1
|
Long J, Hoban MD, Cooper AR, Kaufman ML, Kuo CY, Campo-Fernandez B, Lumaquin D, Hollis RP, Wang X, Kohn DB, Romero Z. Characterization of Gene Alterations following Editing of the β-Globin Gene Locus in Hematopoietic Stem/Progenitor Cells. Mol Ther 2018; 26:468-479. [PMID: 29221806 PMCID: PMC5835144 DOI: 10.1016/j.ymthe.2017.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/27/2017] [Accepted: 11/02/2017] [Indexed: 02/09/2023] Open
Abstract
The use of engineered nucleases combined with a homologous DNA donor template can result in targeted gene correction of the sickle cell disease mutation in hematopoietic stem and progenitor cells. However, because of the high homology between the adjacent human β- and δ-globin genes, off-target cleavage is observed at δ-globin when using some endonucleases targeted to the sickle mutation in β-globin. Introduction of multiple double-stranded breaks by endonucleases has the potential to induce intergenic alterations. Using a novel droplet digital PCR assay and high-throughput sequencing, we characterized the frequency of rearrangements between the β- and δ-globin paralogs when delivering these nucleases. Pooled CD34+ cells and colony-forming units from sickle bone marrow were treated with nuclease only or including a donor template and then analyzed for potential gene rearrangements. It was observed that, in pooled CD34+ cells and colony-forming units, the intergenic β-δ-globin deletion was the most frequent rearrangement, followed by inversion of the intergenic fragment, with the inter-chromosomal translocation as the least frequent. No rearrangements were observed when endonuclease activity was restricted to on-target β-globin cleavage. These findings demonstrate the need to develop site-specific endonucleases with high specificity to avoid unwanted gene alterations.
Collapse
Affiliation(s)
- Joseph Long
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Biology Department, California State University, Northridge, Northridge, CA 91330, USA
| | - Megan D Hoban
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Aaron R Cooper
- Molecular Biology Interdepartmental Ph.D. Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michael L Kaufman
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Caroline Y Kuo
- Division of Allergy and Immunology, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Beatriz Campo-Fernandez
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Dianne Lumaquin
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Roger P Hollis
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xiaoyan Wang
- Department of Internal Medicine and Health Services Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Donald B Kohn
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zulema Romero
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
2
|
Heterelogous expression of mutated HLA-G decreases immunogenicity of human embryonic stem cells and their epidermal derivatives. Stem Cell Res 2014; 13:342-54. [PMID: 25218797 DOI: 10.1016/j.scr.2014.08.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 06/29/2014] [Accepted: 08/08/2014] [Indexed: 12/28/2022] Open
Abstract
Human embryonic stem cells (hESCs) are capable of extensive self-renewal and expansion and can differentiate into any somatic tissue, making them useful for regenerative medicine applications. Allogeneic transplantation of hESC-derived tissues from results in immunological rejection absent adjunctive immunosuppression. The goal of our study was to generate a universal pluripotent stem cell source by nucleofecting a mutated human leukocyte antigen G (mHLA-G) gene into hESCs using the PiggyBac transposon. We successfully generated stable mHLA-G(EF1α)-hESC lines using chEF1α promoter system that stably expressed mHLA-G protein during prolonged undifferentiated proliferation andin differentiated embryoid bodies as well as teratomas. Morphology, karyotype, and telomerase activity of mHLA-G expressing hESC were normal. Immunofluorescence staining and flow cytometry analysis revealed persistent expression of pluripotent markers, OCT-3/4 and SSEA-4, in undifferentiated mHLA-G(EF1α)-hESC. Nucleofected hESC formed teratomas and when directed to differentiate into epidermal precursors, expressed high levels of mHLA-G and keratinocyte markers K14 and CD29. Natural killer cell cytotoxicity assays demonstrated a significant decrease in lysis of mHLA-G(EF1a)-hESC targets relative to control cells. Similar results were obtained with mHLA-G(EF1α)-hESC-derived epidermal progenitors (hEEP). One way mixed T lymphocyte reactions unveiled that mHLA-G(EF1a)-hESC and -hEEP restrained the proliferative activity of mixed T lymphocytes. We conclude that heterologous expression of mHLA-G decreases immunogenicity of hESCs and their epidermal differentiated derivatives.
Collapse
|
3
|
Rival-Gervier S, Lo MY, Khattak S, Pasceri P, Lorincz MC, Ellis J. Kinetics and epigenetics of retroviral silencing in mouse embryonic stem cells defined by deletion of the D4Z4 element. Mol Ther 2013; 21:1536-50. [PMID: 23752310 PMCID: PMC3734652 DOI: 10.1038/mt.2013.131] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 05/21/2013] [Indexed: 11/21/2022] Open
Abstract
Retroviral vectors are silenced in embryonic stem (ES) cells by epigenetic mechanisms whose kinetics are poorly understood. We show here that a 3′D4Z4 insulator directs retroviral expression with persistent but variable expression for up to 5 months. Combining an internal 3′D4Z4 with HS4 insulators in the long terminal repeats (LTRs) shows that these elements cooperate, and defines the first retroviral vector that fully escapes long-term silencing. Using FLP recombinase to induce deletion of 3′D4Z4 from the provirus in ES cell clones, we established retroviral silencing at many but not all integration sites. This finding shows that 3′D4Z4 does not target retrovirus integration into favorable epigenomic domains but rather protects the transgene from silencing. Chromatin analyses demonstrate that 3′D4Z4 blocks the spread of heterochromatin marks including DNA methylation and repressive histone modifications such as H3K9 methylation. In addition, our deletion system reveals three distinct kinetic classes of silencing (rapid, gradual or not silenced), in which multiple epigenetic pathways participate in silencing at different integration sites. We conclude that vectors with both 3′D4Z4 and HS4 insulator elements fully block silencing, and may have unprecedented utility for gene transfer applications that require long-term gene expression in pluripotent stem (PS) cells.
Collapse
Affiliation(s)
- Sylvie Rival-Gervier
- Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
4
|
Oue M, Handa H, Matsuzaki Y, Suzue K, Murakami H, Hirai H. The murine stem cell virus promoter drives correlated transgene expression in the leukocytes and cerebellar Purkinje cells of transgenic mice. PLoS One 2012; 7:e51015. [PMID: 23226450 PMCID: PMC3511439 DOI: 10.1371/journal.pone.0051015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 10/31/2012] [Indexed: 11/19/2022] Open
Abstract
The murine stem cell virus (MSCV) promoter exhibits activity in mouse hematopoietic cells and embryonic stem cells. We generated transgenic mice that expressed enhanced green fluorescent protein (GFP) under the control of the MSCV promoter. We obtained 12 transgenic founder mice through 2 independent experiments and found that the bodies of 9 of the founder neonates emitted different levels of GFP fluorescence. Flow cytometric analysis of circulating leukocytes revealed that the frequency of GFP-labeled leukocytes among white blood cells ranged from 1.6% to 47.5% across the 12 transgenic mice. The bodies of 9 founder transgenic mice showed various levels of GFP expression. GFP fluorescence was consistently observed in the cerebellum, with faint or almost no fluorescence in other brain regions. In the cerebellum, 10 founders exhibited GFP expression in Purkinje cells at frequencies of 3% to 76%. Of these, 4 mice showed Purkinje cell-specific expression, while 4 and 2 mice expressed GFP in the Bergmann glia and endothelial cells, respectively. The intensity of the GFP fluorescence in the body was relative to the proportion of GFP-positive leukocytes. Moreover, the frequency of the GFP-expressing leukocytes was significantly correlated with the frequency of GFP-expressing Purkinje cells. These results suggest that the MSCV promoter is useful for preferentially expressing a transgene in Purkinje cells. In addition, the proportion of transduced leukocytes in the peripheral circulation reflects the expression level of the transgene in Purkinje cells, which can be used as a way to monitor transgene expression properties in the cerebellum without invasive techniques.
Collapse
Affiliation(s)
- Miho Oue
- Department of Neurophysiology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Hiroshi Handa
- Department of Medicine and Clinical Science, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Yasunori Matsuzaki
- Department of Neurophysiology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Kazutomo Suzue
- Department of Parasitology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Hirokazu Murakami
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Maebashi, Gunma, Japan
| | - Hirokazu Hirai
- Department of Neurophysiology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
- * E-mail:
| |
Collapse
|
5
|
Lo MYM, Rival-Gervier S, Pasceri P, Ellis J. Rapid transcriptional pulsing dynamics of high expressing retroviral transgenes in embryonic stem cells. PLoS One 2012; 7:e37130. [PMID: 22606340 PMCID: PMC3351450 DOI: 10.1371/journal.pone.0037130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 04/13/2012] [Indexed: 11/18/2022] Open
Abstract
Single cell imaging studies suggest that transcription is not continuous and occurs as discrete pulses of gene activity. To study mechanisms by which retroviral transgenes can transcribe to high levels, we used the MS2 system to visualize transcriptional dynamics of high expressing proviral integration sites in embryonic stem (ES) cells. We established two ES cell lines each bearing a single copy, self-inactivating retroviral vector with a strong ubiquitous human EF1α gene promoter directing expression of mRFP fused to an MS2-stem-loop array. Transfection of MS2-EGFP generated EGFP focal dots bound to the mRFP-MS2 stem loop mRNA. These transcription foci colocalized with the transgene integration site detected by immunoFISH. Live tracking of single cells for 20 minutes detected EGFP focal dots that displayed frequent and rapid fluctuations in transcription over periods as short as 25 seconds. Similarly rapid fluctuations were detected from focal doublet signals that colocalized with replicated proviral integration sites by immunoFISH, consistent with transcriptional pulses from sister chromatids. We concluded that retroviral transgenes experience rapid transcriptional pulses in clonal ES cell lines that exhibit high level expression. These events are directed by a constitutive housekeeping gene promoter and may provide precedence for rapid transcriptional pulsing at endogenous genes in mammalian stem cells.
