1
|
Aryal M, Lin D, Regan K, Du S, Shi H, Alvarado JJ, Ilina TV, Andreotti AH, Smithgall TE. The HIV-1 protein Nef activates the Tec family kinase Btk by stabilizing an intermolecular SH3-SH2 domain interaction. Sci Signal 2022; 15:eabn8359. [PMID: 36126115 PMCID: PMC9830684 DOI: 10.1126/scisignal.abn8359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The Nef protein produced by the viruses HIV-1 and SIV drives efficient viral replication partially by inducing constitutive activation of host cell tyrosine kinases, including members of the Src and Tec families. Here, we uncovered the mechanism by which both HIV-1 and SIV Nef enhanced the activity of the Tec family kinase Btk in vitro and in cells. A Nef mutant that could not bind to the SH3 domain of Src family kinases activated Btk to the same extent as did wild-type Nef, demonstrating that Nef activated Src and Tec family kinases by distinct mechanisms. The Btk SH3-SH2 region formed a homodimer requiring the CD loop in the SH2 domain, which was stabilized by the binding of Nef homodimers. Alanine substitution of Pro327 in the CD loop of the Btk SH2 domain destabilized SH3-SH2 dimers, abolished the interaction with Nef, and prevented activation by Nef in vitro. In cells, Nef stabilized and activated wild-type but not P327A Btk homodimers at the plasma membrane. These data reveal that the interaction with Nef stabilizes Btk dimers through the SH3-SH2 interface to promote kinase activity and show that the HIV-1 Nef protein evolved distinct mechanisms to activate Src and Tec family tyrosine kinases to enhance viral replication.
Collapse
Affiliation(s)
- Manish Aryal
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh PA, 15219 USA
| | - David Lin
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011 USA
| | - Kiera Regan
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh PA, 15219 USA
| | - Shoucheng Du
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh PA, 15219 USA
| | - Haibin Shi
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh PA, 15219 USA
| | - John J. Alvarado
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh PA, 15219 USA
| | - Tatiana V. Ilina
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh PA, 15260 USA
| | - Amy H. Andreotti
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011 USA
| | - Thomas E. Smithgall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh PA, 15219 USA
| |
Collapse
|
2
|
Synergy and allostery in ligand binding by HIV-1 Nef. Biochem J 2021; 478:1525-1545. [PMID: 33787846 PMCID: PMC8079166 DOI: 10.1042/bcj20201002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 11/27/2022]
Abstract
The Nef protein of human and simian immunodeficiency viruses boosts viral pathogenicity through its interactions with host cell proteins. By combining the polyvalency of its large unstructured regions with the binding selectivity and strength of its folded core domain, Nef can associate with many different host cell proteins, thereby disrupting their functions. For example, the combination of a linear proline-rich motif and hydrophobic core domain surface allows Nef to bind tightly and specifically to SH3 domains of Src family kinases. We investigated whether the interplay between Nef's flexible regions and its core domain could allosterically influence ligand selection. We found that the flexible regions can associate with the core domain in different ways, producing distinct conformational states that alter the way in which Nef selects for SH3 domains and exposes some of its binding motifs. The ensuing crosstalk between ligands might promote functionally coherent Nef-bound protein ensembles by synergizing certain subsets of ligands while excluding others. We also combined proteomic and bioinformatics analyses to identify human proteins that select SH3 domains in the same way as Nef. We found that only 3% of clones from a whole-human fetal library displayed Nef-like SH3 selectivity. However, in most cases, this selectivity appears to be achieved by a canonical linear interaction rather than by a Nef-like ‘tertiary' interaction. Our analysis supports the contention that Nef's mode of hijacking SH3 domains is a virus-specific adaptation with no or very few cellular counterparts. Thus, the Nef tertiary binding surface is a promising virus-specific drug target.
Collapse
|
3
|
Hirao K, Andrews S, Kuroki K, Kusaka H, Tadokoro T, Kita S, Ose T, Rowland-Jones SL, Maenaka K. Structure of HIV-2 Nef Reveals Features Distinct from HIV-1 Involved in Immune Regulation. iScience 2019; 23:100758. [PMID: 31927483 PMCID: PMC6956826 DOI: 10.1016/j.isci.2019.100758] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/24/2019] [Accepted: 12/03/2019] [Indexed: 01/07/2023] Open
Abstract
The human immunodeficiency virus (HIV) accessory protein Nef plays a major role in establishing and maintaining infection, particularly through immune evasion. Many HIV-2-infected people experience long-term viral control and survival, resembling HIV-1 elite control. HIV-2 Nef has overlapping but also distinct functions from HIV-1 Nef. Here we report the crystal structure of HIV-2 Nef core. The di-leucine sorting motif forms a helix bound to neighboring molecules, and moreover, isothermal titration calorimetry demonstrated that the CD3 endocytosis motif can directly bind to HIV-2 Nef, ensuring AP-2-mediated endocytosis for CD3. The highly conserved C-terminal region forms a α-helix, absent from HIV-1. We further determined the structure of simian immunodeficiency virus (SIV) Nef harboring this region, demonstrating similar C-terminal α-helix, which may contribute to AP-1 binding for MHC-I downregulation. These results provide insights into the distinct pathogenesis of HIV-2 infection. Structure of HIV-2 Nef revealed a conserved C-terminal α-helix not present in HIV-1 C-terminal structure is conserved in SIV Nef, likely involved in MHC-I downregulation Di-leucine AP-2-mediated sorting motif forms a helix bound to the α1 and α2 helices ITC demonstrated that the CD3 endocytosis motif can directly bind to HIV-2 Nef
Collapse
Affiliation(s)
- Kengo Hirao
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Sophie Andrews
- Nuffield Department of Medicine, University of Oxford, NDM Research Building, Oxford OX3 7FZ, UK
| | - Kimiko Kuroki
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Hiroki Kusaka
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Takashi Tadokoro
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Shunsuke Kita
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Toyoyuki Ose
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan; Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Sarah L Rowland-Jones
- Nuffield Department of Medicine, University of Oxford, NDM Research Building, Oxford OX3 7FZ, UK.
| | - Katsumi Maenaka
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan.
| |
Collapse
|
4
|
Jung J, Byeon IJL, Ahn J, Gronenborn AM. Structure, dynamics, and Hck interaction of full-length HIV-1 Nef. Proteins 2011; 79:1609-22. [PMID: 21365684 DOI: 10.1002/prot.22986] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2010] [Revised: 12/29/2010] [Accepted: 01/03/2010] [Indexed: 11/09/2022]
Abstract
Nef is an HIV accessory protein that plays an important role in the progression of disease after viral infection. It interferes with numerous signaling pathways, one of which involves serine/threonine kinases. Here, we report the results of an NMR structural investigation on full-length Nef and its interaction with the entire regulatory domain of Hck (residues 72-256; Hck32L). A helical conformation was found at the N-terminus for residues 14-22, preceding the folded core domain. In contrast to the previously studied truncated Nef (Nef Δ1-39), the full-length Nef did not show any interactions of Trp57/Leu58 with the hydrophobic patch formed by helices α1 and α2. Upon Hck32L binding, the N-terminal anchor domain as well as the well-known SH3-binding site of Nef exhibited significant chemical shift changes. Upon Nef binding, resonance changes in the Hck spectrum were confined mostly to the SH3 domain, with additional effects seen for the connector between SH3 and SH2, the N-terminal region of SH2 and the linker region that contains the regulatory polyproline motif. The binding data suggest that in full-length Nef more than the core domain partakes in the interaction. The solution conformation of Hck32L was modeled using RDC data and compared with the crystal structure of the equivalent region in the inactivated, full-length Hck, revealing a notable difference in the relative orientations of the SH3 and SH2 domains. The RDC-based model combined with (15)N backbone dynamics data suggest that Hck32L adopts an open conformation without binding of the polyproline motif in the linker to the SH3 domain.
