1
|
Duchon A, Hu WS. HIV-1 RNA genome packaging: it's G-rated. mBio 2024; 15:e0086123. [PMID: 38411060 PMCID: PMC11005445 DOI: 10.1128/mbio.00861-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
A member of the Retroviridae, human immunodeficiency virus type 1 (HIV-1), uses the RNA genome packaged into nascent virions to transfer genetic information to its progeny. The genome packaging step is a highly regulated and extremely efficient process as a vast majority of virus particles contain two copies of full-length unspliced HIV-1 RNA that form a dimer. Thus, during virus assembly HIV-1 can identify and selectively encapsidate HIV-1 unspliced RNA from an abundant pool of cellular RNAs and various spliced HIV-1 RNAs. Several "G" features facilitate the packaging of a dimeric RNA genome. The viral polyprotein Gag orchestrates virus assembly and mediates RNA genome packaging. During this process, Gag preferentially binds unpaired guanosines within the highly structured 5' untranslated region (UTR) of HIV-1 RNA. In addition, the HIV-1 unspliced RNA provides a scaffold that promotes Gag:Gag interactions and virus assembly, thereby ensuring its packaging. Intriguingly, recent studies have shown that the use of different guanosines at the junction of U3 and R as transcription start sites results in HIV-1 unspliced RNA species with 99.9% identical sequences but dramatically distinct 5' UTR conformations. Consequently, one species of unspliced RNA is preferentially packaged over other nearly identical RNAs. These studies reveal how conformations affect the functions of HIV-1 RNA elements and the complex regulation of HIV-1 replication. In this review, we summarize cis- and trans-acting elements critical for HIV-1 RNA packaging, locations of Gag:RNA interactions that mediate genome encapsidation, and the effects of transcription start sites on the structure and packaging of HIV-1 RNA.
Collapse
Affiliation(s)
- Alice Duchon
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, Maryland, USA
| | - Wei-Shau Hu
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, Maryland, USA
| |
Collapse
|
2
|
Chameettachal A, Mustafa F, Rizvi TA. Understanding Retroviral Life Cycle and its Genomic RNA Packaging. J Mol Biol 2023; 435:167924. [PMID: 36535429 DOI: 10.1016/j.jmb.2022.167924] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Members of the family Retroviridae are important animal and human pathogens. Being obligate parasites, their replication involves a series of steps during which the virus hijacks the cellular machinery. Additionally, many of the steps of retrovirus replication are unique among viruses, including reverse transcription, integration, and specific packaging of their genomic RNA (gRNA) as a dimer. Progress in retrovirology has helped identify several molecular mechanisms involved in each of these steps, but many are still unknown or remain controversial. This review summarizes our present understanding of the molecular mechanisms involved in various stages of retrovirus replication. Furthermore, it provides a comprehensive analysis of our current understanding of how different retroviruses package their gRNA into the assembling virions. RNA packaging in retroviruses holds a special interest because of the uniqueness of packaging a dimeric genome. Dimerization and packaging are highly regulated and interlinked events, critical for the virus to decide whether its unspliced RNA will be packaged as a "genome" or translated into proteins. Finally, some of the outstanding areas of exploration in the field of RNA packaging are highlighted, such as the role of epitranscriptomics, heterogeneity of transcript start sites, and the necessity of functional polyA sequences. An in-depth knowledge of mechanisms that interplay between viral and cellular factors during virus replication is critical in understanding not only the virus life cycle, but also its pathogenesis, and development of new antiretroviral compounds, vaccines, as well as retroviral-based vectors for human gene therapy.
Collapse
Affiliation(s)
- Akhil Chameettachal
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates. https://twitter.com/chameettachal
| | - Farah Mustafa
- Department of Biochemistry, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates; Zayed bin Sultan Center for Health Sciences (ZCHS), United Arab Emirates University, Al Ain, United Arab Emirates.
| | - Tahir A Rizvi
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates; Zayed bin Sultan Center for Health Sciences (ZCHS), United Arab Emirates University, Al Ain, United Arab Emirates.
| |
Collapse
|
3
|
Chen EC, Maldonado RJK, Parent LJ. Visualizing Rous Sarcoma Virus Genomic RNA Dimerization in the Nucleus, Cytoplasm, and at the Plasma Membrane. Viruses 2021; 13:v13050903. [PMID: 34068261 PMCID: PMC8153106 DOI: 10.3390/v13050903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/30/2021] [Accepted: 05/07/2021] [Indexed: 01/01/2023] Open
Abstract
Retroviruses are unique in that they package their RNA genomes as non-covalently linked dimers. Failure to dimerize their genomes results in decreased infectivity and reduced packaging of genomic RNA into virus particles. Two models of retrovirus genome dimerization have been characterized: in murine leukemia virus (MLV), genomic RNA dimerization occurs co-transcriptionally in the nucleus, resulting in the preferential formation of genome homodimers; whereas in human immunodeficiency virus (HIV-1), genomic RNA dimerization occurs in the cytoplasm and at the plasma membrane, with a random distribution of heterodimers and homodimers. Although in vitro studies have identified the genomic RNA sequences that facilitate dimerization in Rous sarcoma virus (RSV), in vivo characterization of the location and preferences of genome dimerization has not been performed. In this study, we utilized three single molecule RNA imaging approaches to visualize genome dimers of RSV in cultured quail fibroblasts. The formation of genomic RNA heterodimers within cells was dependent on the presence of the dimerization initiation site (DIS) sequence in the L3 stem. Subcellular localization analysis revealed that heterodimers were present the nucleus, cytoplasm, and at the plasma membrane, indicating that genome dimers can form in the nucleus. Furthermore, single virion analysis revealed that RSV preferentially packages genome homodimers into virus particles. Therefore, the mechanism of RSV genomic RNA dimer formation appears more similar to MLV than HIV-1.
Collapse
Affiliation(s)
- Eunice C. Chen
- Department of Medicine, Division of Infectious Diseases and Epidemiology, Penn State College of Medicine, Hershey, PA 17033, USA; (E.C.C.); (R.J.K.M.)
| | - Rebecca J. Kaddis Maldonado
- Department of Medicine, Division of Infectious Diseases and Epidemiology, Penn State College of Medicine, Hershey, PA 17033, USA; (E.C.C.); (R.J.K.M.)
| | - Leslie J. Parent
- Department of Medicine, Division of Infectious Diseases and Epidemiology, Penn State College of Medicine, Hershey, PA 17033, USA; (E.C.C.); (R.J.K.M.)
- Department of Microbiology & Immunology, Penn State College of Medicine, Hershey, PA 17033, USA
- Correspondence: ; Tel.: +1-717-531-7199
| |
Collapse
|
4
|
Boyd PS, Brown JB, Brown JD, Catazaro J, Chaudry I, Ding P, Dong X, Marchant J, O’Hern CT, Singh K, Swanson C, Summers MF, Yasin S. NMR Studies of Retroviral Genome Packaging. Viruses 2020; 12:v12101115. [PMID: 33008123 PMCID: PMC7599994 DOI: 10.3390/v12101115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/18/2020] [Accepted: 09/26/2020] [Indexed: 12/03/2022] Open
Abstract
Nearly all retroviruses selectively package two copies of their unspliced RNA genomes from a cellular milieu that contains a substantial excess of non-viral and spliced viral RNAs. Over the past four decades, combinations of genetic experiments, phylogenetic analyses, nucleotide accessibility mapping, in silico RNA structure predictions, and biophysical experiments were employed to understand how retroviral genomes are selected for packaging. Genetic studies provided early clues regarding the protein and RNA elements required for packaging, and nucleotide accessibility mapping experiments provided insights into the secondary structures of functionally important elements in the genome. Three-dimensional structural determinants of packaging were primarily derived by nuclear magnetic resonance (NMR) spectroscopy. A key advantage of NMR, relative to other methods for determining biomolecular structure (such as X-ray crystallography), is that it is well suited for studies of conformationally dynamic and heterogeneous systems—a hallmark of the retrovirus packaging machinery. Here, we review advances in understanding of the structures, dynamics, and interactions of the proteins and RNA elements involved in retroviral genome selection and packaging that are facilitated by NMR.
Collapse
|
5
|
Kalloush RM, Vivet-Boudou V, Ali LM, Pillai VN, Mustafa F, Marquet R, Rizvi TA. Stabilizing role of structural elements within the 5´ Untranslated Region (UTR) and gag sequences in Mason-Pfizer monkey virus (MPMV) genomic RNA packaging. RNA Biol 2019; 16:612-625. [PMID: 30773097 DOI: 10.1080/15476286.2019.1572424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The Mason-Pfizer monkey virus (MPMV) genomic RNA (gRNA) packaging signal is a highly-structured element with several stem-loops held together by two phylogenetically conserved long-range interactions (LRIs) between U5 and gag complementary sequences. These LRIs play a critical role in maintaining the structure of the 5´ end of the MPMV gRNA. Thus, one could hypothesize that the overall RNA secondary structure of this region is further architecturally held together by three other stem loops (SL3, Gag SL1, and Gag SL2) comprising of sequences from the distal parts of the 5´untranslated region (5' UTR) to ~ 120 nucleotides into gag, excluding gag sequences involved in forming the U5-Gag LRIs. To provide functional evidence for the biological significance of these stem loops during gRNA encapsidation, these structural motifs were mutated and their effects on MPMV RNA packaging and propagation were tested in a single round trans-complementation assay. The mutant RNA structures were further studied by high throughput SHAPE (hSHAPE) assay. Our results reveal that sequences involved in forming these three stem loops do not play crucial roles at an individual level during MPMV gRNA packaging or propagation. Further structure-function analysis indicates that the U5-Gag LRIs have a more important architectural role in stabilizing the higher order structure of the 5´ UTR than the three stem loops which have a more secondary and perhaps indirect role in stabilizing the overall RNA secondary structure of the region. Our work provides a better understanding of the molecular interactions that take place during MPMV gRNA packaging.
Collapse
Affiliation(s)
- Rawan M Kalloush
- a Department of Microbiology & Immunology College of Medicine and Health Sciences , United Arab Emirates University , Al Ain , United Arab Emirates (UAE)
| | - Valérie Vivet-Boudou
- b CNRS, Architecture et Réactivité de l'ARN, UPR , Université de Strasbourg , Strasbourg , France
| | - Lizna M Ali
- a Department of Microbiology & Immunology College of Medicine and Health Sciences , United Arab Emirates University , Al Ain , United Arab Emirates (UAE)
| | - Vineeta N Pillai
- a Department of Microbiology & Immunology College of Medicine and Health Sciences , United Arab Emirates University , Al Ain , United Arab Emirates (UAE)
| | - Farah Mustafa
- c Department of Biochemistry, College of Medicine and Health Sciences , United Arab Emirates University , Al Ain , United Arab Emirates (UAE)
| | - Roland Marquet
- b CNRS, Architecture et Réactivité de l'ARN, UPR , Université de Strasbourg , Strasbourg , France
| | - Tahir A Rizvi
- a Department of Microbiology & Immunology College of Medicine and Health Sciences , United Arab Emirates University , Al Ain , United Arab Emirates (UAE)
| |
Collapse
|
6
|
Dubois N, Khoo KK, Ghossein S, Seissler T, Wolff P, McKinstry WJ, Mak J, Paillart JC, Marquet R, Bernacchi S. The C-terminal p6 domain of the HIV-1 Pr55 Gag precursor is required for specific binding to the genomic RNA. RNA Biol 2018; 15:923-936. [PMID: 29954247 DOI: 10.1080/15476286.2018.1481696] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The Pr55Gag precursor specifically selects the HIV-1 genomic RNA (gRNA) from a large excess of cellular and partially or fully spliced viral RNAs and drives the virus assembly at the plasma membrane. During these processes, the NC domain of Pr55Gag interacts with the gRNA, while its C-terminal p6 domain binds cellular and viral factors and orchestrates viral particle release. Gag∆p6 is a truncated form of Pr55Gag lacking the p6 domain usually used as a default surrogate for wild type Pr55Gag for in vitro analysis. With recent advance in production of full-length recombinant Pr55Gag, here, we tested whether the p6 domain also contributes to the RNA binding specificity of Pr55Gag by systematically comparing binding of Pr55Gag and Gag∆p6 to a panel of viral and cellular RNAs. Unexpectedly, our fluorescence data reveal that the p6 domain is absolutely required for specific binding of Pr55Gag to the HIV-1 gRNA. Its deletion resulted not only in a decreased affinity for gRNA, but also in an increased affinity for spliced viral and cellular RNAs. In contrast Gag∆p6 displayed a similar affinity for all tested RNAs. Removal of the C-terminal His-tag from Pr55Gag and Gag∆p6 uniformly increased the Kd values of the RNA-protein complexes by ~ 2.5 fold but did not affect the binding specificities of these proteins. Altogether, our results demonstrate a novel role of the p6 domain in the specificity of Pr55Gag-RNA interactions, and strongly suggest that the p6 domain contributes to the discrimination of HIV-1 gRNA from cellular and spliced viral mRNAs, which is necessary for its selective encapsidation.