Collapse
Affiliation(s)
- Mandy Y. M. Lo
- Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Sylvie Rival-Gervier
- Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Canada
- INRA, UMR 1198 Biologie du Développement et Reproduction, Jouy en Josas, France
| | - Peter Pasceri
- Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Canada
| | - James Ellis
- Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| |
Collapse
|
6
|
Li Z, Huang H, Chen P, He M, Li Y, Arnovitz S, Jiang X, He C, Hyjek E, Zhang J, Zhang Z, Elkahloun A, Cao D, Shen C, Wunderlich M, Wang Y, Neilly MB, Jin J, Wei M, Lu J, Valk PJM, Delwel R, Lowenberg B, Le Beau MM, Vardiman J, Mulloy JC, Zeleznik-Le NJ, Liu PP, Zhang J, Chen J. miR-196b directly targets both HOXA9/MEIS1 oncogenes and FAS tumour suppressor in MLL-rearranged leukaemia. Nat Commun 2012; 3:688. [PMID: 22353710 PMCID: PMC3514459 DOI: 10.1038/ncomms1681] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 01/11/2012] [Indexed: 01/07/2023] Open
Abstract
HOXA9 and MEIS1 have essential oncogenic roles in mixed lineage leukaemia (MLL)-rearranged leukaemia. Here we show that they are direct targets of miRNA-196b, a microRNA (miRNA) located adjacent to and co-expressed with HOXA9, in MLL-rearranged leukaemic cells. Forced expression of miR-196b significantly delays MLL-fusion-mediated leukemogenesis in primary bone marrow transplantation through suppressing Hoxa9/Meis1 expression. However, ectopic expression of miR-196b results in more aggressive leukaemic phenotypes and causes much faster leukemogenesis in secondary transplantation than MLL fusion alone, likely through the further repression of Fas expression, a proapoptotic gene downregulated in MLL-rearranged leukaemia. Overexpression of FAS significantly inhibits leukemogenesis and reverses miR-196b-mediated phenotypes. Targeting Hoxa9/Meis1 and Fas by miR-196b is probably also important for normal haematopoiesis. Thus, our results uncover a previously unappreciated miRNA-regulation mechanism by which a single miRNA may target both oncogenes and tumour suppressors, simultaneously, or, sequentially, in tumourigenesis and normal development per cell differentiation, indicating that miRNA regulation is much more complex than previously thought.
Collapse
Affiliation(s)
- Zejuan Li
- Department of Medicine, University of Chicago, Chicago, 60637, Illinois, USA
| | - Hao Huang
- Department of Medicine, University of Chicago, Chicago, 60637, Illinois, USA
| | - Ping Chen
- Department of Medicine, University of Chicago, Chicago, 60637, Illinois, USA
| | - Miao He
- Department of Medicine, University of Chicago, Chicago, 60637, Illinois, USA.,Department of Pharmacology, China Medical University, Shenyang, 110001, Liaoning, China
| | - Yuanyuan Li
- Department of Medicine, University of Chicago, Chicago, 60637, Illinois, USA
| | - Stephen Arnovitz
- Department of Medicine, University of Chicago, Chicago, 60637, Illinois, USA
| | - Xi Jiang
- Department of Medicine, University of Chicago, Chicago, 60637, Illinois, USA
| | - Chunjiang He
- Department of Medicine, University of Chicago, Chicago, 60637, Illinois, USA
| | - Elizabeth Hyjek
- Department of Pathology, University of Chicago, Chicago, 60637, Illinois, USA
| | - Jun Zhang
- Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, 60153, Illinois, USA
| | - Zhiyu Zhang
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, 60637, Illinois, USA
| | - Abdel Elkahloun
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, NIH, Bethesda, 20892, Maryland, USA
| | - Donglin Cao
- Department of Medicine, University of Chicago, Chicago, 60637, Illinois, USA.,Department of Laboratory Medicine, Guangdong No.2 Provincial People's Hospital, Guangzhou, 510317, Guangdong, China
| | - Chen Shen
- Department of Medicine, University of Chicago, Chicago, 60637, Illinois, USA
| | - Mark Wunderlich
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, 45229, Ohio, USA
| | - Yungui Wang
- Institute of Hematology, the First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Mary Beth Neilly
- Department of Medicine, University of Chicago, Chicago, 60637, Illinois, USA
| | - Jie Jin
- Institute of Hematology, the First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Minjie Wei
- Department of Pharmacology, China Medical University, Shenyang, 110001, Liaoning, China
| | - Jun Lu
- Department of Genetics, Yale Stem Cell Center, Yale University, New Haven, 06520, Connecticut, USA
| | - Peter J M Valk
- Department of Hematology, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Ruud Delwel
- Department of Hematology, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Bob Lowenberg
- Department of Hematology, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Michelle M Le Beau
- Department of Medicine, University of Chicago, Chicago, 60637, Illinois, USA
| | - James Vardiman
- Department of Pathology, University of Chicago, Chicago, 60637, Illinois, USA
| | - James C Mulloy
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, 45229, Ohio, USA
| | - Nancy J Zeleznik-Le
- Department of Medicine, Loyola University Medical Center, Maywood, 60153, Illinois, USA
| | - Paul P Liu
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, NIH, Bethesda, 20892, Maryland, USA
| | - Jiwang Zhang
- Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, 60153, Illinois, USA
| | - Jianjun Chen
- Department of Medicine, University of Chicago, Chicago, 60637, Illinois, USA.
| |
Collapse
|
7
|
Lomonosov M, Meziane EK, Ye H, Nelson DE, Randle SJ, Laman H. Expression of Fbxo7 in haematopoietic progenitor cells cooperates with p53 loss to promote lymphomagenesis. PLoS One 2011; 6:e21165. [PMID: 21695055 PMCID: PMC3117880 DOI: 10.1371/journal.pone.0021165] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 05/21/2011] [Indexed: 12/22/2022] Open
Abstract
Fbxo7 is an unusual F box protein that augments D-type cyclin complex formation with Cdk6, but not Cdk4 or Cdk2, and its over-expression has been demonstrated to transform immortalised fibroblasts in a Cdk6-dependent manner. Here we present new evidence in vitro and in vivo on the oncogenic potential of this regulatory protein in primary haematopoietic stem and progenitor cells (HSPCs). Increasing Fbxo7 expression in HSPCs suppressed their colony forming ability in vitro, specifically decreasing CD11b (Mac1) expression, and these effects were dependent on an intact p53 pathway. Furthermore, increased Fbxo7 levels enhanced the proliferative capacity of p53 null HSPCs when they were grown in reduced concentrations of stem cell factor. Finally, irradiated mice reconstituted with p53 null, but not wild-type, HSPCs expressing Fbxo7 showed a statistically significant increase in the incidence of T cell lymphoma in vivo. These data argue that Fbxo7 negatively regulates the proliferation and differentiation of HSPCs in a p53-dependent manner, and that in the absence of p53, Fbxo7 expression can promote T cell lymphomagenesis.
Collapse
Affiliation(s)
- Mikhail Lomonosov
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - El Kahina Meziane
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Hongtao Ye
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - David E. Nelson
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Suzanne J. Randle
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Heike Laman
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
8
|
Suga T, Kimura E, Morioka Y, Ikawa M, Li S, Uchino K, Uchida Y, Yamashita S, Maeda Y, Chamberlain JS, Uchino M. Muscle fiber type-predominant promoter activity in lentiviral-mediated transgenic mouse. PLoS One 2011; 6:e16908. [PMID: 21445245 PMCID: PMC3060803 DOI: 10.1371/journal.pone.0016908] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 01/17/2011] [Indexed: 11/18/2022] Open
Abstract
Variations in gene promoter/enhancer activity in different muscle fiber types after gene transduction was noticed previously, but poorly analyzed. The murine stem cell virus (MSCV) promoter drives strong, stable gene expression in hematopoietic stem cells and several other cells, including cerebellar Purkinje cells, but it has not been studied in muscle. We injected a lentiviral vector carrying an MSCV-EGFP cassette (LvMSCV-EGFP) into tibialis anterior muscles and observed strong EGFP expression in muscle fibers, primary cultured myoblasts, and myotubes isolated from injected muscles. We also generated lentiviral-mediated transgenic mice carrying the MSCV-EGFP cassette and detected transgene expression in striated muscles. LvMSCV-EGFP transgenic mice showed fiber type-dependent variations in expression: highest in types I and IIA, intermediate in type IID/X, and lowest in type IIB fibers. The soleus and diaphragm muscles, consisting mainly of types I and IIA, are most severely affected in the mdx mouse model of muscular dystrophy. Further analysis of this promoter may have the potential to achieve certain gene expression in severely affected muscles of mdx mice. The Lv-mediated transgenic mouse may prove a useful tool for assessing the enhancer/promoter activities of a variety of different regulatory cassettes.