Collapse
Affiliation(s)
- Jinwon Jung
- Department of Structural Biology and Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | |
Collapse
|
5
|
Chrobak P, Simard MC, Bouchard N, Ndolo TM, Guertin J, Hanna Z, Dave V, Jolicoeur P. HIV-1 Nef Disrupts Maturation of CD4+T Cells through CD4/Lck Modulation. THE JOURNAL OF IMMUNOLOGY 2010; 185:3948-59. [DOI: 10.4049/jimmunol.1001064] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
MacPherson JI, Dickerson JE, Pinney JW, Robertson DL. Patterns of HIV-1 protein interaction identify perturbed host-cellular subsystems. PLoS Comput Biol 2010; 6:e1000863. [PMID: 20686668 PMCID: PMC2912648 DOI: 10.1371/journal.pcbi.1000863] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2010] [Accepted: 06/21/2010] [Indexed: 01/12/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) exploits a diverse array of host cell functions in order to replicate. This is mediated through a network of virus-host interactions. A variety of recent studies have catalogued this information. In particular the HIV-1, Human Protein Interaction Database (HHPID) has provided a unique depth of protein interaction detail. However, as a map of HIV-1 infection, the HHPID is problematic, as it contains curation error and redundancy; in addition, it is based on a heterogeneous set of experimental methods. Based on identifying shared patterns of HIV-host interaction, we have developed a novel methodology to delimit the core set of host-cellular functions and their associated perturbation from the HHPID. Initially, using biclustering, we identify 279 significant sets of host proteins that undergo the same types of interaction. The functional cohesiveness of these protein sets was validated using a human protein-protein interaction network, gene ontology annotation and sequence similarity. Next, using a distance measure, we group host protein sets and identify 37 distinct higher-level subsystems. We further demonstrate the biological significance of these subsystems by cross-referencing with global siRNA screens that have been used to detect host factors necessary for HIV-1 replication, and investigate the seemingly small intersect between these data sets. Our results highlight significant host-cell subsystems that are perturbed during the course of HIV-1 infection. Moreover, we characterise the patterns of interaction that contribute to these perturbations. Thus, our work disentangles the complex set of HIV-1-host protein interactions in the HHPID, reconciles these with siRNA screens and provides an accessible and interpretable map of infection.
Collapse
Affiliation(s)
- Jamie I. MacPherson
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Manchester, United Kingdom
| | - Jonathan E. Dickerson
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Manchester, United Kingdom
| | - John W. Pinney
- Centre for Bioinformatics, Division of Molecular Biosciences, Imperial College London, London, United Kingdom
| | - David L. Robertson
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
7
|
Vérollet C, Zhang YM, Le Cabec V, Mazzolini J, Charrière G, Labrousse A, Bouchet J, Medina I, Biessen E, Niedergang F, Bénichou S, Maridonneau-Parini I. HIV-1 Nef Triggers Macrophage Fusion in a p61Hck- and Protease-Dependent Manner. THE JOURNAL OF IMMUNOLOGY 2010; 184:7030-9. [DOI: 10.4049/jimmunol.0903345] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
8
|
Betzi S, Restouin A, Opi S, Arold ST, Parrot I, Guerlesquin F, Morelli X, Collette Y. Protein protein interaction inhibition (2P2I) combining high throughput and virtual screening: Application to the HIV-1 Nef protein. Proc Natl Acad Sci U S A 2007; 104:19256-61. [PMID: 18042718 PMCID: PMC2148277 DOI: 10.1073/pnas.0707130104] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Indexed: 11/18/2022] Open
Abstract
Protein-protein recognition is the cornerstone of multiple cellular and pathological functions. Therefore, protein-protein interaction inhibition (2P2I) is endowed with great therapeutic potential despite the initial belief that 2P2I was refractory to small-molecule intervention. Improved knowledge of complex molecular binding surfaces has recently stimulated renewed interest for 2P2I, especially after identification of "hot spots" and first inhibitory compounds. However, the combination of target complexity and lack of starting compound has thwarted experimental results and created intellectual barriers. Here we combined virtual and experimental screening when no previously known inhibitors can be used as starting point in a structure-based research program that targets an SH3 binding surface of the HIV type I Nef protein. High-throughput docking and application of a pharmacophoric filter on one hand and search for analogy on the other hand identified drug-like compounds that were further confirmed to bind Nef in the micromolar range (isothermal titration calorimetry), to target the Nef SH3 binding surface (NMR experiments), and to efficiently compete for Nef-SH3 interactions (cell-based assay, GST pull-down). Initial identification of these compounds by virtual screening was validated by screening of the very same library of compounds in the cell-based assay, demonstrating that a significant enrichment factor was attained by the in silico screening. To our knowledge, our results identify the first set of drug-like compounds that functionally target the HIV-1 Nef SH3 binding surface and provide the basis for a powerful discovery process that should help to speed up 2P2I strategies and open avenues for new class of antiviral molecules.
Collapse
Affiliation(s)
- Stéphane Betzi
- *Bioénergétique et Ingénierie des Protéines Laboratory, Centre National de la Recherche Scientifique/Institut de Biologie Structurale et Microbiologie, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Audrey Restouin
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 599, Centre de Recherche en Cancérologie de Marseille, F-13009 Marseille, France
- Institut Paoli-Calmettes, F-13009 Marseille, France
- Université de la Méditerranée, F-13007 Marseille, France
| | - Sandrine Opi
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 599, Centre de Recherche en Cancérologie de Marseille, F-13009 Marseille, France
- Institut Paoli-Calmettes, F-13009 Marseille, France
- Université de la Méditerranée, F-13007 Marseille, France
| | - Stefan T. Arold
- Institut National de la Santé et de la Recherche Médicale, Unité 554, and Université de Montpellier, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5048, Centre de Biochimie Structurale, 29, Rue de Navacelles, 34090 Montpellier Cedex, France; and
| | - Isabelle Parrot
- Institut des Biomolécules Max Mousseron, Unité Mixte de Recherche 5247, Centre National de la Recherche Scientifique–Universités Montpellier I et II, Faculté de Pharmacie, 34093 Montpellier, France
| | - Françoise Guerlesquin
- *Bioénergétique et Ingénierie des Protéines Laboratory, Centre National de la Recherche Scientifique/Institut de Biologie Structurale et Microbiologie, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Xavier Morelli
- *Bioénergétique et Ingénierie des Protéines Laboratory, Centre National de la Recherche Scientifique/Institut de Biologie Structurale et Microbiologie, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Yves Collette
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 599, Centre de Recherche en Cancérologie de Marseille, F-13009 Marseille, France
- Institut Paoli-Calmettes, F-13009 Marseille, France
- Université de la Méditerranée, F-13007 Marseille, France
| |
Collapse
|
9
|
Hochrein JM, Wales TE, Lerner EC, Schiavone AP, Smithgall TE, Engen JR. Conformational features of the full-length HIV and SIV Nef proteins determined by mass spectrometry. Biochemistry 2006; 45:7733-9. [PMID: 16784224 DOI: 10.1021/bi060438x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Nef protein from human or simian immunodeficiency virus enhances viral replication, downregulates immune cell receptors, and activates multiple host cell signaling pathways. Conformational information about full-length Nef has been difficult to obtain as the full-length protein is not readily amenable to NMR or X-ray crystallography due to aggregation at high concentrations. As an alternative, full-length HIV and SIV Nef were probed with hydrogen exchange mass spectrometry, a method compatible with the low concentration requirements of Nef. The results showed that HIV Nef contains a solvent-protected core, as previously demonstrated with both NMR and X-ray crystallography. SIV Nef, for which there is no structural information, had a similar protected core, although it was more flexible and dynamic than its HIV counterpart. Many of the regions outside the core in both SIV and HIV Nef were highly solvent exposed. However, limited protection from exchange was observed in both N- and C-terminal regions, suggesting the presence of structured elements. Protection from exchange was also observed in a large loop emanating from the core that was deleted for NMR and X-ray analysis. These data show that while the majority of Nef was highly solvent exposed, regions outside the core may have structural attributes which may contribute to Nef functions known to map to these regions.
