1
|
Lee M, Vetter J, Eichwald C. The influence of the cytoskeleton on the development and behavior of viral factories in mammalian orthoreovirus. Virology 2025; 604:110423. [PMID: 39889480 DOI: 10.1016/j.virol.2025.110423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/06/2025] [Accepted: 01/21/2025] [Indexed: 02/03/2025]
Abstract
Cytosolic viral factories (VFs) of mammalian orthoreovirus (MRV) are sites for viral genome replication and assembly of virus progeny. Despite advancements in reverse genetics, the formation and dynamics of VFs still need to be clarified. MRV exploits host cytoskeletal components like microtubules (MTs) throughout its life cycle, including cell entry, replication, and release. MRV VFs, membrane-less cytosolic inclusions, rely on the viral proteins μ2 and μNS for formation. Protein μ2 interacts and stabilizes MTs through acetylation, supporting VF formation and viral replication, while scaffold protein μNS influences cellular components to aid VF maturation. The disruption of the MT network reduces viral replication, underscoring its importance. Additionally, μ2 associates with MT-organizing centers, modulating the MT dynamics to favor viral replication. In summary, MRV subverts the cytoskeleton to facilitate VF dynamics and promote viral replication and assembly to promote VF dynamics, replication, and assembly, highlighting the critical role of the cytoskeleton in viral replication.
Collapse
Affiliation(s)
- Melissa Lee
- Institute of Virology, University of Zurich, Zurich, Switzerland
| | - Janine Vetter
- Institute of Virology, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
2
|
Liu X, Xia X, Martynowycz MW, Gonen T, Zhou ZH. Molecular sociology of virus-induced cellular condensates supporting reovirus assembly and replication. Nat Commun 2024; 15:10638. [PMID: 39639006 PMCID: PMC11621325 DOI: 10.1038/s41467-024-54968-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
Virus-induced cellular condensates, or viral factories, are poorly understood high-density phases where replication of many viruses occurs. Here, by cryogenic electron tomography (cryoET) of focused ion beam (FIB) milling-produced lamellae of mammalian reovirus (MRV)-infected cells, we visualized the molecular organization and interplay (i.e., "molecular sociology") of host and virus in 3D at two time points post-infection, enabling a detailed description of these condensates and a mechanistic understanding of MRV replication within them. Expanding over time, the condensate fashions host ribosomes at its periphery, and host microtubules, lipid membranes, and viral molecules in its interior, forming a 3D architecture that supports the dynamic processes of viral genome replication and capsid assembly. A total of six MRV assembly intermediates are identified inside the condensate: star core, empty and genome-containing cores, empty and full virions, and outer shell particle. Except for star core, these intermediates are visualized at atomic resolution by cryogenic electron microscopy (cryoEM) of cellular extracts. The temporal sequence and spatial rearrangement among these viral intermediates choreograph the viral life cycle within the condensates. Together, the molecular sociology of MRV-induced cellular condensate highlights the functional advantage of transient enrichment of molecules at the right location and time for viral replication.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
| | - Xian Xia
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
| | - Michael W Martynowycz
- Howard Hughes Medical Institute, University of California, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, CA, USA
- Hauptman-Woodward Medical Research Institute, Buffalo, NY, USA
| | - Tamir Gonen
- Howard Hughes Medical Institute, University of California, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, CA, USA
| | - Z Hong Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, USA.
- California NanoSystems Institute, University of California, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Dhar D, Mehanovic S, Moss W, Miller CL. Sequences at gene segment termini inclusive of untranslated regions and partial open reading frames play a critical role in mammalian orthoreovirus S gene packaging. PLoS Pathog 2024; 20:e1012037. [PMID: 38394338 PMCID: PMC10917250 DOI: 10.1371/journal.ppat.1012037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/06/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Mammalian orthoreovirus (MRV) is a prototypic member of the Spinareoviridae family and has ten double-stranded RNA segments. One copy of each segment must be faithfully packaged into the mature virion, and prior literature suggests that nucleotides (nts) at the terminal ends of each gene likely facilitate their packaging. However, little is known about the precise packaging sequences required or how the packaging process is coordinated. Using a novel approach, we have determined that 200 nts at each terminus, inclusive of untranslated regions (UTR) and parts of the open reading frame (ORF), are sufficient for packaging S gene segments (S1-S4) individually and together into replicating virus. Further, we mapped the minimal sequences required for packaging the S1 gene segment into a replicating virus to 25 5' nts and 50 3' nts. The S1 UTRs, while not sufficient, were necessary for efficient packaging, as mutations of the 5' or 3' UTRs led to a complete loss of virus recovery. Using a second novel assay, we determined that 50 5' nts and 50 3' nts of S1 are sufficient to package a non-viral gene segment into MRV. The 5' and 3' termini of the S1 gene are predicted to form a panhandle structure and specific mutations within the stem of the predicted panhandle region led to a significant decrease in viral recovery. Additionally, mutation of six nts that are conserved across the three major serotypes of MRV that are predicted to form an unpaired loop in the S1 3' UTR, led to a complete loss of viral recovery. Overall, our data provide strong experimental proof that MRV packaging signals lie at the terminal ends of the S gene segments and offer support that the sequence requirements for efficient packaging of the S1 segment include a predicted panhandle structure and specific sequences within an unpaired loop in the 3' UTR.
Collapse
Affiliation(s)
- Debarpan Dhar
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, Iowa, United States of America
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Samir Mehanovic
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Walter Moss
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Cathy L. Miller
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, Iowa, United States of America
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| |
Collapse
|
4
|
Reovirus uses temporospatial compartmentalization to orchestrate core versus outercapsid assembly. PLoS Pathog 2022; 18:e1010641. [PMID: 36099325 PMCID: PMC9514668 DOI: 10.1371/journal.ppat.1010641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/27/2022] [Accepted: 08/25/2022] [Indexed: 11/19/2022] Open
Abstract
Reoviridae virus family members, such as mammalian orthoreovirus (reovirus), encounter a unique challenge during replication. To hide the dsRNA from host recognition, the genome remains encapsidated in transcriptionally active proteinaceous core capsids that transcribe and release +RNA. De novo +RNAs and core proteins must repeatedly assemble into new progeny cores in order to logarithmically amplify replication. Reoviruses also produce outercapsid (OC) proteins μ1, σ3 and σ1 that assemble onto cores to create highly stable infectious full virions. Current models of reovirus replication position amplification of transcriptionally-active cores and assembly of infectious virions in shared factories, but we hypothesized that since assembly of OC proteins would halt core amplification, OC assembly is somehow regulated. Kinetic analysis of virus +RNA production, core versus OC protein expression, and core particles versus whole virus particle accumulation, indicated that assembly of OC proteins onto core particles was temporally delayed. All viral RNAs and proteins were made simultaneously, eliminating the possibility that delayed OC RNAs or proteins account for delayed OC assembly. High resolution fluorescence and electron microscopy revealed that core amplification occurred early during infection at peripheral core-only factories, while all OC proteins associated with lipid droplets (LDs) that coalesced near the nucleus in a μ1–dependent manner. Core-only factories transitioned towards the nucleus despite cycloheximide-mediated halting of new protein expression, while new core-only factories developed in the periphery. As infection progressed, OC assembly occurred at LD-and nuclear-proximal factories. Silencing of OC μ1 expression with siRNAs led to large factories that remained further from the nucleus, implicating μ1 in the transition to perinuclear factories. Moreover, late during infection, +RNA pools largely contributed to the production of de-novo viral proteins and fully-assembled infectious viruses. Altogether the results suggest an advanced model of reovirus replication with spatiotemporal segregation of core amplification, OC complexes and fully assembled virions. It is important to understand how viruses replicate and assemble to discover antiviral therapies and to modify viruses for applications like gene therapy or cancer therapy. Reovirus is a harmless virus being tested as a cancer therapy. Reovirus has two coats of proteins, an inner coat and an outer coat. To replicate, reovirus particles need only the inner coat, but to become infectious they require the outer coat. Strangely, inner and outer coat proteins are all made by the virus at once, so it was unknown what determines whether newly made viruses will contain just the inner coat to continue to replicate, or both coats to transmit to new hosts. Our experiments reveal that the inner coat proteins are located in a different area of an infected cell versus the outer coat proteins. The location therefore determines if the newly made viruses contain just the inner coat versus both coats. Reoviruses have evolved extravagant mechanisms to be able to efficiently take on the best composition required for replication and transmission.
Collapse
|
5
|
The reovirus μ2 C-terminal loop inversely regulates NTPase and transcription functions versus binding to factory-forming μNS and promotes replication in tumorigenic cells. J Virol 2021; 95:JVI.02006-20. [PMID: 33658345 PMCID: PMC8139653 DOI: 10.1128/jvi.02006-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Wild type reovirus serotype 3 'Dearing PL strain' (T3wt) is being heavily evaluated as an oncolytic and immunotherapeutic treatment for cancers. Mutations that promote reovirus entry into tumor cells were previously reported to enhance oncolysis; herein we aimed to discover mutations that enhance the post-entry steps of reovirus infection in tumor cells. Using directed evolution, we identified that reovirus variant T3v10M1 exhibited enhanced replication relative to T3wt on a panel of cancer cells. T3v10M1 contains an alanine-to-valine substitution (A612V) in the core-associated μ2, which was previously found to have NTPase activities in virions and to facilitate virus factory formation by association with μNS. Paradoxically, the A612V mutation in μ2 from T3v10M1 was discovered to impair NTPase activities and RNA synthesis, leading to five-fold higher probability of abortive infection for T3v10M1 relative to T3wt. The A612V mutation resides in a previously uncharacterized C-terminal region that juxtaposes the template entry site of the polymerase μ2; our findings thus support an important role for this domain during virus transcription. Despite crippled onset of infection, T3v10M1 exhibited greater accumulation of viral proteins and progeny during replication, leading to increased overall virus burst size. Both Far-Western and co-immunoprecipitation approaches corroborated that the A612V mutation in μ2 increased association with the non-structural virus protein μNS and enhances burst size. Altogether the data supports that mutations in the C-terminal loop domain of μ2 inversely regulate NTPase and RNA synthesis versus interactions with μNS, but with a net gain of replication in tumorigenic cells.SIGNIFICANCEReovirus is a model system for understanding virus replication but also a clinically relevant virus for cancer therapy. We identified the first mutation that increases reovirus infection in tumorigenic cells by enhancing post-entry stages of reovirus replication. The mutation is in a previously uncharacterized c-terminal region of the M1-derived μ2 protein, which we demonstrated affects multiple functions of μ2; NTPase, RNA synthesis, inhibition of antiviral immune response and association with the virus replication factory-forming μNS protein. These findings promote a mechanistic understanding of viral protein functions. In the future, the benefits of μ2 mutations may be useful for enhancing reovirus potency in tumors.
Collapse
|
6
|
Closely related reovirus lab strains induce opposite expression of RIG-I/IFN-dependent versus -independent host genes, via mechanisms of slow replication versus polymorphisms in dsRNA binding σ3 respectively. PLoS Pathog 2020; 16:e1008803. [PMID: 32956403 PMCID: PMC7529228 DOI: 10.1371/journal.ppat.1008803] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 10/01/2020] [Accepted: 07/13/2020] [Indexed: 12/28/2022] Open
Abstract
The Dearing isolate of Mammalian orthoreovirus (T3D) is a prominent model of virus-host relationships and a candidate oncolytic virotherapy. Closely related laboratory strains of T3D, originating from the same ancestral T3D isolate, were recently found to exhibit significantly different oncolytic properties. Specifically, the T3DPL strain had faster replication kinetics in a panel of cancer cells and improved tumor regression in an in vivo melanoma model, relative to T3DTD. In this study, we discover that T3DPL and T3DTD also differentially activate host signalling pathways and downstream gene transcription. At equivalent infectious dose, T3DTD induces higher IRF3 phosphorylation and expression of type I IFNs and IFN-stimulated genes (ISGs) than T3DPL. Using mono-reassortants with intermediate replication kinetics and pharmacological inhibitors of reovirus replication, IFN responses were found to inversely correlate with kinetics of virus replication. In other words, slow-replicating T3D strains induce more IFN signalling than fast-replicating T3D strains. Paradoxically, during co-infections by T3DPL and T3DTD, there was still high IRF3 phosphorylation indicating a phenodominant effect by the slow-replicating T3DTD. Using silencing and knock-out of RIG-I to impede IFN, we found that IFN induction does not affect the first round of reovirus replication but does prevent cell-cell spread in a paracrine fashion. Accordingly, during co-infections, T3DPL continues to replicate robustly despite activation of IFN by T3DTD. Using gene expression analysis, we discovered that reovirus can also induce a subset of genes in a RIG-I and IFN-independent manner; these genes were induced more by T3DPL than T3DTD. Polymorphisms in reovirus σ3 viral protein were found to control activation of RIG-I/ IFN-independent genes. Altogether, the study reveals that single amino acid polymorphisms in reovirus genomes can have large impact on host gene expression, by both changing replication kinetics and by modifying viral protein activity, such that two closely related T3D strains can induce opposite cytokine landscapes.