Collapse
Affiliation(s)
- Tomohiro Suga
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - En Kimura
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Department of Neurology, Medicine, and Biochemistry, University of Washington School of Medicine, Seattle, Washington, United States of America
- * E-mail:
| | - Yuka Morioka
- Research Center for Infection-Associated Cancer, Division of Disease Model Innovation, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Sheng Li
- Department of Neurology, Medicine, and Biochemistry, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Katsuhisa Uchino
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuji Uchida
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Laboratory of Pharmacology, Division of Life Science, Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan
| | - Satoshi Yamashita
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yasushi Maeda
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Jeffrey S. Chamberlain
- Department of Neurology, Medicine, and Biochemistry, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Makoto Uchino
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
9
|
Hotta A, Cheung AYL, Farra N, Garcha K, Chang WY, Pasceri P, Stanford WL, Ellis J. EOS lentiviral vector selection system for human induced pluripotent stem cells. Nat Protoc 2010; 4:1828-44. [PMID: 20010937 DOI: 10.1038/nprot.2009.201] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Generation of induced pluripotent stem (iPS) cells from patients has exciting applications for studying molecular mechanisms of diseases, screening drugs and ultimately for use in cell therapies. However, the low efficiency and heterogeneous nature of reprogramming is a major impediment to the generation of personalized iPS cell lines. We reported in Nature Methods (6, 370-376, 2009) the first selection system to enrich for reprogrammed human iPS cells. Using a lentiviral vector that specifically expresses the enhanced green fluorescence protein and puromycin resistance genes in pluripotent stem cells, it is now possible to mark and enrich for human iPS cell colonies expressing endogenous pluripotency markers. In this study, we describe a detailed protocol for the production of the pluripotent state-specific lentiviral vector and the selection system for the induction of healthy and disease-specific human iPS cells. Overall, preparation of the selection system takes 2 weeks, and the generation of human iPS cells takes approximately 2 months.
Collapse
Affiliation(s)
- Akitsu Hotta
- Developmental and Stem Cell Biology Program, SickKids, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Arumugam PI, Urbinati F, Velu CS, Higashimoto T, Grimes HL, Malik P. The 3' region of the chicken hypersensitive site-4 insulator has properties similar to its core and is required for full insulator activity. PLoS One 2009; 4:e6995. [PMID: 19746166 PMCID: PMC2736623 DOI: 10.1371/journal.pone.0006995] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Accepted: 08/17/2009] [Indexed: 11/19/2022] Open
Abstract
Chromatin insulators separate active transcriptional domains and block the spread of heterochromatin in the genome. Studies on the chicken hypersensitive site-4 (cHS4) element, a prototypic insulator, have identified CTCF and USF-1/2 motifs in the proximal 250 bp of cHS4, termed the "core", which provide enhancer blocking activity and reduce position effects. However, the core alone does not insulate viral vectors effectively. The full-length cHS4 has excellent insulating properties, but its large size severely compromises vector titers. We performed a structure-function analysis of cHS4 flanking lentivirus-vectors and analyzed transgene expression in the clonal progeny of hematopoietic stem cells and epigenetic changes in cHS4 and the transgene promoter. We found that the core only reduced the clonal variegation in expression. Unique insulator activity resided in the distal 400 bp cHS4 sequences, which when combined with the core, restored full insulator activity and open chromatin marks over the transgene promoter and the insulator. These data consolidate the known insulating activity of the canonical 5' core with a novel 3' 400 bp element with properties similar to the core. Together, they have excellent insulating properties and viral titers. Our data have important implications in understanding the molecular basis of insulator function and design of gene therapy vectors.
Collapse
Affiliation(s)
- Paritha I. Arumugam
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Fabrizia Urbinati
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Chinavenmeni S. Velu
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Tomoyasu Higashimoto
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - H. Leighton Grimes
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Punam Malik
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- Division of Hematology-Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
11
|
MECP2 isoform-specific vectors with regulated expression for Rett syndrome gene therapy. PLoS One 2009; 4:e6810. [PMID: 19710912 PMCID: PMC2728539 DOI: 10.1371/journal.pone.0006810] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 07/30/2009] [Indexed: 12/19/2022] Open
Abstract
Background Rett Syndrome (RTT) is an Autism Spectrum Disorder and the leading cause of mental retardation in females. RTT is caused by mutations in the Methyl CpG-Binding Protein-2 (MECP2) gene and has no treatment. Our objective is to develop viral vectors for MECP2 gene transfer into Neural Stem Cells (NSC) and neurons suitable for gene therapy of Rett Syndrome. Methodology/Principal Findings We generated self-inactivating (SIN) retroviral vectors with the ubiquitous EF1α promoter avoiding known silencer elements to escape stem-cell-specific viral silencing. High efficiency NSC infection resulted in long-term EGFP expression in transduced NSC and after differentiation into neurons. Infection with Myc-tagged MECP2-isoform-specific (E1 and E2) vectors directed MeCP2 to heterochromatin of transduced NSC and neurons. In contrast, vectors with an internal mouse Mecp2 promoter (MeP) directed restricted expression only in neurons and glia and not NSC, recapitulating the endogenous expression pattern required to avoid detrimental consequences of MECP2 ectopic expression. In differentiated NSC from adult heterozygous Mecp2tm1.1Bird+/− female mice, 48% of neurons expressed endogenous MeCP2 due to random inactivation of the X-linked Mecp2 gene. Retroviral MECP2 transduction with EF1α and MeP vectors rescued expression in 95–100% of neurons resulting in increased dendrite branching function in vitro. Insulated MECP2 isoform-specific lentiviral vectors show long-term expression in NSC and their differentiated neuronal progeny, and directly infect dissociated murine cortical neurons with high efficiency. Conclusions/Significance MeP vectors recapitulate the endogenous expression pattern of MeCP2 in neurons and glia. They have utility to study MeCP2 isoform-specific functions in vitro, and are effective gene therapy vectors for rescuing dendritic maturation of neurons in an ex vivo model of RTT.
Collapse
|
12
|
Abstract
Cellular defence mechanisms against HIV contribute to its persistence. One of the cellular defenses against virus infection is the silencing of viral gene expression. There is evidence that at least two gene-silencing mechanisms are used against the human immuno-deficiency virus (HIV). Paradoxically, this cellular defense mechanism contributes to viral latency and persistence, and we review here the relationship of viral latency to gene-silencing mechanisms.
Collapse
Affiliation(s)
- Hoi-Ping Mok
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 2QQ, UK
| | | |
Collapse
|
13
|
Chang AH, Sadelain M. The Genetic Engineering of Hematopoietic Stem Cells: the Rise of Lentiviral Vectors, the Conundrum of the LTR, and the Promise of Lineage-restricted Vectors. Mol Ther 2007; 15:445-56. [PMID: 17228317 DOI: 10.1038/sj.mt.6300060] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Recent studies on the integration patterns of different categories of retroviral vectors, the genotoxicity of long-terminal repeats (LTRs) and other genetic elements, the rise of lentiviral technology and the emergence of regulated vector systems providing tissue-restricted transgene expression and RNA interference, are profoundly changing the landscape of stem cell-based therapies. New developments in vector design and an increasing understanding of the mechanisms underlying insertional oncogenesis are ushering in a new phase in hematopoietic stem cell (HSC) engineering, thus bringing the hitherto exclusive reliance on LTR-driven, gamma-retroviral vectors to an end. Based on their ability to transduce non-dividing cells and their genomic stability, lentiviral vectors offer new prospects for the manipulation of HSCs. Tissue-specific vectors, as exemplified by globin vectors, not only provide therapeutic efficacy, but may also enhance safety, insofar that they restrict transgene expression in stem cells, progenitor cells and blood cells in all but the transcriptionally targeted lineage. This review provides a survey of these advances as well as several remaining challenges, focusing in particular on the importance of achieving adequate levels of protein expression from a limited number of vector copies per cell-ideally one to two.
Collapse
Affiliation(s)
- Alex H Chang
- Laboratory of Gene Transfer and Gene Expression, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | | |
Collapse
|
14
|
Ramezani A, Hawley TS, Hawley RG. Stable gammaretroviral vector expression during embryonic stem cell-derived in vitro hematopoietic development. Mol Ther 2006; 14:245-54. [PMID: 16731046 PMCID: PMC2389876 DOI: 10.1016/j.ymthe.2006.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Revised: 04/12/2006] [Accepted: 04/15/2006] [Indexed: 01/14/2023] Open
Abstract
Unlike conventional gammaretroviral vectors, the murine stem cell virus (MSCV) can efficiently express transgenes in undifferentiated embryonic stem cells (ESCs). However, a dramatic extinction of expression is observed when ESCs are subjected to in vitro hematopoietic differentiation. Here we report the construction of a self-inactivating vector from MSCV, MSinSB, which transmits an intron embedded within the internal transgene cassette to transduced cells. The internal transgene transcriptional unit in MSinSB comprises the composite cytomegalovirus immediate early enhancer-chicken beta-actin promoter and associated 5' splice site positioned upstream of the natural 3' splice site of the gammaretroviral envelope gene, and is configured such that the transgene translational initiation sequence is coincident with the envelope ATG. MSinSB could be produced at titers approaching 10(6) transducing units/ml and directed higher levels of transgene expression in ESCs than a splicing-optimized MSCV-derived vector, MSGV1. Moreover, when transduced ESCs were differentiated into hematopoietic cells in vitro, MSinSB remained transcriptionally active in greater than 90% of the cells, whereas MSGV1 expression was almost completely shut off. Persistent high-level expression of the MSinSB gammaretroviral vector was also demonstrated in murine bone marrow transplant recipients and following in vitro myelomonocytic differentiation of human CD34(+) cord blood stem/progenitor cells.