Collapse
Affiliation(s)
- James M Hochrein
- Department of Chemistry, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | | | | | | | | | | |
Collapse
|
10
|
Ndolo T, George M, Nguyen H, Dandekar S. Expression of simian immunodeficiency virus Nef protein in CD4+ T cells leads to a molecular profile of viral persistence and immune evasion. Virology 2006; 353:374-87. [PMID: 16857233 DOI: 10.1016/j.virol.2006.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Revised: 05/22/2006] [Accepted: 06/02/2006] [Indexed: 10/24/2022]
Abstract
The Nef protein of human immunodeficiency virus and simian immunodeficiency virus is expressed early in infection and plays an important role in disease progression in vivo. In addition, Nef has been shown to modulate cellular functions. To decipher Nef-mediated changes in gene expression, we utilized DNA microarray analysis to elucidate changes in gene expression in a Jurkat CD4+ T-cell line stably expressing SIV-Nef protein under the control of an inducible promoter. Our results showed that genes associated with antigen presentation including members of the T-cell receptor and major histocompatibility class 1 complex were consistently down-regulated at the transcript level in SIV-Nef-expressing cells. In addition, Nef induced a transcriptional profile of cell-cycle-related genes that support the survival of Nef-expressing cells. Furthermore, Nef enhanced the transcription of genes encoding enzymes and factors that catalyze the biosynthesis of membrane glycolipids and phospholipids. In conclusion, gene expression profiling showed that SIV-Nef induces a transcriptional profile in CD4+ T cells that promotes immune evasion and cell survival, thus facilitating viral persistence.
Collapse
Affiliation(s)
- Thomas Ndolo
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
11
|
Trible RP, Emert-Sedlak L, Smithgall TE. HIV-1 Nef selectively activates Src family kinases Hck, Lyn, and c-Src through direct SH3 domain interaction. J Biol Chem 2006; 281:27029-38. [PMID: 16849330 PMCID: PMC2892265 DOI: 10.1074/jbc.m601128200] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nef is an HIV-1 virulence factor that promotes viral pathogenicity by altering host cell signaling pathways. Nef binds several members of the Src kinase family, and these interactions have been implicated in the pathogenesis of HIV/AIDS. However, the direct effect of Nef interaction on Src family kinase (SFK) regulation and activity has not been systematically addressed. We explored this issue using Saccharomyces cerevisiae, a well defined model system for the study of SFK regulation. Previous studies have shown that ectopic expression of c-Src arrests yeast cell growth in a kinase-dependent manner. We expressed Fgr, Fyn, Hck, Lck, Lyn, and Yes as well as c-Src in yeast and found that each kinase was active and induced growth suppression. Co-expression of the negative regulatory kinase Csk suppressed SFK activity and reversed the growth-inhibitory effect. We then co-expressed each SFK with HIV-1 Nef in the presence of Csk. Nef strongly activated Hck, Lyn, and c-Src but did not detectably affect Fgr, Fyn, Lck, or Yes. Mutagenesis of the Nef PXXP motif essential for SH3 domain binding greatly reduced the effect of Nef on Hck, Lyn, and c-Src, suggesting that Nef activates these Src family members through allosteric displacement of intramolecular SH3-linker interactions. These data show that Nef selectively activates Hck, Lyn, and c-Src among SFKs, identifying these kinases as proximal effectors of Nef signaling and potential targets for anti-HIV drug discovery.
Collapse
Affiliation(s)
| | | | - Thomas E. Smithgall
- To whom correspondence should be addressed: Dept. of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, E1240 Biomedical Science Tower, Pittsburgh, PA 15261. Tel.: 412-648-9495; Fax: 412-624-1401;
| |
Collapse
|
12
|
Choi HJ, Smithgall TE. Conserved residues in the HIV-1 Nef hydrophobic pocket are essential for recruitment and activation of the Hck tyrosine kinase. J Mol Biol 2004; 343:1255-68. [PMID: 15491611 DOI: 10.1016/j.jmb.2004.09.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Revised: 09/03/2004] [Accepted: 09/07/2004] [Indexed: 10/26/2022]
Abstract
The Nef protein of the primate lentiviruses human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) is essential for high-titer viral replication and acquired immune deficiency syndrome (AIDS) progression. Nef binds to the macrophage-specific Src family member Hck through its SH3 domain, resulting in constitutive kinase activation capable of transforming rodent fibroblasts. Nef-Hck interaction may be essential for M-tropic HIV replication and AIDS pathogenesis, identifying this virus-host protein complex as a rational target for anti-HIV drug discovery. Here, we investigated whether interaction with Hck is a common feature of Nef alleles from different strains of HIV-1. We compared the ability of four different laboratory HIV-1 Nef alleles (SF2, LAI, ELI, and Consensus) to induce Hck activation and transformation in our Rat-2 fibroblast model. While SF2, LAI, and Consensus Nef all bound and activated Hck, ELI Nef failed to bind to the Hck SH3 domain in vitro and did not cooperate with Hck in fibroblast transformation. Molecular modeling identified three residues in the core region of SF2 Nef (Ala83, His116, and Tyr120) which are substituted in ELI with Glu, Asn, and Ile, respectively. Two of these residues (Ala83 and Tyr120) form part of the hydrophobic pocket that contacts Ile 96 in the RT loop of the Hck SH3 domain in the Nef-SH3 crystal structure. Substitution of SF2 Nef Tyr120 with Ile completely abolished Hck recruitment and activation. In a complementary experiment, substitution of ELI Ile120 with Tyr partly restored ELI Nef-induced Hck activation and transformation in Rat-2 cells. Hck activation increased further by substitution of ELI Glu83 with Ala and Asn116 with His, suggestive of a supportive role for these residues in Hck binding. This study provides the first biological evidence that the HIV-1 Nef hydrophobic pocket is critical to Hck recruitment and activation in vivo. Targeting the Nef hydrophobic pocket with a small molecule may be sufficient to disrupt Nef signaling through Hck in HIV-infected macrophages, slowing disease progression.