Collapse
|
7
|
Stanifer ML, Mukenhirn M, Muenchau S, Pervolaraki K, Kanaya T, Albrecht D, Odendall C, Hielscher T, Haucke V, Kagan JC, Bartfeld S, Ohno H, Boulant S. Asymmetric distribution of TLR3 leads to a polarized immune response in human intestinal epithelial cells. Nat Microbiol 2020; 5:181-191. [PMID: 31686029 DOI: 10.1038/s41564-019-0594-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 09/16/2019] [Indexed: 11/09/2022]
Abstract
Intestinal epithelial cells (IECs) act as a physical barrier separating the commensal-containing intestinal tract from the sterile interior. These cells have found a complex balance allowing them to be prepared for pathogen attacks while still tolerating the presence of bacterial or viral stimuli present in the lumen of the gut. Using primary human IECs, we probed the mechanisms that allow for such a tolerance. We discovered that viral infections emanating from the basolateral side of IECs elicit a stronger intrinsic immune response in comparison to lumenal apical infections. We determined that this asymmetric immune response is driven by the clathrin-sorting adaptor AP-1B, which mediates the polarized sorting of Toll-like receptor 3 (TLR3) towards the basolateral side of IECs. Mice and human IECs lacking AP-1B showed an exacerbated immune response following apical stimulation. Together, these results suggest a model where the cellular polarity program plays an integral role in the ability of IECs to partially tolerate apical commensals while remaining fully responsive to invasive basolateral pathogens.
Collapse
Affiliation(s)
- Megan L Stanifer
- Schaller Research Group at CellNetworks, Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany.
| | - Markus Mukenhirn
- Schaller Research Group at CellNetworks, Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stephanie Muenchau
- Schaller Research Group at CellNetworks, Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - Kalliopi Pervolaraki
- Schaller Research Group at CellNetworks, Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - Takashi Kanaya
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Dorothee Albrecht
- Schaller Research Group at CellNetworks, Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
| | | | | | - Volker Haucke
- Department of Molecular Pharmacology and Cell Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie and Faculty of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Jonathan C Kagan
- Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA
| | - Sina Bartfeld
- Research Centre for Infectious Diseases, Institute for Molecular Infection Biology, Julius-Maximilians-University of Wuerzburg, Wuerzburg, Germany
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Steeve Boulant
- Schaller Research Group at CellNetworks, Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany.
- Research Group "Cellular polarity and viral infection", DKFZ, Heidelberg, Germany.
| |
Collapse
|
8
|
Lemay G. Synthesis and Translation of Viral mRNA in Reovirus-Infected Cells: Progress and Remaining Questions. Viruses 2018; 10:E671. [PMID: 30486370 PMCID: PMC6315682 DOI: 10.3390/v10120671] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 11/23/2018] [Accepted: 11/25/2018] [Indexed: 12/11/2022] Open
Abstract
At the end of my doctoral studies, in 1988, I published a review article on the major steps of transcription and translation during the mammalian reovirus multiplication cycle, a topic that still fascinates me 30 years later. It is in the nature of scientific research to generate further questioning as new knowledge emerges. Our understanding of these fascinating viruses thus remains incomplete but it seemed appropriate at this moment to look back and reflect on our progress and most important questions that still puzzle us. It is also essential of being careful about concepts that seem so well established, but could still be better validated using new approaches. I hope that the few reflections presented here will stimulate discussions and maybe attract new investigators into the field of reovirus research. Many other aspects of the viral multiplication cycle would merit our attention. However, I will essentially limit my discussion to these central aspects of the viral cycle that are transcription of viral genes and their phenotypic expression through the host cell translational machinery. The objective here is not to review every aspect but to put more emphasis on important progress and challenges in the field.
Collapse
Affiliation(s)
- Guy Lemay
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC H3C 3J7, Canada.
| |
Collapse
|
9
|
Eichwald C, Ackermann M, Nibert ML. The dynamics of both filamentous and globular mammalian reovirus viral factories rely on the microtubule network. Virology 2018; 518:77-86. [DOI: 10.1016/j.virol.2018.02.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 02/05/2018] [Accepted: 02/06/2018] [Indexed: 11/25/2022]
|
10
|
Nonstructural Protein σ1s Is Required for Optimal Reovirus Protein Expression. J Virol 2018; 92:JVI.02259-17. [PMID: 29321319 DOI: 10.1128/jvi.02259-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 01/03/2018] [Indexed: 12/17/2022] Open
Abstract
Reovirus nonstructural protein σ1s is required for the establishment of viremia and hematogenous viral dissemination. However, the function of σ1s during the reovirus replication cycle is not known. In this study, we found that σ1s was required for efficient reovirus replication in simian virus 40 (SV40)-immortalized endothelial cells (SVECs), mouse embryonic fibroblasts, human umbilical vein endothelial cells (HUVECs), and T84 human colonic epithelial cells. In each of these cell lines, wild-type reovirus produced substantially higher viral titers than a σ1s-deficient mutant. The σ1s protein was not required for early events in reovirus infection, as evidenced by the fact that no difference in infectivity between the wild-type and σ1s-null viruses was observed. However, the wild-type virus produced markedly higher viral protein levels than the σ1s-deficient strain. The disparity in viral replication did not result from differences in viral transcription or protein stability. We further found that the σ1s protein was dispensable for cell killing and the induction of type I interferon responses. In the absence of σ1s, viral factory (VF) maturation was impaired but sufficient to support low levels of reovirus replication. Together, our results indicate that σ1s is not absolutely essential for viral protein production but rather potentiates reovirus protein expression to facilitate reovirus replication. Our findings suggest that σ1s enables hematogenous reovirus dissemination by promoting efficient viral protein synthesis, and thereby reovirus replication, in cells that are required for reovirus spread to the blood.IMPORTANCE Hematogenous dissemination is a critical step in the pathogenesis of many viruses. For reovirus, nonstructural protein σ1s is required for viral spread via the blood. However, the mechanism by which σ1s promotes reovirus dissemination is unknown. In this study, we identified σ1s as a viral mediator of reovirus protein expression. We found several cultured cell lines in which σ1s is required for efficient reovirus replication. In these cells, wild-type virus produced substantially higher levels of viral protein than a σ1s-deficient mutant. The σ1s protein was not required for viral mRNA transcription or viral protein stability. Since reduced levels of viral protein were synthesized in the absence of σ1s, the maturation of viral factories was impaired, and significantly fewer viral progeny were produced. Taken together, our findings indicate that σ1s is required for optimal reovirus protein production, and thereby viral replication, in cells required for hematogenous reovirus dissemination.
Collapse
|
11
|
Eichwald C, Kim J, Nibert ML. Dissection of mammalian orthoreovirus µ2 reveals a self-associative domain required for binding to microtubules but not to factory matrix protein µNS. PLoS One 2017; 12:e0184356. [PMID: 28880890 PMCID: PMC5589220 DOI: 10.1371/journal.pone.0184356] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 08/22/2017] [Indexed: 12/25/2022] Open
Abstract
Mammalian orthoreovirus protein μ2 is a component of the viral core particle. Its activities include RNA binding and hydrolysis of the γ-phosphate from NTPs and RNA 5´-termini, suggesting roles as a cofactor for the viral RNA-dependent RNA polymerase, λ3, first enzyme in 5´-capping of viral plus-strand RNAs, and/or prohibitory of RNA-5´-triphosphate-activated antiviral signaling. Within infected cells, μ2 also contributes to viral factories, cytoplasmic structures in which genome replication and particle assembly occur. By associating with both microtubules (MTs) and viral factory matrix protein μNS, μ2 can anchor the factories to MTs, the full effects of which remain unknown. In this study, a protease-hypersensitive region allowed μ2 to be dissected into two large fragments corresponding to residues 1-282 and 283-736. Fusions with enhanced green fluorescent protein revealed that these amino- and carboxyl-terminal regions of μ2 associate in cells with either MTs or μNS, respectively. More exhaustive deletion analysis defined μ2 residues 1-325 as the minimal contiguous region that associates with MTs in the absence of the self-associating tag. A region involved in μ2 self-association was mapped to residues 283-325, and self-association involving this region was essential for MT-association as well. Likewise, we mapped that μNS-binding site in μ2 relates to residues 290-453 which is independent of μ2 self-association. These findings suggest that μ2 monomers or oligomers can bind to MTs and μNS, but that self-association involving μ2 residues 283-325 is specifically relevant for MT-association during viral factories formation.
Collapse
Affiliation(s)
- Catherine Eichwald
- Department of Microbiology & Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Institute of Virology, University of Zurich, Zurich, Switzerland
- * E-mail:
| | - Jonghwa Kim
- Department of Microbiology & Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Laboratory of Gastroenterology, Samsung Medical Center, Seoul, Republic of Korea
| | - Max L. Nibert
- Department of Microbiology & Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
12
|
Stanifer ML, Rippert A, Kazakov A, Willemsen J, Bucher D, Bender S, Bartenschlager R, Binder M, Boulant S. Reovirus intermediate subviral particles constitute a strategy to infect intestinal epithelial cells by exploiting TGF-β dependent pro-survival signaling. Cell Microbiol 2016; 18:1831-1845. [PMID: 27279006 DOI: 10.1111/cmi.12626] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 06/02/2016] [Accepted: 06/02/2016] [Indexed: 12/24/2022]
Abstract
Intestinal epithelial cells (IECs) constitute the primary barrier that separates us from the outside environment. These cells, lining the surface of the intestinal tract, represent a major challenge that enteric pathogens have to face. How IECs respond to viral infection and whether enteric viruses have developed strategies to subvert IECs innate immune response remains poorly characterized. Using mammalian reovirus (MRV) as a model enteric virus, we found that the intermediate subviral particles (ISVPs), which are formed in the gut during the natural course of infection by proteolytic digestion of the reovirus virion, trigger reduced innate antiviral immune response in IECs. On the contrary, infection of IECs by virions induces a strong antiviral immune response that leads to cellular death. Additionally, we determined that virions can be sensed by both TLR and RLR pathways while ISVPs are sensed by RLR pathways only. Interestingly, we found that ISVP infected cells secrete TGF-β acting as a pro-survival factor that protects IECs against virion induced cellular death. We propose that ISVPs represent a reovirus strategy to initiate primary infection of the gut by subverting IECs innate immune system and by counteracting cellular-death pathways.
