affiliation(s)
- Eric Baranowski
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Centro de Investigación en Sanidad Animal (CISA-INIA), Madrid, Spain
| | | | | | | | | |
Collapse
|
14
|
Prassolov A, Hohenberg H, Kalinina T, Schneider C, Cova L, Krone O, Frölich K, Will H, Sirma H. New hepatitis B virus of cranes that has an unexpected broad host range. J Virol 2003; 77:1964-76. [PMID: 12525630 PMCID: PMC140978 DOI: 10.1128/jvi.77.3.1964-1976.2003] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
All hepadnaviruses known so far have a very limited host range, restricted to their natural hosts and a few closely related species. This is thought to be due mainly to sequence divergence in the large envelope protein and species-specific differences in host components essential for virus propagation. Here we report an infection of cranes with a novel hepadnavirus, designated CHBV, that has an unexpectedly broad host range and is only distantly evolutionarily related to avihepadnaviruses of related hosts. Direct DNA sequencing of amplified CHBV DNA as well a sequencing of cloned viral genomes revealed that CHBV is most closely related to, although distinct from, Ross' goose hepatitis B virus (RGHBV) and slightly less closely related to duck hepatitis B virus (DHBV). Phylogenetically, cranes are very distant from geese and ducks and are most closely related to herons and storks. Naturally occurring hepadnaviruses in the last two species are highly divergent in sequence from RGHBV and DHBV and do not infect ducks or do so only marginally. In contrast, CHBV from crane sera and recombinant CHBV produced from LMH cells infected primary duck hepatocytes almost as efficiently as DHBV did. This is the first report of a rather broad host range of an avihepadnavirus. Our data imply either usage of similar or identical entry pathways and receptors by DHBV and CHBV, unusual host and virus adaptation mechanisms, or divergent evolution of the host genomes and cellular components required for virus propagation.
Collapse
Affiliation(s)
- Alexej Prassolov
- Heinrich Pette Institute of Experimental Virology and Immunology, Hamburg. Institute of Zoo and Wildlife Research, Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Pult I, Netter HJ, Bruns M, Prassolov A, Sirma H, Hohenberg H, Chang SF, Frölich K, Krone O, Kaleta EF, Will H. Identification and analysis of a new hepadnavirus in white storks. Virology 2001; 289:114-28. [PMID: 11601923 DOI: 10.1006/viro.2001.1115] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We identified, cloned, and functionally characterized a new avian hepadnavirus infecting storks (STHBV). STHBV has the largest DNA genome of all avian hepadnaviruses and, based on sequence and phylogenetic analysis, is most closely related to, but distinct from, heron hepatitis B virus (HHBV). Unique for STHBV among the other avian hepadnaviruses is a potential HNF1 binding site in the preS promoter. In common only with HHBV, STHBV has a myristylation signal on the S and not the preS protein, two C terminally located glycosylation sites on the precore/core proteins and lacks the phosphorylation site essential for the transcriptional transactivation activity of duck-HBV preS protein. The cloned STHBV genomes were competent in gene expression, replication, and viral particle secretion. STHBV infected primary duck hepatocytes very inefficiently suggesting a restricted host range, similar to other hepadnaviruses. This discovery of stork infections unravels novel evolutionary aspects of hepadnaviruses and provides new opportunities for hepadnavirus research.
Collapse
Affiliation(s)
- I Pult
- Heinrich-Pette-Institut für Experimentelle Virologie und Immunologie an der Universität Hamburg, Martinistrasse 52, 20251 Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
van Hulten MC, Witteveldt J, Snippe M, Vlak JM. White spot syndrome virus envelope protein VP28 is involved in the systemic infection of shrimp. Virology 2001; 285:228-33. [PMID: 11437657 DOI: 10.1006/viro.2001.0928] [Citation(s) in RCA: 167] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
White spot syndrome virus (WSSV) is a large DNA virus infecting shrimp and other crustaceans. The virus particles contain at least five major virion proteins, of which three (VP26, VP24, and VP15) are present in the rod-shaped nucleocapsid and two (VP28 and VP19) reside in the envelope. The mode of entry and systemic infection of WSSV in the black tiger shrimp, Penaeus monodon, and the role of these proteins in these processes are not known. A specific polyclonal antibody was generated against the major envelope protein VP28 using a baculovirus expression vector system. The VP28 antiserum was able to neutralize WSSV infection of P. monodon in a concentration-dependent manner upon intramuscular injection. This result suggests that VP28 is located on the surface of the virus particle and is likely to play a key role in the initial steps of the systemic WSSV infection in shrimp.
