1
|
Mason R, Bradley E, Wills M, Sinclair J, Reeves M. Repression of the major immediate early promoter of human cytomegalovirus allows transcription from an alternate promoter. J Gen Virol 2023; 104. [PMID: 37702591 DOI: 10.1099/jgv.0.001894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
Following infection, the human cytomegalovirus (HCMV) genome becomes rapidly associated with host histones which can contribute to the regulation of viral gene expression. This can be seen clearly during HCMV latency where silencing of the major immediate early promoter (MIEP), normally responsible for expression of the key lytic proteins IE72 and IE86, is mediated by histone methylation and recruitment of heterochromatin protein 1. Crucially, reversal of these histone modifications coupled with histone acetylation drives viral reactivation which can be blocked with specific histone acetyltransferase inhibitors (HATi). In lytic infection, a role for HATi is less clear despite the well-established enhancement of viral replication observed with histone deacetylase inhibitors. Here we report that a number of different broad-acting HATi have a minor impact on viral infection and replication during lytic infection with the more overt phenotypes observed at lower multiplicities of infection. However, specific analyses of the regulation of major immediate early (MIE) gene expression reveal that the HATi C646, which targets p300/CBP, transiently repressed MIE gene expression via inhibition of the MIEP but by 24 h post-infection MIE gene expression was rescued due to compensatory activation of an alternative IE promoter, ip2. This suggested that silencing of the MIEP promoted alternative ip2 promoter activity in lytic infection and, consistent with this, ip2 transcription is impaired in cells infected with a recombinant HCMV that does not auto-repress the MIEP at late times of infection. Furthermore, inhibition of the histone methyltransferases known to be responsible for auto-repression is similarly inhibitory to ip2 transcription in wild-type infected cells. We also observe that these discrete transcriptional activities of the MIEP and ip2 promoter are also reflected in reactivation; essentially in cells where the MIEP is silenced, ip2 activity is easier to detect at very early times post-reactivation whereas in cells where robust activation of the MIEP is observed ip2 transcription is reduced or delayed. Finally, we observe that inhibition of pathways demonstrated to be important for reactivation of HCMV in dendritic cells, e.g. in response to IL-6, are preferentially important for activation of the MIEP and not the ip2 promoter. Together, these data add to the hypothesis that the existence of multiple promoters within the MIE region of HCMV can drive reactivation in a cell type- and ligand-specific manner and also suggest that inter-dependent regulatory activity between the two promoters exists.
Collapse
Affiliation(s)
- Rebecca Mason
- Institute of Immunity & Transplantation, Royal Free Campus, Division of Infection & Immunity, UCL, London, UK
| | - Eleanor Bradley
- Institute of Immunity & Transplantation, Royal Free Campus, Division of Infection & Immunity, UCL, London, UK
| | - Mark Wills
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - John Sinclair
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Matthew Reeves
- Institute of Immunity & Transplantation, Royal Free Campus, Division of Infection & Immunity, UCL, London, UK
| |
Collapse
|
2
|
Forte E, Li M, Ayaloglu Butun F, Hu Q, Borst EM, Schipma MJ, Piunti A, Shilatifard A, Terhune SS, Abecassis M, Meier JL, Hummel M. Critical Role for the Human Cytomegalovirus Major Immediate Early Proteins in Recruitment of RNA Polymerase II and H3K27Ac To an Enhancer-Like Element in Ori Lyt. Microbiol Spectr 2023; 11:e0314422. [PMID: 36645269 PMCID: PMC9927211 DOI: 10.1128/spectrum.03144-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/16/2022] [Indexed: 01/17/2023] Open
Abstract
Human cytomegalovirus (HCMV) is an opportunistic pathogen that infects most of the population. The complex 236 kbp genome encodes more than 170 open reading frames, whose expression is temporally regulated by both viral transcriptional regulators and cellular factors that control chromatin and transcription. Here, we have used state of the art genomic technologies to investigate the viral transcriptome in conjunction with 2 key transcriptional regulators: Pol II and H3K27Ac. Although it is well known that the major immediate early (IE) proteins activate early gene expression through both direct and indirect interactions, and that histone modifications play an important role in regulating viral gene expression, the role of the IE proteins in modulating viral chromatin is not fully understood. To address this question, we have used a virus engineered for conditional expression of the IE proteins combined with RNA and Chromatin immunoprecipitation (ChIP) analyses to assess the role of these proteins in modulating both viral chromatin and gene expression. Our results show that (i) there is an enhancer-like element in OriLyt that is extraordinarily enriched in H3K27Ac; (ii) in addition to activation of viral gene expression, the IE proteins play a critical role in recruitment of Pol II and H3K27Ac to this element. IMPORTANCE HCMV is an important human pathogen associated with complications in transplant patients and birth defects. The complex program of viral gene expression is regulated by both viral proteins and host factors. Here, we have investigated the role of the immediate early proteins in regulating the viral epigenome. Our results show that the viral immediate early proteins bring about an enormous enrichment of H3K27Ac marks at the OriLyt RNA4.9 promoter, concomitant with an increase in RNA4.9 expression. This epigenetic characteristic adds importantly to the view that OriLyt has structural and functional characteristics of a strong enhancer that, we now discover, is regulated by IE proteins.
Collapse
Affiliation(s)
- Eleonora Forte
- Comprehensive Transplant Center, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, USA
| | - Ming Li
- Departments of Internal Medicine and Epidemiology, University of Iowa and Iowa City Veterans Affairs Health Care System, Iowa City, Iowa, USA
| | - Fatma Ayaloglu Butun
- Comprehensive Transplant Center, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, USA
| | - Qiaolin Hu
- Departments of Internal Medicine and Epidemiology, University of Iowa and Iowa City Veterans Affairs Health Care System, Iowa City, Iowa, USA
| | - Eva Maria Borst
- Department of Virology, Hannover Medical School, Hannover, Germany
| | - Matthew J. Schipma
- NUSeq Core, Quantitative Data Science Core, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Andrea Piunti
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Scott S. Terhune
- Department of Microbiology and Immunology and Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Michael Abecassis
- Comprehensive Transplant Center, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jeffery L. Meier
- Departments of Internal Medicine and Epidemiology, University of Iowa and Iowa City Veterans Affairs Health Care System, Iowa City, Iowa, USA
| | - Mary Hummel
- Comprehensive Transplant Center, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
3
|
Wang Z, Yu W, Liu L, Niu J, Zhang X, Nan F, Xu L, Jiang B, Ke D, Zhu W, Tian Z, Wang Y, Wang B. Human Cytomegalovirus Immediate Early Protein 2 Protein Causes Cognitive Disorder by Damaging Synaptic Plasticity in Human Cytomegalovirus-UL122-Tg Mice. Front Aging Neurosci 2021; 13:720582. [PMID: 34790111 PMCID: PMC8591137 DOI: 10.3389/fnagi.2021.720582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/07/2021] [Indexed: 11/17/2022] Open
Abstract
Human cytomegalovirus (HCMV) infection is very common in the human population all around the world. Although the majority of HCMV infections are asymptomatic, they can cause neurologic deficits. Previous studies have shown that immediate early protein 2 (IE2, also known as UL122) of HCMV is related with the cognitive disorder mechanism. Due to species isolation, a HCMV-infected animal model could not be established which meant a study into the long-term effects of IE2 on neural development could not be carried out. By establishing HCMV-UL122-Tg mice (UL122 mice), we explored the cognitive behavior and complexity of neuron changes in this transgenic UL122 mice that could consistently express IE2 protein at different ages (confirmed in both 6- and 12-month-old UL122 mice). In the Morris water maze, cognitive impairment was more pronounced in 12-month-old UL122 mice than in 6-month-old ones. At the same time, a decrease of the density of dendritic spines and branches in the hippocampal neurons of 12-month-old mice was observed. Moreover, long-term potentiation was showed to be impaired in 12-month-old UL122 mice. The expressions of several synaptic plasticity-regulated molecules were reduced in 12-month-old UL122 mice, including scaffold proteins postsynaptic density protein 95 (PSD95) and microtubule-associated protein 2 (MAP2). Binding the expression of IE2 was increased in 12-month-old mice compared with 6-month-old mice, and results of statistical analysis suggested that the cognitive damage was not caused by natural animal aging, which might exclude the effect of natural aging on cognitive impairment. All these results suggested that IE2 acted as a pathogenic regulator in damaging synaptic plasticity by downregulating the expression of plasticity-related proteins (PRPs), and this damage increased with aging.
Collapse
Affiliation(s)
- Zhifei Wang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Wenwen Yu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China
| | - Lili Liu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Junyun Niu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xianjuan Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Fulong Nan
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Lili Xu
- Qingdao Women and Childrens Hospital, Qingdao University, Qingdao, China
| | - Bin Jiang
- Affiliated Hospital of Qingdao University Medical College, Qingdao, China
| | - Dingxin Ke
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Wenhua Zhu
- Qingdao Fuwai Cardiovascular Hospital, Qingdao, China
| | - Zibin Tian
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yashuo Wang
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Bin Wang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
4
|
Epigenetic reprogramming of host and viral genes by Human Cytomegalovirus infection in Kasumi-3 myeloid progenitor cells at early times post-infection. J Virol 2021; 95:JVI.00183-21. [PMID: 33731453 PMCID: PMC10021080 DOI: 10.1128/jvi.00183-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HCMV establishes latency in myeloid cells. Using the Kasumi-3 latency model, we previously showed that lytic gene expression is activated prior to establishment of latency in these cells. The early events in infection may have a critical role in shaping establishment of latency. Here, we have used an integrative multi-omics approach to investigate dynamic changes in host and HCMV gene expression and epigenomes at early times post infection. Our results show dynamic changes in viral gene expression and viral chromatin. Analyses of Pol II, H3K27Ac and H3K27me3 occupancy of the viral genome showed that 1) Pol II occupancy was highest at the MIEP at 4 hours post infection. However, it was observed throughout the genome; 2) At 24 hours, H3K27Ac was localized to the major immediate early promoter/enhancer and to a possible second enhancer in the origin of replication OriLyt; 3) viral chromatin was broadly accessible at 24 hpi. In addition, although HCMV infection activated expression of some host genes, we observed an overall loss of de novo transcription. This was associated with loss of promoter-proximal Pol II and H3K27Ac, but not with changes in chromatin accessibility or a switch in modification of H3K27.Importance.HCMV is an important human pathogen in immunocompromised hosts and developing fetuses. Current anti-viral therapies are limited by toxicity and emergence of resistant strains. Our studies highlight emerging concepts that challenge current paradigms of regulation of HCMV gene expression in myeloid cells. In addition, our studies show that HCMV has a profound effect on de novo transcription and the cellular epigenome. These results may have implications for mechanisms of viral pathogenesis.