Collapse
Affiliation(s)
- Noé Dubois
- a Architecture et Réactivité de l'ARN, UPR 9002, IBMC, CNRS , Université de Strasbourg , Strasbourg , France
| | - Keith K Khoo
- b School of Medicine , Deakin University , Geelong , Australia.,c CSIRO Manufacturing , Parkville , Australia
| | - Shannon Ghossein
- b School of Medicine , Deakin University , Geelong , Australia.,c CSIRO Manufacturing , Parkville , Australia
| | - Tanja Seissler
- a Architecture et Réactivité de l'ARN, UPR 9002, IBMC, CNRS , Université de Strasbourg , Strasbourg , France
| | - Philippe Wolff
- a Architecture et Réactivité de l'ARN, UPR 9002, IBMC, CNRS , Université de Strasbourg , Strasbourg , France.,d Plateforme protéomique Strasbourg-Esplanade, IBMC, CNRS , Université de Strasbourg , Strasbourg , France
| | | | - Johnson Mak
- b School of Medicine , Deakin University , Geelong , Australia.,e Institute for Glycomics, Griffith University , Southport , Australia
| | - Jean-Christophe Paillart
- a Architecture et Réactivité de l'ARN, UPR 9002, IBMC, CNRS , Université de Strasbourg , Strasbourg , France
| | - Roland Marquet
- a Architecture et Réactivité de l'ARN, UPR 9002, IBMC, CNRS , Université de Strasbourg , Strasbourg , France
| | - Serena Bernacchi
- a Architecture et Réactivité de l'ARN, UPR 9002, IBMC, CNRS , Université de Strasbourg , Strasbourg , France
| |
Collapse
|
7
|
Bieniasz P, Telesnitsky A. Multiple, Switchable Protein:RNA Interactions Regulate Human Immunodeficiency Virus Type 1 Assembly. Annu Rev Virol 2018; 5:165-183. [PMID: 30048218 DOI: 10.1146/annurev-virology-092917-043448] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) particle assembly requires several protein:RNA interactions that vary widely in their character, from specific recognition of highly conserved and structured viral RNA elements to less specific interactions with variable RNA sequences. Genetic, biochemical, biophysical, and structural studies have illuminated how virion morphogenesis is accompanied by dramatic changes in the interactions among the protein and RNA virion components. The 5' leader RNA element drives RNA recognition by Gag upon initiation of HIV-1 assembly and can assume variable conformations that influence translation, dimerization, and Gag recognition. As Gag multimerizes on the plasma membrane, forming immature particles, its RNA binding specificity transiently changes, enabling recognition of the A-rich composition of the viral genome. Initiation of assembly may also be regulated by occlusion of the membrane binding surface of Gag by tRNA. Finally, recent work has suggested that RNA interactions with viral enzymes may activate and ensure the accuracy of virion maturation.
Collapse
Affiliation(s)
- Paul Bieniasz
- Laboratory of Retrovirology and Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA;
| | - Alice Telesnitsky
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan 48109, USA;
| |
Collapse
|
8
|
Kharytonchyk S, Brown JD, Stilger K, Yasin S, Iyer AS, Collins J, Summers MF, Telesnitsky A. Influence of gag and RRE Sequences on HIV-1 RNA Packaging Signal Structure and Function. J Mol Biol 2018; 430:2066-2079. [PMID: 29787767 PMCID: PMC6082134 DOI: 10.1016/j.jmb.2018.05.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 12/22/2022]
Abstract
The packaging signal (Ψ) and Rev-responsive element (RRE) enable unspliced HIV-1 RNAs' export from the nucleus and packaging into virions. For some retroviruses, engrafting Ψ onto a heterologous RNA is sufficient to direct encapsidation. In contrast, HIV-1 RNA packaging requires 5' leader Ψ elements plus poorly defined additional features. We previously defined minimal 5' leader sequences competitive with intact Ψ for HIV-1 packaging, and here examined the potential roles of additional downstream elements. The findings confirmed that together, HIV-1 5' leader Ψ sequences plus a nuclear export element are sufficient to specify packaging. However, RNAs trafficked using a heterologous export element did not compete well with RNAs using HIV-1's RRE. Furthermore, some RNA additions to well-packaged minimal vectors rendered them packaging-defective. These defects were rescued by extending gag sequences in their native context. To understand these packaging defects' causes, in vitro dimerization properties of RNAs containing minimal packaging elements were compared to RNAs with sequence extensions that were or were not compatible with packaging. In vitro dimerization was found to correlate with packaging phenotypes, suggesting that HIV-1 evolved to prevent 5' leader residues' base pairing with downstream residues and misfolding of the packaging signal. Our findings explain why gag sequences have been implicated in packaging and show that RRE's packaging contributions appear more specific than nuclear export alone. Paired with recent work showing that sequences upstream of Ψ can dictate RNA folds, the current work explains how genetic context of minimal packaging elements contributes to HIV-1 RNA fate determination.
Collapse
Affiliation(s)
- Siarhei Kharytonchyk
- Department of Microbiology and Immunology, University of Michigan Medical School, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5620, United States
| | - Joshua D Brown
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, United States
| | - Krista Stilger
- Department of Microbiology and Immunology, University of Michigan Medical School, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5620, United States
| | - Saif Yasin
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, United States
| | - Aishwarya S Iyer
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, United States
| | - John Collins
- Department of Microbiology and Immunology, University of Michigan Medical School, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5620, United States
| | - Michael F Summers
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, United States
| | - Alice Telesnitsky
- Department of Microbiology and Immunology, University of Michigan Medical School, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5620, United States.
| |
Collapse
|
9
|
Smyth RP, Smith MR, Jousset AC, Despons L, Laumond G, Decoville T, Cattenoz P, Moog C, Jossinet F, Mougel M, Paillart JC, von Kleist M, Marquet R. In cell mutational interference mapping experiment (in cell MIME) identifies the 5' polyadenylation signal as a dual regulator of HIV-1 genomic RNA production and packaging. Nucleic Acids Res 2018; 46:e57. [PMID: 29514260 PMCID: PMC5961354 DOI: 10.1093/nar/gky152] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/02/2018] [Accepted: 03/01/2018] [Indexed: 12/28/2022] Open
Abstract
Non-coding RNA regulatory elements are important for viral replication, making them promising targets for therapeutic intervention. However, regulatory RNA is challenging to detect and characterise using classical structure-function assays. Here, we present in cell Mutational Interference Mapping Experiment (in cell MIME) as a way to define RNA regulatory landscapes at single nucleotide resolution under native conditions. In cell MIME is based on (i) random mutation of an RNA target, (ii) expression of mutated RNA in cells, (iii) physical separation of RNA into functional and non-functional populations, and (iv) high-throughput sequencing to identify mutations affecting function. We used in cell MIME to define RNA elements within the 5' region of the HIV-1 genomic RNA (gRNA) that are important for viral replication in cells. We identified three distinct RNA motifs controlling intracellular gRNA production, and two distinct motifs required for gRNA packaging into virions. Our analysis reveals the 73AAUAAA78 polyadenylation motif within the 5' PolyA domain as a dual regulator of gRNA production and gRNA packaging, and demonstrates that a functional polyadenylation signal is required for viral packaging even though it negatively affects gRNA production.
Collapse
Affiliation(s)
- Redmond P Smyth
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR 9002, IBMC, 15 rue René Descartes, 67000 Strasbourg, France
| | - Maureen R Smith
- Freie Universität Berlin, Department of Mathematics and Computer Science, Arnimallee 6, 14195 Berlin, Germany
| | - Anne-Caroline Jousset
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR 9002, IBMC, 15 rue René Descartes, 67000 Strasbourg, France
| | - Laurence Despons
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR 9002, IBMC, 15 rue René Descartes, 67000 Strasbourg, France
| | - Géraldine Laumond
- INSERM U1109, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Thomas Decoville
- INSERM U1109, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Pierre Cattenoz
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR 9002, IBMC, 15 rue René Descartes, 67000 Strasbourg, France
| | - Christiane Moog
- INSERM U1109, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Fabrice Jossinet
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR 9002, IBMC, 15 rue René Descartes, 67000 Strasbourg, France
| | - Marylène Mougel
- IRIM CNRS UMR9004, Université de Montpellier, Montpellier, France
| | - Jean-Christophe Paillart
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR 9002, IBMC, 15 rue René Descartes, 67000 Strasbourg, France
| | - Max von Kleist
- Freie Universität Berlin, Department of Mathematics and Computer Science, Arnimallee 6, 14195 Berlin, Germany
| | - Roland Marquet
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR 9002, IBMC, 15 rue René Descartes, 67000 Strasbourg, France
| |
Collapse
|
10
|
Liu Y, Nikolaitchik OA, Rahman SA, Chen J, Pathak VK, Hu WS. HIV-1 Sequence Necessary and Sufficient to Package Non-viral RNAs into HIV-1 Particles. J Mol Biol 2017; 429:2542-2555. [PMID: 28673553 DOI: 10.1016/j.jmb.2017.06.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/26/2017] [Accepted: 06/26/2017] [Indexed: 01/23/2023]
Abstract
Genome packaging is an essential step to generate infectious HIV-1 virions and is mediated by interactions between the viral protein Gag and cis-acting elements in the full-length RNA. The sequence necessary and sufficient to allow RNA genome packaging into an HIV-1 particle has not been defined. Here, we used two distinct reporter systems to determine the HIV-1 sequence required for heterologous, non-viral RNAs to be packaged into viral particles. Although the 5' untranslated region (UTR) of the HIV-1 RNA is known to be important for RNA packaging, we found that its ability to mediate packaging relies heavily on the context of the downstream sequences. Insertion of the 5' UTR and the first 32-nt of gag into two different reporter RNAs is not sufficient to mediate the packaging of these RNA into HIV-1 particles. However, adding the 5' half of the gag gene to the 5' UTR strongly facilitates the packaging of two reporter RNAs; such RNAs can be packaged at >50% of the efficiencies of an HIV-1 near full-length vector. To further examine the role of the gag sequence in RNA packaging, we replaced the 5' gag sequence in the HIV-1 genome with two codon-optimized gag sequences and found that such substitutions only resulted in a moderate decrease of RNA packaging efficiencies. Taken together, these results indicated that both HIV-1 5' UTR and the 5' gag sequence are required for efficient packaging of non-viral RNA into HIV-1 particles, although the gag sequence likely plays an indirect role in genome packaging.
