1
|
Schreiner B, Bailey SL, Miller SD. T-cell response dynamics in animal models of multiple sclerosis: implications for immunotherapies. Expert Rev Clin Immunol 2014; 3:57-72. [DOI: 10.1586/1744666x.3.1.57] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
2
|
Jin YH, Mohindru M, Kang MH, Fuller AC, Kang B, Gallo D, Kim BS. Differential virus replication, cytokine production, and antigen-presenting function by microglia from susceptible and resistant mice infected with Theiler's virus. J Virol 2007; 81:11690-702. [PMID: 17715222 PMCID: PMC2168808 DOI: 10.1128/jvi.01034-07] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection with Theiler's murine encephalomyelitis virus (TMEV) in the central nervous system (CNS) causes an immune system-mediated demyelinating disease similar to human multiple sclerosis in susceptible but not resistant strains of mice. To understand the underlying mechanisms of differential susceptibility, we analyzed viral replication, cytokine production, and costimulatory molecule expression levels in microglia and macrophages in the CNS of virus-infected resistant C57BL/6 (B6) and susceptible SJL/J (SJL) mice. Our results indicated that message levels of TMEV, tumor necrosis factor alpha, beta interferon, and interleukin-6 were consistently higher in microglia from virus-infected SJL mice than in those from B6 mice. However, the levels of costimulatory molecule expression, as well as the ability to stimulate allogeneic T cells, were significantly lower in TMEV-infected SJL mice than in B6 mice. In addition, microglia from uninfected naïve mice displayed differential viral replication, T-cell stimulation, and cytokine production, similar to those of microglia from infected mice. These results strongly suggest that different levels of intrinsic susceptibility to TMEV infection, cytokine production, and T-cell activation ability by microglia contribute to the levels of viral persistence and antiviral T-cell responses in the CNS, which are critical for the differential susceptibility to TMEV-induced demyelinating disease between SJL and B6 mice.
Collapse
Affiliation(s)
- Young-Hee Jin
- Department of Microbiology and Immunology, Northwestern University Feinberg Medical School, 303 E. Chicago Avenue, Chicago, IL 60611, USA
| | | | | | | | | | | | | |
Collapse
|
3
|
Parks CG, Cooper GS, Hudson LL, Dooley MA, Treadwell EL, St Clair EW, Gilkeson GS, Pandey JP. Association of Epstein-Barr virus with systemic lupus erythematosus: effect modification by race, age, and cytotoxic T lymphocyte-associated antigen 4 genotype. ACTA ACUST UNITED AC 2005; 52:1148-59. [PMID: 15818712 DOI: 10.1002/art.20997] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Epstein-Barr virus (EBV) is hypothesized to play a role in the development of systemic lupus erythematosus (SLE). Cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) is important in regulating T cell-mediated immunity, encompassing the first line of response to viral infections, and genetic variation in CTLA-4 has been associated with SLE. This study examined the seroprevalence of EBV in a population-based study of SLE patients from the southeastern United States, and potential interactions with CTLA-4 polymorphisms were assessed. METHODS Cases comprised 230 subjects recently diagnosed as having SLE (144 African American and 86 white) from university and community-based clinics, and controls comprised 276 age-, sex-, and state-matched subjects (72 African American and 204 white) recruited from driver's license registries. Antibodies to EBV capsid antigen were determined by enzyme-linked immunosorbent assay, with results expressed as positive or negative using the international standardized ratio (ISR) (a ratio of the sample absorbance to a known standard). CTLA-4 genotypes were identified by polymerase chain reaction-based methods. RESULTS In African Americans, EBV-IgA seroprevalence was strongly associated with SLE (odds ratio [OR] 5.6, 95% confidence interval [95% CI] 3.0-10.6). In whites, the modest association of SLE with EBV-IgA (OR 1.6) was modified by age, in that the strongest association was observed in those older than age 50 years (OR 4.1, 95% CI 1.6-10.4). The seroprevalence of EBV-IgM and that of EBV-IgG were not associated with SLE. Higher EBV-IgG absorbance ratios were observed in SLE patients, with a significant dose response across units of the ISR in African Americans (P < 0.0001). Allelic variation in the CTLA-4 gene promoter (-1661A/G) significantly modified the association between SLE and EBV-IgA (P = 0.03), with a stronger association among those with the -1661AA genotype. CONCLUSION These findings suggest that repeated or reactivated EBV infection, which results in increased EBV-IgA seroprevalence and higher IgG antibody titers, may be associated with SLE, and that the CTLA-4 genotype influences immune responsiveness to EBV in SLE patients. The observed patterns of effect modification by race, age, and CTLA-4 genotype should be examined in other studies and may help frame new hypotheses regarding the role of EBV in SLE etiology.