Collapse
Affiliation(s)
- Hyun-Jung Choi
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, E1240 Biomedical Science Tower, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
13
|
Komuro I, Yokota Y, Yasuda S, Iwamoto A, Kagawa KS. CSF-induced and HIV-1-mediated distinct regulation of Hck and C/EBPbeta represent a heterogeneous susceptibility of monocyte-derived macrophages to M-tropic HIV-1 infection. J Exp Med 2003; 198:443-53. [PMID: 12900520 PMCID: PMC2194092 DOI: 10.1084/jem.20022018] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2002] [Revised: 06/13/2003] [Accepted: 06/13/2003] [Indexed: 11/17/2022] Open
Abstract
Granulocyte/macrophage colony-stimulating factor (GM-CSF)-induced monocyte-derived macrophages (GM-MPhi) are permissive to M-tropic HIV-1 entry, but inhibit viral replication at posttranscriptional and translational levels, whereas M-CSF-induced macrophages (M-MPhi) produce a large amount of HIV-1. M-MPhi express a high level of Hck and a large isoform of C/EBPbeta, and HIV-1 infection increases the expression of Hck but not of C/EBPbeta. GM-MPhi express a high level of C/EBPbeta and a low level of Hck, and HIV-1 infection drastically increases the expression of a short isoform of C/EBPbeta but decreases that of Hck. Treatment of M-MPhi with antisense oligonucleotide for Hck (AS-Hck) not only suppresses the expression of Hck, but also stimulates the induction of the short isoform of C/EBPbeta and inhibits the viral replication. Treatment of GM-MPhi with a moderate amount of AS-C/EBPbeta not only inhibits the expression of the small isoform of C/EBPbeta preferentially, but also stimulates the induction of Hck and stimulates the virus production at a high rate. These results suggest that CSF-induced and HIV-1-mediated distinct regulation of Hck and small isoform of C/EBPbeta represent the heterogeneous susceptibility of tissue MPhi to HIV-1 infection, and the regulation of Hck and C/EBPbeta are closely related and these two molecules affect one another.
Collapse
Affiliation(s)
- Iwao Komuro
- Department of Immunology, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku-ku, Tokyo 162-8640, Japan
| | | | | | | | | |
Collapse
|
14
|
Padua E, Jenkins A, Brown S, Bootman J, Paixao MT, Almond N, Berry N. Natural variation of the nef gene in human immunodeficiency virus type 2 infections in Portugal. J Gen Virol 2003; 84:1287-1299. [PMID: 12692296 DOI: 10.1099/vir.0.18908-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human immunodeficiency virus type 2 (HIV-2) infections cause severe immunodeficiency in humans, although HIV-2 is associated frequently with reduced virulence and pathogenicity compared to HIV-1. Genetic determinants that play a role in HIV pathogenesis are relatively poorly understood but nef has been implicated in inducing a more pathogenic phenotype in vivo. However, relatively little is known about the role of nef in HIV-2 pathogenesis. To address this, the genetic composition of 44 nef alleles from 37 HIV-2-infected individuals in Portugal, encompassing a wide spectrum of disease associations, CD4 counts and virus load, has been assessed. All nef alleles were subtype A, with no evidence of gross deletions, truncations or disruptions in the nef-encoding sequence; all were full-length and intact. HIV-2 long terminal repeat sequences were conserved and also indicated subtype A infections. Detailed analysis of motifs that mediate nef function in HIV-1 and simian immunodeficiency virus, such as CD4 downregulation and putative SH2/SH3 interactions, revealed significant natural variation. In particular, the central P(104)xxPLR motif exhibited wide interpatient variation, ranging from an HIV-1-like tetra-proline structure (PxxP)(3) to a disrupted minimal core motif (P(104)xxQLR). The P(107)-->Q substitution was associated with an asymptomatic phenotype (Fisher's exact test, P=0.026) and low virus loads. These data indicate that discrete differences in the nef gene sequence rather than gross structural changes are more likely to play a role in HIV-2 pathogenesis mediated via specific functional interactions.
Collapse
Affiliation(s)
- Elizabeth Padua
- AIDS Reference Laboratory, National Institute of Health, Av. Padre Cruz, 1649-016 Lisbon, Portugal
| | - Adrian Jenkins
- Division of Retrovirology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK
| | - Stuart Brown
- Division of Retrovirology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK
| | - Janet Bootman
- Division of Retrovirology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK
| | - Maria Teresa Paixao
- AIDS Reference Laboratory, National Institute of Health, Av. Padre Cruz, 1649-016 Lisbon, Portugal
| | - Neil Almond
- Division of Retrovirology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK
| | - Neil Berry
- Division of Retrovirology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK
| |
Collapse
|
15
|
Greenway AL, Holloway G, McPhee DA, Ellis P, Cornall A, Lidman M. HIV-1 Nef control of cell signalling molecules: multiple strategies to promote virus replication. J Biosci 2003; 28:323-35. [PMID: 12734410 DOI: 10.1007/bf02970151] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
HIV-1 has at its disposal numerous proteins encoded by its genome which provide the required arsenal to establish and maintain infection in its host for a considerable number of years. One of the most important and enigmatic of these proteins is Nef. The Nef protein of HIV-1 plays a fundamental role in the virus life cycle. This small protein of approximately 27 kDa is required for maximal virus replication and disease progression. The mechanisms by which it is able to act as a positive factor during virus replication is an area of intense research and although some controversy surrounds Nef much has been gauged as to how it functions. Its ability to modulate the expression of key cellular receptors important for cell activation and control signal transduction elements and events by interacting with numerous cellular kinases and signalling molecules, including members of the Src family kinases, leading to an effect on host cell function is likely to explain at least in part its role during infection and represents a finely tuned mechanism where this protein assists HIV-1 to control its host.
Collapse
Affiliation(s)
- Alison L Greenway
- Macfarlane Burnet Institute for Medical Research and Public Health, Cnr Commercial and Punt Roads, Melbourne, Victoria 3004, Australia.
| | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Hiipakka M, Saksela K. Capacity of simian immunodeficiency virus strain mac Nef for high-affinity Src homology 3 (SH3) binding revealed by ligand-tailored SH3 domains. J Gen Virol 2002; 83:3147-3152. [PMID: 12466492 DOI: 10.1099/0022-1317-83-12-3147] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The simian immunodeficiency virus (SIV) Nef protein contains a consensus Src-homology 3 (SH3) binding motif. However, no SH3-domain proteins showing strong binding to SIV Nef have yet been found, and its potential capacity for high-affinity SH3 binding has therefore remained unproven. Here we have used phage-display-assisted protein engineering to develop artificial SH3 domains that bind tightly to SIV strain mac (SIVmac) Nef. Substitution of six amino acids in the RT loop region of Hck-SH3 with the sequence E/DGWWG resulted in SH3 domains that bound in vitro to SIVmac Nef much better than the natural Hck- or Fyn-SH3 domains. These novel SH3 domains also efficiently associated with SIVmac Nef when co-expressed in 293T cells and displayed a strikingly differential specificity when compared with SH3 domains similarly targeted for binding to human immunodeficiency virus type 1 (HIV-1) Nef. Thus, SIVmac Nef is competent for high-affinity SH3 binding, but its natural SH3 protein partners are likely to be different from those of HIV-1 Nef.