Collapse
Affiliation(s)
- Yang Liu
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Olga A Nikolaitchik
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Sheikh Abdul Rahman
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Jianbo Chen
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Vinay K Pathak
- Viral Mutation Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Wei-Shau Hu
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
11
|
Cantara WA, Hatterschide J, Wu W, Musier-Forsyth K. RiboCAT: a new capillary electrophoresis data analysis tool for nucleic acid probing. RNA (NEW YORK, N.Y.) 2017; 23:240-249. [PMID: 27821510 PMCID: PMC5238798 DOI: 10.1261/rna.058404.116] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/02/2016] [Indexed: 06/06/2023]
Abstract
Chemical and enzymatic probing of RNA secondary structure and RNA/protein interactions provides the basis for understanding the functions of structured RNAs. However, the ability to rapidly perform such experiments using capillary electrophoresis has been hampered by relatively labor-intensive data analysis software. While these computationally robust programs have been shown to calculate residue-specific reactivities to a high degree of accuracy, they often require time-consuming manual intervention and lack the ability to be easily modified by users. To alleviate these issues, RiboCAT (Ribonucleic acid capillary-electrophoresis analysis tool) was developed as a user-friendly, Microsoft Excel-based tool that reduces the need for manual intervention, thereby significantly shortening the time required for data analysis. Features of this tool include (i) the use of an Excel platform, (ii) a method of intercapillary signal alignment using internal size standards, (iii) a peak-sharpening algorithm to more accurately identify peaks, and (iv) an open architecture allowing for simple user intervention. Furthermore, a complementary tool, RiboDOG (RiboCAT data output generator) was designed to facilitate the comparison of multiple data sets, highlighting potential inconsistencies and inaccuracies that may have occurred during analysis. Using these new tools, the secondary structure of the HIV-1 5' untranslated region (5'UTR) was determined using selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE), matching the results of previous work.
Collapse
Affiliation(s)
- William A Cantara
- Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Joshua Hatterschide
- Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Weixin Wu
- Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
12
|
Bernacchi S, Abd El-Wahab EW, Dubois N, Hijnen M, Smyth RP, Mak J, Marquet R, Paillart JC. HIV-1 Pr55 Gag binds genomic and spliced RNAs with different affinity and stoichiometry. RNA Biol 2016; 14:90-103. [PMID: 27841704 DOI: 10.1080/15476286.2016.1256533] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
The HIV-1 Pr55Gag precursor specifically selects genomic RNA (gRNA) from a large variety of cellular and spliced viral RNAs (svRNAs), however the molecular mechanisms of this selective recognition remains poorly understood. To gain better understanding of this process, we analyzed the interactions between Pr55Gag and a large panel of viral RNA (vRNA) fragments encompassing the main packaging signal (Psi) and its flanking regions by fluorescence spectroscopy. We showed that the gRNA harbors a high affinity binding site which is absent from svRNA species, suggesting that this site might be crucial for selecting the HIV-1 genome. Our stoichiometry analysis of protein/RNA complexes revealed that few copies of Pr55Gag specifically associate with the 5' region of the gRNA. Besides, we found that gRNA dimerization significantly impacts Pr55Gag binding, and we confirmed that the internal loop of stem-loop 1 (SL1) in Psi is crucial for specific interaction with Pr55Gag. Our analysis of gRNA fragments of different length supports the existence of a long-range tertiary interaction involving sequences upstream and downstream of the Psi region. This long-range interaction might promote optimal exposure of SL1 for efficient Pr55Gag recognition. Altogether, our results shed light on the molecular mechanisms allowing the specific selection of gRNA by Pr55Gag among a variety of svRNAs, all harboring SL1 in their first common exon.
Collapse
Affiliation(s)
- Serena Bernacchi
- a Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN , Strasbourg , France
| | - Ekram W Abd El-Wahab
- a Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN , Strasbourg , France
| | - Noé Dubois
- a Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN , Strasbourg , France
| | - Marcel Hijnen
- b Centre for Virology, Burnet Institute , Melbourne , Victoria , Australia.,c Department of Biochemistry and Molecular Biology , Monash University , Clayton , Victoria , Australia
| | - Redmond P Smyth
- a Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN , Strasbourg , France
| | - Johnson Mak
- b Centre for Virology, Burnet Institute , Melbourne , Victoria , Australia.,c Department of Biochemistry and Molecular Biology , Monash University , Clayton , Victoria , Australia.,d School of Medicine, Faculty of Health, Deakin University , Geelong , Victoria , Australia.,e Commonwealth Scientific and Industrial Research Organization, Livestock Industries, Australian Animal Health Laboratory , Geelong , Victoria , Australia
| | - Roland Marquet
- a Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN , Strasbourg , France
| | | |
Collapse
|
13
|
Transcriptional start site heterogeneity modulates the structure and function of the HIV-1 genome. Proc Natl Acad Sci U S A 2016; 113:13378-13383. [PMID: 27834211 DOI: 10.1073/pnas.1616627113] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The promoter in HIV type 1 (HIV-1) proviral DNA contains three sequential guanosines at the U3-R boundary that have been proposed to function as sites for transcription initiation. Here we show that all three sites are used in cells infected with HIV-1 and that viral RNAs containing a single 5' capped guanosine (Cap1G) are specifically selected for packaging in virions, consistent with a recent report [Masuda et al. (2015) Sci Rep 5:17680]. In addition, we now show that transcripts that begin with two or three capped guanosines (Cap2G or Cap3G) are enriched on polysomes, indicating that RNAs synthesized from different transcription start sites have different functions in viral replication. Because genomes are selected for packaging as dimers, we examined the in vitro monomer-dimer equilibrium properties of Cap1G, Cap2G, and Cap3G 5'-leader RNAs in the NL4-3 strain of HIV-1. Strikingly, under physiological-like ionic conditions in which the Cap1G 5'-leader RNA adopts a dimeric structure, the Cap2G and Cap3G 5'-leader RNAs exist predominantly as monomers. Mutagenesis studies designed to probe for base-pairing interactions suggest that the additional guanosines of the 2G and 3G RNAs remodel the base of the PolyA hairpin, resulting in enhanced sequestration of dimer-promoting residues and stabilization of the monomer. Our studies suggest a mechanism through which the structure, function, and fate of the viral genome can be modulated by the transcriptionally controlled presence or absence of a single 5' guanosine.
Collapse
|
14
|
The Life-Cycle of the HIV-1 Gag-RNA Complex. Viruses 2016; 8:v8090248. [PMID: 27626439 PMCID: PMC5035962 DOI: 10.3390/v8090248] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/30/2016] [Accepted: 09/02/2016] [Indexed: 12/16/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) replication is a highly regulated process requiring the recruitment of viral and cellular components to the plasma membrane for assembly into infectious particles. This review highlights the recent process of understanding the selection of the genomic RNA (gRNA) by the viral Pr55Gag precursor polyprotein, and the processes leading to its incorporation into viral particles.
Collapse
|
15
|
van Bel N, Ghabri A, Das AT, Berkhout B. The HIV-1 leader RNA is exquisitely sensitive to structural changes. Virology 2015; 483:236-52. [DOI: 10.1016/j.virol.2015.03.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 03/05/2015] [Accepted: 03/27/2015] [Indexed: 01/14/2023]
|
16
|
Specific recognition of the HIV-1 genomic RNA by the Gag precursor. Nat Commun 2014; 5:4304. [PMID: 24986025 DOI: 10.1038/ncomms5304] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 06/05/2014] [Indexed: 11/08/2022] Open
Abstract
During assembly of HIV-1 particles in infected cells, the viral Pr55(Gag) protein (or Gag precursor) must select the viral genomic RNA (gRNA) from a variety of cellular and viral spliced RNAs. However, there is no consensus on how Pr55(Gag) achieves this selection. Here, by using RNA binding and footprinting assays, we demonstrate that the primary Pr55(Gag) binding site on the gRNA consists of the internal loop and the lower part of stem-loop 1 (SL1), the upper part of which initiates gRNA dimerization. A double regulation ensures specific binding of Pr55(Gag) to the gRNA despite the fact that SL1 is also present in spliced viral RNAs. The region upstream of SL1, which is present in all HIV-1 RNAs, prevents binding to SL1, but this negative effect is counteracted by sequences downstream of SL4, which are unique to the gRNA.
Collapse
|
17
|
Jones CP, Cantara WA, Olson ED, Musier-Forsyth K. Small-angle X-ray scattering-derived structure of the HIV-1 5' UTR reveals 3D tRNA mimicry. Proc Natl Acad Sci U S A 2014; 111:3395-400. [PMID: 24550473 PMCID: PMC3948283 DOI: 10.1073/pnas.1319658111] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The most conserved region of the HIV type 1 (HIV-1) genome, the ∼335-nt 5' UTR, is characterized by functional stem loop domains responsible for regulating the viral life cycle. Despite the indispensable nature of this region of the genome in HIV-1 replication, 3D structures of multihairpin domains of the 5' UTR remain unknown. Using small-angle X-ray scattering and molecular dynamics simulations, we generated structural models of the transactivation (TAR)/polyadenylation (polyA), primer-binding site (PBS), and Psi-packaging domains. TAR and polyA form extended, coaxially stacked hairpins, consistent with their high stability and contribution to the pausing of reverse transcription. The Psi domain is extended, with each stem loop exposed for interactions with binding partners. The PBS domain adopts a bent conformation resembling the shape of a tRNA in apo and primer-annealed states. These results provide a structural basis for understanding several key molecular mechanisms underlying HIV-1 replication.
Collapse
Affiliation(s)
| | | | - Erik D. Olson
- Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, The Ohio State University, Columbus, OH 43210
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
18
|
Abstract
The 5' untranslated leader region of the human immunodeficiency virus type 1 (HIV-1) RNA genome is a strongly conserved sequence that encodes several regulatory motifs important for viral replication. Most of these motifs are exposed as hairpin structures, including the dimerization initiation signal (DIS), the major splice donor site (SD), and the packaging signal (Ψ), which are connected by short single-stranded regions. Mutational analysis revealed many functions of these hairpins, but only a few studies have focused on the single-stranded purine-rich sequences. Using the in vivo SELEX (systematic evolution of ligands by exponential enrichment) approach, we probed the sequence space in these regions that is compatible with efficient HIV-1 replication and analyzed the impact on the RNA secondary structure of the leader RNA. Our results show a strong sequence requirement for the DIS hairpin flanking regions. We postulate that these sequences are important for the binding of specific protein factors that support leader RNA-mediated functions. The sequence between the SD and Ψ hairpins seems to have a less prominent role, despite the strong conservation of the stretch of 5 A residues in natural isolates. We hypothesize that this may reflect the subtle evolutionary pressure on HIV-1 to acquire an A-rich RNA genome. In silico analyses indicate that sequences are avoided in all 3 single-stranded domains that affect the local or overall leader RNA folding. IMPORTANCE Many regulatory RNA sequences are clustered in the untranslated leader domain of the HIV-1 RNA genome. Several RNA hairpin structures in this domain have been proposed to fulfill specific roles, e.g., mediating RNA dimer formation to facilitate HIV-1 recombination. We now focus on the importance of a few well-conserved single-stranded sequences that connect these hairpins. We created libraries of HIV-1 variants in which these segments were randomized and selected the best-replicating variants. For two segments we document the selection of the (nearly) wild-type sequence, thus demonstrating the importance of these primary nucleotide sequences and the power of the in vivo SELEX approach. However, for the third segment a large variety of sequences is compatible with efficient HIV-1 replication. Interestingly, the A-rich sequence of this segment is highly conserved among HIV-1 isolates, which likely reflects the evolutionary tendency of HIV-1 to adopt A-rich sequences.
Collapse
|
19
|
Srinivasakumar N. RRE-deleting self-inactivating and self-activating HIV-1 vectors for improved safety. PeerJ 2013; 1:e84. [PMID: 23761857 PMCID: PMC3678115 DOI: 10.7717/peerj.84] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 05/17/2013] [Indexed: 11/30/2022] Open
Abstract
Retroviruses have been shown to efficiently delete sequences between repeats as a consequence of the template switching ability of the viral reverse transcriptase. To evaluate this approach for deriving safety-modified lentiviral vectors, we created HIV-1 vectors engineered to delete the Rev-response element (RRE) during reverse-transcription by sandwiching the RRE between two non-functional hygromycin phosphotransferase sequences. Deletion of the RRE during reverse-transcription lead to the reconstitution of a functional hygromycin phosphotransferase gene in the target cell. The efficiency of functional reconstitution, depending on vector configuration, was between 12% and 23%. Real-time quantitative PCR of genomic DNA of cells transduced with the RRE-deleting vectors that were selected using an independent drug resistance marker, which measured both functional and nonfunctional recombination events, indicated that the overall efficiency of RRE deletion of hygromycin phosphotransferase gene, was between 73.6% and 83.5%.