Collapse
Affiliation(s)
- Megan L Stanifer
- Schaller research group at CellNetworks, Department of Infectious Diseases, Virology, Heidelberg University, Germany
| | - Anja Rippert
- Schaller research group at CellNetworks, Department of Infectious Diseases, Virology, Heidelberg University, Germany
| | - Alexander Kazakov
- Schaller research group at CellNetworks, Department of Infectious Diseases, Virology, Heidelberg University, Germany
| | - Joschka Willemsen
- Research Group 'Dynamics of early viral infection and the innate antiviral response'.,Division Virus-associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Delia Bucher
- Schaller research group at CellNetworks, Department of Infectious Diseases, Virology, Heidelberg University, Germany
| | - Silke Bender
- Division Virus-associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ralf Bartenschlager
- Division Virus-associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marco Binder
- Research Group 'Dynamics of early viral infection and the innate antiviral response'.,Division Virus-associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Steeve Boulant
- Schaller research group at CellNetworks, Department of Infectious Diseases, Virology, Heidelberg University, Germany.,Research Group 'Cellular polarity and viral infection' (F140), German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
13
|
Abstract
Viruses require the host translational apparatus to synthesize viral proteins. Host stress response mechanisms that suppress translation, therefore, represent a significant obstacle that viruses must overcome. Here, we report a strategy whereby the mammalian orthoreoviruses compartmentalize the translational machinery within virus-induced inclusions known as viral factories (VF). VF are the sites of reovirus replication and assembly but were thought not to contain ribosomes. It was assumed viral mRNAs exited the VF to undergo translation by the cellular machinery, and proteins reentered the factory to participate in assembly. Here, we used ribopuromycylation to visualize active translation in infected cells. These studies revealed that active translation occurs within VF and that ribosomal subunits and proteins required for translation initiation, elongation, termination, and recycling localize to the factory. Interestingly, we observed components of the 43S preinitiation complex (PIC) concentrating primarily at factory margins, suggesting a spatial and/or dynamic organization of translation within the VF. Similarly, the viral single-stranded RNA binding protein σNS localized to the factory margins and had a tubulovesicular staining pattern that extended a short distance from the margins of the factories and colocalized with endoplasmic reticulum (ER) markers. Consistent with these colocalization studies, σNS was found to associate with both eukaryotic translation initiation factor 3 subunit A (eIF3A) and the ribosomal subunit pS6R. Together, these findings indicate that σNS functions to recruit 43S PIC machinery to the primary site of viral translation within the viral factory. Pathogen-mediated compartmentalization of the translational apparatus provides a novel mechanism by which viruses might avoid host translational suppression. Viruses lack biosynthetic capabilities and depend upon the host for protein synthesis. This dependence requires viruses to evolve mechanisms to coerce the host translational machinery into synthesizing viral proteins in the face of ongoing cellular stress responses that suppress global protein synthesis. Reoviruses replicate and assemble within cytoplasmic inclusions called viral factories. However, synthesis of viral proteins was thought to occur in the cytosol. To identify the site(s) of viral translation, we undertook a microscopy-based approach using ribopuromycylation to detect active translation. Here, we report that active translation occurs within viral factories and that translational factors are compartmentalized within factories. Furthermore, we find that the reovirus nonstructural protein σNS associates with 43S preinitiation complexes at the factory margins, suggesting a role for σNS in translation. Together, virus-induced compartmentalization of the host translational machinery represents a strategy for viruses to spatiotemporally couple viral protein synthesis with viral replication and assembly.
Collapse
|
14
|
Sagar V, Murray KE. The mammalian orthoreovirus bicistronic M3 mRNA initiates translation using a 5' end-dependent, scanning mechanism that does not require interaction of 5'-3' untranslated regions. Virus Res 2014; 183:30-40. [PMID: 24486484 DOI: 10.1016/j.virusres.2014.01.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 01/15/2014] [Accepted: 01/16/2014] [Indexed: 12/12/2022]
Abstract
Mammalian orthoreovirus mRNAs possess short 5' UTR, lack 3' poly(A) tails, and may lack 5' cap structures at late times post-infection. As such, the mechanisms by which these viral mRNAs recruit ribosomes remain completely unknown. Toward addressing this question, we used bicistronic MRV M3 mRNA to analyze the role of 5' and 3' UTRs during MRV protein synthesis. The 5' UTR was found to be dispensable for translation initiation; however, reducing its length promoted increased downstream initiation. Modifying start site Kozak context altered the ratio of upstream to downstream initiation, whereas mutations in the 3' UTR did not. Moreover, an M3 mRNA lacking a 3' UTR was able to rescue MRV infection to WT levels in an siRNA trans-complementation assay. Together, these data allow us to propose a model in which the MRV M3 mRNA initiates translation using a 5' end-dependent, scanning mechanism that does not require the viral mRNA 3' UTR or 5'-3' UTRs interaction.
Collapse
Affiliation(s)
- Vidya Sagar
- Department of Biological Sciences, Florida International University, Miami, FL 33199, United States.
| | - Kenneth E Murray
- Department of Biological Sciences, Florida International University, Miami, FL 33199, United States
| |
Collapse
|
15
|
Carroll K, Hastings C, Miller CL. Amino acids 78 and 79 of Mammalian Orthoreovirus protein µNS are necessary for stress granule localization, core protein λ2 interaction, and de novo virus replication. Virology 2013; 448:133-45. [PMID: 24314644 DOI: 10.1016/j.virol.2013.10.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 08/01/2013] [Accepted: 10/05/2013] [Indexed: 12/25/2022]
Abstract
At early times in Mammalian Orthoreovirus (MRV) infection, cytoplasmic inclusions termed stress granules (SGs) are formed as a component of the innate immune response, however, at later times they are no longer present despite continued immune signaling. To investigate the roles of MRV proteins in SG modulation we examined non-structural protein µNS localization relative to SGs in infected and transfected cells. Using a series of mutant plasmids, we mapped the necessary μNS residues for SG localization to amino acids 78 and 79. We examined the capacity of a μNS(78-79) mutant to associate with known viral protein binding partners of μNS and found that it loses association with viral core protein λ2. Finally, we show that while this mutant cannot support de novo viral replication, it is able to rescue replication following siRNA knockdown of μNS. These data suggest that μNS association with SGs, λ2, or both play roles in MRV replication.
Collapse
Affiliation(s)
- Kate Carroll
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames 50011, IA, USA; Program in Genetics, Iowa State University, Ames 50011, IA, USA
| | | | | |
Collapse
|
16
|
Markussen T, Dahle MK, Tengs T, Løvoll M, Finstad ØW, Wiik-Nielsen CR, Grove S, Lauksund S, Robertsen B, Rimstad E. Sequence analysis of the genome of piscine orthoreovirus (PRV) associated with heart and skeletal muscle inflammation (HSMI) in Atlantic salmon (Salmo salar). PLoS One 2013; 8:e70075. [PMID: 23922911 PMCID: PMC3726481 DOI: 10.1371/journal.pone.0070075] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 06/16/2013] [Indexed: 12/20/2022] Open
Abstract
Piscine orthoreovirus (PRV) is associated with heart- and skeletal muscle inflammation (HSMI) of farmed Atlantic salmon (Salmo salar). We have performed detailed sequence analysis of the PRV genome with focus on putative encoded proteins, compared with prototype strains from mammalian (MRV T3D)- and avian orthoreoviruses (ARV-138), and aquareovirus (GCRV-873). Amino acid identities were low for most gene segments but detailed sequence analysis showed that many protein motifs or key amino acid residues known to be central to protein function are conserved for most PRV proteins. For M-class proteins this included a proline residue in μ2 which, for MRV, has been shown to play a key role in both the formation and structural organization of virus inclusion bodies, and affect interferon-β signaling and induction of myocarditis. Predicted structural similarities in the inner core-forming proteins λ1 and σ2 suggest a conserved core structure. In contrast, low amino acid identities in the predicted PRV surface proteins μ1, σ1 and σ3 suggested differences regarding cellular interactions between the reovirus genera. However, for σ1, amino acid residues central for MRV binding to sialic acids, and cleavage- and myristoylation sites in μ1 required for endosomal membrane penetration during infection are partially or wholly conserved in the homologous PRV proteins. In PRV σ3 the only conserved element found was a zinc finger motif. We provide evidence that the S1 segment encoding σ3 also encodes a 124 aa (p13) protein, which appears to be localized to intracellular Golgi-like structures. The S2 and L2 gene segments are also potentially polycistronic, predicted to encode a 71 aa- (p8) and a 98 aa (p11) protein, respectively. It is concluded that PRV has more properties in common with orthoreoviruses than with aquareoviruses.
Collapse
Affiliation(s)
- Turhan Markussen
- Department of Laboratory Services, National Veterinary Institute, Oslo, Norway
| | - Maria K. Dahle
- Department of Laboratory Services, National Veterinary Institute, Oslo, Norway
| | - Torstein Tengs
- Department of Laboratory Services, National Veterinary Institute, Oslo, Norway
| | - Marie Løvoll
- Department of Laboratory Services, National Veterinary Institute, Oslo, Norway
| | - Øystein W. Finstad
- Department of Food Safety and Infection Biology, Norwegian School of Veterinary Science, Oslo, Norway
| | | | - Søren Grove
- Department of Laboratory Services, National Veterinary Institute, Oslo, Norway
| | - Silje Lauksund
- Norwegian College of Fishery Science, University of Tromsø, Tromsø, Norway
| | - Børre Robertsen
- Norwegian College of Fishery Science, University of Tromsø, Tromsø, Norway
| | - Espen Rimstad
- Department of Food Safety and Infection Biology, Norwegian School of Veterinary Science, Oslo, Norway
- * E-mail:
| |
Collapse
|
17
|
Boulant S, Stanifer M, Kural C, Cureton DK, Massol R, Nibert ML, Kirchhausen T. Similar uptake but different trafficking and escape routes of reovirus virions and infectious subvirion particles imaged in polarized Madin-Darby canine kidney cells. Mol Biol Cell 2013; 24:1196-207. [PMID: 23427267 PMCID: PMC3623640 DOI: 10.1091/mbc.e12-12-0852] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 02/07/2013] [Accepted: 02/11/2013] [Indexed: 12/27/2022] Open
Abstract
Polarized epithelial cells that line the digestive, respiratory, and genitourinary tracts form a barrier that many viruses must breach to infect their hosts. Current understanding of cell entry by mammalian reovirus (MRV) virions and infectious subvirion particles (ISVPs), generated from MRV virions by extracellular proteolysis in the digestive tract, are mostly derived from in vitro studies with nonpolarized cells. Recent live-cell imaging advances allow us for the first time to visualize events at the apical surface of polarized cells. In this study, we used spinning-disk confocal fluorescence microscopy with high temporal and spatial resolution to follow the uptake and trafficking dynamics of single MRV virions and ISVPs at the apical surface of live polarized Madin-Darby canine kidney cells. Both types of particles were internalized by clathrin-mediated endocytosis, but virions and ISVPs exhibited strikingly different trafficking after uptake. While virions reached early and late endosomes, ISVPs did not and instead escaped the endocytic pathway from an earlier location. This study highlights the broad advantages of using live-cell imaging combined with single-particle tracking for identifying key steps in cell entry by viruses.
Collapse
Affiliation(s)
- Steeve Boulant
- Department of Cell Biology, Harvard Medical School and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
The cellular chaperone hsc70 is specifically recruited to reovirus viral factories independently of its chaperone function. J Virol 2011; 86:1079-89. [PMID: 22090113 DOI: 10.1128/jvi.02662-10] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mammalian orthoreoviruses replicate and assemble in the cytosol of infected cells. A viral nonstructural protein, μNS, forms large inclusion-like structures called viral factories (VFs) in which assembling viral particles can be identified. Here we examined the localization of the cellular chaperone Hsc70 and found that it colocalizes with VFs in infected cells and also with viral factory-like structures (VFLs) formed by ectopically expressed μNS. Small interfering RNA (siRNA)-mediated knockdown of Hsc70 did not affect the formation or maintenance of VFLs. We further showed that dominant negative mutants of Hsc70 were also recruited to VFLs, indicating that Hsc70 recruitment to VFLs is independent of the chaperone function. In support of this finding, μNS was immunoprecipitated with wild-type Hsc70, with a dominant negative mutant of Hsc70, and with the minimal substrate-binding site of Hsc70 (amino acids 395 to 540). We identified a minimal region of μNS between amino acids 222 and 271 that was sufficient for the interaction with Hsc70. This region of μNS has not been assigned any function previously. However, neither point mutants with alterations in this region nor the complete deletion of this domain abrogated the μNS-Hsc70 interaction, indicating that a second portion of μNS also interacts with Hsc70. Taken together, these findings suggest a specific chaperone function for Hsc70 within viral factories, the sites of reovirus replication and assembly in cells.