Collapse
Affiliation(s)
- Marita Hiipakka
- Institute of Medical Technology and Tampere University Hospital, FIN-33014 University of Tampere, Finland1
| | - Kalle Saksela
- Institute of Medical Technology and Tampere University Hospital, FIN-33014 University of Tampere, Finland1
| |
Collapse
|
18
|
Hamilton VT, Stone DM, Pritchard SM, Cantor GH. Bovine leukemia virus gp30 transmembrane (TM) protein is not tyrosine phosphorylated: examining potential interactions with host tyrosine-mediated signaling. Virus Res 2002; 90:155-69. [PMID: 12457971 DOI: 10.1016/s0168-1702(02)00149-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bovine leukemia virus (BLV) causes persistent lymphocytosis, a preneoplastic, polyclonal expansion of B lymphocytes. The expansion increases viral transmission to new hosts, but the mechanisms of this expansion have not been determined. We hypothesized that BLV infection contributes to B-cell expansion by signaling initiated via viral transmembrane protein motifs undergoing tyrosine phosphorylation. Viral mimicry of host cell proteins is a well-demonstrated mechanism by which viruses may increase propagation or decrease recognition by the host immune system. The cytoplasmic tail of BLV transmembrane protein gp30 (TM) has multiple areas of homology to motifs of host cell signaling proteins, including two immunoreceptor tyrosine-based activation motifs (ITAMs) and two immunoreceptor tyrosine-based inhibition motifs (ITIMs), which are homologous to B-cell receptor and inhibitory co-receptor motifs. Signaling by these motifs in B cells typically relies on tyrosine phosphorylation, followed by interactions with Src-homology-2 (SH2) domains of nonreceptor protein tyrosine kinases or phosphatases. Phosphorylation of tyrosine residues in the cytoplasmic tail of TM was tested in four systems including ex vivo cultured peripheral blood mononuclear cells from BLV infected cows, BLV-expressing fetal lamb kidney cell and bat lung cell lines, and DT40 B cells transfected with a fusion of mouse extracellular CD8alpha and cytoplasmic TM. No phosphorylation of TM was detected in our experiments in any of the cell types utilized, or with various stimulation methods. Detection was attempted by immunoblotting for phosphotyrosines, or by metabolic labeling of cells. Thus BLV TM is not likely to modify host signal pathways through interactions between phosphorylated tyrosines of the ITAM or ITIM motifs and host-cell tyrosine kinases or phosphatases.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- B-Lymphocytes/immunology
- Cattle
- Cell Line
- Enzootic Bovine Leukosis/virology
- Leukemia Virus, Bovine/pathogenicity
- Lymphocyte Activation
- Mice
- Molecular Sequence Data
- Phosphorylation
- Receptors, Amino Acid/chemistry
- Receptors, Amino Acid/metabolism
- Receptors, Antigen, B-Cell/chemistry
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/metabolism
- Retroviridae Proteins, Oncogenic/chemistry
- Retroviridae Proteins, Oncogenic/metabolism
- Signal Transduction
- Tyrosine/metabolism
- Viral Envelope Proteins/chemistry
- Viral Envelope Proteins/metabolism
Collapse
Affiliation(s)
- Valerie T Hamilton
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040 USA
| | | | | | | |
Collapse
|
19
|
Picard C, Greenway A, Holloway G, Olive D, Collette Y. Interaction with simian Hck tyrosine kinase reveals convergent evolution of the Nef protein from simian and human immunodeficiency viruses despite differential molecular surface usage. Virology 2002; 295:320-7. [PMID: 12033791 DOI: 10.1006/viro.2002.1381] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Simian and human immunodeficiency virus type 1 (SIV and HIV-1) Nef proteins are thought to use different molecular surfaces to mediate the protein-protein interactions required for their otherwise similar functions. This genetically separable function suggests convergent evolution of primate lentiviruses and/or structural differences between human and nonhuman primate cellular target proteins. However, such comparative molecular analyses have not been undertaken so far using the respective natural host-derived cellular targets. We cloned simian Src family kinase Hck and analyzed structurally and biochemically its interaction with SIV Nef.
Collapse
Affiliation(s)
- C Picard
- Institut de Cancérologie et d'Immunologie de Marseille, U119 INSERM, 27 boulevard Leï Roure, 13009, France
| | | | | | | | | |
Collapse
|
20
|
Tobiume M, Fujinaga K, Suzuki S, Komoto S, Mukai T, Ikuta K. Extracellular Nef protein activates signal transduction pathway from Ras to mitogen-activated protein kinase cascades that leads to activation of human immunodeficiency virus from latency. AIDS Res Hum Retroviruses 2002; 18:461-7. [PMID: 11958689 DOI: 10.1089/088922202753614227] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We previously reported that viral antigen expression was markedly up-regulated by stimulation with extracellular Nef, similar to the effects of tumor necrosis factor (TNF)-alpha and phorbol myristate acetate, in model cells for HIV-1 latency. In this study, we examined the molecular mechanism of this novel Nef function. Flow cytometry revealed specific binding of Nef on the surface of latently infected cells. Furthermore, activation of Ras in the cells was detected after treatment with Nef, indicating the involvement of Ras in Nef-mediated activation of HIV-1 from latency. This was also confirmed by the observations that HIV-1 long-terminal repeat-luciferase (LTR-Luc) activity was significantly up-regulated by introduction of the active Ras into uninfected cells, and that LTR-Luc activity observed in Nef-treated cells was specifically inhibited by introduction of a dominant negative Ras. In addition, PD98059 inhibited the activation of HIV-1 by Nef, but not by TNF-alpha. Thus, Nef-mediated reactivation of HIV-1 in latent model cells occurs by signal transduction from Ras to mitogen-activated protein kinase cascades.
Collapse
Affiliation(s)
- Minoru Tobiume
- Department of Microbiology and Immunology, School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | | | | | | | | | | |
Collapse
|
21
|
Simard MC, Chrobak P, Kay DG, Hanna Z, Jothy S, Jolicoeur P. Expression of simian immunodeficiency virus nef in immune cells of transgenic mice leads to a severe AIDS-like disease. J Virol 2002; 76:3981-95. [PMID: 11907238 PMCID: PMC136064 DOI: 10.1128/jvi.76.8.3981-3995.2002] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In order to study the functions of simian immunodeficiency virus (SIV) Nef in vivo in a small-animal model, we constructed transgenic (Tg) mice expressing the SIV(mac)239 nef gene in the natural target cells of the virus under the control of the human CD4 gene promoter (CD4C). These CD4C/SHIV-nef(SIV) Tg mice develop a severe AIDS-like disease, with manifestations including premature death, failure to thrive or weight loss, wasting, thymic atrophy, an especially low number of peripheral CD8+ T cells as well as a low number of peripheral CD4+ T cells, diarrhea, splenomegaly, and kidney (interstitial nephritis, segmental glomerulosclerosis), lung (lymphocytic interstitial pneumonitis), and heart disease. In addition, these Tg mice fail to mount a class-switched antibody response after immunization with ovalbumin, they produce anti-DNA autoantibodies, and some of them develop Pneumocystis carinii lung infections. All these results suggest a generalized Nef-induced immunodeficiency. The low numbers of peripheral CD8+ and CD4+ T cells are likely to reflect a thymic defect and may be similar to the DiGeorge-like "thymic defect" immunophenotype described for a subgroup of human immunodeficiency virus type 1-infected children. Therefore, it appears that SIV Nef alone expressed in mice, in appropriate cell types and at sufficient levels, can elicit many of the phenotypes of simian and human AIDS. These Tg mice should be instrumental in studying the pathogenesis of SIV Nef-induced phenotypes.