Collapse
Affiliation(s)
- Narasimhachar Srinivasakumar
- Division of Hematology/Oncology, Department of Internal Medicine, Saint Louis University , Saint Louis, Missouri , USA
| |
Collapse
|
20
|
Das AT, Vrolijk MM, Harwig A, Berkhout B. Opening of the TAR hairpin in the HIV-1 genome causes aberrant RNA dimerization and packaging. Retrovirology 2012; 9:59. [PMID: 22828074 PMCID: PMC3432602 DOI: 10.1186/1742-4690-9-59] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 07/04/2012] [Indexed: 01/29/2023] Open
Abstract
Background The TAR hairpin is present at both the 5′ and 3′ end of the HIV-1 RNA genome. The 5′ element binds the viral Tat protein and is essential for Tat-mediated activation of transcription. We recently observed that complete TAR deletion is allowed in the context of an HIV-1 variant that does not depend on this Tat-TAR axis for transcription. Mutations that open the 5′ stem-loop structure did however affect the leader RNA conformation and resulted in a severe replication defect. In this study, we set out to analyze which step of the HIV-1 replication cycle is affected by this conformational change of the leader RNA. Results We demonstrate that opening the 5′ TAR structure through a deletion in either side of the stem region caused aberrant dimerization and reduced packaging of the unspliced viral RNA genome. In contrast, truncation of the TAR hairpin through deletions in both sides of the stem did not affect RNA dimer formation and packaging. Conclusions These results demonstrate that, although the TAR hairpin is not essential for RNA dimerization and packaging, mutations in TAR can significantly affect these processes through misfolding of the relevant RNA signals.
Collapse
Affiliation(s)
- Atze T Das
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
21
|
Jalalirad M, Saadatmand J, Laughrea M. Dominant role of the 5' TAR bulge in dimerization of HIV-1 genomic RNA, but no evidence of TAR-TAR kissing during in vivo virus assembly. Biochemistry 2012; 51:3744-58. [PMID: 22482513 DOI: 10.1021/bi300111p] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The 5' untranslated region of HIV-1 genomic RNA (gRNA) contains two stem-loop structures that appear to be equally important for gRNA dimerization: the 57-nucleotide 5' TAR, at the very 5' end, and the 35-nucleotide SL1 (nucleotides 243-277). SL1 is well-known for containing the dimerization initiation site (DIS) in its apical loop. The DIS is a six-nucleotide palindrome. Here, we investigated the mechanism of TAR-directed gRNA dimerization. We found that the trinucleotide bulge (UCU24) of the 5' TAR has dominant impacts on both formation of HIV-1 RNA dimers and maturation of the formed dimers. The ΔUCU trinucleotide deletion strongly inhibited the first process and blocked the other, thus impairing gRNA dimerization as severely as deletion of the entire 5' TAR, and more severely than deletion of the DIS, inactivation of the viral protease, or most severe mutations in the nucleocapsid protein. The apical loop of TAR contains a 10-nucleotide palindrome that has been postulated to stimulate gRNA dimerization by a TAR-TAR kissing mechanism analogous to the one used by SL1 to stimulate dimerization. Using mutations that strongly destabilize formation of the TAR palindrome duplex, as well as compensatory mutations that restore duplex formation to a wild-type-like level, we found no evidence of TAR-TAR kissing, even though mutations nullifying the kissing potential of the TAR palindrome could impair dimerization by a mechanism other than hindering of SL1. However, nullifying the kissing potential of TAR had much less severe effects than ΔUCU. By not uncovering a dimerization mechanism intrinsic to TAR, our data suggest that TAR mutations exert their effect 3' of TAR, yet not on SL1, because TAR and SL1 mutations have synergistic effects on gRNA dimerization.
Collapse
Affiliation(s)
- Mohammad Jalalirad
- McGill AIDS Center, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
| | | | | |
Collapse
|
22
|
Identification of a minimal region of the HIV-1 5'-leader required for RNA dimerization, NC binding, and packaging. J Mol Biol 2012; 417:224-39. [PMID: 22306406 DOI: 10.1016/j.jmb.2012.01.033] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 01/13/2012] [Accepted: 01/21/2012] [Indexed: 11/23/2022]
Abstract
Assembly of human immunodeficiency virus type 1 (HIV-1) particles is initiated in the cytoplasm by the formation of a ribonucleoprotein complex comprising the dimeric RNA genome and a small number of viral Gag polyproteins. Genomes are recognized by the nucleocapsid (NC) domains of Gag, which interact with packaging elements believed to be located primarily within the 5'-leader (5'-L) of the viral RNA. Recent studies revealed that the native 5'-L exists as an equilibrium of two conformers, one in which dimer-promoting residues and NC binding sites are sequestered and packaging is attenuated, and one in which these sites are exposed and packaging is promoted. To identify the elements within the dimeric 5'-L that are important for packaging, we generated HIV-1 5'-L RNAs containing mutations and deletions designed to eliminate substructures without perturbing the overall structure of the leader and examined effects of the mutations on RNA dimerization, NC binding, and packaging. Our findings identify a 159-residue RNA packaging signal that possesses dimerization and NC binding properties similar to those of the intact 5'-L and contains elements required for efficient RNA packaging.
Collapse
|
23
|
Miyazaki Y, Miyake A, Nomaguchi M, Adachi A. Structural dynamics of retroviral genome and the packaging. Front Microbiol 2011; 2:264. [PMID: 22232618 PMCID: PMC3247676 DOI: 10.3389/fmicb.2011.00264] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 12/11/2011] [Indexed: 12/17/2022] Open
Abstract
Retroviruses can cause diseases such as AIDS, leukemia, and tumors, but are also used as vectors for human gene therapy. All retroviruses, except foamy viruses, package two copies of unspliced genomic RNA into their progeny viruses. Understanding the molecular mechanisms of retroviral genome packaging will aid the design of new anti-retroviral drugs targeting the packaging process and improve the efficacy of retroviral vectors. Retroviral genomes have to be specifically recognized by the cognate nucleocapsid domain of the Gag polyprotein from among an excess of cellular and spliced viral mRNA. Extensive virological and structural studies have revealed how retroviral genomic RNA is selectively packaged into the viral particles. The genomic area responsible for the packaging is generally located in the 5′ untranslated region (5′ UTR), and contains dimerization site(s). Recent studies have shown that retroviral genome packaging is modulated by structural changes of RNA at the 5′ UTR accompanied by the dimerization. In this review, we focus on three representative retroviruses, Moloney murine leukemia virus, human immunodeficiency virus type 1 and 2, and describe the molecular mechanism of retroviral genome packaging.
Collapse
Affiliation(s)
- Yasuyuki Miyazaki
- Department of Microbiology, Institute of Health Biosciences, The University of Tokushima Graduate School Tokushima, Japan
| | | | | | | |
Collapse
|
24
|
Srinivasakumar N. Rev-free HIV-1 gene delivery system for targeting Rev-RRE-Crm1 nucleocytoplasmic RNA transport pathway. PLoS One 2011; 6:e28462. [PMID: 22164294 PMCID: PMC3229575 DOI: 10.1371/journal.pone.0028462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 11/08/2011] [Indexed: 11/18/2022] Open
Abstract
The use of RNA transport elements from different viruses can provide novel attributes to HIV-1-based gene delivery systems such as improved safety or Rev independence. We previously described an HIV-1 based gene delivery system that utilized the simian immunodeficiency virus Rev-response element (RRE) in place of the HIV-1 RRE. Despite the use of Rev for the production of vector stocks, we showed the utility of this system for delivery of Rev M10, a dominant-negative mutant of HIV-1 Rev, into T-cells. Here, we investigated the use of RNA transport elements from Mason-Pfizer monkey virus or MPMV for the creation of high-titered Rev-free HIV-1-based packaging systems. The HIV-1 gag/pol expression constructs containing one or more copies of MPMV constitutive RNA transport element (CTE) were used to package similarly modified gene-transfer vectors in the presence or absence of Rev. An inverse correlation between the number of CTE modules and Rev dependency was noted for vector stock production. While packaging systems containing multiple CTEs were resistant to exogenously expressed Rev M10, the titers of vectors encoding Rev M10 were nevertheless reduced in comparison to vectors encoding only green fluorescent protein (GFP). In contrast, a gene transfer vector encoding the Rev M10 transgene and containing both RNA transport elements exhibited almost no loss in titer in comparison to a corresponding vector encoding only GFP. The optimized Rev-independent gene delivery system was used for delivery of Rev M10 transgene into T-lymphocytes. Upon challenge in single round infection assays with HIV-1, the modified T-cells produced fewer virus particles than control cells expressing GFP. This Rev-free packaging system may prove useful for targeting the Rev-RRE-Crm1 nucleocytoplasmic RNA transport pathway for inhibiting HIV replication.
Collapse
Affiliation(s)
- Narasimhachar Srinivasakumar
- Division of Hematology/Oncology, Department of Internal Medicine, Saint Louis University, Saint Louis, Missouri, United States of America.
| |
Collapse
|
25
|
Didierlaurent L, Racine PJ, Houzet L, Chamontin C, Berkhout B, Mougel M. Role of HIV-1 RNA and protein determinants for the selective packaging of spliced and unspliced viral RNA and host U6 and 7SL RNA in virus particles. Nucleic Acids Res 2011; 39:8915-27. [PMID: 21791531 PMCID: PMC3203606 DOI: 10.1093/nar/gkr577] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 06/27/2011] [Accepted: 06/28/2011] [Indexed: 01/22/2023] Open
Abstract
HIV-1 particles contain RNA species other than the unspliced viral RNA genome. For instance, viral spliced RNAs and host 7SL and U6 RNAs are natural components that are non-randomly incorporated. To understand the mechanism of packaging selectivity, we analyzed the content of a large panel of HIV-1 variants mutated either in the 5'UTR structures of the viral RNA or in the Gag-nucleocapsid protein (GagNC). In parallel, we determined whether the selection of host 7SL and U6 RNAs is dependent or not on viral RNA and/or GagNC. Our results reveal that the polyA hairpin in the 5'UTR is a major packaging determinant for both spliced and unspliced viral RNAs. In contrast, 5'UTR RNA structures have little influence on the U6 and 7SL RNAs, indicating that packaging of these host RNAs is independent of viral RNA packaging. Experiments with GagNC mutants indicated that the two zinc-fingers and N-terminal basic residues restrict the incorporation of the spliced RNAs, while favoring unspliced RNA packaging. GagNC through the zinc-finger motifs also restricts the packaging of 7SL and U6 RNAs. Thus, GagNC is a major contributor to the packaging selectivity. Altogether our results provide new molecular insight on how HIV selects distinct RNA species for incorporation into particles.