Collapse
|
19
|
Ivanovic T, Boulant S, Ehrlich M, Demidenko AA, Arnold MM, Kirchhausen T, Nibert ML. Recruitment of cellular clathrin to viral factories and disruption of clathrin-dependent trafficking. Traffic 2011; 12:1179-95. [PMID: 21736684 DOI: 10.1111/j.1600-0854.2011.01233.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The viral factories of mammalian reovirus (MRV) are cytoplasmic structures that serve as sites of viral genome replication and particle assembly. A 721-aa MRV non-structural protein, µNS, forms the factory matrix and recruits other viral proteins to these structures. In this report, we show that µNS contains a conserved C-proximal sequence (711-LIDFS-715) that is similar to known clathrin-box motifs and is required for recruitment of clathrin to viral factories. Clathrin recruitment by µNS occurs independently of infecting MRV particles or other MRV proteins. Ala substitution for a single Leu residue (mutation L711A) within the putative clathrin-binding motif of µNS inhibits clathrin recruitment, but does not prevent formation or expansion of viral factories. Notably, clathrin-dependent cellular functions, including both endocytosis and secretion, are disrupted in cells infected with MRV expressing wild-type, but not L711A, µNS. These results identify µNS as a novel adaptor-like protein that recruits cellular clathrin to viral factories, disrupting normal functions of clathrin in cellular membrane trafficking. To our knowledge, this is the only viral or bacterial protein yet shown to interfere with clathrin functions in this manner. The results additionally establish a new approach for studies of clathrin functions, based on µNS-mediated sequestration.
Collapse
Affiliation(s)
- Tijana Ivanovic
- Department of Microbiology & Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Cai L, Sun X, Shao L, Fang Q. Functional investigation of grass carp reovirus nonstructural protein NS80. Virol J 2011; 8:168. [PMID: 21489306 PMCID: PMC3101161 DOI: 10.1186/1743-422x-8-168] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 04/14/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Grass Carp Reovirus (GCRV), a highly virulent agent of aquatic animals, has an eleven segmented dsRNA genome encased in a multilayered capsid shell, which encodes twelve proteins including seven structural proteins (VP1-VP7), and five nonstructural proteins (NS80, NS38, NS31, NS26, and NS16). It has been suggested that the protein NS80 plays an important role in the viral replication cycle that is similar to that of its homologous protein μNS in the genus of Orthoreovirus. RESULTS As a step to understanding the basis of the part played by NS80 in GCRV replication and particle assembly, we used the yeast two-hybrid (Y2H) system to identify NS80 interactions with proteins NS38, VP4, and VP6 as well as NS80 and NS38 self-interactions, while no interactions appeared in the four protein pairs NS38-VP4, NS38-VP6, VP4-VP4, and VP4-VP6. Bioinformatic analyses of NS80 with its corresponding proteins were performed with all currently available homologous protein sequences in ARVs (avian reoviruses) and MRVs (mammalian reoviruses) to predict further potential functional domains of NS80 that are related to VFLS (viral factory-like structures) formation and other roles in viral replication. Two conserved regions spanning from aa (amino acid) residues of 388 to 433, and 562 to 580 were discovered in this study. The second conserved region with corresponding conserved residues Tyr565, His569, Cys571, Asn573, and Glu576 located between the two coiled-coils regions (aa ~513-550 and aa ~615-690) in carboxyl-proximal terminus were supposed to be essential to form VFLS, so that aa residues ranging from 513 to 742 of NS80 was inferred to be the smallest region that is necessary for forming VFLS. The function of the first conserved region including Ala395, Gly419, Asp421, Pro422, Leu438, and Leu443 residues is unclear, but one-third of the amino-terminal region might be species specific, dominating interactions with other viral components. CONCLUSIONS Our results in this study together with those from previous investigations indicate the protein NS80 might play a central role in VFLS formation and viral components recruitment in GCRV particle assembly, similar to the μNS protein in ARVs and MRVs.
Collapse
Affiliation(s)
- Lin Cai
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | | | | | | |
Collapse
|
21
|
The proapoptotic Bcl-2 protein Bax plays an important role in the pathogenesis of reovirus encephalitis. J Virol 2011; 85:3858-71. [PMID: 21307199 DOI: 10.1128/jvi.01958-10] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Encephalitis induced by reovirus serotype 3 (T3) strains results from the apoptotic death of infected neurons. Extrinsic apoptotic signaling is activated in reovirus-infected neurons in vitro and in vivo, but the role of intrinsic apoptosis signaling during encephalitis is largely unknown. Bax plays a key role in intrinsic apoptotic signaling in neurons by allowing the release of mitochondrial cytochrome c. We found Bax activation and cytochrome c release in neurons following infection of neonatal mice with T3 reoviruses. Bax(-/-) mice infected with T3 Abney (T3A) have reduced central nervous system (CNS) tissue injury and decreased apoptosis, despite viral replication that is similar to that in wild-type (WT) Bax(+/+) mice. In contrast, in the heart, T3A-infected Bax(-/-) mice have viral growth, caspase activation, and injury comparable to those in WT mice, indicating that the role of Bax in pathogenesis is organ specific. Nonmyocarditic T3 Dearing (T3D)-infected Bax(-/-) mice had delayed disease and enhanced survival compared to WT mice. T3D-infected Bax(-/-) mice had significantly lower viral titers and levels of activated caspase 3 in the brain despite unaffected transneuronal spread of virus. Cytochrome c and Smac release occurred in some reovirus-infected neurons in the absence of Bax; however, this was clearly reduced compared to levels seen in Bax(+/+) wild-type mice, indicating that Bax is necessary for efficient activation of proapoptotic mitochondrial signaling in infected neurons. Our studies suggest that Bax is important for reovirus growth and pathogenesis in neurons and that the intrinsic pathway of apoptosis, mediated by Bax, is important for full expression of disease, CNS tissue injury, apoptosis, and viral growth in the CNS of reovirus-infected mice.
Collapse
|
22
|
Fan C, Shao L, Fang Q. Characterization of the nonstructural protein NS80 of grass carp reovirus. Arch Virol 2010; 155:1755-63. [PMID: 20640908 DOI: 10.1007/s00705-010-0753-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 07/07/2010] [Indexed: 11/28/2022]
Abstract
Nonstructural proteins of members of the family Reoviridae are believed to play significant roles in the virus replication cycle. Phylogenetic analyses indicate that the nonstructural protein NS80 of grass carp reovirus, encoded by a gene of Segment 4 (S4), is a primary determinant that is related to the formation of viroplasmic inclusion bodies (VIB), where viral replication and assembly are thought to occur. To understand the role of the NS80 protein in viral replication, an initial investigation of NS80 gene expression in both infected and transfected cells was conducted. Transmission electron microscopy results indicate that replication and assembly of GCRV occur within VIB-like structures in the perinuclear region of the cell cytoplasm. Furthermore, expression of the S4 gene in infected cells was detected with an NS80-specific antibody by western blot and immunofluorescence. Moreover, globular VIB-like structures were observed when expressing GFP-derived full-length NS80 (pEGFP-C1/NS80) and recombinants containing the C-terminal conserved region (pEGFP-C1/NS80₃₃₅₋₇₂₄) in transfected Vero. No such structures were detected in cells transfected with an N-terminal recombinant (pEGFP-C1/NS80₁₋₃₃₄), suggesting that the NS80 C-terminal conserved region may be involved in the formation of inclusion structures. These data provide a foundation for further functional studies of NS80 related to viral inclusion formation in viral replication.
Collapse
Affiliation(s)
- Chao Fan
- Wuhan Institute of Virology, Chinese Academy of Sciences, China
| | | | | |
Collapse
|
23
|
Localization of mammalian orthoreovirus proteins to cytoplasmic factory-like structures via nonoverlapping regions of microNS. J Virol 2009; 84:867-82. [PMID: 19889754 DOI: 10.1128/jvi.01571-09] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Virally induced structures called viral factories form throughout the cytoplasm of cells infected with mammalian orthoreoviruses (MRV). When expressed alone in cells, MRV nonstructural protein microNS forms factory-like structures very similar in appearance to viral factories, suggesting that it is involved in forming the structural matrix of these structures. microNS also associates with MRV core particles; the core proteins mu2, lambda1, lambda2, lambda3, and sigma2; and the RNA-binding nonstructural protein sigmaNS. These multiple associations result in the recruitment or retention of these viral proteins or particles at factory-like structures. In this study, we identified the regions of microNS necessary and sufficient for these associations and additionally examined the localization of viral RNA synthesis in infected cells. We found that short regions within the amino-terminal 220 residues of microNS are necessary for associations with core particles and necessary and sufficient for associations with the proteins mu2, lambda1, lambda2, sigma2, and sigmaNS. We also found that only the lambda3 protein associates with the carboxyl-terminal one-third of microNS and that viral RNA is synthesized within viral factories. These results suggest that microNS may act as a cytoplasmic scaffolding protein involved in localizing and coordinating viral replication or assembly intermediates for the efficient production of progeny core particles during MRV infection.
Collapse
|
24
|
Mammalian orthoreovirus particles induce and are recruited into stress granules at early times postinfection. J Virol 2009; 83:11090-101. [PMID: 19710141 DOI: 10.1128/jvi.01239-09] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection with many mammalian orthoreovirus (MRV) strains results in shutoff of host, but not viral, protein synthesis via protein kinase R (PKR) activation and phosphorylation of translation initiation factor eIF2alpha. Following inhibition of protein synthesis, cellular mRNAs localize to discrete structures in the cytoplasm called stress granules (SGs), where they are held in a translationally inactive state. We examined MRV-infected cells to characterize SG formation in response to MRV infection. We found that SGs formed at early times following infection (2 to 6 h postinfection) in a manner dependent on phosphorylation of eIF2alpha. MRV induced SG formation in all four eIF2alpha kinase knockout cell lines, suggesting that at least two kinases are involved in induction of SGs. Inhibitors of MRV disassembly prevented MRV-induced SG formation, indicating that viral uncoating is a required step for SG formation. Neither inactivation of MRV virions by UV light nor treatment of MRV-infected cells with the translational inhibitor puromycin prevented SG formation, suggesting that viral transcription and translation are not required for SG formation. Viral cores were found to colocalize with SGs; however, cores from UV-inactivated virions did not associate with SGs, suggesting that viral core particles are recruited into SGs in a process that requires the synthesis of viral mRNA. These results demonstrate that MRV particles induce SGs in a step following viral disassembly but preceding viral mRNA transcription and that core particles are themselves recruited to SGs, suggesting that the cellular stress response may play a role in the MRV replication cycle.