Collapse
Affiliation(s)
- Ali Ramezani
- Department of Anatomy and Regenerative Biology, The George Washington University Medical Center, Washington, DC
| | - Teresa S. Hawley
- Flow Cytometry Core Facility, The George Washington University Medical Center, Washington, DC
| | - Robert G. Hawley
- Department of Anatomy and Regenerative Biology, The George Washington University Medical Center, Washington, DC
| |
Collapse
|
15
|
Abstract
Retrovirus vectors integrate into the genome, providing stable gene transfer, but integration contributes in part to transcriptional silencing that compromises long-term expression. In the case of gammaretrovirus vectors based on murine leukemia virus, many integration events are completely silenced in undifferentiated stem cells and in transgenic mice. Gammaretrovirus vectors are also subject to variegation in which sister cells bearing the same provirus differentially express, and cell differentiation can lead to extinction of vector expression. In contrast, lentivirus vectors based on human immunodeficiency virus type 1 appear to express more efficiently, although other reports indicate that lentivirus vectors can be silenced. This review summarizes the key features of gammaretrovirus vector silencing. The evidence for and against gene silencing of lentivirus vectors is described with special emphasis on the potential effects of vector design, provirus copy number, and integration site preferences on silencing. This analysis suggests that the difference between selfinactivating (SIN) lentivirus vectors and their modified SIN gammaretrovirus counterparts may be less dramatic than previously thought. It will therefore be important to further characterize the mechanisms of silencing, in order to create better gammaretrovirus and lentivirus vectors that consistently express at single copy for gene therapy.
Collapse
Affiliation(s)
- James Ellis
- Developmental Biology Program, Hospital for Sick Children, Toronto, ON, Canada M5G 1L7.
| |
Collapse
|
16
|
Ellis J. Silencing and Variegation of Gammaretrovirus and Lentivirus Vectors. Hum Gene Ther 2005. [DOI: 10.1089/hum.2005.16.ft-126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
17
|
Dalle B, Rubin JE, Alkan O, Sukonnik T, Pasceri P, Yao S, Pawliuk R, Leboulch P, Ellis J. eGFP reporter genes silence LCRbeta-globin transgene expression via CpG dinucleotides. Mol Ther 2005; 11:591-9. [PMID: 15771961 DOI: 10.1016/j.ymthe.2004.11.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2004] [Accepted: 11/15/2004] [Indexed: 10/26/2022] Open
Abstract
beta-Globin transgenes regulated by the locus control region (LCR) are dominantly silenced by linked bacterial reporter genes in transgenic mice. Enhanced green fluorescent protein (eGFP) from jellyfish is an alternative reporter used in retrovirus vectors to transfer LCRbeta-globin genes into bone marrow. We show here that the eGFP coding sequence silences LCRbeta-globin in transgenic mice, but the PGK promoter did not provoke such silencing. As eGFP contains 60 CpG dinucleotides, which are targets of DNA methylation, we synthesized a novel CpG-free variant called dmGFP. Its utility was demonstrated in MSCV retrovirus vectors transcriptionally controlled by the viral 5'LTR or internal PGK or EF1alpha promoter. Specific fluorescence was detected from eGFP, and at lower levels from dmGFP, in transduced mouse CFU-S and embryonic stem cells. While eGFP was rarely silenced in CFU-S, dmGFP was not silenced in these progenitors. Moreover, the dmGFP coding sequence did not silence LCRbeta-globin in transgenic mice, showing that the eGFP silencing mechanism acts primarily via CpG dinucleotides. However, LCRbeta-globin expression remained suboptimal, indicating that other silencing pathways recognize dmGFP in the absence of CpG dinucleotides. We conclude that dmGFP ameliorates silencing, but optimal LCRbeta-globin expression is obtained in the absence of nonmammalian reporters.
Collapse
Affiliation(s)
- Bruno Dalle
- Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Yao S, Sukonnik T, Kean T, Bharadwaj RR, Pasceri P, Ellis J. Retrovirus silencing, variegation, extinction, and memory are controlled by a dynamic interplay of multiple epigenetic modifications. Mol Ther 2005; 10:27-36. [PMID: 15233939 DOI: 10.1016/j.ymthe.2004.04.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2004] [Accepted: 04/08/2004] [Indexed: 12/22/2022] Open
Abstract
Retrovirus silencing in stem cells produces silent or variegated provirus. Additional memory and extinction mechanisms act during differentiation. Here we show that retrovirus is silent or variegated in mouse embryonic stem (ES) cells that are de novo methyltransferase (dnmt3a and dnmt3b) null. Memory is maintained during differentiation, and extinction occurs on variegated retrovirus, indicating that DNA methylation is dispensable for all forms of retrovirus silencing. Silent and variegated provirus are marked by hypoacetylated histone H3 and bound H1. In wild-type ES cells, silent and variegated proviruses are methylated and bound by hypoacetylated H3, MeCP2, and less H1. Silencing, variegation, and extinction are partially reactivated by 5-AzaC in this context. Lentivirus vectors are also silent or variegated, marked by silent chromatin, and exhibit memory and extinction. We conclude that the universal epigenetic mark of retrovirus silencing is silent chromatin established via the dynamic interplay of multiple epigenetic modifications that include but do not require DNA methylation. A molecular mechanism of competitive H1 and MeCP2 binding may account for this epigenetic interplay, and a model for variegation is discussed.
Collapse
Affiliation(s)
- Shuyuan Yao
- Developmental Biology Program, Hospital for Sick Children, 555 University Avenue, Toronto, ON, Canada M5G 1X8
| | | | | | | | | | | |
Collapse
|
19
|
Xu L, Tsuji K, Mostowski H, Candotti F, Rosenberg A. Evidence that the mouse 3' kappa light chain enhancer confers position-independent transgene expression in T- and B-lineage cells. Hum Gene Ther 2003; 14:1753-64. [PMID: 14670126 DOI: 10.1089/104303403322611764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
One of the major obstacles for successful application of murine leukemia virus (MLV) vectors to genetic therapy of lymphocyte disorders is low levels of transgene expression or the eventual loss of expression. To overcome this problem, an improved retroviral vector was constructed utilizing the myeloproliferative sarcoma virus (MPSV) long terminal repeat (LTR), which provided a significantly higher level of transgene expression in human lymphoid cells than did MLV vectors. Nevertheless, transgene expression remained low in a large percentage of transduced cells. To address whether lymphocyte enhancer elements might improve transgene expression mediated by retroviral vectors in lymphocytes, we cloned the mouse immunoglobulin 3' kappa light chain enhancer gene (mE3') into the MPSV vector. We found that the mE3' conferred a higher, more uniform and sustained level of expression in transduced T- and B-cell lines, and in primary T cells, than did the control vector lacking this element. Integration sites were diverse and a single copy of the proviral genome was present in all examined transduced cells. The mE3' failed to enhance transgene expression in most nonlymphoid cells, indicating it is relatively lineage-specific. Taken together, these results provide strong evidence that the mE3' functions as a locus control region (LCR) in conferring enhanced integration-site-independent expression of a retroviral transgene.
Collapse
Affiliation(s)
- Lai Xu
- Division of Therapeutic Proteins, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
20
|
Swindle CS, Kim HG, Klug CA. Mutation of CpGs in the murine stem cell virus retroviral vector long terminal repeat represses silencing in embryonic stem cells. J Biol Chem 2003; 279:34-41. [PMID: 14559924 DOI: 10.1074/jbc.m309128200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although DNA methylation and transcriptional repression are generally associated, a causal role for DNA methylation in silencing of retroviral vectors has not been established. The newer generation murine stem cell virus retroviral vector (MSCV) lacks many of the repressive cis-acting DNA sequences identified in Moloney murine leukemia virus but remains sensitive to transcriptional silencing in various cell types. To determine the contribution of cytosine methylation to MSCV silencing, we mutated CpG dinucleotides located in the MSCV long terminal repeat (LTR) that are clustered in the U3 region and directly spanning the transcription start site in the R region. Effects of the CpG mutations on MSCV silencing were assessed in murine embryonic stem cells. An analysis of numerous clonal proviral integrants showed that mutation of CpGs in both clusters eliminated proviral integrants that were completely silenced. Variegated expression was shown to represent a substantial component of intraclonal silencing and was independent of the presence of CpGs in the LTR. Treatment of transduced cells with 5-azadeoxycytidine delayed establishment of the silenced state but had only a modest effect on expression of some proviral integrants at late times post-transduction. These results are direct evidence for a causal contribution of DNA methylation in the LTR to MSCV silencing and define the promoter region CpGs as a repressive element in embryonic stem cells. Furthermore, distinct mechanisms are suggested for establishment and maintenance of the silenced proviral state.
Collapse
Affiliation(s)
- C Scott Swindle
- Department of Microbiology, Division of Development and Clinical Immunology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | |
Collapse
|
21
|
Valkova C, Georgiev O, Karagyozov L, Milchev G. Silencing of retroviral vector transduced LacZ reporter gene by frameshift mutation. Biotechnol Bioeng 2003; 84:1-6. [PMID: 12910536 DOI: 10.1002/bit.10715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Moloney murine leukemia virus-based vector expressing Escherichia coli beta-galactosidase (lacZ) as reporter gene and the transposon Tn5 neomycin resistance (neo) gene was transduced at low-multiplicity of infections into NIH 3T3 cells. Geneticin (G418)-resistant cells were recloned and cell lines containing beta-galactosidase positive or beta-galactosidase negative cells were obtained. Both positive and negative cell lines contained a single proviral copy at distinct integration sites. RNA complementary to lacZ was detected in beta-galactosidase positive as well as in one of three investigated beta-galactosidase negative cell lines. DNA sequence analysis of proviral LacZ gene in beta-galactosidase negative cell line C6 showed a single nucleotide insertion at position 1567 resulting in reading frame shift and translational stop codon at position 1629. This mutation explains the enzyme inactivation. The absence of beta-galactosidase after retroviral transduction of LacZ reproter gene may be a consequence of definite mutation but not a consequence of ineffective transduction or transcriptional inactivation of transgene.