Collapse
Affiliation(s)
- L. Didierlaurent
- UMR5236 CNRS, UMI&II, CPBS, 1919 Rte de Mende, Montpellier, France, LMM, NIAID, NIH Bethesda, MD, USA and Laboratory of Experimental Virology, Department of Medical Microbiology (CINIMA), Amsterdam, The Netherlands
| | - P. J. Racine
- UMR5236 CNRS, UMI&II, CPBS, 1919 Rte de Mende, Montpellier, France, LMM, NIAID, NIH Bethesda, MD, USA and Laboratory of Experimental Virology, Department of Medical Microbiology (CINIMA), Amsterdam, The Netherlands
| | - L. Houzet
- UMR5236 CNRS, UMI&II, CPBS, 1919 Rte de Mende, Montpellier, France, LMM, NIAID, NIH Bethesda, MD, USA and Laboratory of Experimental Virology, Department of Medical Microbiology (CINIMA), Amsterdam, The Netherlands
| | - C. Chamontin
- UMR5236 CNRS, UMI&II, CPBS, 1919 Rte de Mende, Montpellier, France, LMM, NIAID, NIH Bethesda, MD, USA and Laboratory of Experimental Virology, Department of Medical Microbiology (CINIMA), Amsterdam, The Netherlands
| | - B. Berkhout
- UMR5236 CNRS, UMI&II, CPBS, 1919 Rte de Mende, Montpellier, France, LMM, NIAID, NIH Bethesda, MD, USA and Laboratory of Experimental Virology, Department of Medical Microbiology (CINIMA), Amsterdam, The Netherlands
| | - M. Mougel
- UMR5236 CNRS, UMI&II, CPBS, 1919 Rte de Mende, Montpellier, France, LMM, NIAID, NIH Bethesda, MD, USA and Laboratory of Experimental Virology, Department of Medical Microbiology (CINIMA), Amsterdam, The Netherlands
| |
Collapse
|
26
|
Lu K, Heng X, Summers MF. Structural determinants and mechanism of HIV-1 genome packaging. J Mol Biol 2011; 410:609-33. [PMID: 21762803 PMCID: PMC3139105 DOI: 10.1016/j.jmb.2011.04.029] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 04/11/2011] [Accepted: 04/11/2011] [Indexed: 11/30/2022]
Abstract
Like all retroviruses, the human immunodeficiency virus selectively packages two copies of its unspliced RNA genome, both of which are utilized for strand-transfer-mediated recombination during reverse transcription-a process that enables rapid evolution under environmental and chemotherapeutic pressures. The viral RNA appears to be selected for packaging as a dimer, and there is evidence that dimerization and packaging are mechanistically coupled. Both processes are mediated by interactions between the nucleocapsid domains of a small number of assembling viral Gag polyproteins and RNA elements within the 5'-untranslated region of the genome. A number of secondary structures have been predicted for regions of the genome that are responsible for packaging, and high-resolution structures have been determined for a few small RNA fragments and protein-RNA complexes. However, major questions regarding the RNA structures (and potentially the structural changes) that are responsible for dimeric genome selection remain unanswered. Here, we review efforts that have been made to identify the molecular determinants and mechanism of human immunodeficiency virus type 1 genome packaging.
Collapse
Affiliation(s)
- Kun Lu
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250
| | - Xiao Heng
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250
| | - Michael F. Summers
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250
| |
Collapse
|
27
|
Cockrell AS, van Praag H, Santistevan N, Ma H, Kafri T. The HIV-1 Rev/RRE system is required for HIV-1 5' UTR cis elements to augment encapsidation of heterologous RNA into HIV-1 viral particles. Retrovirology 2011; 8:51. [PMID: 21702950 PMCID: PMC3131246 DOI: 10.1186/1742-4690-8-51] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 06/24/2011] [Indexed: 01/15/2023] Open
Abstract
Background The process of HIV-1 genomic RNA (gRNA) encapsidation is governed by a number of viral encoded components, most notably the Gag protein and gRNA cis elements in the canonical packaging signal (ψ). Also implicated in encapsidation are cis determinants in the R, U5, and PBS (primer binding site) from the 5' untranslated region (UTR). Although conventionally associated with nuclear export of HIV-1 RNA, there is a burgeoning role for the Rev/RRE in the encapsidation process. Pleiotropic effects exhibited by these cis and trans viral components may confound the ability to examine their independent, and combined, impact on encapsidation of RNA into HIV-1 viral particles in their innate viral context. We systematically reconstructed the HIV-1 packaging system in the context of a heterologous murine leukemia virus (MLV) vector RNA to elucidate a mechanism in which the Rev/RRE system is central to achieving efficient and specific encapsidation into HIV-1 viral particles. Results We show for the first time that the Rev/RRE system can augment RNA encapsidation independent of all cis elements from the 5' UTR (R, U5, PBS, and ψ). Incorporation of all the 5' UTR cis elements did not enhance RNA encapsidation in the absence of the Rev/RRE system. In fact, we demonstrate that the Rev/RRE system is required for specific and efficient encapsidation commonly associated with the canonical packaging signal. The mechanism of Rev/RRE-mediated encapsidation is not a general phenomenon, since the combination of the Rev/RRE system and 5' UTR cis elements did not enhance encapsidation into MLV-derived viral particles. Lastly, we show that heterologous MLV RNAs conform to transduction properties commonly associated with HIV-1 viral particles, including in vivo transduction of non-dividing cells (i.e. mouse neurons); however, the cDNA forms are episomes predominantly in the 1-LTR circle form. Conclusions Premised on encapsidation of a heterologous RNA into HIV-1 viral particles, our findings define a functional HIV-1 packaging system as comprising the 5' UTR cis elements, Gag, and the Rev/RRE system, in which the Rev/RRE system is required to make the RNA amenable to the ensuing interaction between Gag and the canonical packaging signal for subsequent encapsidation.
Collapse
Affiliation(s)
- Adam S Cockrell
- Gene Therapy Center University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | | | | | | | | |
Collapse
|
28
|
Abstract
Although the viral Rev protein is necessary for HIV replication, its main function in the viral replication cycle has been controversial. Reinvestigating the effect of Rev on the HIV-1 RNA distribution in various cell lines and primary cells revealed that Rev enhanced cytoplasmic levels of the unspliced HIV-1 RNA, mostly 3- to 12-fold, while encapsidation of the RNA and viral infectivity could be stimulated >1,000-fold. Although this clearly questions the general notion that the nuclear export of viral RNAs is the major function of Rev, mechanistically encapsidation seems to be linked to nuclear export, since the tethering of the nuclear export factor TAP to the HIV-1 RNA also enhanced encapsidation. Interference with the formation of an inhibitory ribonucleoprotein complex in the nucleus could lead to enhanced accessibility of the cytoplasmic HIV-1 RNA for translation and encapsidation. This might explain why Rev and tethered TAP exert the same pattern of pleiotropic effects.
Collapse
|
29
|
The remarkable frequency of human immunodeficiency virus type 1 genetic recombination. Microbiol Mol Biol Rev 2009; 73:451-80, Table of Contents. [PMID: 19721086 DOI: 10.1128/mmbr.00012-09] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The genetic diversity of human immunodeficiency virus type 1 (HIV-1) results from a combination of point mutations and genetic recombination, and rates of both processes are unusually high. This review focuses on the mechanisms and outcomes of HIV-1 genetic recombination and on the parameters that make recombination so remarkably frequent. Experimental work has demonstrated that the process that leads to recombination--a copy choice mechanism involving the migration of reverse transcriptase between viral RNA templates--occurs several times on average during every round of HIV-1 DNA synthesis. Key biological factors that lead to high recombination rates for all retroviruses are the recombination-prone nature of their reverse transcription machinery and their pseudodiploid RNA genomes. However, HIV-1 genes recombine even more frequently than do those of many other retroviruses. This reflects the way in which HIV-1 selects genomic RNAs for coencapsidation as well as cell-to-cell transmission properties that lead to unusually frequent associations between distinct viral genotypes. HIV-1 faces strong and changeable selective conditions during replication within patients. The mode of HIV-1 persistence as integrated proviruses and strong selection for defective proviruses in vivo provide conditions for archiving alleles, which can be resuscitated years after initial provirus establishment. Recombination can facilitate drug resistance and may allow superinfecting HIV-1 strains to evade preexisting immune responses, thus adding to challenges in vaccine development. These properties converge to provide HIV-1 with the means, motive, and opportunity to recombine its genetic material at an unprecedented high rate and to allow genetic recombination to serve as one of the highest barriers to HIV-1 eradication.
Collapse
|
30
|
Vrolijk MM, Harwig A, Berkhout B, Das AT. Destabilization of the TAR hairpin leads to extension of the polyA hairpin and inhibition of HIV-1 polyadenylation. Retrovirology 2009; 6:13. [PMID: 19210761 PMCID: PMC2645353 DOI: 10.1186/1742-4690-6-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 02/11/2009] [Indexed: 11/24/2022] Open
Abstract
Background Two hairpin structures that are present at both the 5' and 3' end of the HIV-1 RNA genome have important functions in the viral life cycle. The TAR hairpin binds the viral Tat protein and is essential for Tat-mediated activation of transcription. The adjacent polyA hairpin encompasses the polyadenylation signal AAUAAA and is important for the regulation of polyadenylation. Specifically, this RNA structure represses polyadenylation at the 5' side, and enhancer elements on the 3' side overcome this suppression. We recently described that the replication of an HIV-1 variant that does not need TAR for transcription was severely impaired by destabilization of the TAR hairpin, even though a complete TAR deletion was acceptable. Results In this study, we show that the TAR-destabilizing mutations result in reduced 3' polyadenylation of the viral transcripts due to an extension of the adjacent polyA hairpin. Thus, although the TAR hairpin is not directly involved in polyadenylation, mutations in TAR can affect this process. Conclusion The stability of the HIV-1 TAR hairpin structure is important for the proper folding of the viral RNA transcripts. This study illustrates how mutations that are designed to study the function of a specific RNA structure can change the structural presentation of other RNA domains and thus affect viral replication in an indirect way.
Collapse
Affiliation(s)
- Martine M Vrolijk
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
31
|
Vrolijk MM, Ooms M, Harwig A, Das AT, Berkhout B. Destabilization of the TAR hairpin affects the structure and function of the HIV-1 leader RNA. Nucleic Acids Res 2008; 36:4352-63. [PMID: 18586822 PMCID: PMC2490758 DOI: 10.1093/nar/gkn364] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The TAR hairpin of the human immunodeficiency virus type 1 (HIV-1) RNA genome is essential for virus replication. TAR forms the binding site for the transcriptional trans-activator protein Tat and multiple additional TAR functions have been proposed. We previously constructed an HIV-1 variant in which the TAR-Tat transcription control mechanism is replaced by the components of the Tet-ON regulatory system. In this context, the surprising finding was that TAR can be truncated or even deleted, but partial TAR deletions that destabilize the stem structure cause a severe replication defect. In this study, we demonstrate that the HIV-1 RNA genome requires a stable hairpin at its 5'-end because unpaired TAR sequences affect the proper folding of the untranslated leader RNA. Consequently, multiple leader-encoded functions are affected by partial TAR deletions. Upon evolution of such mutant viruses, the replication capacity was repaired through the acquisition of additional TAR mutations that restore the local RNA folding, thus preventing the detrimental effect on the leader conformation.
Collapse
Affiliation(s)
- Martine M Vrolijk
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
32
|
Mehta R, Sundaravaradan V, Ahmad N. Mutations generated in human immunodeficiency virus type 1 long terminal repeat during vertical transmission correlate with viral gene expression. Virology 2008; 375:170-81. [PMID: 18313715 PMCID: PMC2430019 DOI: 10.1016/j.virol.2008.01.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 12/15/2007] [Accepted: 01/31/2008] [Indexed: 11/24/2022]
Abstract
We determined the effect of mutations generated in HIV-1 LTR on viral gene expression in six mother-infant pairs following vertical transmission. We show that the functional domains critical for LTR function, the promoter (TATAA), enhancers (three SpI and two NFkappaB sites), the modulatory region (two AP-I sites, two NFAT, one NF-IL6 site, one Ets-1, and one USF-1) and the TAR region were generally conserved among mother-infant pairs, although we observed several patient and pair specific mutations in these important domains. We then determined the promoter activity of our mother-infant LTR sequences by measuring CAT gene expression, which was driven by these LTRs and found that most of these HIV-1 LTRs derived from 6 mother-infant pairs were functional. However, mutations in the important transcription factor binding sites, including TATAA, SpI, NFkappaB, AP-I, NFAT, NF-IL6, Ets-1, USF-1 and TAR resulted in reduced LTR driven CAT gene expression. Taken together, conservation of functional domains in the LTR during vertical transmission supports the notion that a functional LTR is critical in viral replication and pathogenesis and mutations generated during the course of infection correlated with HIV-1 gene expression.