Collapse
|
25
|
Fan C, Zhang LL, Lei CF, Fang Q. Expression and identification of inclusion forming-related domain of NS80 nonstructural protein of grass carp reovirus. Virol Sin 2009. [DOI: 10.1007/s12250-009-3028-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
26
|
|
27
|
Identification of functional domains in reovirus replication proteins muNS and mu2. J Virol 2009; 83:2892-906. [PMID: 19176625 DOI: 10.1128/jvi.01495-08] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Mammalian reoviruses are nonenveloped particles containing a genome of 10 double-stranded RNA (dsRNA) gene segments. Reovirus replication occurs within viral inclusions, which are specialized nonmembranous cytoplasmic organelles formed by viral nonstructural and structural proteins. Although these structures serve as sites for several major events in the reovirus life cycle, including dsRNA synthesis, gene segment assortment, and genome encapsidation, biochemical mechanisms of virion morphogenesis within inclusions have not been elucidated because much remains unknown about inclusion anatomy and functional organization. To better understand how inclusions support viral replication, we have used RNA interference (RNAi) and reverse genetics to define functional domains in two inclusion-associated proteins, muNS and mu2, which are interacting partners essential for inclusion development and viral replication. Removal of muNS N-terminal sequences required for association with mu2 or another muNS-binding protein, sigmaNS, prevented the capacity of muNS to support viral replication without affecting inclusion formation, indicating that muNS-mu2 and muNS-sigmaNS interactions are necessary for inclusion function but not establishment. In contrast, introduction of changes into the muNS C-terminal region, including sequences that form a putative oligomerization domain, precluded inclusion formation as well as viral replication. Mutational analysis of mu2 revealed a critical dependence of viral replication on an intact nucleotide/RNA triphosphatase domain and an N-terminal cluster of basic amino acid residues conforming to a nuclear localization motif. Another domain in mu2 governs the capacity of viral inclusions to affiliate with microtubules and thereby modulates inclusion morphology, either globular or filamentous. However, viral variants altered in inclusion morphology displayed equivalent replication efficiency. These studies reveal a modular functional organization of inclusion proteins muNS and mu2, define the importance of specific amino acid sequences and motifs in these proteins for viral replication, and demonstrate the utility of complementary RNAi-based and reverse genetic approaches for studies of reovirus replication proteins.
Collapse
|
28
|
Danthi P, Coffey CM, Parker JSL, Abel TW, Dermody TS. Independent regulation of reovirus membrane penetration and apoptosis by the mu1 phi domain. PLoS Pathog 2008; 4:e1000248. [PMID: 19112493 PMCID: PMC2600812 DOI: 10.1371/journal.ppat.1000248] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Accepted: 11/25/2008] [Indexed: 02/05/2023] Open
Abstract
Apoptosis plays an important role in the pathogenesis of reovirus encephalitis. Reovirus outer-capsid protein mu1, which functions to penetrate host cell membranes during viral entry, is the primary regulator of apoptosis following reovirus infection. Ectopic expression of full-length and truncated forms of mu1 indicates that the mu1 phi domain is sufficient to elicit a cell death response. To evaluate the contribution of the mu1 phi domain to the induction of apoptosis following reovirus infection, phi mutant viruses were generated by reverse genetics and analyzed for the capacity to penetrate cell membranes and elicit apoptosis. We found that mutations in phi diminish reovirus membrane penetration efficiency by preventing conformational changes that lead to generation of key reovirus entry intermediates. Independent of effects on membrane penetration, amino acid substitutions in phi affect the apoptotic potential of reovirus, suggesting that phi initiates apoptosis subsequent to cytosolic delivery. In comparison to wild-type virus, apoptosis-defective phi mutant viruses display diminished neurovirulence following intracranial inoculation of newborn mice. These results indicate that the phi domain of mu1 plays an important regulatory role in reovirus-induced apoptosis and disease.
Collapse
Affiliation(s)
- Pranav Danthi
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- * E-mail: (PD); (TSD)
| | - Caroline M. Coffey
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - John S. L. Parker
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Ty W. Abel
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Terence S. Dermody
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- * E-mail: (PD); (TSD)
| |
Collapse
|
29
|
Ji WT, Chulu JL, Lin FL, Li SK, Lee LH, Liu HJ. Suppression of protein expression of three avian reovirus S-class genome segments by RNA interference. Vet Microbiol 2008; 129:252-61. [DOI: 10.1016/j.vetmic.2007.11.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Revised: 11/10/2007] [Accepted: 11/21/2007] [Indexed: 10/22/2022]
|
30
|
Formation of the factory matrix is an important, though not a sufficient function of nonstructural protein mu NS during reovirus infection. Virology 2008; 375:412-23. [PMID: 18374384 DOI: 10.1016/j.virol.2008.02.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2007] [Revised: 02/15/2008] [Accepted: 02/20/2008] [Indexed: 11/24/2022]
Abstract
Genome replication of mammalian orthoreovirus (MRV) occurs in cytoplasmic inclusion bodies called viral factories. Nonstructural protein microNS, encoded by genome segment M3, is a major constituent of these structures. When expressed without other viral proteins, microNS forms cytoplasmic inclusions morphologically similar to factories, suggesting a role for microNS as the factory framework or matrix. In addition, most other MRV proteins, including all five core proteins (lambda1, lambda2, lambda3, micro2, and sigma2) and nonstructural protein sigmaNS, can associate with microNS in these structures. In the current study, small interfering RNA targeting M3 was transfected in association with MRV infection and shown to cause a substantial reduction in microNS expression as well as, among other effects, a reduction in infectious yields by as much as 4 log(10) values. By also transfecting in vitro-transcribed M3 plus-strand RNA containing silent mutations that render it resistant to the small interfering RNA, we were able to complement microNS expression and to rescue infectious yields by ~100-fold. We next used microNS mutants specifically defective at forming factory-matrix structures to show that this function of microNS is important for MRV growth; point mutations in a C-proximal, putative zinc-hook motif as well as small deletions at the extreme C terminus of microNS prevented rescue of viral growth while causing microNS to be diffusely distributed in cells. We furthermore confirmed that an N-terminally truncated form of microNS, designed to represent microNSC and still able to form factory-matrix structures, is unable to rescue MRV growth, localizing one or more other important functions to an N-terminal region of microNS known to be involved in both micro2 and sigmaNS association. Thus, factory-matrix formation is an important, though not a sufficient function of microNS during MRV infection; microNS is multifunctional in the course of viral growth.
Collapse
|
31
|
Agosto MA, Middleton JK, Freimont EC, Yin J, Nibert ML. Thermolabilizing pseudoreversions in reovirus outer-capsid protein micro 1 rescue the entry defect conferred by a thermostabilizing mutation. J Virol 2007; 81:7400-9. [PMID: 17507494 PMCID: PMC1933377 DOI: 10.1128/jvi.02720-06] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Heat-resistant mutants selected from infectious subvirion particles of mammalian reoviruses have determinative mutations in the major outer-capsid protein micro 1. Here we report the isolation and characterization of intragenic pseudoreversions of one such thermostabilizing mutation. From a plaque that had survived heat selection, a number of viruses with one shared mutation but different second-site mutations were isolated. The effect of the shared mutation alone or in combination with second-site mutations was examined using recoating genetics. The shared mutation, D371A, was found to confer (i) substantial thermostability, (ii) an infectivity defect that followed attachment but preceded viral protein synthesis, and (iii) resistance to micro 1 rearrangement in vitro, with an associated failure to lyse red blood cells. Three different second-site mutations were individually tested in combination with D371A and found to wholly or partially revert these phenotypes. Furthermore, when tested alone in recoated particles, each of these three second-site mutations conferred demonstrable thermolability. This and other evidence suggest that pseudoreversion of micro 1-based thermostabilization can occur by a general mechanism of micro 1-based thermolabilization, not requiring a specific compensatory mutation. The thermostabilizing mutation D371A as well as 9 of the 10 identified second-site mutations are located near contact regions between micro 1 trimers in the reovirus outer capsid. The availability of both thermostabilizing and thermolabilizing mutations in micro 1 should aid in defining the conformational rearrangements and mechanisms involved in membrane penetration during cell entry by this structurally complex nonenveloped animal virus.
Collapse
Affiliation(s)
- Melina A Agosto
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Ave., Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
32
|
Carvalho J, Arnold MM, Nibert ML. Silencing and complementation of reovirus core protein mu2: functional correlations with mu2-microtubule association and differences between virus- and plasmid-derived mu2. Virology 2007; 364:301-16. [PMID: 17451769 PMCID: PMC2486448 DOI: 10.1016/j.virol.2007.03.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Revised: 11/28/2006] [Accepted: 03/15/2007] [Indexed: 10/23/2022]
Abstract
A low-copy component of mammalian reovirus particles is mu2, an 83-kDa protein encoded by the M1 viral genome segment and packaged within the viral core. Previous studies have identified mu2 as a nucleoside triphosphate phosphohydrolase (NTPase) as well as an RNA 5'-triphosphate phosphohydrolase (RTPase), putatively involved in reovirus RNA synthesis and/or 5'-capping. Other studies have identified mu2 as a microtubule-binding protein, which also associates with the viral factory matrix protein muNS and thereby anchors the factories to cellular microtubules during infections by most reovirus strains. To extend studies of mu2 functions during infection, we tested a small interfering RNA (siRNA) directed against the M1 plus-strand RNAs of reovirus strains Type 1 Lang (T1L) and Type 3 Dearing (T3D). The siRNA strongly suppressed mu2 expression by either strain and reduced infectious yields in a strain-dependent manner. This first strain difference was genetically mapped to the M1 genome segment and tentatively assigned to a single mu2 sequence polymorphism, Pro/Ser208, which also determines a T1L-T3D strain difference in microtubule association. The siRNA-based defect in mu2 expression was rescued by plasmids, containing silent mutations in the siRNA-targeted sequence, which encoded either T1L or T3D mu2, but the growth defect was rescued only by T1L mu2. This second strain difference was also mapped to Pro/Ser208, in that swapping this one residue between T1L and T3D mu2 reversed the rescue phenotypes. Thus, the T1L-T3D strain difference in mu2-microtubule association was correlated not only with the extent of reduction in infectious yields by the siRNA but also with the extent of rescue by plasmid-derived mu2. In addition, the rescue capacity of T1L mu2 was abrogated by nocodazole treatment, providing independent evidence for the importance of mu2-microtubule association in plasmid-based rescue. In two separate cases, the results revealed functional differences between virus- and plasmid-derived mu2. Ala substitutions within the NTP-binding motif of T1L mu2 also abrogated its rescue capacity, suggesting that the NTPase or RTPase activity of mu2 is additionally required for effective viral growth.
Collapse
Affiliation(s)
- John Carvalho
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Harvard University, Boston, Massachusetts 02115 USA
| | - Michelle M. Arnold
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Harvard University, Boston, Massachusetts 02115 USA
- Ph.D. Program in Virology, Division of Medical Sciences, Harvard University, Boston, Massachusetts 02115 USA
| | - Max L. Nibert
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Harvard University, Boston, Massachusetts 02115 USA
- Ph.D. Program in Virology, Division of Medical Sciences, Harvard University, Boston, Massachusetts 02115 USA
- * Corresponding author. Dept. of Microbiology and Molecular Genetics, 200 Longwood Ave., Boston, MA 02115, USA., Fax: +1 617 738-7664. E-mail address: (M.L. Nibert)
| |
Collapse
|
33
|
Miller CL, Arnold MM, Broering TJ, Eichwald C, Kim J, Dinoso JB, Nibert ML. Virus-derived platforms for visualizing protein associations inside cells. Mol Cell Proteomics 2007; 6:1027-38. [PMID: 17339631 DOI: 10.1074/mcp.m700056-mcp200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein-protein associations are vital to cellular functions. Here we describe a helpful new method to demonstrate protein-protein associations inside cells based on the capacity of orthoreovirus protein muNS to form large cytoplasmic inclusions, easily visualized by light microscopy, and to recruit other proteins to these structures in a specific manner. We introduce this technology by the identification of a sixth orthoreovirus protein, RNA-dependent RNA polymerase lambda3, that was recruited to the structures through an association with muNS. We then established the broader utility of this technology by using a truncated, fluorescently tagged form of muNS as a fusion platform to present the mammalian tumor suppressor p53, which strongly recruited its known interactor simian virus 40 large T antigen to the muNS-derived structures. In both examples, we further localized a region of the recruited protein that is key to its recruitment. Using either endogenous p53 or a second fluorescently tagged fusion of p53 with the rotavirus NSP5 protein, we demonstrated p53 oligomerization as well as p53 association with another of its cellular interaction partners, the CREB-binding proteins, within the inclusions. Furthermore using the p53-fused fluorescent muNS platform in conjunction with three-color microscopy, we identified a ternary complex comprising p53, simian virus 40 large T antigen, and retinoblastoma protein. The new method is technically simple, uses commonly available resources, and is adaptable to high throughput formats.