Collapse
Affiliation(s)
- Christina Valkova
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | | | | | | |
Collapse
|
22
|
Yao S, Osborne CS, Bharadwaj RR, Pasceri P, Sukonnik T, Pannell D, Recillas-Targa F, West AG, Ellis J. Retrovirus silencer blocking by the cHS4 insulator is CTCF independent. Nucleic Acids Res 2003; 31:5317-23. [PMID: 12954767 PMCID: PMC203325 DOI: 10.1093/nar/gkg742] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Silencing of retrovirus vectors poses a significant obstacle to genetic manipulation of stem cells and their use in gene therapy. We describe a mammalian silencer blocking assay using insulator elements positioned between retrovirus silencer elements and an LCRbeta-globin reporter transgene. In transgenic mice, we show that retrovirus silencers are blocked by the cHS4 insulator. Silencer blocking is independent of the CTCF binding site and is most effective when flanking the internal reporter transgene. These data distinguish silencer blocking activity by cHS4 from its enhancer blocking activity. Retrovirus vectors can be created at high titer with one but not two internal dimer cHS4 cores. cHS4 in the LTRs has no effect on expression in transduced F9 cells, suggesting that position effect blocking is not sufficient to escape silencing. The Drosophila insulators gypsy and Scs fail to block silencing in transgenic mice, but gypsy stimulates vector expression 2-fold when located in the LTRs of an infectious retrovirus. The silencer blocking assay complements existing insulator assays in mammalian cells, provides new insight into mechanisms of insulation and is a valuable tool to identify additional silencer blocking insulators that cooperate with cHS4 to improve stem cell retrovirus vector design.
Collapse
Affiliation(s)
- Shuyuan Yao
- Developmental Biology Program, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ma SL, Lovmand J, Sørensen AB, Luz A, Schmidt J, Pedersen FS. Triple basepair changes within and adjacent to the conserved YY1 motif upstream of the U3 enhancer repeats of SL3-3 murine leukemia virus cause a small but significant shortening of latency of T-lymphoma induction. Virology 2003; 313:638-44. [PMID: 12954229 DOI: 10.1016/s0042-6822(03)00379-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A highly conserved sequence upstream of the transcriptional enhancer in the U3 of murine leukemia viruses (MLVs) was reported to mediate negative regulation of their expression. In transient expression studies, negative regulation was reported to be conferred by coexpression of the transcription factor YY1, which binds to a motif in the upstream conserved region (UCR). To address the function of the UCR and its YY1-motif in an in vivo model of MLV-host interactions we introduced six consecutive triple basepair mutations into this region of the potent T-lymphomagenic SL3-3 MLV. We report that all mutants have retained their replication competence and that they all, like the SL3-3 wild type (wt), induce T-cell lymphomas when injected into newborn mice of the SWR strain. However, all mutants induced disease with slightly shorter latency periods than the wt SL3-3, suggesting that the YY1 motif as well as its immediate context in the UCR have a negative effect on the pathogenicity of the virus. This result may have implications for the design of retroviral vectors.
Collapse
Affiliation(s)
- Shi Liang Ma
- Department of Molecular Biology, University of Aarhus, Aarhus, Denmark
| | | | | | | | | | | |
Collapse
|
24
|
Haas DL, Lutzko C, Logan AC, Cho GJ, Skelton D, Jin Yu X, Pepper KA, Kohn DB. The Moloney murine leukemia virus repressor binding site represses expression in murine and human hematopoietic stem cells. J Virol 2003; 77:9439-50. [PMID: 12915559 PMCID: PMC187403 DOI: 10.1128/jvi.77.17.9439-9450.2003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Moloney murine leukemia virus (MLV) repressor binding site (RBS) is a major determinant of restricted expression of MLV in undifferentiated mouse embryonic stem (ES) cells and mouse embryonal carcinoma (EC) lines. We show here that the RBS repressed expression when placed outside of its normal MLV genome context in a self-inactivating (SIN) lentiviral vector. In the lentiviral vector genome context, the RBS repressed expression of a modified MLV long terminal repeat (MNDU3) promoter, a simian virus 40 promoter, and three cellular promoters: ubiquitin C, mPGK, and hEF-1a. In addition to repressing expression in undifferentiated ES and EC cell lines, we show that the RBS substantially repressed expression in primary mouse embryonic fibroblasts, primary mouse bone marrow stromal cells, whole mouse bone marrow and its differentiated progeny after bone marrow transplant, and several mouse hematopoietic cell lines. Using an electrophoretic mobility shift assay, we show that binding factor A, the trans-acting factor proposed to convey repression by its interaction with the RBS, is present in the nuclear extracts of all mouse cells we analyzed where expression was repressed by the RBS. In addition, we show that the RBS partially repressed expression in the human hematopoietic cell line DU.528 and primary human CD34(+) CD38(-) hematopoietic cells isolated from umbilical cord blood. These findings suggest that retroviral vectors carrying the RBS are subjected to high rates of repression in murine and human cells and that MLV vectors with primer binding site substitutions that remove the RBS may yield more-effective gene expression.
Collapse
Affiliation(s)
- Dennis L Haas
- Division of Research Immunology/BMT, Children's Hospital Los Angeles, Los Angeles, California 90027, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Staplin WR, Knezetic JA. BVL-1-like VL30 promoter sustains long-term expression in erythroid progenitor cells. Blood 2003; 101:1798-800. [PMID: 12406870 DOI: 10.1182/blood-2002-07-2105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Congenital blood disorders are common and yet clinically challenging globin disorders. Gene therapy continues to serve as a potential therapeutic method to treat these disorders. While tremendous advances have been made in vivo, gene delivery protocols and vector prototypes still require optimization. Alternative cis-acting promoter elements derived from VL30 retroelements have been effective in expressing tissue-specific transgene expression in vivo in nonerythroid cells. VL30 promoter elements were isolated from ELM-I-1 erythroid progenitor cells upon erythropoietin (epo) treatment. These promoters were inserted into a VL30-derived expression vector and reintroduced into the ELM-I-1 cells. beta-Galactosidase reporter gene activity from the ELM 5 clone, a BVL-1-like VL30 promoter, was capable of expressing sustained levels of the transgene expression over a 16-week assay period. These findings delineate the potential utility of these retroelement promoters as transcriptionally active, erythroid-specific, long terminal repeat (LTR) components for current globin vector constructs.
Collapse
Affiliation(s)
- William R Staplin
- Department of Biomedical Sciences, Creighton University, Omaha, NE, USA
| | | |
Collapse
|
26
|
Owens GC, Mistry S, Edelman GM, Crossin KL. Efficient marking of neural stem cell-derived neurons with a modified murine embryonic stem cell virus, MESV2. Gene Ther 2002; 9:1044-8. [PMID: 12101436 DOI: 10.1038/sj.gt.3301780] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2001] [Accepted: 04/04/2002] [Indexed: 11/09/2022]
Abstract
Treatments for nervous system disorders that involve transplanting genetically modified neural stem cells may ultimately be feasible. As a step towards this therapeutic approach, a novel murine embryonic stem cell gammaretroviral vector was developed with features designed to optimize transgene expression in neural stem cells and to increase vector safety. All potential start sites of translation in the 5' leader were removed. These sites may compete with an inserted transgene for translation initiation, and also produce potentially immunogenic peptides. Further, all of the gag gene sequences were replaced with a well-defined constitutive transport element from avian leukemia virus to promote nuclear export of viral RNA, and to eliminate any homology between the vector and a murine leukemia virus-derived gag-pol packaging plasmid. Two versions of the virus were made in which EGFP expression was driven either by the Rous sarcoma virus U3 enhancer or by a combination of sequences from the Syn1 and Pgk-1 promoters. Both of these viruses efficiently transduced neural stem cells isolated from embryonic rat hippocampus, and robust EGFP expression was observed in neurons derived from these cells following differentiation in vitro.
Collapse
Affiliation(s)
- G C Owens
- The Neurosciences Institute, San Diego, CA 92121, USA
| | | | | | | |
Collapse
|
27
|
Swindle CS, Klug CA. Mechanisms that regulate silencing of gene expression from retroviral vectors. JOURNAL OF HEMATOTHERAPY & STEM CELL RESEARCH 2002; 11:449-56. [PMID: 12183830 DOI: 10.1089/15258160260090915] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The propensity of retroviruses toward transcriptional silencing limits their value as gene therapy vectors. Silencing has been shown to be particularly robust when stem cells are used for transduction, posing a significant problem for gene therapy of hematologic diseases. Stability of proviral expression with newer generation vectors is significantly improved over that obtainable with original vectors based on Moloney murine leukemia virus (MoMLV). However, strategies to increase resistance further to retroviral silencing are needed, because newer generation vectors have been shown to remain prone to a significant degree of silencing that could limit their efficacy as gene therapy vectors. Proviral silencing has been attributed to known mechanisms of cellular gene repression, such as DNA methylation and histone modification, as well as uncharacterized mechanisms that act independently of DNA methylation. A further understanding of transcriptional silencing that occurs in stem cells and during hematopoietic development is needed for design of effective vectors for gene therapy of hematologic diseases.
Collapse
Affiliation(s)
- C Scott Swindle
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294-3300, USA
| | | |
Collapse
|
28
|
Yannaki E, Tubb J, Aker M, Stamatoyannopoulos G, Emery DW. Topological constraints governing the use of the chicken HS4 chromatin insulator in oncoretrovirus vectors. Mol Ther 2002; 5:589-98. [PMID: 11991750 DOI: 10.1006/mthe.2002.0582] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The expression of integrated oncoretrovirus vectors is subject to the inhibitory effects of surrounding chromatin. A previous report from our laboratory indicated that such position effects can be overcome by flanking a reporter vector with the cHS4 chromatin insulator. To characterize this activity more thoroughly, we switched the promoter-gene combinations in the reporter vector and analyzed expression of these vectors flanked with the cHS4 fragment in both orientations following bone marrow transduction and transplantation in mice. The results indicate that the cHS4 fragment can function in both orientations and can insulate both the virus long-terminal-repeat (LTR) promoter and an internal phosphoglycerate kinase (Pgk) promoter. However, insulation of the LTR promoter diminished when the orientation of the cHS4 fragment placed the CTCF-binding core element immediately proximal to the U3 region, suggesting a minimal distance requirement. Moreover, placement of the cHS4 fragment in the U3 region of the 3' LTR dramatically decreased the level of expression from an internal Pgk promoter, presumably by blocking interaction with the 3' LTR enhancer. Finally, sorting studies suggest that the severity of position effects or autonomous promoter silencing increases as transduced progenitors differentiate into mature progeny. These findings have direct implications for the use of chromatin insulators such as cHS4 in oncoretrovirus vectors.