Collapse
Affiliation(s)
- Roshni Mehta
- Department of Immunobiology, College of Medicine, University of Arizona, Tucson, Arizona 85724
| | - Vasudha Sundaravaradan
- Department of Immunobiology, College of Medicine, University of Arizona, Tucson, Arizona 85724
| | - Nafees Ahmad
- Department of Immunobiology, College of Medicine, University of Arizona, Tucson, Arizona 85724
| |
Collapse
|
33
|
Sinck L, Richer D, Howard J, Alexander M, Purcell DFJ, Marquet R, Paillart JC. In vitro dimerization of human immunodeficiency virus type 1 (HIV-1) spliced RNAs. RNA (NEW YORK, N.Y.) 2007; 13:2141-2150. [PMID: 17925344 PMCID: PMC2080610 DOI: 10.1261/rna.678307] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Accepted: 08/28/2007] [Indexed: 05/25/2023]
Abstract
The human immunodeficiency virus type 1 (HIV-1) packages its genomic RNA as a dimer of homologous RNA molecules that has to be selected among a multitude of cellular and viral RNAs. Interestingly, spliced viral mRNAs are packaged into viral particles with a relatively low efficiency despite the fact that they contain most of the extended packaging signal found in the 5' untranslated region of the genomic RNA, including the dimerization initiation site (DIS). As a consequence, HIV-1 spliced viral RNAs can theoretically homodimerize and heterodimerize with the genomic RNA, and thus they should directly compete with genomic RNA for packaging. To shed light on this issue, we investigated for the first time the in vitro dimerization properties of spliced HIV-1 RNAs. We found that singly spliced (env, vpr) and multispliced (tat, rev, and nef) RNA fragments are able to dimerize in vitro, and to efficiently form heterodimers with genomic RNA. Chemical probing experiments and inhibition of RNA dimerization by an antisense oligonucleotide directed against the DIS indicated that the DIS is structurally functional in spliced HIV-1 RNA, and that RNA dimerization occurs through a loop-loop interaction. In addition, by combining in vitro transcription and dimerization assays, we show that heterodimers can be efficiently formed only when the two RNA fragments are synthesized simultaneously, in the same environment. Together, our results support a model in which RNA dimerization would occur during transcription in the nucleus and could thus play a major role in splicing, transport, and localization of HIV-1 RNA.
Collapse
Affiliation(s)
- Lucile Sinck
- Architecture et Réactivité de l'ARN, Université Louis Pasteur, CNRS, IBMC, 67084, Strasbourg cedex, France
| | | | | | | | | | | | | |
Collapse
|
34
|
Laham-Karam N, Bacharach E. Transduction of human immunodeficiency virus type 1 vectors lacking encapsidation and dimerization signals. J Virol 2007; 81:10687-98. [PMID: 17652403 PMCID: PMC2045463 DOI: 10.1128/jvi.00653-07] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The encapsidation signal (Psi) and the nested dimerization initiation site are important for efficient packaging of human immunodeficiency virus type 1 (HIV-1) genomic RNA dimers. Consequently, these signals are included in all HIV-1 vectors. Here, we provide evidence demonstrating that these elements in such vectors are not absolutely required for vector transduction. In single-cycle infection assays, vectors with Psi deleted (DeltaPsi) were transduced with only a two- to fivefold reduction compared to the wild type. The transduction of DeltaPsi showed typical products of reverse transcription and vector integration; however, in vitro and in vivo dimerization assays demonstrated the lack of normal dimerization of the DeltaPsi vector. The reduction in transduction reflected a similar reduction in packaging. Nevertheless, a relatively high specificity of packaging was retained, as the DeltaPsi vector was encapsidated at a level 4 orders of magnitude higher than that for overexpressed, nonretroviral cellular mRNA and 15 orders of magnitude higher than that for a murine leukemia virus (MLV)-based vector, all containing the same reporter gene, suggesting a Psi-independent mechanism of packaging. The fact that HIV-1 and MLV vectors were encapsidated with a much higher level of efficiency than the cellular RNA suggests that the genomic RNAs of different retroviruses share common features and/or pathways that target them to encapsidation. Overall, these results formally demonstrate that packaging and dimerization signals are not required for the early stages of infection and can be deleted without risking a total loss of vector transduction. Deletion of these signals should enhance the safety of these vectors.
Collapse
Affiliation(s)
- Nihay Laham-Karam
- Department of Cell Research and Immunology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | |
Collapse
|
35
|
Brandt S, Blißenbach M, Grewe B, Konietzny R, Grunwald T, Überla K. Rev proteins of human and simian immunodeficiency virus enhance RNA encapsidation. PLoS Pathog 2007; 3:e54. [PMID: 17432934 PMCID: PMC1851978 DOI: 10.1371/journal.ppat.0030054] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Accepted: 03/01/2007] [Indexed: 11/20/2022] Open
Abstract
The main function attributed to the Rev proteins of immunodeficiency viruses is the shuttling of viral RNAs containing the Rev responsive element (RRE) via the CRM-1 export pathway from the nucleus to the cytoplasm. This restricts expression of structural proteins to the late phase of the lentiviral replication cycle. Using Rev-independent gag-pol expression plasmids of HIV-1 and simian immunodeficiency virus and lentiviral vector constructs, we have observed that HIV-1 and simian immunodeficiency virus Rev enhanced RNA encapsidation 20- to 70-fold, correlating well with the effect of Rev on vector titers. In contrast, cytoplasmic vector RNA levels were only marginally affected by Rev. Binding of Rev to the RRE or to a heterologous RNA element was required for Rev-mediated enhancement of RNA encapsidation. In addition to specific interactions of nucleocapsid with the packaging signal at the 5′ end of the genome, the Rev/RRE system provides a second mechanism contributing to preferential encapsidation of genomic lentiviral RNA. The AIDS pandemic is still an important public health problem, particularly in developing countries. A comprehensive understanding of the HIV replication cycle might allow development of new therapeutics. Despite 20 years of extensive research, the intracellular fate of the different RNAs produced during virus replication is not fully understood. It is known that the viral regulatory protein Rev binds to large viral RNAs and shuttles them from the nucleus to the cytoplasm by a cellular export pathway. We now provide evidence for a more far-reaching role of Rev. We observed that Rev enhances packaging of viral RNA into viral particles to a much larger extent than its effect on viral RNA levels in the cytoplasm. Thus, an early nuclear event (binding of Rev to the viral RNA) seems to be intimately linked to RNA encapsidation occurring at a late step of the viral replication cycle. Since Rev is not part of the viral particles, Rev seems to act indirectly, possibly by targeting the viral RNA to a cytoplasmic compartment favourable for RNA encapsidation. Thus, further studies on the function of Rev might also advance our understanding of cytoplasmic RNA trafficking and subcytoplasmic compartmentalization.
Collapse
Affiliation(s)
- Sabine Brandt
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Germany
| | - Maik Blißenbach
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Germany
| | - Bastian Grewe
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Germany
| | - Rebecca Konietzny
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Germany
| | - Thomas Grunwald
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Germany
| | - Klaus Überla
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Germany
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
36
|
Houzet L, Paillart JC, Smagulova F, Maurel S, Morichaud Z, Marquet R, Mougel M. HIV controls the selective packaging of genomic, spliced viral and cellular RNAs into virions through different mechanisms. Nucleic Acids Res 2007; 35:2695-704. [PMID: 17426127 PMCID: PMC1885669 DOI: 10.1093/nar/gkm153] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In addition to genomic RNA, HIV-1 particles package cellular and spliced viral RNAs. In order to determine the encapsidation mechanisms of these RNAs, we determined the packaging efficiencies and specificities of genomic RNA, singly and fully spliced HIV mRNAs and different host RNAs species: 7SL RNA, U6 snRNA and GAPDH mRNA using RT-QPCR. Except GAPDH mRNA, all RNAs are selectively encapsidated. Singly spliced RNAs, harboring the Rev-responsible element, and fully spliced viral RNAs, which do not contain this motif, are enriched in virions to similar levels, even though they are exported from the nucleus by different routes. Deletions of key motifs (SL1 and/or SL3) of the packaging signal of genomic RNA indicate that HIV and host RNAs are encapsidated through independent mechanisms, while genomic and spliced viral RNA compete for the same trans-acting factor due to the presence of the 5′ common exon containing the TAR, poly(A) and U5-PBS hairpins. Surprisingly, the RNA dimerization initiation site (DIS/SL1) appears to be the main packaging determinant of genomic RNA, but is not involved in packaging of spliced viral RNAs, suggesting a functional interaction with intronic sequences. Active and selective packaging of host and spliced viral RNAs provide new potential functions to these RNAs in the early stages of the virus life cycle.
Collapse
Affiliation(s)
- Laurent Houzet
- CPBS, UMI, CNRS, 4 bd Henri IV, CS 69033, 34965 Montpellier, France and Architecture et Réactivité de l’ARN, Université Louis Pasteur, CNRS, IBMC, 15 rue R. Descartes, 67084 Strabourg, France
| | - Jean Christophe Paillart
- CPBS, UMI, CNRS, 4 bd Henri IV, CS 69033, 34965 Montpellier, France and Architecture et Réactivité de l’ARN, Université Louis Pasteur, CNRS, IBMC, 15 rue R. Descartes, 67084 Strabourg, France
| | - Fatima Smagulova
- CPBS, UMI, CNRS, 4 bd Henri IV, CS 69033, 34965 Montpellier, France and Architecture et Réactivité de l’ARN, Université Louis Pasteur, CNRS, IBMC, 15 rue R. Descartes, 67084 Strabourg, France
| | - Stephan Maurel
- CPBS, UMI, CNRS, 4 bd Henri IV, CS 69033, 34965 Montpellier, France and Architecture et Réactivité de l’ARN, Université Louis Pasteur, CNRS, IBMC, 15 rue R. Descartes, 67084 Strabourg, France
| | - Zakia Morichaud
- CPBS, UMI, CNRS, 4 bd Henri IV, CS 69033, 34965 Montpellier, France and Architecture et Réactivité de l’ARN, Université Louis Pasteur, CNRS, IBMC, 15 rue R. Descartes, 67084 Strabourg, France
| | - Roland Marquet
- CPBS, UMI, CNRS, 4 bd Henri IV, CS 69033, 34965 Montpellier, France and Architecture et Réactivité de l’ARN, Université Louis Pasteur, CNRS, IBMC, 15 rue R. Descartes, 67084 Strabourg, France
| | - Marylène Mougel
- CPBS, UMI, CNRS, 4 bd Henri IV, CS 69033, 34965 Montpellier, France and Architecture et Réactivité de l’ARN, Université Louis Pasteur, CNRS, IBMC, 15 rue R. Descartes, 67084 Strabourg, France
- *To whom correspondence should be addressed +33 4 67 60 02 32+33 4 67 60 44 20
| |
Collapse
|
37
|
Affiliation(s)
- Andrew M L Lever
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| |
Collapse
|
38
|
Brandt S, Grunwald T, Lucke S, Stang A, Überla K. Functional replacement of the R region of simian immunodeficiency virus-based vectors by heterologous elements. J Gen Virol 2006; 87:2297-2307. [PMID: 16847126 DOI: 10.1099/vir.0.81883-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Substitution of lentiviral cis-acting elements by heterologous sequences might allow the safety of lentiviral vectors to be enhanced by reducing the risk of homologous recombination and vector mobilization. Therefore, a substitution and deletion analysis of the R region of simian immunodeficiency virus (SIV)-based vectors was performed and the effect of the modifications on packaging and transfer by SIV and human immunodeficiency virus type 1 (HIV-1) particles was analysed. Deletion of the first 7 nt of R reduced vector titres by 10- to 20-fold, whilst deletion of the entire R region led to vector titres that were 1500-fold lower. Replacement of the R region of SIV-based vectors by HIV-1 or Moloney murine sarcoma virus R regions partially restored vector titres. A non-retroviral cellular sequence was also functional, although to a lesser extent. In the absence of tat, modification of the R region had only minor effects on cytoplasmic RNA stability, steady-state levels of vector RNA and packaging, consistent with the known primary function of R during reverse transcription. Although the SIV R region of SIV-based vectors could be replaced functionally by heterologous sequences, the same modifications of R led to a severe replication defect in the context of a replication-competent SIV. As SIV-based vectors containing the HIV-1 R region were transferred less efficiently by HIV-1 particles than wild-type SIV vectors, a match between R and cis-acting elements of the vector construct seems to be more important than a match between R and the Gag or Pol proteins of the vector particle.