Collapse
Affiliation(s)
- Marie-Chantal Simard
- Laboratory of Molecular Biology, Clinical Research Institute of Montréal, Montréal, Québec H2W 1R7, Canada
| | | | | | | | | | | |
Collapse
|
22
|
Kedzierska K, Ellery P, Mak J, Lewin SR, Crowe SM, Jaworowski A. HIV-1 down-modulates gamma signaling chain of Fc gamma R in human macrophages: a possible mechanism for inhibition of phagocytosis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:2895-903. [PMID: 11884460 DOI: 10.4049/jimmunol.168.6.2895] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
HIV-1 infection impairs a number of macrophage effector functions, thereby contributing to development of opportunistic infections and the pathogenesis of AIDS. FcgammaR-mediated phagocytosis by human monocyte-derived macrophages (MDM) is inhibited by HIV-1 infection in vitro, and the underlying mechanism was investigated in this study. Inhibition of phagocytosis directly correlated with the multiplicity of HIV-1 infection. Expression of surface FcgammaRs was unaffected by HIV-1 infection, suggesting that inhibition of phagocytosis occurred during or after receptor binding. HIV-1 infection of MDM markedly inhibited tyrosine phosphorylation of the cellular proteins, which occurs following engagement of FcgammaRs, suggesting a defect downstream of initial receptor activation. FcgammaR-mediated phagocytosis in HIV-infected MDM was associated with inhibition of phosphorylation of tyrosine kinases from two different families, Hck and Syk, defective formation of Syk complexes with other tyrosine-phosphorylated proteins, and inhibition of paxillin activation. Down-modulation of protein expression but not mRNA of the gamma signaling subunit of FcgammaR (a docking site for Syk) was observed in HIV-infected MDM. Infection of MDM with a construct of HIV-1 in which nef was replaced with the gene for the gamma signaling subunit augmented FcgammaR-mediated phagocytosis, suggesting that down-modulation of gamma-chain protein expression in HIV-infected MDM caused the defective FcgammaR-mediated signaling and impairment of phagocytosis. This study is the first to demonstrate a specific alteration in phagocytosis signal transduction pathway, which provides a mechanism for the observed impaired FcgammaR-mediated phagocytosis in HIV-infected macrophages and contributes to the understanding of how HIV-1 impairs cell-mediated immunity leading to HIV-1 disease progression.
Collapse
|
23
|
Greenway AL, McPhee DA, Allen K, Johnstone R, Holloway G, Mills J, Azad A, Sankovich S, Lambert P. Human immunodeficiency virus type 1 Nef binds to tumor suppressor p53 and protects cells against p53-mediated apoptosis. J Virol 2002; 76:2692-702. [PMID: 11861836 PMCID: PMC135999 DOI: 10.1128/jvi.76.6.2692-2702.2002] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nef gene product of human immunodeficiency virus type 1 (HIV-1) is important for the induction of AIDS, and key to its function is its ability to manipulate T-cell function by targeting cellular signal transduction proteins. We reported that Nef coprecipitates a multiprotein complex from cells which contains tumor suppressor protein p53. We now show that Nef interacts directly with p53. Binding assays showed that an N-terminal, 57-residue fragment of Nef (Nef 1-57) contains the p53-binding domain. Nef also interacted with p53 during HIV-1 infection in vitro. As p53 plays a critical role in the regulation of apoptosis, we hypothesized that Nef may alter this process. Nef inhibited UV light-induced, p53-dependent apoptosis in MOLT-4 cells, with Nef 1-57 being as effective as its full-length counterpart. The inhibition by Nef of p53 apoptotic function is most likely due its observed ability to decrease p53 protein half-life and, consequently, p53 DNA binding activity and transcriptional activation. These data show that HIV-1 Nef may augment HIV replication by prolonging the viability of infected cells by blocking p53-mediated apoptosis.
Collapse
Affiliation(s)
- Alison L Greenway
- AIDS Cellular Biology Unit, Macfarlane Burnet Centre for Medical Research, Fairfield, Victoria 3078, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Bostik P, Wu P, Dodd GL, Villinger F, Mayne AE, Bostik V, Grimm BD, Robinson D, Kung HJ, Ansari AA. Identification of protein kinases dysregulated in CD4(+) T cells in pathogenic versus apathogenic simian immunodeficiency virus infection. J Virol 2001; 75:11298-306. [PMID: 11689610 PMCID: PMC114715 DOI: 10.1128/jvi.75.23.11298-11306.2001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus infection in humans and simian immunodeficiency virus (SIV) infection in rhesus macaques (RM) leads to a generalized loss of immune responses involving perturbations in T-cell receptor (TCR) signaling. In contrast, naturally SIV-infected sooty mangabeys (SM) remain asymptomatic and retain immune responses despite relatively high viral loads. However, SIV infection in both RM and SM led to similar decreases in TCR-induced Lck phosphorylation. In this study, a protein tyrosine kinase (PTK) differential display method was utilized to characterize the effects of in vivo SIV infection on key signaling molecules of the CD4(+) T-cell signaling pathways. The CD4(+) T cells from SIV-infected RM, but not SIV-infected SM, showed chronic downregulation of baseline expression of MLK3, PRK, and GSK3, and symptomatically SIV-infected RM showed similar downregulation of MKK3. In vitro TCR stimulation with or without CD28 costimulation of CD4(+) T cells did not lead to the enhancement of gene transcription of these PTKs. While the CD4(+) T cells from SIV-infected RM showed a significant increase of the baseline and anti-TCR-mediated ROR2 transcription, SIV infection in SM led to substantially decreased anti-TCR-stimulated ROR2 transcription. TCR stimulation of CD4(+) T cells from SIV-infected RM (but not SIV-infected SM) led to the repression of CaMKKbeta and the induction of gene transcription of MLK2. Studies of the function of these molecules in T-cell signaling may lead to the identification of potential targets for specific intervention, leading to the restoration of T-cell responses.
Collapse
Affiliation(s)
- P Bostik
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
BACKGROUND Lipid rafts are currently an intensely investigated topic of cell biology. In addition to a demonstrated role in signal transduction of the host cell, lipid rafts serve as entry and exit sites for microbial pathogens and toxins, such as FimH-expressing enterobacteria, influenza virus, measles virus and cholera toxin. Furthermore, caveolae, a specialised form of lipid raft, are required for the conversion of the non-pathogenic prion protein to the pathogenic scrapie isoform. OBJECTIVES A number of reports have shown, directly or indirectly, that lipid rafts are important at various stages of the human immunodeficiency virus type-1 (HIV-1) replication cycle. The purpose of this paper is to provide a brief overview of the role of membrane-associated lipid rafts in cell biology, and to evaluate how HIV-1 has hijacked this cellular component to support HIV-1 replication. Special sections are devoted to discussing the role of lipid rafts in (1) the entry of HIV-1, (2) signal transduction regulation in HIV-1-infected cells, (3) the trafficking of HIV-1 proteins via lipid rafts during HIV-1 assembly; and a further section discusses the role of cholesterol in mature HIV-1. SUMMARY Like a number of other pathogens, HIV-1 has evolved to rely on the host cell lipid rafts to support its propagation during multiple stages of the HIV-1 replication cycle. This review has highlighted the importance of lipid rafts in HIV-1 replication.