Collapse
Affiliation(s)
- Evangelia Yannaki
- Gene and Cell Therapy Center, Hematology Department and Bone Marrow Transplantation Unit, George Papanikolaou General Hospital, Thessaloniki, Greece
| | | | | | | | | |
Collapse
|
29
|
Leimig T, Mann L, Martin MDP, Bonten E, Persons D, Knowles J, Allay JA, Cunningham J, Nienhuis AW, Smeyne R, d'Azzo A. Functional amelioration of murine galactosialidosis by genetically modified bone marrow hematopoietic progenitor cells. Blood 2002; 99:3169-78. [PMID: 11964280 DOI: 10.1182/blood.v99.9.3169] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protective protein/cathepsin A (PPCA), a lysosomal carboxypeptidase, is deficient in the neurodegenerative lysosomal disorder galactosialidosis (GS). PPCA(-/-) mice display a disease course similar to that of severe human GS, resulting in nephropathy, ataxia, and premature death. Bone marrow transplantation (BMT) in mutant animals using transgenic BM overexpressing the corrective enzyme in either erythroid cells or monocytes/macrophages has proven effective for the improvement of the phenotype, and encouraged the use of genetically modified BM cells for ex vivo gene therapy of GS. Here, we established stable donor hematopoiesis in PPCA(-/-) mice that received hematopoietic progenitors transduced with a murine stem cell virus (MSCV)-based, bicistronic retroviral vector overexpressing PPCA and the green fluorescent protein (GFP) marker. We observed complete correction of the disease phenotype in the systemic organs up to 10 months after transplantation. PPCA(+) BM-derived cells were detected in all tissues, with the highest expression in liver, spleen, BM, thymus, and lung. In addition, a lysosomal immunostaining was seen in nonhematopoietic cells, indicating efficient uptake of the corrective protein by these cells and cross-correction. Expression in the brain occurred throughout the parenchyma but was mainly localized on perivascular areas. However, PPCA expression in the central nervous system was apparently sufficient to delay the onset of Purkinje cell degeneration and to correct the ataxia. The long-term expression and internalization of the PPCA by cells of systemic organs and the clear improvement of the neurologic phenotype support the use of this approach for the treatment of GS in humans. (Blood. 2002;99:3169-3178)
Collapse
Affiliation(s)
- Thasia Leimig
- St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ketteler R, Glaser S, Sandra O, Martens UM, Klingmüller U. Enhanced transgene expression in primitive hematopoietic progenitor cells and embryonic stem cells efficiently transduced by optimized retroviral hybrid vectors. Gene Ther 2002; 9:477-87. [PMID: 11948372 DOI: 10.1038/sj.gt.3301653] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2001] [Accepted: 12/11/2001] [Indexed: 11/09/2022]
Abstract
Oncoretroviral vectors have been successfully used in gene therapy trials, yet low transduction rates and loss of transgene expression are still major obstacles for their application. To overcome these problems we modified the widely used Moloney murine leukemia virus-derived retroviral vector pMX by replacing the 3'LTR with the spleen focus-forming virus LTR and inserting the woodchuck hepatitis B virus post-translational regulatory element. To compare requirements crucial for efficient transgene expression, we generated the hybrid retroviral vectors pMOWS and pOWS that harbor the complete murine embryonic stem cell virus (MESV)-leader sequence or a shortened MESV-leader not comprising primer binding site (PBS) and splice donor (SD). Applying these retroviral vectors significantly augmented transgene expression in hematopoietic cell lines and progenitor cells. For transduction of murine embryonic stem (ES) cells the retroviral vector pMOWS that harbors the MESV-PBS and -SD was superior resulting in 65% green fluorescent protein (GFP) expressing ES cells. Surprisingly, in murine and human primitive hematopoietic progenitor cells (HPC), the highest efficiency of up to 66% GFP expressing cells was achieved with pOWS, a retroviral vector that retains the negative regulatory element coinciding with the MoMuLV-PBS. In summary our hybrid retroviral vectors facilitate significantly improved transgene expression in multipotent cells and thus possess great potential for reconstituting genes in primary cells of disease models, as well as for gene therapy.
Collapse
Affiliation(s)
- R Ketteler
- Hans-Spemann Laboratories, Max-Planck Institute of Immunobiology, Freiburg, Germany
| | | | | | | | | |
Collapse
|
31
|
Abstract
As alterations in gene expression underlie a considerable proportion of human diseases, correcting such aberrant transcription in vivo is expected to provide therapeutic benefit to the patient. Attempts to control endogenous mammalian genes, however, face a significant obstacle in the form of chromatin. Aberrant gene repression can be alleviated by using small-molecule inhibitors that exert nucleus-wide effects on chromatin-based repressors. Genome-wide chromatin remodeling also occurs during cloning via nuclear transfer, and causes the deregulation of epigenetically controlled genes. Regulation of genes in vivo can be accomplished via the use of designed transcription factors - these result from a fusion of a designed DNA-binding domain based on the zinc finger protein motif to a functional domain of choice.
Collapse
Affiliation(s)
- Andreas Reik
- Sangamo Biosciences, Pt Richmond Tech Center, 501 Canal Blvd, Suite A100, Richmond, California 94804, USA
| | | | | |
Collapse
|
32
|
Shayakhmetov DM, Carlson CA, Stecher H, Li Q, Stamatoyannopoulos G, Lieber A. A high-capacity, capsid-modified hybrid adenovirus/adeno-associated virus vector for stable transduction of human hematopoietic cells. J Virol 2002; 76:1135-43. [PMID: 11773389 PMCID: PMC135810 DOI: 10.1128/jvi.76.3.1135-1143.2002] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
To achieve stable gene transfer into human hematopoietic cells, we constructed a new vector, DeltaAd5/35.AAV. This vector has a chimeric capsid containing adenovirus type 35 fibers, which conferred efficient infection of human hematopoietic cells. The DeltaAd5/35.AAV vector genome is deleted for all viral genes, allowing for infection without virus-associated toxicity. To generate high-capacity DeltaAd5/35.AAV vectors, we employed a new technique based on recombination between two first-generation adenovirus vectors. The resultant vector genome contained an 11.6-kb expression cassette including the human gamma-globin gene and the HS2 and HS3 elements of the beta-globin locus control region. The expression cassette was flanked by adeno-associated virus (AAV) inverted terminal repeats (ITRs). Infection with DeltaAd5/35.AAV allowed for stable transgene expression in a hematopoietic cell line after integration into the host genome through the AAV ITR(s). This new vector exhibits advantages over existing integrating vectors, including an increased insert capacity and tropism for hematopoietic cells. It has the potential for stable ex vivo transduction of hematopoietic stem cells in order to treat sickle cell disease.
Collapse
Affiliation(s)
- Dmitry M Shayakhmetov
- Division of Medical Genetics, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | |
Collapse
|
33
|
Mautino MR, Morgan RA. Gene therapy of HIV-1 infection using lentiviral vectors expressing anti-HIV-1 genes. AIDS Patient Care STDS 2002; 16:11-26. [PMID: 11839215 DOI: 10.1089/108729102753429361] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The use of vectors based on primate lentiviruses for gene therapy of human immunodeficiency virus type 1 (HIV-1) infection has many potential advantages over the previous murine retroviral vectors used for delivery of genes that inhibit replication of HIV-1. First, lentiviral vectors have the ability to transduce dividing and nondividing cells that constitute the targets of HIV-1 infection such as resting T cells, dendritic cells, and macrophages. Lentiviral vectors can also transfer genes to hematopoietic stem cells with a superior gene transfer efficiency and without affecting the repopulating capacity of these cells. Second, these vectors could be potentially mobilized in vivo by the wild-type virus to secondary target cells, thus expanding the protection to previously untransduced cells. And finally, lentiviral vector backbones have the ability to block HIV-1 replication by several mechanisms that include sequestration of the regulatory proteins Tat and Rev, competition for packaging into virions, and by inhibition of reverse transcription in heterodimeric virions with possible generation of nonfunctional recombinants between the vector and viral genomes. The inhibitory ability of lentiviral vectors can be further increased by expression of anti-HIV-1 genes. In this case, the lentiviral vector packaging system has to be modified to become resistant to the anti-HIV-1 genes expressed by the vector in order to avoid self-inhibition of the vector packaging system during vector production. This review focuses on the use of lentiviral vectors as the main agents to mediate inhibition of HIV-1 replication and discusses the different genetic intervention strategies for gene therapy of HIV-1 infection.