Collapse
Affiliation(s)
- Sabine Brandt
- Department of Molecular and Medical Virology, Ruhr University Bochum, D-44780 Bochum, Germany
| | - Thomas Grunwald
- Department of Molecular and Medical Virology, Ruhr University Bochum, D-44780 Bochum, Germany
| | - Susann Lucke
- Department of Molecular and Medical Virology, Ruhr University Bochum, D-44780 Bochum, Germany
| | - Alexander Stang
- Department of Molecular and Medical Virology, Ruhr University Bochum, D-44780 Bochum, Germany
| | - Klaus Überla
- Department of Molecular and Medical Virology, Ruhr University Bochum, D-44780 Bochum, Germany
| |
Collapse
|
39
|
Bjarnadottir H, Gudmundsson B, Gudnason J, Jonsson JJ. Encapsidation determinants located downstream of the major splice donor in the maedi-visna virus leader region. J Virol 2006; 80:11743-55. [PMID: 16971429 PMCID: PMC1642619 DOI: 10.1128/jvi.01284-06] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated the role of the 5'-untranslated region between the primer binding site and the gag initiation codon in ovine lentivirus maedi-visna virus (MVV) genomic RNA encapsidation. We identified five computer-predicted stem-loops, three of which were highly conserved in primary sequence and structure. One stable 83-nucleotide (nt) stem-loop (SL4) was not conserved in the primary sequence, but phylogenetic analysis revealed several base pair covariations. The deletion of individual stem-loops did not markedly affect the relative encapsidation efficiency (REE). Only one mutant, carrying a disruption of a 31-nt stem-loop (SL5), had 58% REE in fetal ovine synovial (FOS) cells. A 168-nt deletion (Delta3MSD) downstream of the major splice donor (MSD) which removed three stem-loops, including SL5, resulted in 24% and 20% REE in FOS and 293T cells, respectively. A 100-nt deletion (Delta5MSD) upstream of the MSD resulted in 15-fold lower cellular genomic RNA levels than the wild-type levels in 293T cells. The Delta5MSD mutant and a double mutant (DM) (Delta5MSD and Delta3MSD) did not express detectable levels of virion proteins in 293T cells. In contrast, the region deleted in Delta5MSD was dispensable in FOS cells, and the DM had the same REE as the Delta3MSD virus. Thus, the region upstream of the MSD contains sequences critical for RNA and protein expression in a cell type-specific fashion. Our results indicate that MVV encapsidation determinants are located downstream of the MSD. These results provide comparative insight into lentiviral encapsidation and can be utilized in the design of MVV-based gene transfer vectors.
Collapse
Affiliation(s)
- Helga Bjarnadottir
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Iceland, Vatnsmyrarvegur 16, IS-101 Reykjavik, Iceland
| | | | | | | |
Collapse
|
40
|
Nikolaitchik O, Rhodes TD, Ott D, Hu WS. Effects of mutations in the human immunodeficiency virus type 1 Gag gene on RNA packaging and recombination. J Virol 2006; 80:4691-7. [PMID: 16641262 PMCID: PMC1472086 DOI: 10.1128/jvi.80.10.4691-4697.2006] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Accepted: 02/28/2006] [Indexed: 12/21/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) recombination occurs during reverse transcription when parts of the two co-packaged RNAs are used as templates for DNA synthesis. It was previously hypothesized that HIV-1 Gag polyproteins preferentially encapsidate the RNA from which they were translated (cis-packaging hypothesis). This hypothesis implies that mutants encoding Gag that cannot efficiently package viral RNA are selected against at two levels: these mutants do not generate infectious virus, and these mutants are not efficiently rescued by the wild-type virus because the mutant RNAs are packaged at much lower levels than are those of the wild-type genome. Therefore, genetic information encoded by gag mutants can be rapidly lost in the viral population. To test this prediction of the cis-packaging hypothesis, we examined several gag mutants by measuring the efficiencies of the mutant RNAs in being packaged in trans in the presence of wild-type virus and determining the rates of recombination between gag mutants and wild-type viruses. We observed that the viral RNAs from the nucleocapsid zinc finger or the capsid truncation mutant were packaged efficiently in trans, and these mutant viruses also frequently recombined with the wild-type viruses. In contrast, viral RNAs from mutants containing a 6-nucleotide substitution encompassing the gag AUG were not efficiently encapsidated, resulting in a low rate of recombination between the mutants and wild-type viruses. Further analyses revealed that other, more subtle mutations changing the gag AUG and abolishing Gag translation did not interfere with efficient encapsidation of the mutant RNA. Our results indicated that neither the gag AUG sequence nor Gag translation is essential for viral RNA encapsidation, and Gag can package both wild-type and gag mutant RNAs with similar efficiencies. Therefore, we propose that HIV-1 RNA encapsidation occurs mainly in trans, and most gag mutants can be rescued by wild-type virus; therefore, they are unlikely to face the aforementioned double-negative selection.
Collapse
Affiliation(s)
- Olga Nikolaitchik
- HIV Drug Resistance Program, National Cancer Institute, SAIC-Frederick, Frederick, MD 21702, USA
| | | | | | | |
Collapse
|
41
|
Ghazawi A, Mustafa F, Phillip PS, Jayanth P, Ali J, Rizvi TA. Both the 5' and 3' LTRs of FIV contain minor RNA encapsidation determinants compared to the two core packaging determinants within the 5' untranslated region and gag. Microbes Infect 2006; 8:767-78. [PMID: 16513389 DOI: 10.1016/j.micinf.2005.09.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Revised: 09/08/2005] [Accepted: 09/27/2005] [Indexed: 11/17/2022]
Abstract
This study was undertaken to address the role of feline immunodeficiency virus (FIV) long terminal repeats (LTR) as potential packaging determinants. A number of studies in the recent past have clearly demonstrated that the core packaging determinants of FIV reside within at least two distinct regions at the 5' end of the viral genome, from R in the 5' LTR to approximately 150 bp within the 5' untranslated region (5' UTR) and within the first 100 bp of gag; however, there have been conflicting observations as to the role of the LTR regions in packaging and whether they contain the principal packaging determinants of FIV. Using a semi-quantitative RT-PCR approach on heterologous non-viral vector RNAs in an in vivo packaging assay, this study demonstrates that the principal packaging determinants of FIV reside within the first 150 bp of 5' UTR and 100 bp of gag (the two core regions) and not the viral 5' LTR. Furthermore, it shows that in addition to the 5' LTR, the 3' LTR also contains packaging determinants, but of a less significant nature compared to the core packaging determinants. This study defines the relative contribution of the various regions implicated in FIV genomic RNA packaging, and reveals that like other primate lentiviruses, the packaging determinants of FIV are multipartite and spread out, an observation that has implications for safer and more streamlined design of FIV-based gene transfer vectors.
Collapse
Affiliation(s)
- Akela Ghazawi
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences (FMHS), United Arab Emirates University (UAEU), P.O. Box 17666, Al Ain, United Arab Emirates
| | | | | | | | | | | |
Collapse
|
42
|
Roy BB, Russell RS, Turner D, Liang C. The T12I mutation within the SP1 region of Gag restricts packaging of spliced viral RNA into human immunodeficiency virus type 1 with mutated RNA packaging signals and mutated nucleocapsid sequence. Virology 2006; 344:304-14. [PMID: 16226779 DOI: 10.1016/j.virol.2005.09.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2005] [Revised: 08/10/2005] [Accepted: 09/12/2005] [Indexed: 10/25/2022]
Abstract
Specific packaging of human immunodeficiency virus type 1 (HIV-1) RNA is attributable to the high affinity of nucleocapsid (NC) sequence of Gag for the cis-acting RNA packaging signals located within the 5' un-translated region (5' UTR). Interestingly, we have previously reported that the T12I mutation (named MP2) within SP1 of Gag prevented incorporation of spliced viral RNA into mutated viruses that lacked the stem-loop 1 (SL1) RNA element (also named dimerization initiation site, DIS), suggesting a role for the SP1 sequence in viral RNA packaging. In this study, we have further tested this activity of MP2 in the context of a variety of mutations that affect viral RNA incorporation. The results showed that MP2 was able to effectively restrict packaging of spliced viral RNA into viruses containing either NC mutations R10A and K11A or mutated 5' UTR sequence, such as DeltaGU3 that lacked the 112-GUCUGUUGUGUG-123 sequence of U5, D1 that was deleted of a 27 nt fragment immediately downstream of the primer binding site (PBS), Delta(306-325) that had the SL3 RNA element removed and MD2 that was missing the 328-GGAG-331 sequence. As a result, MP2 contributed increased infectivity to the related viruses. Therefore, the MP2 mutation demonstrates a distinct role in HIV-1 RNA packaging that is neither pertained to the specific viral RNA packaging signal nor to the NC sequence.
Collapse
Affiliation(s)
- Bibhuti Bhusan Roy
- McGill AIDS Centre, Lady Davis Institute-Jewish General Hospital, Montreal, Quebec, Canada H3T 1E2
| | | | | | | |
Collapse
|
43
|
Abstract
As retroviruses assemble in infected cells, two copies of their full-length, unspliced RNA genomes are selected for packaging from a cellular milieu that contains a substantial excess of non-viral and spliced viral RNAs. Understanding the molecular details of genome packaging is important for the development of new antiviral strategies and to enhance the efficacy of retroviral vectors used in human gene therapy. Recent studies of viral RNA structure in vitro and in vivo and high-resolution studies of RNA fragments and protein-RNA complexes are helping to unravel the mechanism of genome packaging and providing the first glimpses of the initial stages of retrovirus assembly.
Collapse
Affiliation(s)
- Victoria D'Souza
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, USA
| | | |
Collapse
|
44
|
Abbink TEM, Ooms M, Haasnoot PCJ, Berkhout B. The HIV-1 Leader RNA Conformational Switch Regulates RNA Dimerization but Does Not Regulate mRNA Translation. Biochemistry 2005; 44:9058-66. [PMID: 15966729 DOI: 10.1021/bi0502588] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The untranslated leader RNA is the most conserved part of the human immunodeficiency virus type I (HIV-1) genome. It contains many regulatory motifs that mediate a variety of steps in the viral life cycle. Previous work showed that the full-length leader RNA can adopt two alternative structures: a long distance interaction (LDI) and a branched multiple-hairpin (BMH) structure. The BMH structure exposes the dimer initiation site (DIS) hairpin, whereas this motif is occluded in the LDI structure. Consequently, these structures differ in their capacity to form RNA dimers in vitro. The BMH structure is dimerization-competent, due to DIS hairpin formation, but also presents the splice donor (SD) and RNA packaging (Psi) hairpins. In the LDI structure, an extended RNA packaging (Psi(E)) hairpin is folded, which includes the splice donor site and gag coding sequences. The gag initiation codon is engaged in a long distance base pairing interaction with sequences in the upstream U5 region in the BMH structure, thus forming the evolutionarily conserved U5-AUG duplex. Therefore, the LDI-BMH equilibrium may affect not only the process of RNA dimer formation but also translation initiation. In this study, we designed mutations in the 3'-terminal region of the leader RNA that alter the equilibrium of the LDI-BMH structures. The mutant leader RNAs are affected in RNA dimer formation, but not in their translation efficiency. These results indicate that the LDI-BMH status does not regulate HIV-1 RNA translation, despite the differential presentation of the gag initiation codon in both leader RNA structures.