Collapse
|
5
|
Adamson CS, Nevels MM. Bright and Early: Inhibiting Human Cytomegalovirus by Targeting Major Immediate-Early Gene Expression or Protein Function. Viruses 2020; 12:v12010110. [PMID: 31963209 PMCID: PMC7019229 DOI: 10.3390/v12010110] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/11/2022] Open
Abstract
The human cytomegalovirus (HCMV), one of eight human herpesviruses, establishes lifelong latent infections in most people worldwide. Primary or reactivated HCMV infections cause severe disease in immunosuppressed patients and congenital defects in children. There is no vaccine for HCMV, and the currently approved antivirals come with major limitations. Most approved HCMV antivirals target late molecular processes in the viral replication cycle including DNA replication and packaging. “Bright and early” events in HCMV infection have not been exploited for systemic prevention or treatment of disease. Initiation of HCMV replication depends on transcription from the viral major immediate-early (IE) gene. Alternative transcripts produced from this gene give rise to the IE1 and IE2 families of viral proteins, which localize to the host cell nucleus. The IE1 and IE2 proteins are believed to control all subsequent early and late events in HCMV replication, including reactivation from latency, in part by antagonizing intrinsic and innate immune responses. Here we provide an update on the regulation of major IE gene expression and the functions of IE1 and IE2 proteins. We will relate this insight to experimental approaches that target IE gene expression or protein function via molecular gene silencing and editing or small chemical inhibitors.
Collapse
|
6
|
Tripathi V, Chatterjee KS, Das R. Casein kinase-2-mediated phosphorylation increases the SUMO-dependent activity of the cytomegalovirus transactivator IE2. J Biol Chem 2019; 294:14546-14561. [PMID: 31371453 DOI: 10.1074/jbc.ra119.009601] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/24/2019] [Indexed: 11/06/2022] Open
Abstract
Many viral factors manipulate the host post-translational modification (PTM) machinery for efficient viral replication. In particular, phosphorylation and SUMOylation can distinctly regulate the activity of the human cytomegalovirus (HCMV) transactivator immediate early 2 (IE2). However, the molecular mechanism of this process is unknown. Using various structural, biochemical, and cell-based approaches, here we uncovered that IE2 exploits a cross-talk between phosphorylation and SUMOylation. A scan for small ubiquitin-like modifier (SUMO)-interacting motifs (SIMs) revealed two SIMs in IE2, and a real-time SUMOylation assay indicated that the N-terminal SIM (IE2-SIM1) enhances IE2 SUMOylation up to 4-fold. Kinetic analysis and structural studies disclosed that IE2 is a SUMO cis-E3 ligase. We also found that two putative casein kinase 2 (CK2) sites adjacent to IE2-SIM1 are phosphorylated in vitro and in cells. The phosphorylation drastically increased IE2-SUMO affinity, IE2 SUMOylation, and cis-E3 activity of IE2. Additional salt bridges between the phosphoserines and SUMO accounted for the increased IE2-SUMO affinity. Phosphorylation also enhanced the SUMO-dependent transactivation activity and auto-repression activity of IE2. Together, our findings highlight a novel mechanism whereby SUMOylation and phosphorylation of the viral cis-E3 ligase and transactivator protein IE2 work in tandem to enable transcriptional regulation of viral gene.
Collapse
Affiliation(s)
- Vasvi Tripathi
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru-560065, India
| | - Kiran Sankar Chatterjee
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru-560065, India
| | - Ranabir Das
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru-560065, India
| |
Collapse
|
7
|
Hu M, Wang B, Qian D, Wang M, Huang R, Wei L, Li L, Zhang L, Liu DX. Human cytomegalovirus immediate-early protein promotes survival of glioma cells through interacting and acetylating ATF5. Oncotarget 2018; 8:32157-32170. [PMID: 28473657 PMCID: PMC5458275 DOI: 10.18632/oncotarget.17150] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 04/03/2017] [Indexed: 01/03/2023] Open
Abstract
Human cytomegalovirus (HCMV), a widespread beta-herpes virus, infects a high percentage of gliomas. HCMV is specifically detected in human gliomas at a low level of expression raises the possibility that it may regulate the malignant phenotype in a chronic manner. Although HCMV is not recognized as an oncogenic virus, it might dysregulate signaling pathways involved in initiation and promotion of malignancy.Here, our immunohistochemical staining reveals that nucleus staining of the HCMV 86-kDa immediate-early protein (IE86) is markedly increased in GBM (58.56%) compared with that in nontumorous samples (4.20%) and low-grade glioma(19.56%). IE86 staining positively correlates with the staining of activating transcription factor 5 (ATF5) which is essential for glioma cell viability and proliferation suggesting that HCMV IE86 could have important implications in glioma biology. Moreover, we find that the IE86 overexpression enhances glioma cell's growth in vitro and in vivo. We demonstrate that IE86 protein physically interacts with, and acetylates ATF5 thereby promoting glioma cell survival. Therefore, our findings illustrate the biological significance of HCMV infection in accelerating glioma progression, and provide novel evidence that HCMV infection may serve as a therapeutic target in human glioma.
Collapse
Affiliation(s)
- Ming Hu
- Department of Basic Medical Sciences, Qingdao University, Qingdao 266071, China
| | - Bin Wang
- Department of Basic Medical Sciences, Qingdao University, Qingdao 266071, China
| | - Dongmeng Qian
- Department of Basic Medical Sciences, Qingdao University, Qingdao 266071, China
| | - Mengyuan Wang
- College of life sciences, Qingdao University, Qingdao 266071, China
| | - Rui Huang
- Department of Basic Medical Sciences, Qingdao University, Qingdao 266071, China
| | - Li Wei
- The Hospital of People's Liberation Army, Weifang 261000, China
| | - Ling Li
- Department of Basic Medical Sciences, Qingdao University, Qingdao 266071, China
| | - Li Zhang
- Department of Basic Medical Sciences, Qingdao University, Qingdao 266071, China
| | - David X Liu
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA 992082, USA
| |
Collapse
|
8
|
A Abdullah A, Abdullah R, A Nazariah Z, N Balakrishnan K, Firdaus J Abdullah F, A Bala J, Mohd-Lila MA. Cyclophilin A as a target in the treatment of cytomegalovirus infections. Antivir Chem Chemother 2018; 26:2040206618811413. [PMID: 30449131 PMCID: PMC6243413 DOI: 10.1177/2040206618811413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 10/12/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Viruses are obligate parasites that depend on the cellular machinery of the host to regenerate and manufacture their proteins. Most antiviral drugs on the market today target viral proteins. However, the more recent strategies involve targeting the host cell proteins or pathways that mediate viral replication. This new approach would be effective for most viruses while minimizing drug resistance and toxicity. METHODS Cytomegalovirus replication, latency, and immune response are mediated by the intermediate early protein 2, the main protein that determines the effectiveness of drugs in cytomegalovirus inhibition. This review explains how intermediate early protein 2 can modify the action of cyclosporin A, an immunosuppressive, and antiviral drug. It also links all the pathways mediated by cyclosporin A, cytomegalovirus replication, and its encoded proteins. RESULTS Intermediate early protein 2 can influence the cellular cyclophilin A pathway, affecting cyclosporin A as a mediator of viral replication or anti-cytomegalovirus drug. CONCLUSION Cyclosporin A has a dual function in cytomegalovirus pathogenesis. It has the immunosuppressive effect that establishes virus replication through the inhibition of T-cell function. It also has an anti-cytomegalovirus effect mediated by intermediate early protein 2. Both of these functions involve cyclophilin A pathway.
Collapse
Affiliation(s)
- Ashwaq A Abdullah
- 1 Institute of Bioscience, University Putra Malaysia, Serdang, Selangor D.E, Malaysia
- 2 Department of Microbiology, Faculty of Applied Science, Taiz University, Taiz, Yemen
| | - Rasedee Abdullah
- 1 Institute of Bioscience, University Putra Malaysia, Serdang, Selangor D.E, Malaysia
- 3 Department of Veterinary Laboratory Diagnosis, Universiti Putra Malaysia, Serdang, Selangor D.E, Malaysia
| | - Zeenathul A Nazariah
- 1 Institute of Bioscience, University Putra Malaysia, Serdang, Selangor D.E, Malaysia
- 4 Department of Pathology and Microbiology, Universiti Putra Malaysia, Serdang, Selangor D.E, Malaysia
| | - Krishnan N Balakrishnan
- 4 Department of Pathology and Microbiology, Universiti Putra Malaysia, Serdang, Selangor D.E, Malaysia
| | - Faez Firdaus J Abdullah
- 5 Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor D.E, Malaysia
| | - Jamilu A Bala
- 4 Department of Pathology and Microbiology, Universiti Putra Malaysia, Serdang, Selangor D.E, Malaysia
- 6 Department of Medical Laboratory Science, Faculty of Allied Health Sciences, Bayero University Kano, Kano, Nigeria
| | - Mohd-Azmi Mohd-Lila
- 1 Institute of Bioscience, University Putra Malaysia, Serdang, Selangor D.E, Malaysia
- 4 Department of Pathology and Microbiology, Universiti Putra Malaysia, Serdang, Selangor D.E, Malaysia
| |
Collapse
|
9
|
Hornig J, Choi KY, McGregor A. The essential role of guinea pig cytomegalovirus (GPCMV) IE1 and IE2 homologs in viral replication and IE1-mediated ND10 targeting. Virology 2017; 504:122-140. [PMID: 28189970 DOI: 10.1016/j.virol.2017.01.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/20/2017] [Accepted: 01/31/2017] [Indexed: 01/02/2023]
Abstract
Guinea pig cytomegalovirus (GPCMV) immediate early proteins, IE1 and IE2, demonstrated structural and functional homologies with human cytomegalovirus (HCMV). GPCMV IE1 and IE2 co-localized in the nucleus with each other, the viral polymerase and guinea pig ND10 components (gpPML, gpDaxx, gpSp100, gpATRX). IE1 showed direct interaction with ND10 components by immunoprecipitation unlike IE2. Additionally, IE1 protein disrupted ND10 bodies. IE1 mutagenesis mapped the nuclear localization signal to the C-terminus and identified the core domain for gpPML interaction. Individual knockout of GPCMV GP122 or GP123 (IE2 and IE1 unique exons respectively) was lethal to the virus. However, an IE1 mutant (codons 234-474 deleted), was viable with attenuated viral growth kinetics and increased susceptibility to type I interferon (IFN-I). In HCMV, the IE proteins are important T cell target antigens. Consequently, characterization of the homologs in GPCMV provides a basis for their evaluation in candidate vaccines against congenital infection.