Collapse
Affiliation(s)
- Mario R Mautino
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
34
|
Indraccolo S, Minuzzo S, Roccaforte F, Zamarchi R, Habeler W, Stievano L, Tosello V, Klein D, Günzburg WH, Basso G, Chieco-Bianchi L, Amadori A. Effects of CD2 locus control region sequences on gene expression by retroviral and lentiviral vectors. Blood 2001; 98:3607-17. [PMID: 11739164 DOI: 10.1182/blood.v98.13.3607] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Locus control region (LCR) sequences are involved in the establishment of open chromosomal domains. To evaluate the possibility of exploiting the human CD2 LCR to regulate gene expression by Moloney murine leukemia virus (Mo-MLV)-based retroviral vectors in T cells, it was included in vectors carrying the enhanced green fluorescence protein (EGFP) reporter gene; then transduction in vitro of lymphoid and nonlymphoid cell lines was performed. Deletion of the viral enhancer in the Mo-MLV long terminal repeat was necessary to detect LCR activity in the context of these retroviral vectors. It was found that a full-length (2.1 kb), but not a truncated (1.0 kb), CD2 LCR retained the ability to modulate reporter gene expression by Mo-MLV-derived retroviral vectors, leading to a homogeneous, unimodal pattern of EGFP expression that remained unmodified in culture over time, specifically in T-cell lines; on the other hand, viral titer was strongly reduced compared with vectors not carrying the LCR. Lentiviral vectors containing the CD2 LCR could be generated at higher titers and were used to analyze its effects on gene expression in primary T cells. Subcutaneous implantation of genetically modified cells in immunodeficient mice showed that retroviral vectors carrying the CD2 LCR conferred an advantage in terms of transgene expression in vivo, compared with the parental vector, by preventing the down-modulation of EGFP expression. These findings suggest a potential application of this LCR to increase gene expression by retroviral and lentiviral vectors in T lymphocytes.
Collapse
Affiliation(s)
- S Indraccolo
- IST-Viral and Molecular Oncology Section, the Department of Oncology and Surgical Sciences, University of Padua, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Wolfgang MJ, Eisele SG, Browne MA, Schotzko ML, Garthwaite MA, Durning M, Ramezani A, Hawley RG, Thomson JA, Golos TG. Rhesus monkey placental transgene expression after lentiviral gene transfer into preimplantation embryos. Proc Natl Acad Sci U S A 2001; 98:10728-32. [PMID: 11553810 PMCID: PMC58541 DOI: 10.1073/pnas.181336098] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2001] [Accepted: 07/03/2001] [Indexed: 11/18/2022] Open
Abstract
Transgenic mice have provided invaluable information about gene function and regulation. However, because of marked differences between rodents and primates, some areas of human biology such as early embryonic development, aging, and maternal-fetal interactions would be best studied in a nonhuman primate model. Here, we report that gene transfer into rhesus monkey (Macaca mulatta) preimplantation embryos gives rise to transgenic placentas that express a reporter transgene (eGFP). Blastocysts resulting from culture of in vitro fertilized ova were transduced with a self-inactivating lentiviral vector and transferred into recipient females. One twin and one singleton pregnancy were produced from a single stimulation cycle, and one live rhesus monkey was born from each pregnancy. Placentas from all conceptuses showed expression of the transgene as detected by reverse transcription-PCR, ribonuclease protection assay, direct epifluorescence, immunohistochemistry, and Western blot analysis. Integration in somatic tissues of the offspring was not detected. A maternal immune response to the xenogeneic placental antigen was shown by the presence of anti-GFP antibodies in peripheral blood of the recipient females by day 99 of gestation (term = 165 days). These results demonstrate that transgene expression during gestation is compatible with successful pregnancy in nonhuman primates and provides an approach that could be broadly applicable to the development of novel models for primate biomedical research.
Collapse
Affiliation(s)
- M J Wolfgang
- Wisconsin Regional Primate Research Center, University of Wisconsin Medical School, Madison, WI 53715, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Pannell D, Ellis J. Silencing of gene expression: implications for design of retrovirus vectors. Rev Med Virol 2001; 11:205-17. [PMID: 11479927 DOI: 10.1002/rmv.316] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Transcriptional silencing of retroviruses poses a major obstacle to their use as gene therapy vectors. Silencing is most pronounced in stem cells which are desirable targets for therapeutic gene delivery. Many vector designs combat silencing through cis-modifications of retroviral vector sequences. These designs include mutations of known retroviral silencer elements, addition of positive regulatory elements and insulator elements to protect the transgene from negative position effects. Similar strategies are being applied to lentiviral vectors that readily infect non-dividing quiescent stem cells. Collectively these cis-modifications have significantly improved vector design but optimal expression may require additional intervention to escape completely the trans-factors that scan for foreign DNA, establish silencing in stem cells and maintain silencing in their progeny. Cytosine methylation of CpG sites was proposed to cause retroviral silencing over 20 years ago. However, several studies provide evidence that retrovirus silencing acts through methylase-independent mechanisms. We propose an alternative silencing mechanism initiated by a speculative stem cell-specific "somno-complex". Further understanding of retroviral silencing mechanisms will facilitate better gene therapy vector design and raise new strategies to block transcriptional silencing in transduced stem cells.
Collapse
Affiliation(s)
- D Pannell
- Programs in Developmental Biology, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada, M5G1X8
| | | |
Collapse
|
37
|
Stover ML, Wang CK, McKinstry MB, Kalajzic I, Gronowicz G, Clark SH, Rowe DW, Lichtler AC. Bone-directed expression of Col1a1 promoter-driven self-inactivating retroviral vector in bone marrow cells and transgenic mice. Mol Ther 2001; 3:543-50. [PMID: 11319916 DOI: 10.1006/mthe.2001.0293] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Gene therapy of bone would benefit from the availability of vectors that provide stable, osteoblast-specific expression. This would allow bone-specific expression of Col1a1 cDNAs for treatment of osteogenesis imperfecta. In addition, such a vector would restrict expression of secreted therapeutic proteins to the bone-synthesizing regions of the bone marrow after ex vivo transduction of marrow stromal cells and reintroduction of the cells into patients. Retrovirus vectors stably integrate into target cell genomes; however, long-term regulated expression from internal cellular promoters has not been consistently achieved. In some cases this is due to a stem cell-specific mechanism for transcriptional repression of retroviruses. We evaluated the ability of self-inactivating ROSA-derived vectors containing a bone-directed 2.3-kb rat Col1a1 promoter to display osteoblast-specific expression. In vitro expression was examined in bone marrow stromal cell cultures induced to undergo osteoblastic differentiation. In vivo expression was evaluated in chimeric mice derived from transduced embryonic stem cells. The results indicate that self-inactivating retrovirus vectors containing the Col1a1 promoter are not permanently inactivated in embryonic stem cells and are specifically expressed in osteoblasts in vivo and in vitro. Thus these vectors should be useful for bone-directed gene therapy.
Collapse
Affiliation(s)
- M L Stover
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Tarantal AF, O'Rourke JP, Case SS, Newbound GC, Li J, Lee CI, Baskin CR, Kohn DB, Bunnell BA. Rhesus monkey model for fetal gene transfer: studies with retroviral- based vector systems. Mol Ther 2001; 3:128-38. [PMID: 11237669 DOI: 10.1006/mthe.2000.0255] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Many life-threatening conditions that can be diagnosed early in gestation may be treatable in utero using gene therapy. In order to determine in utero gene transfer efficiency and safety, studies were conducted with fetal rhesus monkeys as a model for the human. Included in these studies were Moloney murine leukemia virus (MLV)-based amphotropic retrovirus, vesicular stomatitis virus-G (VSV-G) pseudotyped MLV, and a VSV-G pseudotyped HIV-1-based vector, all expressing the enhanced green fluorescent protein (EGFP) as a reporter gene and driven by a cytomegalovirus-immediate early promoter (N = 16). Rhesus monkey fetuses were administered viral vector supernatant preparations by the intraperitoneal (ip) (N = 14) or intrahepatic (ih) (N = 2) routes via ultrasound guidance at 55 +/- 5 days gestation (late first trimester; term 165 +/- 10 days). Fetuses were monitored sonographically, specimens were collected prenatally and postnatally, and tissue harvests were performed at birth or 3 or 6 months postnatal age (3-10 months post-gene transfer). PCR analyses demonstrated that transduced cells were present at approximately 1.2% in peripheral blood mononuclear cells from fetuses administered amphotropic MLV, <0.5% in fetuses receiving MLV/VSV-G, and approximately 4.2% for the lentiviral vector, which decreased to 2% at birth. Hematopoietic progenitors showed that overall (mean of all time points assessed), approximately 25% of the collected colonies were positive for the EGFP transgene with the lentiviral vector, which was significantly greater than results achieved with the MLV-based vector systems (4-9%; P < or = 0.001-0.016). At necropsy, 0.001-10% of the total genomic DNA was positive for EGFP in most tissues for all groups. EGFP-positive fluorescent cells were found in cell suspensions of thymus, liver, spleen, lymph nodes, cerebral cortex, and bone marrow (0.5-6%). Overall, the results of these studies have shown: (1) healthy infants expressing vector sequences up to 10 months post-gene transfer, (2) fetal primate administration of retroviral vectors results in gene transfer to multiple organ systems, (3) the highest level of gene transfer to hematopoietic progenitors was observed with the lentiviral vector system, and (4) there was no evidence of transplacental transfer of vector sequences into the dams. The rhesus monkey is an important preclinical primate model system for exploring gene transfer approaches for future applications in humans.
Collapse
Affiliation(s)
- A F Tarantal
- California Regional Primate Research Center, University of California at Davis, 95616-8542, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Ellis J, Pannell D. The beta-globin locus control region versus gene therapy vectors: a struggle for expression. Clin Genet 2001; 59:17-24. [PMID: 11168020 DOI: 10.1034/j.1399-0004.2001.590103.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Developmental control of gene expression has a major impact on the design of beta-globin retrovirus vectors for hematopoietic stem cell gene therapy of beta-thalassemia. It is obvious that the endogenous locus control region (LCR) elements that drive beta-globin gene expression in transgenic mice must be included in these vectors. However, the specific elements to use are not clear and require an understanding of LCR action. Moreover, retrovirus vectors contain silencer elements that function in stem cells and are dominant to LCR function. Recent studies on LCRbeta-globin transgenes and retrovirus silencing suggest ways to overcome this silencing effect after transfer into stem cells and carefully designed lentivirus vectors have exciting therapeutic benefit in animal models of beta-thalassemia. By building on 15 years of development, LCRbeta-globin vectors are now being tested in preclinical animal models and may ultimately lead to the long-sought cure for this genetic disease.