Collapse
Affiliation(s)
- S M Campbell
- AIDS Pathogenesis Research Unit, Macfarlane Burnet Centre for Medical Research, Fairfield, Victoria 3078, Australia
| | | | | |
Collapse
|
26
|
Hanna Z, Weng X, Kay DG, Poudrier J, Lowell C, Jolicoeur P. The pathogenicity of human immunodeficiency virus (HIV) type 1 Nef in CD4C/HIV transgenic mice is abolished by mutation of its SH3-binding domain, and disease development is delayed in the absence of Hck. J Virol 2001; 75:9378-92. [PMID: 11533201 PMCID: PMC114506 DOI: 10.1128/jvi.75.19.9378-9392.2001] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2000] [Accepted: 06/23/2001] [Indexed: 11/20/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) Nef protein is an important determinant of AIDS pathogenesis. We have previously reported that HIV-1 Nef is responsible for the induction of a severe AIDS-like disease in CD4C/HIV transgenic (Tg) mice. To understand the molecular mechanisms of this Nef-induced disease, we generated Tg mice expressing a mutated Nef protein in which the SH3 ligand-binding domain (P(72)XXP(75)XXP(78)) was mutated to A(72)XXA(75)XXQ(78). This mutation completely abolished the pathogenic potential of Nef, although a partial downregulation of the CD4 cell surface expression was still observed in these Tg mice. We also studied whether Hck, one of the effectors previously found to bind to this PXXP motif of Nef, was involved in disease development. Breeding of Tg mice expressing wild-type Nef on an hck(-/-) (knockout) background did not abolish any of the pathological phenotypes. However, the latency of disease development was prolonged. These data indicate that an intact PXXP domain is essential for inducing an AIDS-like disease in CD4C/HIV Tg mice and suggest that interaction of a cellular effector(s) with this domain is required for the induction of this multiorgan disease. Our findings indicate that Hck is an important, but not an essential, effector of Nef and suggest that another factor(s), yet to be identified, may be more critical for disease development.
Collapse
Affiliation(s)
- Z Hanna
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Montreal, Quebec H2W 1R7, Canada.
| | | | | | | | | | | |
Collapse
|
27
|
Kedzierska K, Mak J, Jaworowski A, Greenway A, Violo A, Chan HT, Hocking J, Purcell D, Sullivan JS, Mills J, Crowe S. nef-deleted HIV-1 inhibits phagocytosis by monocyte-derived macrophages in vitro but not by peripheral blood monocytes in vivo. AIDS 2001; 15:945-55. [PMID: 11399976 DOI: 10.1097/00002030-200105250-00002] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE HIV-1 infection impairs a number of macrophage effector functions, but the mechanism is unknown. We studied the role of HIV-1 Nef in modulating phagocytosis by human monocytes and monocyte-derived macrophages (MDM). DESIGN AND METHODS Using a flow cytometric assay, phagocytosis of Mycobacterium avium complex (MAC) by monocytes in whole blood of Sydney Blood Bank Cohort (SBBC) members infected with a nef-deleted (Delta nef) strain of HIV-1 was compared with that of monocytes from uninfected or wild-type (WT) HIV-infected subjects. The specific impact of Nef on phagocytosis by MDM was determined by either infecting cells in vitro with Delta nef strains of HIV-1 or electroporating Nef into uninfected MDM. RESULTS MAC phagocytic capacity of monocytes from SBBC members was equivalent to that of cells from uninfected individuals (P = 0.81); it was greater than that of cells from individuals infected with WT HIV-1 (P < 0.0001), irrespective of CD4 counts and HIV viral load. In contrast, in vitro infection of MDM with either Delta nef or WT strains of HIV-1 resulted in similar levels of HIV replication and equivalent impairment of phagocytosis via Fc gamma and complement receptors. Electroporation of Nef into MDM did not alter phagocytic capacity. CONCLUSIONS This study provides evidence demonstrating the complex indirect effect of Nef on phagocytosis by peripheral blood monocytes (infrequently infected with HIV-1) in vivo. Conversely, the fact that MDM infected with either Delta nef or WT HIV-1 in vitro (high multiplicity of infection) show comparably impaired phagocytosis, indicates that HIV-1 infection of macrophages can directly impair function, independent of Nef.
Collapse
Affiliation(s)
- K Kedzierska
- AIDS Pathogenesis Research Unit, Macfarlane Burnet Centre, Fairfield, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Greenway AL, Holloway G, McPhee DA. HIV-1 Nef: a critical factor in viral-induced pathogenesis. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2001; 48:299-343. [PMID: 10987095 DOI: 10.1016/s1054-3589(00)48010-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- A L Greenway
- AIDS Cellular Biology Unit, Macfarlane Burnet Centre for Medical Research, Fairfield, Victoria, Australia
| | | | | |
Collapse
|
29
|
Villinger F, Switzer WM, Parekh BS, Otten RA, Adams D, Shanmugam V, Bostik P, Mayne AE, Chikkala NF, McClure HM, Novembre F, Yao Q, Heneine W, Folks TM, Ansari AA. Induction of long-term protective effects against heterologous challenge in SIVhu-infected macaques. Virology 2000; 278:194-206. [PMID: 11112494 DOI: 10.1006/viro.2000.0651] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A group of three rhesus macaques were inoculated with SIV isolated from a human (SIVhu) accidentally exposed and infected with SIVsm. Extensive sequence analyses of SIVhu obtained from the human and macaques following infection indicated the presence of truncated nef. Not only did nef fail to repair itself in vivo postinfection (p.i.), but instead, further mutations added additional stop codons with increasing time p.i. Infection of these animals was associated with minimal acute viral replication, followed by undetectable plasma viral loads and only intermittent PCR detection up to 5 years p.i. The three SIVhu infected and three control monkeys were then challenged with the heterologous highly pathogenic SHIV89.6p. All three controls became infected and showed rapid declines in peripheral CD4(+) lymphocytes, disease, and death at 10 and 32 weeks p.i., respectively. In contrast, all three animals previously infected with SIVhu are healthy and exhibit stable CD4(+) lymphocyte levels and undetectable plasma viral loads at >20 months post-SHIV89. 6p challenge. Only transient, low levels of SHIV replication were noted in these animals. Whereas responses to SIVgag/pol were noted, no evidence for SIV/SHIV envelope cross-reactivity was detected by antibody or CTL analyses, suggesting that the protective immune mechanisms to the heterologous challenge isolate were most likely not directed to envelope but rather to other viral determinants.