Collapse
Affiliation(s)
- Julia Hornig
- Department of Microbial Pathogenesis & Immunology, Texas A&M University, Health Science Center, College of Medicine, College Station, TX, United States
| | - K Yeon Choi
- Department of Microbial Pathogenesis & Immunology, Texas A&M University, Health Science Center, College of Medicine, College Station, TX, United States
| | - Alistair McGregor
- Department of Microbial Pathogenesis & Immunology, Texas A&M University, Health Science Center, College of Medicine, College Station, TX, United States.
| |
Collapse
|
10
|
Majima R, Shindoh K, Yamaguchi T, Inoue N. Characterization of a thienylcarboxamide derivative that inhibits the transactivation functions of cytomegalovirus IE2 and varicella zoster virus IE62. Antiviral Res 2017; 140:142-150. [PMID: 28161581 DOI: 10.1016/j.antiviral.2017.01.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 01/20/2017] [Accepted: 01/25/2017] [Indexed: 11/15/2022]
Abstract
Previously we established reporter cell lines for human cytomegalovirus (HCMV) and varicella zoster virus (VZV) and identified several antiviral compounds against these viruses using the reporter cells. In this study, we found that one of the identified anti-HCMV compounds, a thienylcarboxamide derivative (coded as 133G4), was effective against not only HCMV but also VZV. The following findings indicate that 133G4 inhibits the activation of early gene promoters by HCMV IE2 and VZV IE62: i) 133G4 decreased the expression of HCMV early and late genes but not that of HCMV IE1/IE2 in HCMV-infected cells, ii) 133G4 inhibited the activation of several HCMV early gene promoters of transiently-transfected plasmids in HCMV-infected cells, and iii) in transient transfection assays, 133G4 decreased the activation of HCMV (or VZV) early gene promoters by HCMV IE2 (or VZV IE62) in the absence of other viral protein expression. The inhibition of early gene activation was observed in the human and African green monkey cell lines but not in the rodent cell lines, and the compound was not effective against murine CMV. In addition, VZV IE62 activated HCMV early promoters, and 133G4 still inhibited such promoter activation. Therefore, we hypothesized that 133G4 targets a cellular factor used commonly in activation of human herpesvirus promoters and examined whether 133G4 affects the functions of cellular proteins USF1, TBP, Med25 and EAP, the involvement of which in VZV IE62-dependent viral gene activation has been well characterized. Our experimental results using one-hybrid and bimolecular fluorescence complementation assays demonstrated that 133G4 did not inhibit the recruitment of USF1 or TBP to their binding sites, nor inhibited the direct interactions of VZV IE62 with Med25 and EAP. Thus, 133G4 is a unique anti-VZV and -HCMV compound, which warrants further studies to find out its inhibitory mechanism.
Collapse
Affiliation(s)
- Ryuichi Majima
- Department of Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan
| | - Keiko Shindoh
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan; Department of Biosciences, Teikyo University of Science and Technology, Yamanashi, Japan
| | - Toyofumi Yamaguchi
- Department of Biosciences, Teikyo University of Science and Technology, Yamanashi, Japan
| | - Naoki Inoue
- Department of Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan; Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan.
| |
Collapse
|
11
|
Huang R, Qian D, Hu M, Zhang X, Song J, Li L, Chen H, Wang B. Association between human cytomegalovirus infection and histone acetylation level in various histological types of glioma. Oncol Lett 2015; 10:2812-2820. [PMID: 26722247 PMCID: PMC4665835 DOI: 10.3892/ol.2015.3638] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 07/07/2015] [Indexed: 01/03/2023] Open
Abstract
At present, glioma is the most common intracranial tumor and accounts for 40–60% of intracranial tumors. Glioma is highly anaplastic and demonstrates invasive growth. Although considerable progression has been achieved in the treatment of malignant glioma, the prognosis of this disease remains poor. Over the previous decade, several studies have confirmed that human cytomegalovirus (HCMV) enhances the growth or survival of tumors. This is likely to occur through mechanisms distinct from those of classic tumor viruses, which express transforming viral oncoproteins in the majority of tumor cells. The immediate-early 2 protein (IE86; 86 kDa) of HCMV is a key regulator for viral replication and host cell proliferation. The present study aimed to identify the association between the acetylation level and HCMV IE86 expression in various histological types of glioma. Tissue samples were obtained from 60 patients with glioma, consisting of 25 patients with glioblastoma multiforme (GBM), 16 patients with anaplastic glioma and 19 patients with low-grade glioma, in addition to 9 tissue samples obtained from the normal cortex, which were used as the control. The in situ protein expression of IE86, which is encoded by the IE2 gene, activating transcription factor 5 (ATF5), P300, acetyl-histone H3K9 and acetyl-histone H3K14 was detected by immunohistochemistry. The mRNA levels of ATF5, IE2 and P300 were measured by reverse transcription-quantitative polymerase chain reaction in GBM, anaplastic glioma, low-grade glioma and normal cortex tissue specimens. The protein levels of ATF5, IE86, P300, acetyl-histone H3K9 and acetyl-histone H3K14 were assessed by western blot analysis in high-grade glioma, low-grade glioma and normal cortex tissues. Analysis of the expression of the proteins revealed that the excessive expression of the HCMV IE86 protein is associated with the malignancy degree and acetylation level in glioma. IE86 expression is also associated with ATF5, which is an anti-apoptotic protein that is highly expressed in malignant glioma, but not in normal brain tissues. The expression level of IE86 may demonstrate considerable importance for the evaluation of the malignancy degree of human gliomas and extensive application in diagnostic and therapeutic medicine.
Collapse
Affiliation(s)
- Rui Huang
- Department of Microbiology, Qingdao University Medical College, Qingdao, Shandong 266071, P.R. China
| | - Dongmeng Qian
- Department of Microbiology, Qingdao University Medical College, Qingdao, Shandong 266071, P.R. China
| | - Ming Hu
- Department of Microbiology, Qingdao University Medical College, Qingdao, Shandong 266071, P.R. China
| | - Xue Zhang
- Department of Microbiology, Qingdao University Medical College, Qingdao, Shandong 266071, P.R. China
| | - Jingyi Song
- Department of Microbiology, Qingdao University Medical College, Qingdao, Shandong 266071, P.R. China
| | - Ling Li
- Department of Microbiology, Qingdao University Medical College, Qingdao, Shandong 266071, P.R. China
| | - Hao Chen
- Department of Microbiology, Qingdao University Medical College, Qingdao, Shandong 266071, P.R. China
| | - Bin Wang
- Department of Microbiology, Qingdao University Medical College, Qingdao, Shandong 266071, P.R. China
| |
Collapse
|
12
|
O'Connor CM, DiMaggio PA, Shenk T, Garcia BA. Quantitative proteomic discovery of dynamic epigenome changes that control human cytomegalovirus (HCMV) infection. Mol Cell Proteomics 2014; 13:2399-410. [PMID: 24987098 DOI: 10.1074/mcp.m114.039792] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
This work represents the first comprehensive quantitative analysis of global histone post-translational modifications (PTMs) from a virus infection, namely human cytomegalovirus (HCMV) infection. We used a nanoLC-MS/MS platform to identify and quantify the dynamic histone H3 and H4 PTMs expressed during HCMV replication in primary fibroblasts. Specifically, we examined the changes in histone PTMs over a 96 h time course to sample the immediate early (IE), early (E), and late (L) stages of viral infection. Several changes in histone H3 and H4 PTMs were observed, including a marked increase in H3K79me2 and H3K27me3K36me2, and a decrease in H4K16ac, highlighting likely epigenetic strategies of transcriptional activation and silencing during HCMV lytic infection. Heavy methyl-SILAC (hm-SILAC) was used to further confirm the histone methylation flux (especially for H3K79) during HCMV infection. We evaluated DOT1L (the H3K79 methyltransferase) mRNA levels in mock and HCMV-infected cells over a 96 h time course, and observed a significant increase in this methyltransferase as early as 24 hpi showing that viral infection up-regulates DOT1L expression, which drives H3K79me2. We then used shRNA to create a DOT1L knockdown cell population, and found that HCMV infection of the knockdown cells resulted in a 10-fold growth defect when compared with infected control cells not subjected to knockdown. This work documents multiple histone PTMs that occur in response to HCMV infection of fibroblasts, and provides a framework for evaluation of the role of epigenetic modifications in the virus-host interaction.
Collapse
Affiliation(s)
- Christine M O'Connor
- From the ‡Department of Molecular Genetics, Cleveland Clinic, Lerner Research Institute, Cleveland, Ohio 44195
| | - Peter A DiMaggio
- §Department of Chemical Engineering, Imperial College London, London, UK, SW7 2AZ
| | - Thomas Shenk
- ¶Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544
| | - Benjamin A Garcia
- ‖Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| |
Collapse
|
13
|
Murine cytomegalovirus protein pM92 is a conserved regulator of viral late gene expression. J Virol 2013; 88:131-42. [PMID: 24131717 DOI: 10.1128/jvi.02684-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In this study, we report that murine cytomegalovirus (MCMV) protein pM92 regulates viral late gene expression during virus infection. Previously, we have shown that MCMV protein pM79 and its human cytomegalovirus (HCMV) homologue pUL79 are required for late viral gene transcription. Identification of additional factors involved is critical to dissecting the mechanism of this regulation. We show here that pM92 accumulated abundantly at late times of infection in a DNA synthesis-dependent manner and localized to nuclear viral replication compartments. To investigate the role of pM92, we constructed a recombinant virus SMin92, in which pM92 expression was disrupted by an insertional/frameshift mutation. During infection, SMin92 accumulated representative viral immediate-early gene products, early gene products, and viral DNA sufficiently but had severe reduction in the accumulation of late gene products and was thus unable to produce infectious progeny. Coimmunoprecipitation and mass spectrometry analysis revealed an interaction between pM92 and pM79, as well as between their HCMV homologues pUL92 and pUL79. Importantly, we showed that the growth defect of pUL92-deficient HCMV could be rescued in trans by pM92. This study indicates that pM92 is an additional viral regulator of late gene expression, that these regulators (represented by pM92 and pM79) may need to complex with each other for their activity, and that pM92 and pUL92 share a conserved function in CMV infection. pM92 represents a potential new target for therapeutic intervention in CMV disease, and a gateway into studying a largely uncharted viral process that is critical to the viral life cycle.
Collapse
|
14
|
Poole E, Bain M, Teague L, Takei Y, Laskey R, Sinclair J. The cellular protein MCM3AP is required for inhibition of cellular DNA synthesis by the IE86 protein of human cytomegalovirus. PLoS One 2012; 7:e45686. [PMID: 23094019 PMCID: PMC3477159 DOI: 10.1371/journal.pone.0045686] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 08/24/2012] [Indexed: 11/18/2022] Open
Abstract
Like all DNA viruses, human cytomegalovirus (HCMV) infection is known to result in profound effects on host cell cycle. Infection of fibroblasts with HCMV is known to induce an advance in cell cycle through the G0-G1 phase and then a subsequent arrest of cell cycle in early S-phase, presumably resulting in a cellular environment optimum for high levels of viral DNA replication whilst precluding replication of cellular DNA. Although the exact mechanisms used to arrest cell cycle by HCMV are unclear, they likely involve a number of viral gene products and evidence points to the ability of the virus to prevent licensing of cellular DNA synthesis. One viral protein known to profoundly alter cell cycle is the viral immediate early 86 (IE86) protein - an established function of which is to initially drive cells into early S phase but then inhibit cellular DNA synthesis. Here we show that, although IE86 interacts with the cellular licensing factor Cdt1, it does not inhibit licensing of cellular origins. Instead, IE86-mediated inhibition of cellular DNA synthesis requires mini-chromosome-maintenance 3 (MCM3) associated protein (MCM3AP), which can cause subsequent inhibition of initiation of cellular DNA synthesis in a licensing-independent manner.