Collapse
Affiliation(s)
- J Ellis
- Developmental Biology Program, Hospital for Sick Children, Toronto, ON, Canada.
| | | |
Collapse
|
40
|
Svoboda J, Hejnar J, Geryk J, Elleder D, Vernerová Z. Retroviruses in foreign species and the problem of provirus silencing. Gene 2000; 261:181-8. [PMID: 11164049 DOI: 10.1016/s0378-1119(00)00481-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Retroviruses are known to integrate in the host cell genome as proviruses, and therefore they are prone to cell-mediated control at the transcriptional and posttranscriptional levels. This plays an important role especially after retrovirus heterotransmission to foreign species, but also to differentiated cells. In addition to host cell-mediated blocks in provirus expression, also so far undefined host specificities, deciding upon the pathogenic manifestation of retrovirus heterotransmission, are in play. In this respect, we discuss especially the occurrence of wasting disease and immunodeficiency syndrome, which we established also in avian species using avian leukosis virus subgroup C (ALV-C) inoculated in mid-embryogenesis in duck or chicken embryos. The problem of provirus downregulation in foreign species or in differentiated cells has been in the recent years approached experimentally. From a series of observations it became apparent that provirus downregulation is mediated by its methylation, especially in the region of proviral enhancer-promoter located in long terminal repeats (LTR). Several strategies have been devised in order to protect the provirus from methylation using LTR modification and/or introducing in the LTR sequence motifs acting as antimethylation tags. In such a way the expression of retroviruses and vectors in foreign species, as well as in differentiated cells, has been significantly improved. The complexity of the mechanisms involved in provirus downregulation and further possibilities to modulate it are discussed.
Collapse
Affiliation(s)
- J Svoboda
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Flemingovo n. 2, 166 37, Prague 6, Czech Republic.
| | | | | | | | | |
Collapse
|
41
|
Schilz AJ, Schiedlmeier B, Kühlcke K, Fruehauf S, Lindemann C, Zeller WJ, Grez M, Fauser AA, Baum C, Eckert HG. MDR1 gene expression in NOD/SCID repopulating cells after retroviral gene transfer under clinically relevant conditions. Mol Ther 2000; 2:609-18. [PMID: 11124062 DOI: 10.1006/mthe.2000.0216] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have adapted a recently published protocol for retroviral gene transfer into hematopoietic cells [A. J. Schilz et al. (1998) Blood 92: 3163-3171] with respect to clinical requirements such as large-volume vector stock generation, adequate cell source, high cell numbers, and serum-free conditions. We present data on transduction efficacy and expression of the multidrug resistance 1 (MDR1) gene in human CD34(+) cells from mobilized peripheral blood (PB) mediated by a gibbon ape leukemia virus (GALV)-pseudotyped retroviral vector. Using a 1-day cytokine-mediated prestimulation, consisting of human interleukin (IL)-3, IL-6, stem cell factor (SCF), Flt-3 ligand (FL), and thrombopoietin (TPO), followed by a 3-day transduction procedure, we were able to detect up to 51% CD34(+) cells expressing MDR1. Xenotransplantation of transduced cells into NOD/LtSz-scid/scid (NOD/SCID) mice resulted in a mean engraftment level of 23% (0.1 to 87%). As shown by quantitative PCR analysis, a mean of 12.7% (range 0.3 to 55%) of the engrafted human cells in the bone marrow of chimeric mice contained the MDR1 cDNA. Furthermore, enhanced expression of MDR1 above control levels was detected in up to 15% of the engrafted human cell population. Our data suggest that NOD/SCID repopulating cells derived from mobilized PB can be transduced efficiently with existing retroviral vector systems under clinically applicable conditions.
Collapse
Affiliation(s)
- A J Schilz
- EUFETS GmbH, Idar-Oberstein, D0200, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Schübeler D, Lorincz MC, Cimbora DM, Telling A, Feng YQ, Bouhassira EE, Groudine M. Genomic targeting of methylated DNA: influence of methylation on transcription, replication, chromatin structure, and histone acetylation. Mol Cell Biol 2000; 20:9103-12. [PMID: 11094062 PMCID: PMC102168 DOI: 10.1128/mcb.20.24.9103-9112.2000] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We have developed a strategy to introduce in vitro-methylated DNA into defined chromosomal locations. Using this system, we examined the effects of methylation on transcription, chromatin structure, histone acetylation, and replication timing by targeting methylated and unmethylated constructs to marked genomic sites. At two sites, which support stable expression from an unmethylated enhancer-reporter construct, introduction of an in vitro-methylated but otherwise identical construct results in specific changes in transgene conformation and activity, including loss of the promoter DNase I-hypersensitive site, localized hypoacetylation of histones H3 and H4 within the reporter gene, and a block to transcriptional initiation. Insertion of methylated constructs does not alter the early replication timing of the loci and does not result in de novo methylation of flanking genomic sequences. Methylation at the promoter and gene is stable over time, as is the repression of transcription. Surprisingly, sequences within the enhancer are demethylated, the hypersensitive site forms, and the enhancer is hyperacetylated. Nevertheless, the enhancer is unable to activate the methylated and hypoacetylated reporter. Our findings suggest that CpG methylation represses transcription by interfering with RNA polymerase initiation via a mechanism that involves localized histone deacetylation. This repression is dominant over a remodeled enhancer but neither results in nor requires region-wide changes in DNA replication or chromatin structure.
Collapse
Affiliation(s)
- D Schübeler
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Pannell D, Osborne CS, Yao S, Sukonnik T, Pasceri P, Karaiskakis A, Okano M, Li E, Lipshitz HD, Ellis J. Retrovirus vector silencing is de novo methylase independent and marked by a repressive histone code. EMBO J 2000; 19:5884-94. [PMID: 11060039 PMCID: PMC305782 DOI: 10.1093/emboj/19.21.5884] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2000] [Revised: 09/04/2000] [Accepted: 09/05/2000] [Indexed: 01/18/2023] Open
Abstract
Retrovirus vectors are de novo methylated and transcriptionally silent in mammalian stem cells. Here, we identify epigenetic modifications that mark retrovirus-silenced transgenes. We show that murine stem cell virus (MSCV) and human immunodeficiency virus type 1 (HIV-1) vectors dominantly silence a linked locus control region (LCR) beta-globin reporter gene in transgenic mice. MSCV silencing blocks LCR hypersensitive site formation, and silent transgene chromatin is marked differentially by a histone code composed of abundant linker histone H1, deacetylated H3 and acetylated H4. Retrovirus-transduced embryonic stem (ES) cells are silenced predominantly 3 days post-infection, with a small subset expressing enhanced green fluorescent protein to low levels, and silencing is not relieved in de novo methylase-null [dnmt3a-/-;dnmt3b-/-] ES cells. MSCV and HIV-1 sequences also repress reporter transgene expression in Drosophila, demonstrating establishment of silencing in the absence of de novo and maintenance methylases. These findings provide mechanistic insight into a conserved gene silencing mechanism that is de novo methylase independent and that epigenetically marks retrovirus chromatin with a repressive histone code.
Collapse
Affiliation(s)
- D Pannell
- Programs in Developmental Biology, and Cancer and Blood Research, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, M5G 1X8, Toronto, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Kalberer CP, Pawliuk R, Imren S, Bachelot T, Takekoshi KJ, Fabry M, Eaves CJ, London IM, Humphries RK, Leboulch P. Preselection of retrovirally transduced bone marrow avoids subsequent stem cell gene silencing and age-dependent extinction of expression of human beta-globin in engrafted mice. Proc Natl Acad Sci U S A 2000; 97:5411-5. [PMID: 10792053 PMCID: PMC25842 DOI: 10.1073/pnas.100082597] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transcriptional silencing of genes transferred into hematopoietic stem cells poses one of the most significant challenges to the success of gene therapy. If the transferred gene is not completely silenced, a progressive decline in gene expression as the mice age often is encountered. These phenomena were observed to various degrees in mouse transplant experiments using retroviral vectors containing a human beta-globin gene, even when cis-linked to locus control region derivatives. Here, we have investigated whether ex vivo preselection of retrovirally transduced stem cells on the basis of expression of the green fluorescent protein driven by the CpG island phosphoglycerate kinase promoter can ensure subsequent long-term expression of a cis-linked beta-globin gene in the erythroid lineage of transplanted mice. We observed that 100% of mice (n = 7) engrafted with preselected cells concurrently expressed human beta-globin and the green fluorescent protein in 20-95% of their RBC for up to 9.5 mo posttransplantation, the longest time point assessed. This expression pattern was successfully transferred to secondary transplant recipients. In the presence of beta-locus control region hypersensitive site 2 alone, human beta-globin mRNA expression levels ranged from 0.15% to 20% with human beta-globin chains detected by HPLC. Neither the proportion of positive blood cells nor the average expression levels declined with time in transplanted recipients. Although suboptimal expression levels and heterocellular position effects persisted, in vivo stem cell gene silencing and age-dependent extinction of expression were avoided. These findings support the further investigation of this type of vector for the gene therapy of human hemoglobinopathies.
Collapse
Affiliation(s)
- C P Kalberer
- The Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada Y5Z 1L3
| | | | | | | | | | | | | | | | | | | |
Collapse
|