Collapse
Affiliation(s)
- Truus E M Abbink
- Department of Human Retrovirology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
45
|
Kanevsky I, Chaminade F, Ficheux D, Moumen A, Gorelick R, Negroni M, Darlix JL, Fossé P. Specific Interactions Between HIV-1 Nucleocapsid Protein and the TAR Element. J Mol Biol 2005; 348:1059-77. [PMID: 15854644 DOI: 10.1016/j.jmb.2005.03.046] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2005] [Accepted: 03/16/2005] [Indexed: 11/24/2022]
Abstract
During retroviral reverse transcription, the minus-strand strong-stop DNA (ss-cDNA) is transferred to the 3' end of the genomic RNA and this requires the repeat (R) sequences present at both ends of the genome. In vitro, the human immunodeficiency virus type 1 (HIV-1) R sequence can promote DNA strand transfer when present in ectopic internal positions. Using HIV-1 model systems, the R sequences and nucleocapsid protein (NC) were found to be key determinants of ss-cDNA transfer. To gain insights into specific interactions between HIV-1 NC and RNA and the influence of NC on R folding, we investigated the secondary structures of R in two natural contexts, namely at the 5' or 3' end of RNAs representing the terminal regions of the genome, and in two ectopic internal positions that also support efficient minus-strand transfer. To investigate the roles of NC zinc fingers and flanking basic domains in the NC/RNA interactions, we used NC mutants. Analyses of the viral RNA/NC complexes by chemical and enzymatic probings, and gel retardation assays were performed under conditions allowing ss-cDNA transfer by reverse transcriptase. We report that NC binds the TAR apical loop specifically in the four genetic contexts without changing the folding of the TAR hairpin and R region significantly, and this requires the NC zinc fingers. In addition, we show that efficient annealing of cTAR DNA to the 3' R relies on sequence complementarities between TAR and cTAR terminal loops. These findings suggest that the TAR apical loop in the acceptor RNA is the initiation site for the annealing reaction that is chaperoned by NC during the minus-strand transfer.
Collapse
Affiliation(s)
- Igor Kanevsky
- CNRS UMR8113, LBPA-Alembert, Ecole Normale Supérieure de Cachan, 94235 Cachan cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Ooms M, Huthoff H, Russell R, Liang C, Berkhout B. A riboswitch regulates RNA dimerization and packaging in human immunodeficiency virus type 1 virions. J Virol 2004; 78:10814-9. [PMID: 15367648 PMCID: PMC516375 DOI: 10.1128/jvi.78.19.10814-10819.2004] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome of retroviruses, including human immunodeficiency virus type 1 (HIV-1), consists of two identical RNA strands that are packaged as noncovalently linked dimers. The core packaging and dimerization signals are located in the downstream part of the untranslated leader of HIV-1 RNA-the Psi and the dimerization initiation site (DIS) hairpins. The HIV-1 leader can adopt two alternative conformations that differ in the presentation of the DIS hairpin and consequently in their ability to dimerize in vitro. The branched multiple-hairpin (BMH) structure folds the poly(A) and DIS hairpins, but these domains are base paired in a long distance interaction (LDI) in the most stable LDI conformation. This LDI-BMH riboswitch regulates RNA dimerization in vitro. It was recently shown that the Psi hairpin structure is also presented differently in the LDI and BMH structures. Several detailed in vivo studies have indicated that sequences throughout the leader RNA contribute to RNA packaging, but how these diverse mutations affect the packaging mechanism is not known. We reasoned that these effects may be due to a change in the LDI-BMH equilibrium, and we therefore reanalyzed the structural effects of a large set of leader RNA mutations that were presented in three previous studies (J. L. Clever, D. Mirandar, Jr., and T. G. Parslow, J. Virol. 76:12381-12387, 2002; C. Helga-Maria, M. L. Hammarskjold, and D. Rekosh, J. Virol. 73:4127-4135, 1999; R. S. Russell, J. Hu, V. Beriault, A. J. Mouland, M. Laughrea, L. Kleiman, M. A. Wainberg, and C. Liang, J. Virol. 77:84-96, 2003). This analysis revealed a strict correlation between the status of the LDI-BMH equilibrium and RNA packaging. Furthermore, a correlation is apparent between RNA dimerization and RNA packaging, and these processes may be coordinated by the same LDI-BMH riboswitch mechanism.
Collapse
Affiliation(s)
- Marcel Ooms
- Department of Human Retrovirology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
47
|
Kemler I, Azmi I, Poeschla EM. The critical role of proximal gag sequences in feline immunodeficiency virus genome encapsidation. Virology 2004; 327:111-20. [PMID: 15327902 DOI: 10.1016/j.virol.2004.06.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2004] [Revised: 05/06/2004] [Accepted: 06/08/2004] [Indexed: 10/26/2022]
Abstract
Retroviral RNA encapsidation is mediated by specific interactions between viral Gag proteins and cis-acting packaging sequences in genomic RNA. Feline immunodeficiency virus (FIV) RNA encapsidation determinants have been shown to be discrete and noncontinuous, comprising one region at the 5' end of the genomic mRNA (R-U5) and another region that mapped within the proximal 311 nt of gag. To aid comparative understanding of lentiviral encapsidation and refinement of FIV vector systems, we used RNase protection assays (RPAs) of cellular and virion RNAs to investigate in detail the gag element. mRNAs of subgenomic vectors as well as of full-length molecular clones were optimally packaged into viral particles and resulted in high-titer FIV vectors when they contained only the proximal 230 nucleotides (nt) of gag. Further 3' truncations of gag sequences progressively diminished encapsidation and transduction. Deletion of the initial ninety 5' nt of the gag gene abolished mRNA packaging, demonstrating that this segment is indispensable for encapsidation. Focusing further on this proximal sequence, we found that a deletion of only 13 nt at the 5' end of gag impaired encapsidation of subgenomic vector and proviral RNAs.
Collapse
MESH Headings
- Animals
- Capsid/metabolism
- Cats
- Cell Line
- Gene Products, gag/chemistry
- Gene Products, gag/genetics
- Gene Products, gag/metabolism
- Genes, gag
- Genetic Vectors
- Genome, Viral
- Humans
- Immunodeficiency Virus, Feline/genetics
- Immunodeficiency Virus, Feline/metabolism
- Mutation
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Ribonucleases/metabolism
- Signal Transduction
- Transduction, Genetic
- Virion/genetics
- Virion/metabolism
- Virus Assembly
Collapse
Affiliation(s)
- Iris Kemler
- Molecular Medicine Program, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | |
Collapse
|
48
|
Paillart JC, Dettenhofer M, Yu XF, Ehresmann C, Ehresmann B, Marquet R. First snapshots of the HIV-1 RNA structure in infected cells and in virions. J Biol Chem 2004; 279:48397-403. [PMID: 15355993 DOI: 10.1074/jbc.m408294200] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
With the increasing interest of RNAs in regulating a range of cell biological processes, very little is known about the structure of RNAs in tissue culture cells. We focused on the 5'-untranslated region of the human immunodeficiency virus type 1 RNA genome, a highly conserved RNA region, which contains structural domains that regulate key steps in the viral replication cycle. Up until now, structural information only came from in vitro studies. Here, we developed chemical modification assays to test nucleotide accessibility directly in infected cells and viral particles, thus circumventing possible biases and artifacts linked to in vitro assays. The secondary structure of the 5'-untranslated region in infected cells points to the existence of the various stem-loop motifs associated to distinct functions, proposed from in vitro probing, mutagenesis, and phylogeny. However, compared with in vitro data, subtle differences were observed in the dimerization initiation site hairpin, and none of the proposed long range interactions were observed between the functional domains. Moreover, no global RNA rearrangement was observed; structural differences between infected cells and viral particles were limited to the primer binding site, which became protected against chemical modification upon tRNA(3) (Lys) annealing in virions and to the main packaging signal. In addition, our data suggested that the genomic RNA could already dimerize in the cytoplasm of infected cells. Taken together, our results provided the first analysis of the dynamic of RNA structure of the human immunodeficiency virus type 1 RNA genome during virus assembly ex vivo.
Collapse
Affiliation(s)
- Jean-Christophe Paillart
- Unité Propre de Recherche 9002 du CNRS conventionnée à l'Université Louis Pasteur, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, 67084 Strasbourg cedex, France.
| | | | | | | | | | | |
Collapse
|
49
|
Russell RS, Liang C, Wainberg MA. Is HIV-1 RNA dimerization a prerequisite for packaging? Yes, no, probably? Retrovirology 2004; 1:23. [PMID: 15345057 PMCID: PMC516451 DOI: 10.1186/1742-4690-1-23] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Accepted: 09/02/2004] [Indexed: 01/14/2023] Open
Abstract
During virus assembly, all retroviruses specifically encapsidate two copies of full-length viral genomic RNA in the form of a non-covalently linked RNA dimer. The absolute conservation of this unique genome structure within the Retroviridae family is strong evidence that a dimerized genome is of critical importance to the viral life cycle. An obvious hypothesis is that retroviruses have evolved to preferentially package two copies of genomic RNA, and that dimerization ensures the proper packaging specificity for such a genome. However, this implies that dimerization must be a prerequisite for genome encapsidation, a notion that has been debated for many years. In this article, we review retroviral RNA dimerization and packaging, highlighting the research that has attempted to dissect the intricate relationship between these two processes in the context of HIV-1, and discuss the therapeutic potential of these putative antiretroviral targets.
Collapse
Affiliation(s)
- Rodney S Russell
- McGill AIDS Centre, Lady Davis Institute, Jewish General Hospital, 3755 Cote Ste-Catherine Road Montreal, Quebec, Canada H3T 1E2
- Department of Microbiology & Immunology Montreal, Quebec, Canada H3A 2B4
| | - Chen Liang
- McGill AIDS Centre, Lady Davis Institute, Jewish General Hospital, 3755 Cote Ste-Catherine Road Montreal, Quebec, Canada H3T 1E2
- Department of Medicine, McGill University, Montreal, Quebec, Canada H3A 2B4
| | - Mark A Wainberg
- McGill AIDS Centre, Lady Davis Institute, Jewish General Hospital, 3755 Cote Ste-Catherine Road Montreal, Quebec, Canada H3T 1E2
- Department of Microbiology & Immunology Montreal, Quebec, Canada H3A 2B4
- Department of Medicine, McGill University, Montreal, Quebec, Canada H3A 2B4
| |
Collapse
|
50
|
Hiebenthal-Millow K, Greenough TC, Bretttler DB, Schindler M, Wildum S, Sullivan JL, Kirchhoff F. Alterations in HIV-1 LTR promoter activity during AIDS progression. Virology 2004; 317:109-18. [PMID: 14675629 DOI: 10.1016/j.virol.2003.08.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
HIV-1 variants evolving in AIDS patients frequently show increased replicative capacity compared to those present during early asymptomatic infection. It is known that late stage HIV-1 variants often show an expanded coreceptor tropism and altered Nef function. In the present study we investigated whether enhanced HIV-1 LTR promoter activity might also evolve during disease progression. Our results demonstrate increased LTR promoter activity after AIDS progression in 3 of 12 HIV-1-infected individuals studied. Further analysis revealed that multiple alterations in the U3 core-enhancer and in the transactivation-response (TAR) region seem to be responsible for the enhanced functional activity. Our findings show that in a subset of HIV-1-infected individuals enhanced LTR transcription contributes to the increased replicative potential of late stage virus isolates and might accelerate disease progression.
Collapse
Affiliation(s)
- Kirsten Hiebenthal-Millow
- Institute for Clinical and Molecular Virology, University of Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany
| | | | | | | | | | | | | |
Collapse
|