Collapse
Affiliation(s)
- Emma Poole
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Mark Bain
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Linda Teague
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Yoshinori Takei
- Hutchison/MRC Research Centre, University of Cambridge, Cambridge, United Kingdom
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Ron Laskey
- Hutchison/MRC Research Centre, University of Cambridge, Cambridge, United Kingdom
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - John Sinclair
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
15
|
Van Opdenbosch N, Favoreel H, Van de Walle GR. Histone modifications in herpesvirus infections. Biol Cell 2012; 104:139-64. [PMID: 22188068 DOI: 10.1111/boc.201100067] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 12/02/2011] [Indexed: 12/13/2022]
Abstract
In eukaryotic cells, gene expression is not only regulated by transcription factors but also by several epigenetic mechanisms including post-translational modifications of histone proteins. There are numerous histone modifications described to date and methylation, acetylation, ubiquitination and phosphorylation are amongst the best studied. In parallel, certain viruses interact with the very same regulatory mechanisms, hereby manipulating the normal epigenetic landscape of the host cell, to fit their own replication needs. This review concentrates on herpesviruses specifically and how they interfere with the histone-modifying enzymes to regulate their replication cycles. Herpesviruses vary greatly with respect to the cell types they infect and the clinical diseases they cause, yet they share various common features including their capacity to encode viral proteins which affect and interfere with the normal functions of histone-modifying enzymes. Studying the epigenetic manipulation/dysregulation of herpesvirus-host interactions not only generates novel insights into the pathogenesis of these viruses but may also have important therapeutic implications.
Collapse
Affiliation(s)
- Nina Van Opdenbosch
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium.
| | | | | |
Collapse
|
16
|
Mercorelli B, Lembo D, Palù G, Loregian A. Early inhibitors of human cytomegalovirus: state-of-art and therapeutic perspectives. Pharmacol Ther 2011; 131:309-29. [PMID: 21570424 PMCID: PMC7112563 DOI: 10.1016/j.pharmthera.2011.04.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 04/05/2011] [Indexed: 12/31/2022]
Abstract
Human cytomegalovirus (HCMV) infection is associated with severe morbidity and mortality in immunocompromised individuals, mainly transplant recipients and AIDS patients, and is the most frequent cause of congenital malformations in newborn children. To date, few drugs are licensed for the treatment of HCMV infections, most of which target the viral DNA polymerase and suffer from many drawbacks, including long-term toxicity, low potency, and poor bioavailability. In addition, the emergence of drug-resistant viral strains is becoming an increasing problem for disease management. Finally, none of the current anti-HCMV drugs have been approved for the treatment of congenital infections. For all these reasons, there is still a strong need for new anti-HCMV drugs with novel mechanisms of action. The first events of the virus replication cycle, including attachment, entry, immediate-early gene expression, and immediate-early functions—in particular that of Immediate-Early 2 protein—represent attractive targets for the development of novel antiviral compounds. Such inhibitors would block not only the expression of viral immediate-early proteins, which play a key role in the pathogenesis of HCMV infection, but also the host immunomodulation and the changes to cell physiology induced by the first events of virus infection. This review describes the current knowledge on the initial phases of HCMV replication, their validation as potential novel antiviral targets, and the development of compounds that block such processes.
Collapse
Affiliation(s)
- Beatrice Mercorelli
- Department of Histology, Microbiology and Medical Biotechnologies, University of Padova, 35121 Padova, Italy
| | | | | | | |
Collapse
|
17
|
Reeves MB. Chromatin-mediated regulation of cytomegalovirus gene expression. Virus Res 2010; 157:134-43. [PMID: 20875471 DOI: 10.1016/j.virusres.2010.09.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 09/17/2010] [Accepted: 09/17/2010] [Indexed: 02/03/2023]
Abstract
Following primary infection, whether Human cytomegalovirus (HCMV) enters either the latent or lytic lifecycle is dependent on the phenotype of the cell type infected. Multiple cell types are permissive for lytic infection with HCMV whereas, in contrast, well characterized sites of latency are restricted to a very specific population of CD34+ cells resident in the bone marrow and the immature myeloid cells they give rise to. It is becoming increasingly clear that one of the mechanisms that promote HCMV latency involves the recruitment of histone proteins to the major immediate early promoter (MIEP) which are subject to post-translational modifications that promote a transcriptionally inactive state. Integral to this, is the role of cellular transcriptional repressors that interact with histone modifying enzymes that promote and maintain this repressed state during latency. Crucially, the chromatin associated with the MIEP is dynamically regulated-myeloid cell differentiation triggers the acetylation of histones bound to the MIEP which is concomitant with the reactivation of IE gene expression and re-entry into lytic infection. Interestingly, this dynamic regulation of the MIEP by chromatin structure in latency extends not only into lytic infection but also for the regulation of multiple viral promoters in all phases of infection. HCMV lytic infection is characterised by a timely and co-ordinated pattern of gene expression that now has been shown to correlate with active post-translational modification of the histones associated with early and late promoters. These effects are mediated by the major IE products (IE72 and IE86) which physically and functionally interact with histone modifying enzymes resulting in the efficient activation of viral gene expression. Thus chromatin appears to play an important role in gene regulation in all phases of infection. Furthermore, these studies are highly suggestive that an intrinsic cellular anti-viral response to incoming viral genomes is to promote chromatinisation into a transcriptionally repressed state which the virus must overcome to establish a lytic infection. What is becoming evident is that chromatin structure is becoming as increasingly important for the regulation of viral gene expression as it is for cellular gene expression and thus understanding the mechanisms employed by HCMV to modulate chromatin function could have broader implications on our understanding of the control of gene expression in general.
Collapse
Affiliation(s)
- Matthew B Reeves
- Department of Medicine, University of Cambridge, Box 157, Level 5, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK.
| |
Collapse
|
18
|
Functional properties of the human cytomegalovirus IE86 protein required for transcriptional regulation and virus replication. J Virol 2010; 84:8839-48. [PMID: 20554773 DOI: 10.1128/jvi.00327-10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human cytomegalovirus (HCMV) IE86 protein is essential for HCMV replication due to its ability to transactivate critical viral early promoters. In the current study, we performed a comprehensive mutational analysis between amino acids (aa) 535 and 545 of IE86 and assessed the impact of these mutations on IE86-mediated transcriptional activation. Using transient assays and complementing analysis with recombinant HCMV clones, we show that single amino acid mutations differentially impair the ability of IE86 to mediate transactivation of essential early gene promoters. The conserved tyrosine at amino acid 544 is critical for activation of the UL54 promoter in vitro and in the context of the viral genome. In contrast, mutation of the proline at position 535 disrupted activation of the UL54 promoter in transient assays but displayed activity similar to that of wild-type (WT) IE86 when assessed in the genomic context. To examine the underlying mechanism of this differential effect, glutathione S-transferase (GST) pulldown assays were performed, revealing that Y544 is critical for binding to the TATA binding protein (TBP), suggesting that this interaction is likely necessary for the ability of IE86 to activate the UL54 promoter. In contrast, mutation of either P535 or Y544 disrupted activation of the UL112-113 promoter both in vitro and in vivo, suggesting that interaction with TBP is not sufficient for IE86-mediated activation of this early promoter. Together, these studies demonstrate that IE86 activates early promoters by distinct mechanisms.
Collapse
|
19
|
Role of noncovalent SUMO binding by the human cytomegalovirus IE2 transactivator in lytic growth. J Virol 2010; 84:8111-23. [PMID: 20519406 DOI: 10.1128/jvi.00459-10] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The 86-kDa immediate-early 2 (IE2) protein of human cytomegalovirus (HCMV) is a promiscuous transactivator essential for viral gene expression. IE2 is covalently modified by SUMO at two lysine residues (K175 and K180) and also interacts noncovalently with SUMO. Although SUMOylation of IE2 has been shown to enhance its transactivation activity, the role of SUMO binding is not clear. Here we showed that SUMO binding by IE2 is necessary for its efficient transactivation function and for viral growth. IE2 bound physically to SUMO-1 through a SUMO-interacting motif (SIM). Mutations in SIM (mSIM) or in both SUMOylation sites and SIM (KR/mSIM), significantly reduced IE2 transactivation effects on viral early promoters. The replication of IE2 SIM mutant viruses (mSIM or KR/mSIM) was severely depressed in normal human fibroblasts. Analysis of viral growth curves revealed that the replication defect of the mSIM virus correlated with low-level accumulation of SUMO-modified IE2 and of viral early and late proteins. Importantly, both the formation of viral transcription domains and the association of IE2 with viral promoters in infected cells were significantly reduced in IE2 SIM mutant virus infection. Furthermore, IE2 was found to interact with the SUMO-modified form of TATA-binding protein (TBP)-associated factor 12 (TAF12), a component of the TFIID complex, in a SIM-dependent manner, and this interaction enhanced the transactivation activity of IE2. Our data demonstrate that the interaction of IE2 with SUMO-modified proteins plays an important role for the progression of the HCMV lytic cycle, and they suggest a novel viral mechanism utilizing the cellular SUMO system.
Collapse
|
20
|
Human cytomegalovirus IE2 86 and IE2 40 proteins differentially regulate UL84 protein expression posttranscriptionally in the absence of other viral gene products. J Virol 2010; 84:5158-70. [PMID: 20200242 DOI: 10.1128/jvi.00090-10] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
It has previously been demonstrated that, during human cytomegalovirus infection, the viral IE2 86 and IE2 40 proteins are both important for the expression of an early-late viral protein, UL84. Here, we show that expression of the UL84 protein is enhanced upon cotransfection with either IE2 86 or IE2 40, although IE2 40 appears to play a more important role. The UL84 protein levels are tightly linked to the amount of IE2 40 present, but this does not appear to be true for IE2 86. RNA remains constant for all corresponding proteins, indicating posttranscriptional regulation of UL84. The first 105 amino acids of UL84 are necessary and sufficient for this phenotype, and this region is also required for an interaction with IE2 86 and IE2 40. Treatment with proteasome inhibitors shows that UL84 exhibits some proteasome-dependent degradation, and UL84 is not protected against this degradation when coexpressed with IE2 86 or IE2 40. UL84 also exhibits an inhibitory effect on IE2 86 and IE2 40 protein levels in these cotransfection assays. Further, we show that the amino acid sequence of UL84 is important for the enhancement governed by IE2 40. These results indicate that IE2 86, IE2 40, and UL84 serve to regulate protein expression in a posttranscriptional fashion and that this regulation is independent of other viral proteins.
Collapse
|
21
|
Paulus C, Nevels M. The human cytomegalovirus major immediate-early proteins as antagonists of intrinsic and innate antiviral host responses. Viruses 2009; 1:760-79. [PMID: 21994568 PMCID: PMC3185523 DOI: 10.3390/v1030760] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 11/04/2009] [Accepted: 11/05/2009] [Indexed: 12/21/2022] Open
Abstract
The major immediate-early (IE) gene of human cytomegalovirus (CMV) is believed to have a decisive role in acute infection and its activity is an important indicator of viral reactivation from latency. Although a variety of gene products are expressed from this region, the 72-kDa IE1 and the 86-kDa IE2 nuclear phosphoproteins are the most abundant and important. Both proteins have long been recognized as promiscuous transcriptional regulators. More recently, a critical role of the IE1 and IE2 proteins in counteracting non-adaptive host cell defense mechanisms has been revealed. In this review we will briefly summarize the available literature on IE1- and IE2-dependent mechanisms contributing to CMV evasion from intrinsic and innate immune responses.