Collapse
Affiliation(s)
- Cathy L Miller
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Murray KE, Nibert ML. Guanidine hydrochloride inhibits mammalian orthoreovirus growth by reversibly blocking the synthesis of double-stranded RNA. J Virol 2007; 81:4572-84. [PMID: 17301147 PMCID: PMC1900160 DOI: 10.1128/jvi.02106-06] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Millimolar concentrations of guanidine hydrochloride (GuHCl) are known to inhibit the replication of many plant and animal viruses having positive-sense RNA genomes. For example, GuHCl reversibly interacts with the nucleotide-binding region of poliovirus protein 2C(ATPase), resulting in a specific inhibition of viral negative-sense RNA synthesis. The use of GuHCl thereby allows for the spatiotemporal separation of poliovirus gene expression and RNA replication and provides a powerful tool to synchronize the initiation of negative-sense RNA synthesis during in vitro replication reactions. In the present study, we examined the effect of GuHCl on mammalian orthoreovirus (MRV), a double-stranded RNA (dsRNA) virus from the family Reoviridae. MRV growth in murine L929 cells was reversibly inhibited by 15 mM GuHCl. Furthermore, 15 mM GuHCl provided specific inhibition of viral dsRNA synthesis while sparing both positive-sense RNA synthesis and viral mRNA translation. By using GuHCl to provide temporal separation of MRV gene expression and genome replication, we obtained evidence that MRV primary transcripts support sufficient protein synthesis to assemble morphologically normal viral factories containing functional replicase complexes. In addition, the coordinated use of GuHCl and cycloheximide allowed us to demonstrate that MRV dsRNA synthesis can occur in the absence of ongoing protein synthesis, although to only a limited extent. Future studies utilizing the reversible inhibition of MRV dsRNA synthesis will focus on elucidating the target of GuHCl, as well as the components of the MRV replicase complexes.
Collapse
Affiliation(s)
- Kenneth E Murray
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
35
|
Coffey CM, Sheh A, Kim IS, Chandran K, Nibert ML, Parker JSL. Reovirus outer capsid protein micro1 induces apoptosis and associates with lipid droplets, endoplasmic reticulum, and mitochondria. J Virol 2006; 80:8422-38. [PMID: 16912293 PMCID: PMC1563861 DOI: 10.1128/jvi.02601-05] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The mechanisms by which reoviruses induce apoptosis have not been fully elucidated. Earlier studies identified the mammalian reovirus S1 and M2 genes as determinants of apoptosis induction. However, no published results have demonstrated the capacities of the proteins encoded by these genes to induce apoptosis, either independently or in combination, in the absence of reovirus infection. Here we report that the mammalian reovirus micro1 protein, encoded by the M2 gene, was sufficient to induce apoptosis in transfected cells. We also found that micro1 localized to lipid droplets, endoplasmic reticulum, and mitochondria in both transfected cells and infected cells. Two small regions encompassing amphipathic alpha-helices within a carboxyl-terminal portion of micro1 were necessary for efficient induction of apoptosis and association with lipid droplets, endoplasmic reticulum, and mitochondria in transfected cells. Induction of apoptosis by micro1 and its association with lipid droplets and intracellular membranes in transfected cells were abrogated when micro1 was coexpressed with sigma3, with which it is known to coassemble. We propose that micro1 plays a direct role in the induction of apoptosis in infected cells and that this property may relate to the capacity of micro1 to associate with intracellular membranes. Moreover, during reovirus infection, association with sigma3 may regulate apoptosis induction by micro1.
Collapse
Affiliation(s)
- Caroline M Coffey
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
36
|
Kobayashi T, Chappell JD, Danthi P, Dermody TS. Gene-specific inhibition of reovirus replication by RNA interference. J Virol 2006; 80:9053-63. [PMID: 16940517 PMCID: PMC1563907 DOI: 10.1128/jvi.00276-06] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Accepted: 07/03/2006] [Indexed: 01/26/2023] Open
Abstract
Mammalian reoviruses contain a genome of 10 segments of double-stranded RNA (dsRNA). Reovirus replication and assembly occur within distinct structures called viral inclusions, which form in the cytoplasm of infected cells. Viral nonstructural proteins muNS and sigmaNS and core protein mu2 play key roles in forming viral inclusions and recruiting other viral proteins and RNA to these structures for replication and assembly. However, the precise functions of these proteins in viral replication are poorly defined. Therefore, to better understand the functions of reovirus proteins associated with formation of viral inclusions, we used plasmid-based vectors to establish 293T cell lines stably expressing small interfering RNAs (siRNAs) specific for transcripts encoding the mu2, muNS, and sigmaNS proteins of strain type 3 Dearing (T3D). Infectivity assays revealed that yields of T3D, but not those of strain type 1 Lang, were significantly decreased in 293T cells stably expressing mu2, muNS, or sigmaNS siRNA. Stable expression of siRNAs specific for any one of these proteins substantially diminished viral dsRNA, protein synthesis, and inclusion formation, indicating that each is a critical component of the viral replication machinery. Using cell lines stably expressing muNS siRNA, we developed a complementation system to rescue viral replication by transient transfection with recombinant T3D muNS in which silent mutations were introduced into the sequence targeted by the muNS siRNA. Furthermore, we demonstrated that muNSC, which lacks the first 40 amino residues of muNS, is incapable of restoring reovirus growth in the complementation system. These results reveal interdependent functions for viral inclusion proteins and indicate that cell lines stably expressing reovirus siRNAs are useful tools for the study of viral protein structure-function relationships.
Collapse
Affiliation(s)
- Takeshi Kobayashi
- Department of Pediatrics, and Lamb Center for Pediatric Research (D7235 MCN), Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
37
|
Noad L, Shou J, Coombs KM, Duncan R. Sequences of avian reovirus M1, M2 and M3 genes and predicted structure/function of the encoded mu proteins. Virus Res 2006; 116:45-57. [PMID: 16297481 PMCID: PMC5123877 DOI: 10.1016/j.virusres.2005.08.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Revised: 08/23/2005] [Accepted: 08/24/2005] [Indexed: 12/29/2022]
Abstract
We report the first sequence analysis of the entire complement of M-class genome segments of an avian reovirus (ARV). We analyzed the M1, M2 and M3 genome segment sequences, and sequences of the corresponding muA, muB and muNS proteins, of two virus strains, ARV138 and ARV176. The ARV M1 genes were 2,283 nucleotides in length and predicted to encode muA proteins of 732 residues. Alignment of the homologous mammalian reovirus (MRV) mu2 and ARV muA proteins revealed a relatively low overall amino acid identity ( approximately 30%), although several highly conserved regions were identified that may contribute to conserved structural and/or functional properties of this minor core protein (i.e. the MRV mu2 protein is an NTPase and a putative RNA-dependent RNA polymerase cofactor). The ARV M2 genes were 2158 nucleotides in length, encoding predicted muB major outer capsid proteins of 676 amino acids, more than 30 amino acids shorter than the homologous MRV mu1 proteins. In spite of the difference in size, the ARV/MRV muB/mu1 proteins were more conserved than any of the homologous proteins encoded by other M- or S-class genome segments, exhibiting percent amino acid identities of approximately 45%. The conserved regions included the residues involved in the maturation- and entry- specific proteolytic cleavages that occur in the MRV mu1 protein. Notably missing was a region recently implicated in MRV mu1 stabilization and in forming "hub and spokes" complexes in the MRV outer capsid. The ARV M3 genes were 1996 nucleotides in length and predicted to encode a muNS non-structural protein of 635 amino acids, significantly shorter than the homologous MRV muNS protein, which is attributed to several substantial deletions in the aligned ARV muNS proteins. Alignments of the ARV and MRV muNS proteins revealed a low overall amino acid identity ( approximately 25%), although several regions were relatively conserved.
Collapse
Affiliation(s)
- Lindsay Noad
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Man., Canada R3E 0W3
| | - Jingyun Shou
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada B3H 4H7
| | - Kevin M. Coombs
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Man., Canada R3E 0W3
| | - Roy Duncan
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada B3H 4H7
| |
Collapse
|
38
|
Golden JW, Schiff LA. Neutrophil elastase, an acid-independent serine protease, facilitates reovirus uncoating and infection in U937 promonocyte cells. Virol J 2005; 2:48. [PMID: 15927073 PMCID: PMC1180477 DOI: 10.1186/1743-422x-2-48] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2005] [Accepted: 05/31/2005] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Mammalian reoviruses naturally infect their hosts through the enteric and respiratory tracts. During enteric infections, proteolysis of the reovirus outer capsid protein sigma3 is mediated by pancreatic serine proteases. In contrast, the proteases critical for reovirus replication in the lung are unknown. Neutrophil elastase (NE) is an acid-independent, inflammatory serine protease predominantly expressed by neutrophils. In addition to its normal role in microbial defense, aberrant expression of NE has been implicated in the pathology of acute respiratory distress syndrome (ARDS). Because reovirus replication in rodent lungs causes ARDS-like symptoms and induces an infiltration of neutrophils, we investigated the capacity of NE to promote reovirus virion uncoating. RESULTS The human promonocyte cell line U937 expresses NE. Treatment of U937 cells with the broad-spectrum cysteine-protease inhibitor E64 [trans-epoxysuccinyl-L-leucylamido-(4-guanidino)butane] and with agents that increase vesicular pH did not inhibit reovirus replication. Even when these inhibitors were used in combination, reovirus replicated to significant yields, indicating that an acid-independent non-cysteine protease was capable of mediating reovirus uncoating in U937 cell cultures. To identify the protease(s) responsible, U937 cells were treated with phorbol 12-myristate 13-acetate (PMA), an agent that induces cellular differentiation and results in decreased expression of acid-independent serine proteases, including NE and cathepsin (Cat) G. In the presence of E64, reovirus did not replicate efficiently in PMA-treated cells. To directly assess the role of NE in reovirus infection of U937 cells, we examined viral growth in the presence of N-Ala-Ala-Pro-Val chloromethylketone, a NE-specific inhibitor. Reovirus replication in the presence of E64 was significantly reduced by treatment of cells with the NE inhibitor. Incubation of virions with purified NE resulted in the generation of infectious subviron particles that did not require additional intracellular proteolysis. CONCLUSION Our findings reveal that NE can facilitate reovirus infection. The fact that it does so in the presence of agents that raise vesicular pH supports a model in which the requirement for acidic pH during infection reflects the conditions required for optimal protease activity. The capacity of reovirus to exploit NE may impact viral replication in the lung and other tissues during natural infections.
Collapse
Affiliation(s)
- Joseph W Golden
- Department of Microbiology, University of Minnesota, Mayo Mail Code 196, 420 Delaware St. S.E., Minneapolis, Minnesota 55455, USA
| | - Leslie A Schiff
- Department of Microbiology, University of Minnesota, Mayo Mail Code 196, 420 Delaware St. S.E., Minneapolis, Minnesota 55455, USA
| |
Collapse
|
39
|
Broering TJ, Arnold MM, Miller CL, Hurt JA, Joyce PL, Nibert ML. Carboxyl-proximal regions of reovirus nonstructural protein muNS necessary and sufficient for forming factory-like inclusions. J Virol 2005; 79:6194-206. [PMID: 15858004 PMCID: PMC1091696 DOI: 10.1128/jvi.79.10.6194-6206.2005] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Accepted: 01/14/2005] [Indexed: 11/20/2022] Open
Abstract
Mammalian orthoreoviruses are believed to replicate in distinctive, cytoplasmic inclusion bodies, commonly called viral factories or viroplasms. The viral nonstructural protein muNS has been implicated in forming the matrix of these structures, as well as in recruiting other components to them for putative roles in genome replication and particle assembly. In this study, we sought to identify the regions of muNS that are involved in forming factory-like inclusions in transfected cells in the absence of infection or other viral proteins. Sequences in the carboxyl-terminal one-third of the 721-residue muNS protein were linked to this activity. Deletion of as few as eight residues from the carboxyl terminus of muNS resulted in loss of inclusion formation, suggesting that some portion of these residues is required for the phenotype. A region spanning residues 471 to 721 of muNS was the smallest one shown to be sufficient for forming factory-like inclusions. The region from positions 471 to 721 (471-721 region) includes both of two previously predicted coiled-coil segments in muNS, suggesting that one or both of these segments may also be required for inclusion formation. Deletion of the more amino-terminal one of the two predicted coiled-coil segments from the 471-721 region resulted in loss of the phenotype, although replacement of this segment with Aequorea victoria green fluorescent protein, which is known to weakly dimerize, largely restored inclusion formation. Sequences between the two predicted coiled-coil segments were also required for forming factory-like inclusions, and mutation of either one His residue (His570) or one Cys residue (Cys572) within these sequences disrupted the phenotype. The His and Cys residues are part of a small consensus motif that is conserved across muNS homologs from avian orthoreoviruses and aquareoviruses, suggesting this motif may have a common function in these related viruses. The inclusion-forming 471-721 region of muNS was shown to provide a useful platform for the presentation of peptides for studies of protein-protein association through colocalization to factory-like inclusions in transfected cells.