Collapse
Affiliation(s)
- M C van Hulten
- Laboratory of Virology, Wageningen University, Binnenhaven 11, Wageningen, 6709 PD, The Netherlands
| | | | | | | |
Collapse
|
17
|
Seignères B, Aguesse-Germon S, Pichoud C, Vuillermoz I, Jamard C, Trépo C, Zoulim F. Duck hepatitis B virus polymerase gene mutants associated with resistance to lamivudine have a decreased replication capacity in vitro and in vivo. J Hepatol 2001; 34:114-22. [PMID: 11211887 DOI: 10.1016/s0168-8278(00)00074-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND/AIMS Hepatitis B virus mutants of the polymerase gene are frequently selected during lamivudine therapy for chronic hepatitis B. To study the biology of these mutants, we analyzed their replication capacity in the duck hepatitis B virus (DHBV) infection. METHODS The B and C domain polymerase mutants corresponding to the clinical isolates were engineered by site directed mutagenesis in the DHBV genome in different expression vectors. RESULTS The study of the enzymatic activity of the mutated viral polymerase polypeptides analyzed in a cell free system demonstrated a lower priming activity and a decreased capacity of elongation of viral minus strand DNA that was consistent with the lower replication capacity of these mutants in transfected leghorn male hepatoma cells compared to wild type genome. These mutants had a lower replication capacity in primary hepatocytes and in in vivo transfected ducklings. Although resistant to lamivudine, these mutants remained sensitive to PMEA. CONCLUSION YMDD mutants of the DHBV reverse transcriptase have a decreased replication capacity both in vitro and in vivo, and are not cross-resistant to PMEA. These results may be important to design new antiviral strategies to combat the replication of the lamivudine resistant viral strains.
Collapse
|
18
|
Rollier C, Charollois C, Jamard C, Trepo C, Cova L. Early life humoral response of ducks to DNA immunization against hepadnavirus large envelope protein. Vaccine 2000; 18:3091-6. [PMID: 10856788 DOI: 10.1016/s0264-410x(00)00130-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
DNA vaccination may represent an interesting strategy for early life immunization. However, in some cases, this approach has been shown to induce a tolerance rather than immunity. We have compared the efficiency of neonatal DNA or protein immunization against hepadnavirus envelope protein using the duck hepatitis B virus (DHBV) model. Three-day-old ducklings were immunized with either a plasmid encoding the DHBV pre-S/S large envelope protein (L), or a recombinant preS protein, followed by sequential DNA or protein boosts at weeks 4 and 15. Our results showed that genetic immunization of duck neonates induced specific humoral response to DHBV L protein. Interestingly, an enhanced antibody response was elicited when animals received DNA priming-DNA boosting as compared to DNA priming-protein boosting.
Collapse
Affiliation(s)
- C Rollier
- Unité de Recherche sur les Virus des Hépatites et les Pathologies Associées, Institut National de la Santé et de la Recherche Médicale unité 271, Lyon, France
| | | | | | | | | |
Collapse
|
19
|
Rollier C, Charollois C, Jamard C, Trepo C, Cova L. Maternally transferred antibodies from DNA-immunized avians protect offspring against hepadnavirus infection. J Virol 2000; 74:4908-11. [PMID: 10775634 PMCID: PMC112018 DOI: 10.1128/jvi.74.10.4908-4911.2000] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The outcome and protective efficacy of maternal antibodies elicited by DNA immunization to the large (L) hepadnavirus envelope protein were studied using the duck hepatitis B virus (DHBV) model. Following genetic immunization of breeding ducks with a DHBV L protein gene-bearing plasmid, specific and highly neutralizing antibodies were transferred from the sera of immunized ducks, via the egg yolk, to the progeny of vaccinees. Interestingly, large amounts (60 to 100 mg/egg) of high-titer and L protein-specific yolk immunoglobulins (immunoglobulin Y) accumulated in the egg yolk. These results suggest that eggs from genetically immunized avians may represent a potent source of DNA-designed antibodies specific to viral antigen. Importantly, these antibodies are vertically transmitted and protect offspring against high-titer DHBV challenge.