Collapse
Affiliation(s)
- Christina Paulus
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Franz-Josef-Strauss-Allee 11, D-93053 Regensburg, Germany; E-Mail:
| | | |
Collapse
|
22
|
The transactivating effect of HSV-1 ICP0 is enhanced by its interaction with the PCAF component of histone acetyltransferase. Arch Virol 2009; 154:1755-64. [PMID: 19809866 DOI: 10.1007/s00705-009-0516-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 09/06/2009] [Indexed: 10/20/2022]
Abstract
ICP0 is a multifunctional protein that plays diverse roles in herpes simplex virus type 1 (HSV-1) infection. It can promote the lytic replication of HSV-1 and activate a variety of viral or cellular genes when introduced into cells by transfection or infection. However, the exact mechanism of ICP0 action is not fully understood. In the present study, we observed the co-localization of ICP0 and PCAF (P300/CBP-associated factor), a component of histone acetyltransferase (HAT), in the ND10 (nuclear dot 10) nuclear body. We further confirmed the interaction between ICP0 and PCAF via yeast two-hybrid assay, co-immunoprecipitation, and histone acetyltransferase assays. Analysis of the functional significance of this interaction suggested that PCAF improved the ability of ICP0 to activate transcription of viral genes. Using chromatin immunoprecipitation (ChIP) assays, we observed ICP0-enhanced histone acetylation levels in both viral and cellular gene promoters. Our study suggests that ICP0 regulates transcription through specific interaction with PCAF.
Collapse
|
23
|
Effect of inducible expressed human cytomegalovirus immediate early 86 protein on cell apoptosis. Biosci Biotechnol Biochem 2009; 73:1268-73. [PMID: 19502735 DOI: 10.1271/bbb.80722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Human cytomegalovirus is a common human pathogen that can cause life-threatening disease under certain conditions. During infection of host cells, the virus expresses regulatory proteins such as IE72 and IE86 that are important for viral propagation. IE86 plays a critical role in the modulation of viral replication as well as host cell cycle control and apoptosis. In this study, a Tet-On system was used to quantify the effect of IE86 on apoptosis and p53 expression. Our results indicate that IE86 inhibits tumor necrosis factor (TNF)-alpha induced apoptosis and that the anti-apoptotic activity of this viral protein correlates with its expression levels. In addition, IE86 did not alter the mRNA level of p53. The system developed should provide a method for functional analysis of human cytomegalovirus (HCMV) IE86 protein.
Collapse
|
24
|
Kutluay SB, Triezenberg SJ. Role of chromatin during herpesvirus infections. Biochim Biophys Acta Gen Subj 2009; 1790:456-66. [PMID: 19344747 DOI: 10.1016/j.bbagen.2009.03.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 03/19/2009] [Accepted: 03/24/2009] [Indexed: 12/19/2022]
Abstract
DNA viruses have long served as model systems to elucidate various aspects of eukaryotic gene regulation, due to their ease of manipulation and relatively low complexity of their genomes. In some cases, these viruses have revealed mechanisms that are subsequently recognized to apply also to cellular genes. In other cases, viruses adopt mechanisms that prove to be exceptions to the more general rules. The double-stranded DNA viruses that replicate in the eukaryotic nucleus typically utilize the host cell RNA polymerase II (RNAP II) for viral gene expression. As a consequence, these viruses must reckon with the impact of chromatin on active transcription and replication. Unlike the small DNA tumor viruses, such as polyomaviruses and papillomaviruses, the relatively large genomes of herpesviruses are not assembled into nucleosomes in the virion and stay predominantly free of histones during lytic infection. In contrast, during latency, the herpesvirus genomes associate with histones and become nucleosomal, suggesting that regulation of chromatin per se may play a role in the switch between the two stages of infection, a long-standing puzzle in the biology of herpesviruses. In this review we will focus on how chromatin formation on the herpes simplex type-1 (HSV-1) genome is regulated, citing evidence supporting the hypothesis that the switch between the lytic and latent stages of HSV-1 infection might be determined by the chromatin state of the HSV-1.
Collapse
Affiliation(s)
- Sebla B Kutluay
- Graduate Program in Cell and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | | |
Collapse
|
25
|
Koh K, Lee K, Ahn JH, Kim S. Human cytomegalovirus infection downregulates the expression of glial fibrillary acidic protein in human glioblastoma U373MG cells: identification of viral genes and protein domains involved. J Gen Virol 2009; 90:954-962. [PMID: 19264642 DOI: 10.1099/vir.0.006486-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human cytomegalovirus (HCMV) has tropism for glial cells, among many other cell types. It was reported previously that the stable expression of HCMV immediate-early protein 1 (IE1) could dramatically reduce the RNA level of glial fibrillary acidic protein (GFAP), an astroglial cell-specific intermediate filament protein, which is progressively lost with an increase in glioma malignancy. To understand this phenomenon in the context of virus infection, a human glioblastoma cell line, U373MG, was infected with HCMV (strain AD169 or Towne). The RNA level of GFAP was reduced by more than 10-fold at an m.o.i. of 3 at 48 h post-infection, whilst virus treated with neutralizing antibody C23 or with UV light had a much-reduced effect. Treatment of infected cells with ganciclovir did not prevent HCMV-mediated downregulation of GFAP. Although the expression of GFAP RNA is downregulated in IE1-expressing cells, a mutant HCMV strain lacking IE1 still suppressed GFAP, indicating that other IE proteins may be involved. IE2 is also proposed to be involved in GFAP downregulation, as an adenoviral vector expressing IE2 could also reduce the RNA level of GFAP. Data from the mutational analysis indicated that HCMV infection might affect the expression of this structural protein significantly, primarily through the C-terminal acidic region of the IE1 protein.
Collapse
Affiliation(s)
- Kyungmi Koh
- School of Biological Sciences, Seoul National University, Seoul 151-747, Republic of Korea
| | - Karim Lee
- School of Biological Sciences, Seoul National University, Seoul 151-747, Republic of Korea
| | - Jin-Hyun Ahn
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Kyonggido 440-746, Republic of Korea
| | - Sunyoung Kim
- School of Biological Sciences, Seoul National University, Seoul 151-747, Republic of Korea
| |
Collapse
|
26
|
Mercorelli B, Sinigalia E, Loregian A, Palù G. Human cytomegalovirus DNA replication: antiviral targets and drugs. Rev Med Virol 2008; 18:177-210. [PMID: 18027349 DOI: 10.1002/rmv.558] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Human cytomegalovirus (HCMV) infection is associated with severe morbidity and mortality in immunocompromised individuals, in particular transplant recipients and AIDS patients, and is the most frequent congenital viral infection in humans. There are currently five drugs approved for HCMV treatment: ganciclovir and its prodrug valganciclovir, foscarnet, cidofovir and fomivirsen. These drugs have provided a major advance in HCMV disease management, but they suffer from poor bioavailability, significant toxicity and limited effectiveness, mainly due to the development of drug resistance. Fortunately, there are several novel and potentially very effective new compounds which are under pre-clinical and clinical evaluation and may address these limitations. This review focuses on HCMV proteins that are directly or indirectly involved in viral DNA replication and represent already established or potential novel antiviral targets, and describes both currently available drugs and new compounds against such protein targets.
Collapse
Affiliation(s)
- Beatrice Mercorelli
- Department of Histology, Microbiology and Medical Biotechnologies, University of Padua, 35121 Padua, Italy
| | | | | | | |
Collapse
|
27
|
Dynamic histone H3 acetylation and methylation at human cytomegalovirus promoters during replication in fibroblasts. J Virol 2008; 82:9525-36. [PMID: 18653451 DOI: 10.1128/jvi.00946-08] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Human cytomegalovirus DNA is packaged in virions without histones but associates with histones upon reaching the nucleus of an infected cell. Since transcription is modulated by the interplay of histone modifications, we used chromatin immunoprecipitation to detect acetylation and methylation of histone H3 at viral promoters at different times during the viral replication cycle. Histone H3 at immediate-early promoters is acetylated at the start of infection, while it is initially methylated at early and late promoters. Acetylation at immediate-early promoters is dynamic, with a high level of activating modifications at 3 and 6 h postinfection (hpi), followed by a marked reduction at 12 hpi. All viral promoters, as well as nonpromoter regions, are modified with activating acetylations at 24 to 72 hpi. The transient reduction in histone H3 acetylation at the major immediate-early promoter depends on the cis-repressive sequence to which the UL122-coded IE2 protein binds. A mutant virus lacking this element exhibited decreased IE2 binding at the major immediate-early promoter and failed to show reduced acetylation of histone H3 residing at this promoter at 12 hpi. Our results demonstrate that cytomegalovirus chromatin undergoes dynamic, promoter-specific histone modifications early in the infectious cycle, after which the entire chromosome becomes highly acetylated.
Collapse
|
28
|
Development of cell lines that provide tightly controlled temporal translation of the human cytomegalovirus IE2 proteins for complementation and functional analyses of growth-impaired and nonviable IE2 mutant viruses. J Virol 2008; 82:7059-77. [PMID: 18463148 DOI: 10.1128/jvi.00675-08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human cytomegalovirus (HCMV) IE2 86 protein is essential for viral replication. Two other proteins, IE2 60 and IE2 40, which arise from the C-terminal half of IE2 86, are important for later stages of the infection. Functional analyses of IE2 86 in the context of the infection have utilized bacterial artificial chromosomes as vectors to generate mutant viruses. One limitation is that many mutations result in debilitated or nonviable viruses. Here, we describe a novel system that allows tightly controlled temporal expression of the IE2 proteins and provides complementation of both growth-impaired and nonviable IE2 mutant viruses. The strategy involves creation of cell lines with separate lentiviruses expressing a bicistronic RNA with a selectable marker as the first open reading frame (ORF) and IE2 86, IE2 60, or IE2 40 as the second ORF. Induction of expression of the IE2 proteins occurs only following DNA recombination events mediated by Cre and FLP recombinases that delete the first ORF. HCMV encodes Cre and FLP, which are expressed at immediate-early (for IE2 86) and early-late (for IE2 40 and IE2 60) times, respectively. We show that the presence of full-length IE2 86 alone provides some complementation for virus production, but the correct temporal expression of IE2 86 and IE2 40 together has the most beneficial effect for early-late gene expression and synthesis of infectious virus. This approach for inducible protein translation can be used for complementation of other mutations as well as controlled expression of toxic cellular and microbial proteins.
Collapse
|
29
|
Poole E, Atkins E, Nakayama T, Yoshie O, Groves I, Alcami A, Sinclair J. NF-kappaB-mediated activation of the chemokine CCL22 by the product of the human cytomegalovirus gene UL144 escapes regulation by viral IE86. J Virol 2008; 82:4250-6. [PMID: 18287226 PMCID: PMC2293074 DOI: 10.1128/jvi.02156-07] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Accepted: 02/06/2008] [Indexed: 11/20/2022] Open
Abstract
The product of the human cytomegalovirus (HCMV) gene UL144, expressed at early times postinfection, is located in the UL/b' region of the viral genome and is related to members of the tumor necrosis factor receptor superfamily, but it does not bind tumor necrosis factor superfamily ligands. However, UL144 does activate NF-kappaB, resulting in NF-kappaB-mediated activation of the cellular chemokine CCL22. Consistent with this finding, isolates of HCMV lacking the UL/b' region show no such activation of CCL22. Recently, it has been suggested that activation of NF-kappaB is repressed by the product of the viral gene IE86: IE86 appears to block NF-kappaB binding to DNA but not nuclear translocation of NF-kappaB. Intriguingly, IE86 is detectable throughout an infection with the virus, so how UL144 is able to activate NF-kappaB in the presence of continued IE86 expression is unclear. Here we show that although IE86 does repress the UL144-mediated activation of a synthetic NF-kappaB promoter, it is unable to block UL144-mediated activation of the CCL22 promoter, and this lack of responsiveness to IE86 appears to be regulated by binding of the CREB transcription factor.