Collapse
Affiliation(s)
- Teresa J Broering
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Ave., Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
40
|
Miller CL, Parker JSL, Dinoso JB, Piggott CDS, Perron MJ, Nibert ML. Increased ubiquitination and other covariant phenotypes attributed to a strain- and temperature-dependent defect of reovirus core protein mu2. J Virol 2004; 78:10291-302. [PMID: 15367595 PMCID: PMC516405 DOI: 10.1128/jvi.78.19.10291-10302.2004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reovirus replication and assembly are thought to occur within cytoplasmic inclusion bodies, which we call viral factories. A strain-dependent difference in the morphology of these structures reflects more effective microtubule association by the mu2 core proteins of some viral strains, which form filamentous factories, than by those of others, which form globular factories. For this report, we identified and characterized another strain-dependent attribute of the factories, namely, the extent to which they colocalized with conjugated ubiquitin (cUb). Among 16 laboratory strains and field isolates, the extent of factory costaining for cUb paralleled factory morphology, with globular strains exhibiting higher levels by far. In reassortant viruses, factory costaining for cUb mapped primarily to the mu2-encoding M1 genome segment, although contributions by the lambda3- and lambda2-encoding L1 and L2 genome segments were also evident. Immunoprecipitations revealed that cells infected with globular strains contained higher levels of ubiquitinated mu2 (Ub-mu2). In M1-transfected cells, cUb commonly colocalized with aggregates formed by mu2 from globular strains but not with microtubules coated by mu2 from filamentous strains, and immunoprecipitations revealed that mu2 from globular strains displayed higher levels of Ub-mu2. Allelic changes at mu2 residue 208 determined these differences. Nocodazole treatment of cells infected with filamentous strains resulted in globular factories that still showed low levels of costaining for cUb, indicating that higher levels of costaining were not a direct result of decreased microtubule association. The factories of globular strains, or their mu2 proteins expressed in transfected cells, were furthermore shown to gain microtubule association and to lose colocalization with cUb when cells were grown at reduced temperature. From the sum of these findings, we propose that mu2 from globular strains is more prone to temperature-dependent misfolding and as a result displays increased aggregation, increased levels of Ub-mu2, and decreased association with microtubules. Because so few of the viral strains formed factories that were regularly associated with ubiquitinated proteins, we conclude that reovirus factories are generally distinct from cellular aggresomes.
Collapse
Affiliation(s)
- Cathy L Miller
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Ave., Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
41
|
Touris-Otero F, Martínez-Costas J, Vakharia VN, Benavente J. Avian reovirus nonstructural protein microNS forms viroplasm-like inclusions and recruits protein sigmaNS to these structures. Virology 2004; 319:94-106. [PMID: 14967491 DOI: 10.1016/j.virol.2003.10.034] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2003] [Revised: 10/24/2003] [Accepted: 10/28/2003] [Indexed: 11/21/2022]
Abstract
The M3 genome segment of avian reovirus 1733, which encodes the nonstructural protein microNS, is 1996 nucleotides long and contains a long open reading frame that is predicted to encode a polypeptide of 635 amino acid residues. Examination of the deduced amino acid sequence of microNS revealed the presence of two regions near its carboxyl terminus with a high probability of forming alpha-helical coiled coils. Expression of the M3 gene in both infected and transfected cells revealed that this gene specifies two protein isoforms that are recognized by a microNS-specific antiserum. Only the larger microNS isoform, but not the smaller one, interacts with the nonstructural protein sigmaNS in infected cells, suggesting that the two isoforms play different roles during avian reovirus infection. In the second part of this study, we show that microNS and the nonstructural protein sigmaNS colocalize throughout the viral life cycle in large and small phase-dense globular cytoplasmic inclusions, which are believed to be the sites of viral replication and assembly. Individual expression of these proteins in transfected cells of avian and mammalian origin revealed that while microNS is able to form inclusions in the absence of other viral proteins, sigmaNS distributes diffusely throughout the cytoplasm in the absence of microNS. These data suggest that microNS is the minimal viral factor required for inclusion formation during avian reovirus infection. On the other hand, our findings that sigmaNS associates with microNS in infected cells, and that sigmaNS colocalizes with microNS in viroplasm-like inclusions when the two proteins are coexpressed in transfected cells, suggest that microNS mediates the association of sigmaNS to inclusions in avian reovirus-infected cells.
Collapse
Affiliation(s)
- Fernando Touris-Otero
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | | | | | | |
Collapse
|
42
|
Broering TJ, Kim J, Miller CL, Piggott CDS, Dinoso JB, Nibert ML, Parker JSL. Reovirus nonstructural protein mu NS recruits viral core surface proteins and entering core particles to factory-like inclusions. J Virol 2004; 78:1882-92. [PMID: 14747553 PMCID: PMC369481 DOI: 10.1128/jvi.78.4.1882-1892.2004] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2003] [Accepted: 10/28/2003] [Indexed: 11/20/2022] Open
Abstract
Mammalian reoviruses are thought to assemble and replicate within cytoplasmic, nonmembranous structures called viral factories. The viral nonstructural protein mu NS forms factory-like globular inclusions when expressed in the absence of other viral proteins and binds to the surfaces of the viral core particles in vitro. Given these previous observations, we hypothesized that one or more of the core surface proteins may be recruited to viral factories through specific associations with mu NS. We found that all three of these proteins--lambda 1, lambda 2, and sigma 2--localized to factories in infected cells but were diffusely distributed through the cytoplasm and nucleus when each was separately expressed in the absence of other viral proteins. When separately coexpressed with mu NS, on the other hand, each core surface protein colocalized with mu NS in globular inclusions, supporting the initial hypothesis. We also found that lambda 1, lambda 2, and sigma 2 each localized to filamentous inclusions formed upon the coexpression of mu NS and mu 2, a structurally minor core protein that associates with microtubules. The first 40 residues of mu NS, which are required for association with mu 2 and the RNA-binding nonstructural protein sigma NS, were not required for association with any of the three core surface proteins. When coexpressed with mu 2 in the absence of mu NS, each of the core surface proteins was diffusely distributed and displayed only sporadic, weak associations with mu 2 on filaments. Many of the core particles that entered the cytoplasm of cycloheximide-treated cells following entry and partial uncoating were recruited to inclusions of mu NS that had been preformed in those cells, providing evidence that mu NS can bind to the surfaces of cores in vivo. These findings expand a model for how viral and cellular components are recruited to the viral factories in infected cells and provide further evidence for the central but distinct roles of viral proteins mu NS and mu 2 in this process.
Collapse
Affiliation(s)
- Teresa J Broering
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Golden JW, Bahe JA, Lucas WT, Nibert ML, Schiff LA. Cathepsin S supports acid-independent infection by some reoviruses. J Biol Chem 2003; 279:8547-57. [PMID: 14670972 DOI: 10.1074/jbc.m309758200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In murine fibroblasts, efficient proteolysis of reovirus outer capsid protein sigma3 during cell entry by virions requires the acid-dependent lysosomal cysteine protease cathepsin L. The importance of cathepsin L for infection of other cell types is unknown. Here we report that the acid-independent lysosomal cysteine protease cathepsin S mediates outer capsid processing in macrophage-like P388D cells. P388D cells supported infection by virions of strain Lang, but not strain c43. Genetic studies revealed that this difference is determined by S4, the viral gene segment that encodes sigma3. c43-derived subvirion particles that lack sigma3 replicated normally in P388D cells, suggesting that the difference in infectivity of Lang and c43 virions is at the level of sigma3 processing. Infection of P388D cells with Lang virions was inhibited by the broad spectrum cysteine protease inhibitor trans-epoxysuccinyl-l-leucylamido-(4-guanidino)butane but not by NH(4)Cl, which raises the endocytic pH and thereby inhibits acid-dependent proteases such as cathepsins L and B. Outer capsid processing and infection of P388D cells with Lang virions were also inhibited by a cathepsin S-specific inhibitor. Furthermore, in the presence of NH(4)Cl, cell lines engineered to express cathepsin S supported infection by Lang, but not c43, virions. Our results thus indicate that differences in susceptibility to cathepsin S-mediated sigma3 processing are responsible for strain differences in reovirus infection of macrophage-like P388D cells and other cathepsin S-expressing cells. Additionally, our data suggest that the acid dependence of reovirus infections of most other cell types may reflect the low pH requirement for the activities of most other lysosomal proteases rather, than some other acid-dependent aspect of cell entry.
Collapse
Affiliation(s)
- Joseph W Golden
- Department of Microbiology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | |
Collapse
|
44
|
Becker MM, Peters TR, Dermody TS. Reovirus sigma NS and mu NS proteins form cytoplasmic inclusion structures in the absence of viral infection. J Virol 2003; 77:5948-63. [PMID: 12719587 PMCID: PMC154006 DOI: 10.1128/jvi.77.10.5948-5963.2003] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2002] [Accepted: 02/24/2003] [Indexed: 11/20/2022] Open
Abstract
Reovirus replication occurs in the cytoplasm of infected cells and culminates in the formation of crystalline arrays of progeny virions within viral inclusions. Two viral nonstructural proteins, sigma NS and micro NS, and structural protein sigma 3 form protein-RNA complexes early in reovirus infection. To better understand the minimal requirements of viral inclusion formation, we expressed sigma NS, mu NS, and sigma 3 alone and in combination in the absence of viral infection. In contrast to its concentration in inclusion structures during reovirus replication, sigma NS expressed in cells in the absence of infection is distributed diffusely throughout the cytoplasm and does not form structures that resemble viral inclusions. Expressed sigma NS is functional as it complements the defect in temperature-sensitive, sigma NS-mutant virus tsE320. In both transfected and infected cells, mu NS is found in punctate cytoplasmic structures and sigma 3 is distributed diffusely in the cytoplasm and the nucleus. The subcellular localization of mu NS and sigma 3 is not altered when the proteins are expressed together or with sigma NS. However, when expressed with micro NS, sigma NS colocalizes with mu NS to punctate structures similar in morphology to inclusion structures observed early in viral replication. During reovirus infection, both sigma NS and mu NS are detectable 4 h after adsorption and colocalize to punctate structures throughout the viral life cycle. In concordance with these results, sigma NS interacts with mu NS in a yeast two-hybrid assay and by coimmunoprecipitation analysis. These data suggest that sigma NS and mu NS are the minimal viral components required to form inclusions, which then recruit other reovirus proteins and RNA to initiate viral genome replication.