Collapse
Affiliation(s)
- F Villinger
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia 30322, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Mills J, Desrosiers R, Rud E, Almond N. Live attenuated HIV vaccines: a proposal for further research and development. AIDS Res Hum Retroviruses 2000; 16:1453-61. [PMID: 11054258 DOI: 10.1089/088922200750005976] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- J Mills
- Macfarlane Burnet Centre for Medical Research, Fairfield (Melbourne), Victoria, Australia.
| | | | | | | |
Collapse
|
31
|
Schibeci SD, Clegg AO, Biti RA, Sagawa K, Stewart GJ, Williamson P. HIV-Nef enhances interleukin-2 production and phosphatidylinositol 3-kinase activity in a human T cell line. AIDS 2000; 14:1701-7. [PMID: 10985305 DOI: 10.1097/00002030-200008180-00003] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The Nef protein has a major influence on disease pathogenesis in HIV-infected individuals. The objective of the present study was to examine the effects of Nef on T lymphocyte activation and associated signalling events. DESIGN A recombinant vaccinia expression system was used to express Nef in a human T cell line. Stimulation of these cells with anti-CD28 antibody, and either phorbol 12-myristate 13-acetate (PMA) or anti-CD3, activates signal transduction pathways and results in IL-2 production and IL-2 receptor alpha-chain (CD25) expression. Cellular responses were examined in cells expressing either Nef or an irrelevant control protein. METHODS Activation of signalling was assessed by immunoblot analysis, or by in-vitro phosphatidylinositol 3-kinase (PI3K) assays. IL-2 production was measured by enzyme-linked immunosorbent assay, and CD25 cell surface expression was examined using flow cytometry. RESULTS Infection of cells with recombinant vaccinia expressing HIV-nef resulted in a marked increase in the production of IL-2 when cells were activated. The enhanced IL-2 response was accompanied by an increase in the level of PI3K activity. IL-2 production remained sensitive to inhibition with the PI3K competitive inhibitor Ly294002, and to the fungal macrolide, rapamycin. In contrast, CD25 expression was not affected, and there were no measurable changes to nuclear factor kappaB (NFkappaB) activation pathways. CONCLUSION Enhanced IL-2 production in stimulated T cells expressing HIV-Nef is associated with increased activation of PI3K-dependent signalling pathways. The results support a model in which Nef affects HIV disease progression by distorting T cell responses.
Collapse
Affiliation(s)
- S D Schibeci
- Department of Clinical Immunology, Westmead Hospital, NSW, Australia
| | | | | | | | | | | |
Collapse
|
32
|
Isakov N, Biesinger B. Lck protein tyrosine kinase is a key regulator of T-cell activation and a target for signal intervention by Herpesvirus saimiri and other viral gene products. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:3413-21. [PMID: 10848956 DOI: 10.1046/j.1432-1327.2000.01412.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Protein tyrosine kinases (PTKs) are critically involved in signaling pathways that regulate cell growth, differentiation, activation, and transformation. It is not surprising, therefore, that viruses acquire effector molecules targeting these kinases to ensure their own replication and/or persistence. This review summarizes our current knowledge on Lck, a member of the Src family of PTK, and its viral interaction partners. Lck plays a key role in T lymphocyte activation and differentiation. It is associated with a variety of cell surface receptors and is critical for signal transduction from the T-cell antigen receptor (TCR). Consequently, Lck is targeted by regulatory proteins of T-lymphotropic viruses, especially by the Herpesvirus saimiri (HVS) tyrosine kinase interacting protein (Tip). This oncoprotein physically interacts with Lck in HVS transformed T cells and has an impact on its catalytic activity. However, while Tip inhibits Lck activity in stably expressing cell lines, opposite effects were observed in several in vitro systems. At least in part, this complex situation may be related to the bipartite nature of the interaction surface of the two proteins. Studies on the interrelationships between Lck and its viral partners contribute to the understanding of the mechanisms of T-cell growth regulation, in general, and of viral pathogenicity in particular. In addition, understanding the regulation of Lck activity by viral proteins may serve as a basis for the development of new drugs capable of modifying Lck activity in different pathological situations.
Collapse
Affiliation(s)
- N Isakov
- Department of Microbiology and Immunology, Faculty of Health Sciences, and the Cancer Research Center, Ben Gurion University of the Negev, Beer Sheva, Israel.
| | | |
Collapse
|
33
|
Collette Y, Arold S, Picard C, Janvier K, Benichou S, Benarous R, Olive D, Dumas C. HIV-2 and SIV nef proteins target different Src family SH3 domains than does HIV-1 Nef because of a triple amino acid substitution. J Biol Chem 2000; 275:4171-6. [PMID: 10660579 DOI: 10.1074/jbc.275.6.4171] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nef gene is required for optimal viral spread of human and simian immunodeficiency viruses. However, the molecular mechanisms underlying the action of the Nef proteins may not be identical for all viral families. Here we investigate the interaction between the Nef protein of human and simian immunodeficiency viruses and SH3 domains from Src family kinases. Using the yeast two-hybrid system and immunoblotting we show that, in contrast to HIV-1 Nef, SIV and HIV-2 Nef poorly interact with Hck SH3 but bind to Src and Fyn SH3 domains. The molecular basis of these differences in SH3 targeting was revealed by sequence analysis and homology modeling of the putative SH3-Nef structures. Three amino acids (Trp-113, Thr-117, and Gln-118) that localize in a "hydrophobic pocket" implicated in SH3 binding of HIV-1 Nef, are systematically substituted in SIV/HIV-2 alleles (by Tyr, Glu, and Glu, respectively). We demonstrate that site-directed mutagenesis of these residues in SIV(mac239) Nef suffices to restore Hck SH3 binding and co-immunoprecipitation with full-length Hck from transfected cells. Our findings identify fundamental mechanistic differences in targeting of Src family kinases by HIV and SIV Nef. The herein described mechanism of SH3 selection by Nef via a "pocket" proximal to the canonical proline-rich motif may be a common feature for SH3 recognition by their natural ligands.
Collapse
Affiliation(s)
- Y Collette
- U119 INSERM, Université de la Méditerranée, 13009 Marseille, France.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Briggs SD, Lerner EC, Smithgall TE. Affinity of Src family kinase SH3 domains for HIV Nef in vitro does not predict kinase activation by Nef in vivo. Biochemistry 2000; 39:489-95. [PMID: 10642173 DOI: 10.1021/bi992504j] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nef is an HIV accessory protein required for high-titer viral replication and AIDS progression. Previous studies have shown that the SH3 domains of Hck and Lyn bind to Nef via proline-rich sequences in vitro, identifying these Src-related kinases as potential targets for Nef in vivo. Association of Nef with Hck causes displacement of the intramolecular interaction between the SH3 domain and the SH2-kinase linker, leading to kinase activation both in vitro and in vivo. In this study, we investigated whether interaction with Nef induces activation of other Src family kinases (Lyn, Fyn, Src, and Lck) following coexpression with Nef in Rat-2 fibroblasts. Coexpression with Nef induced Hck kinase activation and fibroblast transformation, consistent with previous results. In contrast, coexpression of Nef with Lyn was without effect, despite equivalent binding of Nef to full-length Lyn and Hck. Furthermore, Nef was found to suppress the kinase and transforming activities of Fyn, the SH3 domain of which exhibits low affinity for Nef. Coexpression with Nef did not alter c-Src or Lck tyrosine kinase or transforming activity in this system. Differential modulation of Src family members by Nef may produce unique downstream signals depending on the profile of Src kinases expressed in a given cell type.
Collapse
Affiliation(s)
- S D Briggs
- Eppley Institute for Research in Cancer and Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | | | | |
Collapse
|
35
|
Collette Y, Olive D. The primate lentivirus-encoded Nef protein can regulate several steps of the viral replication cycle. Virology 1999; 265:173-7. [PMID: 10600589 DOI: 10.1006/viro.1999.0053] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The primate lentiviruses encode a protein, Nef, which is required for efficient viral replication in their host. Several biological activities of nef identified in vitro may contribute to this requirement in vivo, including receptor modulation and interference with cellular signaling pathways. We show that HIV- and SIV-encoded Nef can enhance virus production within a single viral replication cycle, not only by increasing viral infectivity, as previously reported, but also by acting through the efficiency of viral transcription and of viral release.
Collapse
Affiliation(s)
- Y Collette
- Université de la Méditerranée, Marseille, 13009, France.
| | | |
Collapse
|