Collapse
Affiliation(s)
- Emma Poole
- Department of Medicine, Box 157, University of Cambridge, Level 5 Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
The IE86 protein of human cytomegalovirus (HCMV) is unique among viral and cellular proteins because it negatively autoregulates its own expression, activates the viral early and late promoters, and both activates and inhibits cellular promoters. It promotes cell cycle progression from Go/G1 to G1/S and arrests cell cycle progression at the G1/S interface or at G2/M. The IE86 protein is essential because it creates a cellular environment favorable for viral replication. The multiple functions of the IE86 protein during the replication of HCMV are reviewed.
Collapse
|
31
|
Sourvinos G, Tavalai N, Berndt A, Spandidos DA, Stamminger T. Recruitment of human cytomegalovirus immediate-early 2 protein onto parental viral genomes in association with ND10 in live-infected cells. J Virol 2007; 81:10123-36. [PMID: 17626080 PMCID: PMC2045433 DOI: 10.1128/jvi.01009-07] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Accepted: 07/03/2007] [Indexed: 01/20/2023] Open
Abstract
The human cytomegalovirus (HCMV) immediate-early 2 (IE2) transactivator has previously been shown to form intranuclear, dot-like accumulations in association with subnuclear structures known as promyelocytic leukemia protein (PML) nuclear bodies or ND10. We recently observed that IE2 can form dot-like structures even after infection of PML knockdown cells, which lack genuine ND10. To further analyze the determinants of IE2 subnuclear localization, a recombinant HCMV expressing IE2 fused to the enhanced green fluorescent protein was constructed. We infected primary human fibroblasts expressing Sp100 fused to the autofluorescent protein mCherry while performing live-cell imaging experiments. These experiments revealed a very dynamic association of IE2 dots with ND10 structures during the first hours postinfection: juxtaposed structures rapidly fused to precise co-localizations, followed by segregation, and finally, the dispersal of ND10 accumulations. Furthermore, by infecting PML knockdown cells we determined that the number of IE2 accumulations was dependent on the multiplicity of infection. Since time-lapse microscopy in live-infected cells revealed that IE2 foci developed into viral replication compartments, we hypothesized that viral DNA could act as a determinant of IE2 accumulations. Direct evidence that IE2 molecules are associated with viral DNA early after HCMV infection was obtained using fluorescence in situ hybridization. Finally, a DNA-binding-deficient IE2 mutant could no longer be recruited into viral replication centers, suggesting that the association of IE2 with viral DNA is mediated by a direct DNA contact. Thus, we identified viral DNA as an important determinant of IE2 subnuclear localization, which suggests that the formation of a virus-induced nucleoprotein complex and its spatial organization is likely to be critical at the early stages of a lytic infection.
Collapse
Affiliation(s)
- George Sourvinos
- Institut für Klinische und Molekulare Virologie, University Hospital Erlangen, Schlossgarten 4, 91054 Erlangen, Germany
| | | | | | | | | |
Collapse
|
32
|
Gealy C, Humphreys C, Dickinson V, Stinski M, Caswell R. An activation-defective mutant of the human cytomegalovirus IE2p86 protein inhibits NF-κB-mediated stimulation of the human interleukin-6 promoter. J Gen Virol 2007; 88:2435-2440. [PMID: 17698652 DOI: 10.1099/vir.0.82925-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The IE2p86 protein of human cytomegalovirus is an essential activator of early- and late-phase viral gene expression. Whilst IE2p86 activates expression of a number of cellular genes, it also represses certain cellular genes, particularly those activated by nuclear factor κB (NF-κB). As the interleukin-6 (IL-6) promoter can be activated by both NF-κB and IE2p86, it was examined whether there is competition between these two factors. Here, it is reported that both wild-type and mutant IE2p86 can block activation of the IL-6 promoter in response to interleukin-1β. By using an artificial activator in which the activation domain of NF-κB is directed to the promoter by the GAL4 DNA-binding domain, it is shown that the mutant form of IE2p86 can inhibit NF-κB-mediated activation at a step subsequent to promoter recruitment. These data therefore suggest a novel mechanism for inhibition of NF-κB by IE2p86.
Collapse
Affiliation(s)
- Claire Gealy
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3US, UK
| | | | - Vicky Dickinson
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3US, UK
| | - Mark Stinski
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Richard Caswell
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3US, UK
| |
Collapse
|
33
|
Yee LF, Lin PL, Stinski MF. Ectopic expression of HCMV IE72 and IE86 proteins is sufficient to induce early gene expression but not production of infectious virus in undifferentiated promonocytic THP-1 cells. Virology 2007; 363:174-88. [PMID: 17331553 DOI: 10.1016/j.virol.2007.01.036] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Revised: 01/09/2007] [Accepted: 01/30/2007] [Indexed: 12/19/2022]
Abstract
Human cytomegalovirus (HCMV) reactivation from latency causes disease in individuals who are immunocompromised or immunosuppressed. Activation of the major immediate-early (MIE) promoter is thought to be an initial step for reactivation. We determined whether expression of the MIE gene products in trans was sufficient to circumvent an HCMV latent-like state in an undifferentiated transformed human promonocytic (THP)-1 cell model system. Expression of the functional MIE proteins was achieved with a replication-defective adenovirus vector, Ad-IE1/2, which contains the MIE gene locus. Expression of the MIE proteins by Ad-IE1/2 prior to HCMV infection induced viral early gene expression accompanied by an increase in active chromatin signals. Expression of the anti-apoptotic protein encoded by UL37x1 increased viral early gene expression. However, viral DNA replication and production of infectious virus was not detected. As expected, cellular differentiation with phorbol 12-myristate 13-acetate and hydrocortisone induced virus production. Cellular differentiation is required for efficient viral reactivation.
Collapse
Affiliation(s)
- Lian-Fai Yee
- 3-701 BSB, 51 Newton Road, Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
34
|
Reeves M, Murphy J, Greaves R, Fairley J, Brehm A, Sinclair J. Autorepression of the human cytomegalovirus major immediate-early promoter/enhancer at late times of infection is mediated by the recruitment of chromatin remodeling enzymes by IE86. J Virol 2006; 80:9998-10009. [PMID: 17005678 PMCID: PMC1617317 DOI: 10.1128/jvi.01297-06] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The human cytomegalovirus major immediate-early protein IE86 is pivotal for coordinated regulation of viral gene expression throughout infection. A relatively promiscuous transactivator of viral early and late gene transcription, IE86 also acts during infection to negatively regulate its own promoter via direct binding to a 14-bp palindromic IE86-binding site, the cis repression sequence (crs), located between the major immediate-early promoter (MIEP) TATA box and the start of transcription. Although such autoregulation does not involve changes in the binding of basal transcription factors to the MIEP in vitro, it does appear to involve selective inhibition of RNA polymerase II recruitment. However, how this occurs is unclear. We show that autorepression by IE86 at late times of infection correlates with changes in chromatin structure around the MIEP during the course of infection and that this is likely to result from physical and functional interactions between IE86 and chromatin remodeling enzymes normally associated with transcriptional repression of cellular promoters. Firstly, we show that IE86-mediated autorepression is inhibited by histone deacetylase inhibitors. We also show that IE86 interacts, in vitro and in vivo, with the histone deacetylase HDAC1 and histone methyltransferases G9a and Suvar(3-9)H1 and that coexpression of these chromatin remodeling enzymes with IE86 increases autorepression of the MIEP. Finally, we show that mutation of the crs in the context of the virus abrogates the transcriptionally repressive chromatin phenotype normally found around the MIEP at late times of infection, suggesting that negative autoregulation by IE86 results, at least in part, from IE86-mediated changes in chromatin structure of the viral MIEP.
Collapse
Affiliation(s)
- Matthew Reeves
- Department of Medicine, Box 157, Level 5, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, United Kingdom
| | | | | | | | | | | |
Collapse
|
35
|
Preston CM, Nicholl MJ. Role of the cellular protein hDaxx in human cytomegalovirus immediate-early gene expression. J Gen Virol 2006; 87:1113-1121. [PMID: 16603511 DOI: 10.1099/vir.0.81566-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Human cytomegalovirus (HCMV) immediate-early (IE) transcription is stimulated by virion phosphoprotein pp71, the product of gene UL82. It has previously been shown that pp71 interacts with the cellular protein hDaxx and, in the studies presented here, the significance of this interaction was investigated for HCMV IE gene expression. In co-transfection experiments, the presence of hDaxx increased the transcriptional response of the HCMV major IE promoter (MIEP) to pp71, but it was not possible to determine whether the effect was due to an interaction between the two proteins or to stimulation of hDaxx synthesis by pp71. The use of small interfering RNA (siRNA) in long- and short-term transfection approaches reduced intracellular hDaxx levels to no more than 3 % of normal. Infection of hDaxx-depleted cells with herpes simplex virus recombinants containing the HCMV MIEP revealed significantly greater promoter activity when hDaxx levels were minimal. Similarly, reducing intracellular hDaxx amounts resulted in greater IE gene expression during infection with an HCMV mutant lacking pp71, but had no effect on IE transcription during infection with wild-type HCMV. The results suggest that hDaxx is not important as a positive-acting factor for the stimulation of HCMV IE transcription by pp71. Instead, it appears that hDaxx acts as a repressor of IE gene expression, and it is proposed here that the interaction of pp71 with hDaxx is important to relieve repression and permit efficient initiation of productive replication.
Collapse
Affiliation(s)
- Chris M Preston
- Medical Research Council Virology Unit, Church Street, Glasgow G11 5JR, UK
| | - Mary Jane Nicholl
- Medical Research Council Virology Unit, Church Street, Glasgow G11 5JR, UK
| |
Collapse
|
36
|
Petrik DT, Schmitt KP, Stinski MF. Inhibition of cellular DNA synthesis by the human cytomegalovirus IE86 protein is necessary for efficient virus replication. J Virol 2006; 80:3872-83. [PMID: 16571804 PMCID: PMC1440472 DOI: 10.1128/jvi.80.8.3872-3883.2006] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Human cytomegalovirus (HCMV) expresses several proteins that manipulate normal cellular functions, including cellular transcription, apoptosis, immune response, and cell cycle control. The IE2 gene, which is expressed from the HCMV major immediate-early (MIE) promoter, encodes the IE86 protein. IE86 is a multifunctional protein that is essential for viral replication. The functions of IE86 include transactivation of cellular and viral early genes, negative autoregulation of the MIE promoter, induction of cell cycle progression from G0/G1 to G1/S, and arresting cell cycle progression at the G1/S transition in p53-positive human foreskin fibroblast (HFF) cells. Mutations were introduced into the IE2 gene in the context of the viral genome using bacterial artificial chromosomes (BACs). From these HCMV BACs, a recombinant virus (RV) with a single amino acid substitution in the IE86 protein was isolated that replicates slower and to lower titers than wild-type HCMV. HFF cells infected with the Q548R RV undergo cellular DNA synthesis and do not arrest at any point in the cell cycle. The Q548R RV is able to negatively autoregulate the MIE promoter, transactivate viral early genes, activate cellular E2F-responsive genes, and produce infectious virus. This is the first report of a viable recombinant HCMV that is unable to inhibit cellular DNA synthesis in infected HFF cells.