Collapse
Affiliation(s)
- Michelle M Becker
- Department of Microbiology and Immunology and Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | |
Collapse
|
45
|
Miller CL, Broering TJ, Parker JSL, Arnold MM, Nibert ML. Reovirus sigma NS protein localizes to inclusions through an association requiring the mu NS amino terminus. J Virol 2003; 77:4566-76. [PMID: 12663763 PMCID: PMC152138 DOI: 10.1128/jvi.77.8.4566-4576.2003] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2002] [Accepted: 01/23/2003] [Indexed: 11/20/2022] Open
Abstract
Cells infected with mammalian reoviruses contain phase-dense inclusions, called viral factories, in which viral replication and assembly are thought to occur. The major reovirus nonstructural protein mu NS forms morphologically similar phase-dense inclusions when expressed in the absence of other viral proteins, suggesting it is a primary determinant of factory formation. In this study we examined the localization of the other major reovirus nonstructural protein, sigma NS. Although sigma NS colocalized with mu NS in viral factories during infection, it was distributed diffusely throughout the cell when expressed in the absence of mu NS. When coexpressed with mu NS, sigma NS was redistributed and colocalized with mu NS inclusions, indicating that the two proteins associate in the absence of other viral proteins and suggesting that this association may mediate the localization of sigma NS to viral factories in infected cells. We have previously shown that mu NS residues 1 to 40 or 41 are both necessary and sufficient for mu NS association with the viral microtubule-associated protein mu 2. In the present study we found that this same region of micro NS is required for its association with sigma NS. We further dissected this region, identifying residues 1 to 13 of mu NS as necessary for association with sigma NS, but not with mu 2. Deletion of sigma NS residues 1 to 11, which we have previously shown to be required for RNA binding by that protein, resulted in diminished association of sigma NS with mu NS. Furthermore, when treated with RNase, a large portion of sigma NS was released from mu NS coimmunoprecipitates, suggesting that RNA contributes to their association. The results of this study provide further evidence that mu NS plays a key role in forming the reovirus factories and recruiting other components to them.
Collapse
Affiliation(s)
- Cathy L Miller
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
46
|
Berois M, Sapin C, Erk I, Poncet D, Cohen J. Rotavirus nonstructural protein NSP5 interacts with major core protein VP2. J Virol 2003; 77:1757-63. [PMID: 12525609 PMCID: PMC140918 DOI: 10.1128/jvi.77.3.1757-1763.2003] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rotavirus is a nonenveloped virus with a three-layered capsid. The inner layer, made of VP2, encloses the genomic RNA and two minor proteins, VP1 and VP3, with which it forms the viral core. Core assembly is coupled with RNA viral replication and takes place in definite cellular structures termed viroplasms. Replication and encapsidation mechanisms are still not fully understood, and little information is available about the intermolecular interactions that may exist among the viroplasmic proteins. NSP2 and NSP5 are two nonstructural viroplasmic proteins that have been shown to interact with each other. They have also been found to be associated with precore replication intermediates that are precursors of the viral core. In this study, we show that NSP5 interacts with VP2 in infected cells. This interaction was demonstrated with recombinant proteins expressed from baculovirus recombinants or in bacterial systems. NSP5-VP2 interaction also affects the stability of VP6 bound to VP2 assemblies. The data presented showed evidence, for the first time, of an interaction between VP2 and a nonstructural rotavirus protein. Published data and the interaction demonstrated here suggest a possible role for NSP5 as an adapter between NSP2 and the replication complex VP2-VP1-VP3 in core assembly and RNA encapsidation, modulating the role of NSP2 as a molecular motor involved in the packaging of viral mRNA.
Collapse
Affiliation(s)
- Mabel Berois
- Seccion Virologia, Facultad de Ciencias, Montevideo 11400, Uruguay.
| | | | | | | | | |
Collapse
|
47
|
Broering TJ, Parker JSL, Joyce PL, Kim J, Nibert ML. Mammalian reovirus nonstructural protein microNS forms large inclusions and colocalizes with reovirus microtubule-associated protein micro2 in transfected cells. J Virol 2002; 76:8285-97. [PMID: 12134034 PMCID: PMC155143 DOI: 10.1128/jvi.76.16.8285-8297.2002] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cells infected with mammalian orthoreoviruses contain large cytoplasmic phase-dense inclusions believed to be the sites of viral replication and assembly, but the morphogenesis, structure, and specific functions of these "viral factories" are poorly understood. Using immunofluorescence microscopy, we found that reovirus nonstructural protein microNS expressed in transfected cells forms inclusions that resemble the globular viral factories formed in cells infected with reovirus strain type 3 Dearing from our laboratory (T3D(N)). In the transfected cells, the formation of microNS large globular perinuclear inclusions was dependent on the microtubule network, as demonstrated by the appearance of many smaller microNS globular inclusions dispersed throughout the cytoplasm after treatment with the microtubule-depolymerizing drug nocodazole. Coexpression of microNS and reovirus protein micro2 from a different strain, type 1 Lang (T1L), which forms filamentous viral factories, altered the distributions of both proteins. In cotransfected cells, the two proteins colocalized in thick filamentous structures. After nocodazole treatment, many small dispersed globular inclusions containing microNS and micro2 were seen, demonstrating that the microtubule network is required for the formation of the filamentous structures. When coexpressed, the micro2 protein from T3D(N) also colocalized with microNS, but in globular inclusions rather than filamentous structures. The morphology difference between the globular inclusions containing microNS and micro2 protein from T3D(N) and the filamentous structures containing microNS and micro2 protein from T1L in cotransfected cells mimicked the morphology difference between globular and filamentous factories in reovirus-infected cells, which is determined by the micro2-encoding M1 genome segment. We found that the first 40 amino acids of microNS are required for colocalization with micro2 but not for inclusion formation. Similarly, a fusion of microNS amino acids 1 to 41 to green fluorescent protein was sufficient for colocalization with the micro2 protein from T1L but not for inclusion formation. These observations suggest a functional difference between microNS and microNSC, a smaller form of the protein that is present in infected cells and that is missing amino acids from the amino terminus of microNS. The capacity of microNS to form inclusions and to colocalize with micro2 in transfected cells suggests a key role for microNS in forming viral factories in reovirus-infected cells.
Collapse
Affiliation(s)
- Teresa J Broering
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
48
|
Golden JW, Linke J, Schmechel S, Thoemke K, Schiff LA. Addition of exogenous protease facilitates reovirus infection in many restrictive cells. J Virol 2002; 76:7430-43. [PMID: 12097555 PMCID: PMC136394 DOI: 10.1128/jvi.76.15.7430-7443.2002] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2001] [Accepted: 04/26/2002] [Indexed: 12/14/2022] Open
Abstract
Virion uncoating is a critical step in the life cycle of mammalian orthoreoviruses. In cell culture, and probably in extraintestinal tissues in vivo, reovirus virions undergo partial proteolysis within endosomal or/or lysosomal compartments. This process converts the virion into a form referred to as an intermediate subvirion particle (ISVP). In natural enteric reovirus infections, proteolytic uncoating takes place extracellularly within the intestinal lumen. The resultant proteolyzed particles, unlike intact virions, have the capacity to penetrate cell membranes and thereby gain access to cytoplasmic components required for viral gene expression. We hypothesized that the capacity of reovirus outer capsid proteins to be proteolyzed is a determinant of cellular host range. To investigate this hypothesis, we asked if the addition of protease to cell culture medium would expand the range of cultured mammalian cell lines that can be productively infected by reoviruses. We identified many transformed and nontransformed cell lines, as well as primary cells, that restrict viral infection. In several of these restrictive cells, virion uncoating is inefficient or blocked. Addition of proteases to the cell culture medium generates ISVP-like particles and promotes viral growth in nearly all cell lines tested. Interestingly, we found that some cell lines that restrict reovirus uncoating still express mature cathepsin L, a lysosomal protease required for virion disassembly in murine L929 cells. This finding suggests that factors in addition to cathepsin L are required for efficient intracellular proteolysis of reovirus virions. Our results demonstrate that virion uncoating is a critical determinant of reovirus cellular host range and that many cells which otherwise support productive reovirus infection cannot efficiently mediate this essential early step in the virus life cycle.
Collapse
Affiliation(s)
- Joseph W Golden
- Department of Microbiology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | |
Collapse
|
49
|
Parker JSL, Broering TJ, Kim J, Higgins DE, Nibert ML. Reovirus core protein mu2 determines the filamentous morphology of viral inclusion bodies by interacting with and stabilizing microtubules. J Virol 2002; 76:4483-96. [PMID: 11932414 PMCID: PMC155082 DOI: 10.1128/jvi.76.9.4483-4496.2002] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2001] [Accepted: 01/22/2002] [Indexed: 01/02/2023] Open
Abstract
Cells infected with mammalian reoviruses often contain large perinuclear inclusion bodies, or "factories," where viral replication and assembly are thought to occur. Here, we report a viral strain difference in the morphology of these inclusions: filamentous inclusions formed in cells infected with reovirus type 1 Lang (T1L), whereas globular inclusions formed in cells infected with our laboratory's isolate of reovirus type 3 Dearing (T3D). Examination by immunofluorescence microscopy revealed the filamentous inclusions to be colinear with microtubules (MTs). The filamentous distribution was dependent on an intact MT network, as depolymerization of MTs early after infection caused globular inclusions to form. The inclusion phenotypes of T1L x T3D reassortant viruses identified the viral M1 genome segment as the primary genetic determinant of the strain difference in inclusion morphology. Filamentous inclusions were seen with 21 of 22 other reovirus strains, including an isolate of T3D obtained from another laboratory. When the mu2 proteins derived from T1L and the other laboratory's T3D isolate were expressed after transfection of their cloned M1 genes, they associated with filamentous structures that colocalized with MTs, whereas the mu2 protein derived from our laboratory's T3D isolate did not. MTs were stabilized in cells infected with the viruses that induced filamentous inclusions and after transfection with the M1 genes derived from those viruses. Evidence for MT stabilization included bundling and hyperacetylation of alpha-tubulin, changes characteristically seen when MT-associated proteins (MAPs) are overexpressed. Sequencing of the M1 segments from the different T1L and T3D isolates revealed that a single-amino-acid difference at position 208 correlated with the inclusion morphology. Two mutant forms of mu2 with the changes Pro-208 to Ser in a background of T1L mu2 and Ser-208 to Pro in a background of T3D mu2 had MT association phenotypes opposite to those of the respective wild-type proteins. We conclude that the mu2 protein of most reovirus strains is a viral MAP and that it plays a key role in the formation and structural organization of reovirus inclusion bodies.
Collapse
Affiliation(s)
- John S L Parker
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
50
|
Farsetta DL, Chandran K, Nibert ML. Transcriptional activities of reovirus RNA polymerase in recoated cores. Initiation and elongation are regulated by separate mechanisms. J Biol Chem 2000; 275:39693-701. [PMID: 11007773 DOI: 10.1074/jbc.m004562200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The particle-associated reovirus polymerase synthesizes mRNA within only certain viral particle types. Reovirus cores, subviral particles lacking outer capsid proteins mu1, sigma3, and sigma1, produce mRNA and abortive transcripts. Reovirus virions, which contain complete outer capsids, cannot produce mRNA and produce few abortive transcripts. Recoated cores are virion-like particles generated by the addition of recombinant outer capsid proteins to cores. We used recoated cores to analyze transcriptional regulation by reovirus outer capsid proteins. Partially recoated particles, containing less than virion amounts of mu1 and sigma3, synthesized mRNA at levels inversely proportional to outer capsid protein levels. Fully recoated cores exhibited undetectable mRNA synthesis levels, as did virions. However, recoated cores produced high levels of abortive transcripts. Recoated core abortive transcripts remained particle-associated and appeared to inhibit further abortive transcript production. Proteolysis of recoated cores removing mu1 and sigma3 released accumulated abortive transcripts and relieved inhibition of mRNA and abortive transcript synthesis. These results suggest transcriptional elongation, but not initiation, is blocked by virion-like amounts of mu1 and sigma3. Particle-associated abortive transcripts may down-regulate transcriptional initiation. Minor outer capsid protein sigma1 had no demonstrable effect on transcriptional activities. Transcriptional regulation may ensure progeny virions do not compete with transcribing particles for ribonucleoside triphosphates.
Collapse
Affiliation(s)
- D L Farsetta
- Department of Biochemistry, Institute for Molecular Virology, and Cell and Molecular Biology Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|