Collapse
Affiliation(s)
- C Rollier
- Unité de Recherche sur les Virus des Hépatites et les Pathologies Associées, Institut National de la Santé et de la Recherche Médicale, Unité 271, Lyon, France
| | | | | | | | | |
Collapse
|
20
|
Urban S, Schwarz C, Marx UC, Zentgraf H, Schaller H, Multhaup G. Receptor recognition by a hepatitis B virus reveals a novel mode of high affinity virus-receptor interaction. EMBO J 2000; 19:1217-27. [PMID: 10716922 PMCID: PMC305663 DOI: 10.1093/emboj/19.6.1217] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The duck hepatitis B virus model system was used to elucidate the characteristics of receptor (carboxypeptidase D, gp180) interaction with polypeptides representing the receptor binding site in the preS part of the large viral surface protein. We demonstrate the pivotal role of carboxypeptidase D for virus entry and show its C-domain represents the virus attachment site, which binds preS with extraordinary affinity. Combining results from surface plasmon resonance spectroscopy and two-dimensional NMR analysis we resolved the contribution of preS sequence elements to complex stability and show that receptor binding potentially occurs in two steps. Initially, a short alpha-helix in the C-terminus of the receptor binding domain facilitates formation of a primary complex. This complex is stabilized sequentially, involving approximately 60 most randomly structured amino acids preceding the helix. Thus, hepadnaviruses exhibit a novel mechanism of high affinity receptor interaction by conserving the potential to adapt structure during binding rather than to preserve it per se. We propose that this process represents an alternative strategy to escape immune surveillance and the evolutionary pressure inherent in the compact hepadnaviral genome organization.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Binding Sites
- Carboxypeptidases/chemistry
- Carboxypeptidases/immunology
- Carboxypeptidases/isolation & purification
- Carboxypeptidases/metabolism
- Cells, Cultured
- Ducks/metabolism
- Ducks/virology
- Hepatitis B virus/chemistry
- Hepatitis B virus/drug effects
- Hepatitis B virus/metabolism
- Hepatitis B virus/physiology
- Immune Sera/immunology
- Immune Sera/pharmacology
- Kinetics
- Liver/cytology
- Liver/drug effects
- Liver/enzymology
- Liver/virology
- Molecular Sequence Data
- Mutation/genetics
- Nuclear Magnetic Resonance, Biomolecular
- Peptide Fragments/chemistry
- Peptide Fragments/genetics
- Peptide Fragments/isolation & purification
- Peptide Fragments/metabolism
- Protein Conformation
- Protein Structure, Tertiary
- Receptors, Antigen/chemistry
- Receptors, Antigen/genetics
- Receptors, Antigen/metabolism
- Receptors, Virus/chemistry
- Receptors, Virus/immunology
- Receptors, Virus/isolation & purification
- Receptors, Virus/metabolism
- Solubility
- Surface Plasmon Resonance
- Thermodynamics
Collapse
Affiliation(s)
- S Urban
- Zentrum für Molekulare Biologie (ZMBH), Universität Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg.
| | | | | | | | | | | |
Collapse
|
21
|
Zoulim F. Therapy of chronic hepatitis B virus infection: inhibition of the viral polymerase and other antiviral strategies. Antiviral Res 1999; 44:1-30. [PMID: 10588330 DOI: 10.1016/s0166-3542(99)00056-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronic hepatitis B infection remains a major public health problem worldwide. The hepatitis B virus belongs to the family of hepadnaviruses that replicate their DNA genome via a reverse transcription pathway. The chronicity of infection in infected hepatocytes is maintained by the persistence of the viral covalently closed circular DNA. The main strategies to combat chronic HBV infection rely on the stimulation of the specific antiviral immune response and on the inhibition of viral replication. While the prolonged administration of reverse transcriptase inhibitors is most often associated with a control of viral replication rather than eradication, it may select for resistant mutants. The search for new viral targets is therefore mandatory to design combination strategies to prevent the emergence of resistant mutants and eventually clear viral infection.
Collapse
|
22
|
Abstract
The receptor molecules for human and animal hepatitis B viruses have not been defined. Previous studies have described a 170 to 180 kDa molecule (p170 or gp180) that binds in vitro to the pre-S domain of the large envelope protein of duck hepatitis B virus (DHBV); cDNA cloning revealed the binding protein to be duck carboxypeptidase D (DCPD). In the present study, the DCPD cDNA was transfected into several nonpermissive human-, monkey-, and avian species-derived cell lines. Cells transfected with a plasmid encoding the full-length DCPD protein bound DHBV particles, whereas cells expressing truncated versions of DCPD protein that fail to bind the pre-S protein did not. The DHBV binding to DCPD-reconstituted cells was blocked by a monoclonal antibody that neutralizes DHBV infection of primary duck hepatocytes (PDH) and also by a pre-S peptide previously shown to inhibit DHBV infection of PDH. In addition to promoting virus binding, DCPD expression was associated with internalization of viral particles. The entry process was prevented by incubation of reconstituted cells with DHBV at 4 degrees C and by the addition of energy-depleting agents known to block DHBV entry into PDH. These results demonstrated that DCPD is a DHBV receptor. However, the lack of complete viral replication in DCPD-reconstituted cells suggested that additional factors are required for postentry events in immortalized cell lines.
Collapse
Affiliation(s)
- S Tong
- Molecular Hepatology Laboratory, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | | | |
Collapse
|