Collapse
Affiliation(s)
- Dustin T Petrik
- Interdisciplinary Graduate Program in Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
37
|
Wright E, Bain M, Teague L, Murphy J, Sinclair J. Ets-2 repressor factor recruits histone deacetylase to silence human cytomegalovirus immediate-early gene expression in non-permissive cells. J Gen Virol 2005; 86:535-544. [PMID: 15722512 DOI: 10.1099/vir.0.80352-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Previous work from this laboratory has shown that expression of human cytomegalovirus (HCMV) immediate-early (IE) genes from the major immediate-early promoter (MIEP) is likely to be regulated by chromatin remodelling around the promoter affecting the acetylation state of core histone tails. The HCMV MIEP contains sequences that bind cellular transcription factors responsible for its negative regulation in undifferentiated, non-permissive cells. Ets-2 repressor factor (ERF) is one such factor that binds to such sequences and represses IE gene expression. Although it is not known how cellular transcription factors such as ERF mediate transcriptional repression of the MIEP, it is likely to involve differentiation-specific co-factors. In this study, the mechanism by which ERF represses HCMV IE gene expression was analysed. ERF physically interacts with the histone deacetylase, HDAC1, both in vitro and in vivo and this physical interaction between ERF and HDAC1 mediates repression of the MIEP. This suggests that silencing of viral IE gene expression, associated with histone deacetylation events around the MIEP, is mediated by differentiation-dependent cellular factors such as ERF, which specifically recruit chromatin remodellers to the MIEP in non-permissive cells.
Collapse
Affiliation(s)
- Edward Wright
- Department of Medicine, University of Cambridge, PO Box 157, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | - Mark Bain
- Department of Medicine, University of Cambridge, PO Box 157, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | - Linda Teague
- Department of Medicine, University of Cambridge, PO Box 157, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | - Jane Murphy
- Department of Medicine, University of Cambridge, PO Box 157, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | - John Sinclair
- Department of Medicine, University of Cambridge, PO Box 157, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| |
Collapse
|
38
|
Taylor RT, Bresnahan WA. Human cytomegalovirus immediate-early 2 gene expression blocks virus-induced beta interferon production. J Virol 2005; 79:3873-7. [PMID: 15731283 PMCID: PMC1075717 DOI: 10.1128/jvi.79.6.3873-3877.2005] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The effect of human cytomegalovirus (HCMV) gene expression on beta interferon (IFN-beta) expression was examined. We demonstrate that the HCMV immediate-early 2 (IE2) gene product IE86 can effectively block the induction of IFN-beta during HCMV infection. IE86 also efficiently blocked the induction of IFN-beta following Sendai virus infection, demonstrating that IE86's ability to block induction of IFN-beta is not limited to HCMV infection, identifying IE2 as an IFN-beta antagonist.
Collapse
Affiliation(s)
- R Travis Taylor
- Department of Microbiology, University of Minnesota, 1060 Mayo Building, MMC196, Minneapolis, MN 55455, USA
| | | |
Collapse
|
39
|
Gealy C, Denson M, Humphreys C, McSharry B, Wilkinson G, Caswell R. Posttranscriptional suppression of interleukin-6 production by human cytomegalovirus. J Virol 2005; 79:472-85. [PMID: 15596840 PMCID: PMC538736 DOI: 10.1128/jvi.79.1.472-485.2005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human cytomegalovirus (HCMV) has evolved multiple strategies for suppression of the antiviral response of the infected cell. DNA array technology has revealed that HCMV clearly regulates host gene expression during the course of a productive infection by enhancing, sustaining, or suppressing steady-state levels of cellular transcripts. Interleukin-6 (IL-6) is a pleiotropic cytokine that plays a central role in the immune response to infection. Here we report a detailed study of the effects of HCMV infection on IL-6 expression by human fibroblasts. UV-inactivated virus was found to induce high levels of IL-6 mRNA and protein expression, and IL-6 mRNA remained abundant in cells 16 h after inoculation even though the level of ongoing IL-6 transcription was not significantly enhanced. In lytic HCMV infections, the onset of viral gene expression resulted in two apparently antagonistic effects on IL-6 expression: (i) transcriptional activation, mediated at least in part by the IE2p86 protein, and (ii) posttranscriptional suppression mediated by destabilization of IL-6 mRNA. Transcriptional activation was outweighed by the suppressive effect, such that cells undergoing productive infection produced less IL-6 than cells challenged with inactivated virus. Suppression of IL-6 expression was independent of the viral IL-10 homologue, cmvIL-10. Destabilization of IL-6 mRNA was observed to coincide with the enhanced expression and aberrant intracellular localization of HuR, an mRNA-binding protein known to interact with IL-6 and other mRNAs containing 3' AU-rich elements. Our data suggest a novel mechanism for gene regulation by HCMV at the posttranscriptional level.
Collapse
Affiliation(s)
- Claire Gealy
- Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | | | | | | | | | | |
Collapse
|
40
|
Nevels M, Paulus C, Shenk T. Human cytomegalovirus immediate-early 1 protein facilitates viral replication by antagonizing histone deacetylation. Proc Natl Acad Sci U S A 2004; 101:17234-9. [PMID: 15572445 PMCID: PMC535392 DOI: 10.1073/pnas.0407933101] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The human cytomegalovirus 72-kDa immediate-early (IE)1 and 86-kDa IE2 proteins are expressed at the start of infection, and they are believed to exert much of their function through promiscuous transcriptional activation of viral and cellular gene expression. Here, we show that the impaired growth of an IE1-deficient mutant virus in human fibroblasts is efficiently rescued by histone deacetylase (HDAC) inhibitors of three distinct chemical classes. In the absence of IE1 expression, the viral major IE and UL44 early promoters exhibited decreased de novo acetylation of histone H4 during the early phase of infection, and the hypoacetylation correlated with reduced transcription and accumulation of the respective gene products. Consistent with these findings, IE1 interacts specifically with HDAC3 within infected cells. We also demonstrate an interaction between IE2 and HDAC3. We propose that the ability to modify chromatin is fundamental to transcriptional activation by IE1 and, likely, IE2 as well.
Collapse
Affiliation(s)
- Michael Nevels
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014, USA
| | | | | |
Collapse
|
41
|
Asmar J, Wiebusch L, Truss M, Hagemeier C. The putative zinc finger of the human cytomegalovirus IE2 86-kilodalton protein is dispensable for DNA binding and autorepression, thereby demarcating a concise core domain in the C terminus of the protein. J Virol 2004; 78:11853-64. [PMID: 15479827 PMCID: PMC523240 DOI: 10.1128/jvi.78.21.11853-11864.2004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The IE2 86-kDa gene product is an essential regulatory protein of human cytomegalovirus (HCMV) with several functions, including transactivation, negative autoregulation, and cell cycle regulation. In order to understand the physiological significance of each of the IE2 functions, discriminating mutants of IE2 are required that can be tested in a viral background. However, no such mutants of IE2 are available, possibly reflecting structural peculiarities of the large and ill-defined C-terminal domain of IE2. Here, we revisited the C-terminal domain by analyzing IE2 mutants for transactivation, DNA binding, autoregulation, and cell cycle regulation in parallel. We found it to contain an unexpectedly concise core domain (amino acids 450 to 544) that is defined by its absolute sensitivity to any kind of mutation. In contrast, the region adjacent to the core (amino acids 290 to 449) generally tolerates mutations much better. Although it contributes more specific sequence information to distinct IE2 activities, none of the mutations analyzed abolished any particular function. The core is demarcated from the adjacent region by the putative zinc finger region (amino acids 428 to 452). Surprisingly, the deletion of the putative zinc finger region from IE2 revealed that this region is entirely dispensable for any of the IE2 functions tested here in transfection assays. Our work supports the view that the 100 amino acids of the core domain hold the key to most functions of IE2. A systematic, high-density mutational analysis of this region may identify informative mutants discriminating between various IE2 functions that can then be tested in a viral background.
Collapse
Affiliation(s)
- Jasmin Asmar
- Laboratory for Molecular Biology, Department of Pediatrics, Charité, Humboldt-University, Ziegelstr. 5-9, D-10098 Berlin, Germany
| | | | | | | |
Collapse
|
42
|
Hsu CH, Chang MDT, Tai KY, Yang YT, Wang PS, Chen CJ, Wang YH, Lee SC, Wu CW, Juan LJ. HCMV IE2-mediated inhibition of HAT activity downregulates p53 function. EMBO J 2004; 23:2269-80. [PMID: 15141169 PMCID: PMC419916 DOI: 10.1038/sj.emboj.7600239] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2003] [Accepted: 04/21/2004] [Indexed: 11/09/2022] Open
Abstract
Targeting of cellular histone acetyltransferases (HATs) by viral proteins is important in the development of virus-associated diseases. The immediate-early 2 protein (IE2) of human cytomegalovirus (HCMV) binds to the tumor suppressor, p53, and inactivates its functions by unknown mechanisms. Here, we show that IE2 binds to the HAT domain of the p53 coactivators, p300 and CREB-binding protein (CBP), and blocks their acetyltransferase activity on both histones and p53. The minimal HAT inactivation region on IE2 involves the N-terminal 98 amino acids. The in vivo DNA binding of p53 and local histone acetylation on p53-dependent promoters are all reduced by IE2, but not by mutant IE2 proteins that lack the HAT inhibition region. Furthermore, the p53 acetylation site mutant, K320/373/382R, retains both DNA binding and promoter transactivation activity in vivo and these effects are repressed by IE2 as well. Together with the finding that only wild-type IE2 exerts an antiapoptotic effect, our results suggest that HCMV IE2 downregulates p53-dependent gene activation by inhibiting p300/CBP-mediated local histone acetylation and that IE2 may have oncogenic activity.
Collapse
Affiliation(s)
- Chih-Hung Hsu
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
- President Laboratory, National Health Research Institutes, Taipei, Taiwan
| | - Margaret D T Chang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Kang-Yu Tai
- President Laboratory, National Health Research Institutes, Taipei, Taiwan
| | - Yu-Ting Yang
- President Laboratory, National Health Research Institutes, Taipei, Taiwan
| | - Pei-Shan Wang
- President Laboratory, National Health Research Institutes, Taipei, Taiwan
| | - Chi-Ju Chen
- Institute of Microbiology, National Yang-Ming University, Taipei, Taiwan
| | - Yan-Hsiung Wang
- Institute of Molecular Medicine, National Taiwan University, Taipei, Taiwan
| | - Sheng-Chung Lee
- Institute of Molecular Medicine, National Taiwan University, Taipei, Taiwan
| | - Cheng-Wen Wu
- President Laboratory, National Health Research Institutes, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Li-Jung Juan
- President Laboratory, National Health Research Institutes, Taipei, Taiwan
| |
Collapse
|
43
|
Popkin DL, Watson MA, Karaskov E, Dunn GP, Bremner R, Virgin HW. Murine cytomegalovirus paralyzes macrophages by blocking IFN gamma-induced promoter assembly. Proc Natl Acad Sci U S A 2003; 100:14309-14. [PMID: 14614150 PMCID: PMC283588 DOI: 10.1073/pnas.1835673100] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Macrophages (M phi) are activated by IFN gamma and are important cellular targets for infection by human and murine cytomegalovirus (MCMV), making it advantageous for CMVs to block IFN gamma-induced M phi differentiation. We found that MCMV infection inhibited IFN gamma regulation of many genes in M phi. MCMV infection blocked IFN gamma responses at the level of transcription without blocking Janus kinase/signal transducer and activator of transcription pathway activation and targeted IFN response factor 1- and class II transactivator-dependent and independent promoters. MCMV did not alter basal transcription from IFN gamma-responsive promoters and left the majority of cellular transcripts unchanged even after 48 h of infection. The effects of MCMV infection were specific to chromosomal rather than transiently transfected promoters. Characterization of the IFN gamma-responsive chromosomal class II transactivator promoter revealed that MCMV infection blocked IFN gamma-induced promoter assembly, allowing the virus to transcriptionally paralyze infected M phi responses while allowing basal transcription to proceed.
Collapse
Affiliation(s)
- Daniel L Popkin
- Department of Pathology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
44
|
Avvakumov N, Torchia J, Mymryk JS. Interaction of the HPV E7 proteins with the pCAF acetyltransferase. Oncogene 2003; 22:3833-41. [PMID: 12813456 DOI: 10.1038/sj.onc.1206562] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Most cervical carcinomas express the E6 and E7 proteins of a high-risk human papillomavirus (HPV). These proteins affect growth control by interfering with the functions of cell regulatory proteins, promoting oncogenic transformation. A key target of E7 is the tumor suppressor protein pRb, which directly interacts with E7. However, binding to additional cellular regulatory proteins is clearly required for oncogenesis, as mutants of E7 have been identified that bind to pRb, yet fail to transform efficiently. Here we demonstrate the interaction of the HPV 6, 16 and 18 E7 proteins with the pCAF acetyltransferase, which has been reported to function as a coactivator for a variety of transcription factors including p53. Mutation of a highly conserved leucine residue within the zinc finger region of HPV 16 E7 disrupts binding to pCAF and also impairs transformation and transcriptional activation. HPV 16 E7 interacts with the acetyltransferase domain of pCAF, and reduces its acetyltransferase activity in vitro. Our analysis of the interaction between the pCAF acetyltransferase and E7 provides new insight into the mechanisms by which the E7 oncoproteins can alter cellular gene expression and growth.
Collapse
Affiliation(s)
- Nikita Avvakumov
- Department of Microbiology and Immunology, The University of Western Ontario, London Regional Cancer Centre, London, Ontario, Canada N6A 4L6
| | | | | |
Collapse
|
45
|
Gravel A, Tomoiu A, Cloutier N, Gosselin J, Flamand L. Characterization of the immediate-early 2 protein of human herpesvirus 6, a promiscuous transcriptional activator. Virology 2003; 308:340-53. [PMID: 12706083 DOI: 10.1016/s0042-6822(03)00007-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
In the present work we report the cloning of a full-length cDNA encoding the immediate-early (IE) 2 protein from human herpesvirus 6 (HHV-6) variant A (GS strain). The transcript is 4690 nucleotides long and composed of 5 exons. Translation initiation occurs within the third exon and proceeds to the end of U86. Kinetic studies indicate that the 5.5-kb IE2 mRNA is expressed under IE condition, within 2-4 h of infection. IE2 transcripts from both variants A and B are expressed under similar kinetics with IE2 transcripts accumulating up to 96 h postinfection. Although several large transcripts (>5.5 kb) hybridized with the IE2 probe, suggesting multiple transcription initiation sites, a single form of the IE2 protein, in excess of 200 kDa, was detected by Western blot. Within cells, the IE2 protein was detected (8-48 h) as intranuclear granules while at later time points (72-120 h), the IE2 protein coalesced into a few large immunoreactive patches. Transfection of cells with an IE2 expression vector (pBK-IE2A) failed to reproduce the patch-like distribution, suggesting that other viral proteins are necessary for this process to occur. Last, IE2 was found to behave as a promiscuous transcriptional activator. Cotransfection experiments in T cells indicate that IE2 can induce the transcription of a complex promoter, such as the HIV-LTR, as well as simpler promoters, whose expression is driven by a unique set of responsive elements (CRE, NFAT, NF-kB). Moreover, minimal promoters having a single TATA box or no defined eukaryotic regulatory elements were significantly activated by IE2, suggesting that IE2 is likely to play an important role in initiating the expression of several HHV-6 genes. In all, the work presented represents the first report on the successful cloning, expression, and functional characterization of the major regulatory IE2 gene/protein of HHV-6.
Collapse
Affiliation(s)
- Annie Gravel
- Laboratory of Virology, Rheumatology and Immunology Research Center, CHUL Research Center and Faculty of Medicine, Laval University, Québec, Canada
| | | | | | | | | |
Collapse
|
46
|
Reid GG, Ellsmore V, Stow ND. An analysis of the requirements for human cytomegalovirus oriLyt-dependent DNA synthesis in the presence of the herpes simplex virus type 1 replication fork proteins. Virology 2003; 308:303-16. [PMID: 12706080 DOI: 10.1016/s0042-6822(03)00005-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Activation of the human cytomegalovirus (HCMV) origin of replication (oriLyt) was previously demonstrated in transient transfection assays in permissive human fetal fibroblasts and nonpermissive Vero cells, and shown to require six viral proteins that function at the replication fork plus a number of HCMV products that perform auxiliary roles. The six replication fork proteins could be substituted by their Epstein-Barr virus homologues. In this paper we demonstrate that the corresponding herpes simplex virus type 1 replication fork proteins can similarly replace those of HCMV in Vero cells. Under these conditions the essential auxiliary functions were mapped to two plasmids: pSVH (containing the major immediate-early locus) and pZP8 (spanning genes UL32-UL38). Mutants of pSVH and pZP8 and cloned cDNAs encoding the IE1-p72 and IE2-p86 proteins were tested for their ability to support DNA synthesis. The results showed that IE2-p86 was necessary for activation of the origin, and that the UL37x1 and IE1-p72 products exerted strong stimulatory effects. In contrast to the previous work, omission of the UL84 protein had no effect upon oriLyt-dependent DNA synthesis.
Collapse
Affiliation(s)
- G Gordon Reid
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK
| | | | | |
Collapse
|
47
|
Abstract
It is becoming clear that the post-translational modification of histone and non-histone proteins by acetylation is part of an important cellular signaling process controlling a wide variety of functions in both the nucleus and the cytoplasm. Recent investigations designate this signaling pathway as one of the primary targets of viral proteins after infection. Indeed, specific viral proteins have acquired the capacity to interact with cellular acetyltransferases (HATs) and deacetylases (HDACs) and consequently to disrupt normal acetylation signaling pathways, thereby affecting viral and cellular gene expression. Here we review the targeting of cellular HATs and HDACs by viral proteins and highlight different strategies adopted by viruses to control cellular acetylation signaling and to accomplish their life cycle.
Collapse
Affiliation(s)
- Cécile Caron
- Laboratoire de Biologie Moléculaire et Cellulaire de la Différenciation--Equipe chromatine et expression des gènes, Institut Albert Bonniot, France
| | | | | |
Collapse
|
48
|
Papanikolaou E, Kouvatsis V, Dimitriadis G, Inoue N, Arsenakis M. Identification and characterization of the gene products of open reading frame U86/87 of human herpesvirus 6. Virus Res 2002; 89:89-101. [PMID: 12367753 DOI: 10.1016/s0168-1702(02)00126-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The human herpesvirus 6 (HHV-6) immediate early-A locus (IE-A) locates in the position analogous to the human cytomegalovirus (HCMV) major IE (MIE) locus that is well-known to play critical roles in viral infection. Similarly to HCMV MIE, HHV-6 IE-A consists of two genetic units, IE1 and IE2, corresponding to open reading frames U90-U89 and U90-U86/87, respectively. However, the HHV-6 IE-A locus exhibits limited sequence homology with the HCMV MIE locus. In this study, to characterize HHV-6 IE2 gene products, polyclonal antibodies against four domains of the U86/87 open reading frame were generated by immunization of rabbits with bacterially-expressed proteins. Three polypeptides derived from the U86/87 region with apparent molecular masses of 100, 85 and 55 kD were detected in HHV-6-infected cells 3 days after infection, while IE1 polypeptides with apparent molecular mass greater than 170 kD were detectable as early as 8 h. Mapping of the IE2 gene products with the antibodies suggests differential splicing and alternative translation initiation in the IE2 genetic unit. The IE2 products show a mixed cytoplasmic and nuclear localization pattern. In addition, the 437 amino acid carboxyl-terminus domain bound to a DNA fragment containing the putative IE-A promoter. These results suggest that HHV-6 IE2 plays a critical role in transcriptional regulation and viral growth as does HCMV IE2, although it is likely that HHV-6 IE2 has expression kinetics different from HCMV IE2.
Collapse
Affiliation(s)
- Eleni Papanikolaou
- Laboratory of General Microbiology, Section of Genetics, Developmental and Molecular Biology, School of Biology, Aristotle Universit, Thessaloniki 54006, Greece
| | | | | | | | | |
Collapse
|
49
|
Abstract
It is widely accepted that small DNA tumor viruses, such as adenovirus, simian virus 40 and papillomavirus, push infected cells into S-phase to facilitate the replication of their genome. Until recently, it was believed that the large DNA viruses (i.e. herpesviruses) functioned very differently in this regard by inducing a G(1) arrest in infected cells as part of their replication process. However, studies over the last 6-8 years have uncovered striking parallels (and differences) between the functions of the major immediate early (IE) proteins of at least one herpesvirus, human cytomegalovirus (HCMV) and IE equivalents encoded by small DNA tumor viruses, such as adenovirus. Similarities between the HCMV major IE proteins and adenovirus IE proteins include targeting of members of the RB and p53 families and an ability of these viral factors to induce S-phase in quiescent cells. However, unlike the small DNA tumor virus proteins, individual HCMV IE proteins target different RB family members. HCMV also encodes several other IE gene products as well as virion tegument proteins that act early during infection to prevent an infected cell from replicating its host genome and from undergoing apoptosis. Here, we review the specifics of several HCMV IE proteins, two virion components, and their functions in relation to cell growth control.
Collapse
Affiliation(s)
- Jonathan P Castillo
- Program in Immunology and Virology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | | |
Collapse
|
50
|
Chen J, Stinski MF. Role of regulatory elements and the MAPK/ERK or p38 MAPK pathways for activation of human cytomegalovirus gene expression. J Virol 2002; 76:4873-85. [PMID: 11967304 PMCID: PMC136149 DOI: 10.1128/jvi.76.10.4873-4885.2002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A series of recombinant viruses with either site-specific mutations or various deletions of the early UL4 promoter of human cytomegalovirus were used to determine the roles of regulatory elements and the effects of the mitogen-activated protein kinase (MAPK) pathways. Viral gene expression was regulated by upstream cis-acting sites and by basic promoter elements that respond to the MAPK signal transduction pathways. Inhibitors of either the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway or the p38 MAPK pathway affected expression equally with either wild-type or mutant early UL4 promoters in the viral genome, indicating that the effects of the inhibitors are not exclusive for a single transcription factor. The minimal responsive element is the TATA box-containing early viral promoter.
Collapse
Affiliation(s)
- Jiping Chen
- Department of Microbiology, College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|