Collapse
Affiliation(s)
- Christine G Parks
- National Institute of Environmental Health Sciences, Durham, North Carolina, USA.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Marckmann S, Wiesemann E, Hilse R, Trebst C, Stangel M, Windhagen A. Interferon-beta up-regulates the expression of co-stimulatory molecules CD80, CD86 and CD40 on monocytes: significance for treatment of multiple sclerosis. Clin Exp Immunol 2005; 138:499-506. [PMID: 15544628 PMCID: PMC1809242 DOI: 10.1111/j.1365-2249.2004.02624.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Interferon (IFN)-beta reduces the biological activity of multiple sclerosis (MS), a presumably T cell-mediated autoimmune disease of central nervous system (CNS) myelin. Co-stimulatory molecules are necessary for full T cell activation and differential expression of co-stimulatory molecules on antigen-presenting cells is thought to influence the type of effector T cell response (Th1/Th2). In this study we investigated the effects of IFN-beta on the expression of co-stimulatory molecules on lymphocytes and monocytes as a potential mechanism of action of IFN-beta in MS. Peripheral blood mononuclear cells (PBMCs) were stimulated with IFN-beta in vitro and expression of CD80, CD86, CD40 and HLA was examined by flow cytometry and reverse-transcription polymerase chain reaction. Whereas IFN-beta had no effect on the expression of these molecules on T and B lymphocytes there was a significant increase on monocytes. Correspondingly, the expression of mRNA increased after 6-18 h. This in vitro response was also observed in untreated MS patients and patients receiving treatment with IFN-beta. The increase of co-stimulatory molecules on monocytes was not mediated by interleukin (IL)-10. When IFN-beta-stimulated monocytes were used to stimulate autologous T cells an increased secretion of IL-13 was observed. In biopsies taken from IFN-beta-induced skin reactions after subcutaneous injection increased expression of CD80 mRNA was detected, indicating that IFN-beta also up-regulates this co-stimulatory molecule in vivo. These data provide the background for further studies of IFN-beta-induced changes of co-stimulatory molecules in MS patients.
Collapse
Affiliation(s)
- S Marckmann
- Department of Neurology, Medical School Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | | | | | | | | | | |
Collapse
|
5
|
Hussain S, Delovitch TL. Dysregulated B7-1 and B7-2 Expression on Nonobese Diabetic Mouse B Cells Is Associated with Increased T Cell Costimulation and the Development of Insulitis. THE JOURNAL OF IMMUNOLOGY 2005; 174:680-7. [PMID: 15634886 DOI: 10.4049/jimmunol.174.2.680] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Little is known about the pathogenic role of B cell dysfunction in T cell-mediated autoimmune disease. We previously reported that B cell hyper-responsiveness, resistance to apoptosis, and accumulation in islets occur during the onset of insulitis, but not in type 1 diabetes (T1D), in NOD mice. In this study we extended these studies to further determine how islet-infiltrated B cells contribute to this inflammatory insulitis. We demonstrate the presence of an increased percentage of B7-1(+) and a decreased percentage of B7-2(+) B cells in the spleen of autoimmune disease-prone NOD and nonobese diabetes-resistant mice compared with the spleen of nonautoimmune disease-prone C57BL/6 and BALB/c mice. An age-dependent differential expression of B7-1 and B7-2 was associated with the development of insulitis and CD4(+)CD25(+) T cell deficiency in autoimmune disease-prone mice. Whereas BCR and LPS stimulation increased B7-2 expression on B cells from autoimmune disease-prone and nonautoimmune disease-prone mice, LPS-induced B7-1 expression was higher on NOD than C57BL/6 B cells. Interestingly, increased expression of B7-1 and B7-2 was found on islet-infiltrated B cells, and this increase was associated with enhanced T cell costimulation. Islet-infiltrated B cells were shown to be a source of TNF-alpha production in islets. B7 blockade of BCR-stimulated NOD B cells by anti-B7-1 and anti-B7-2 mAbs during coadoptive transfer with diabetogenic T cells into NOD.scid mice protected these recipients from T1D. These results suggest that increased B7-1 and B7-2 expression on islet-infiltrated NOD B cells is associated with increased T cell costimulation and the development of inflammatory insulitis in NOD mice.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Antibodies, Anti-Idiotypic/pharmacology
- Antibodies, Blocking/pharmacology
- Antigens, CD/biosynthesis
- Antigens, CD/immunology
- Antigens, CD/physiology
- B-Lymphocyte Subsets/immunology
- B-Lymphocyte Subsets/metabolism
- B-Lymphocyte Subsets/pathology
- B-Lymphocyte Subsets/transplantation
- B7-1 Antigen/biosynthesis
- B7-1 Antigen/immunology
- B7-1 Antigen/physiology
- B7-2 Antigen
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD4-Positive T-Lymphocytes/pathology
- Cell Movement/immunology
- Cell Proliferation
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/pathology
- Female
- Genetic Predisposition to Disease
- Immunoglobulin Fab Fragments/pharmacology
- Islets of Langerhans/immunology
- Islets of Langerhans/pathology
- Lymphocyte Activation/immunology
- Lymphopenia/immunology
- Membrane Glycoproteins/biosynthesis
- Membrane Glycoproteins/immunology
- Membrane Glycoproteins/physiology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, SCID
- Receptors, Interleukin-2/biosynthesis
- Spleen/immunology
- Spleen/pathology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/pathology
- Tumor Necrosis Factor-alpha/biosynthesis
- Up-Regulation/immunology
Collapse
Affiliation(s)
- Shabbir Hussain
- Autoimmunity/Diabetes Group, Robarts Research Institute, University of Western Ontario, London, Canada
| | | |
Collapse
|
6
|
TMEV and Neuroantigens: Myelin Genes and Proteins, Molecular Mimicry, Epitope Spreading, and Autoantibody-Mediated Remyelination. EXPERIMENTAL MODELS OF MULTIPLE SCLEROSIS 2005. [PMCID: PMC7121993 DOI: 10.1007/0-387-25518-4_29] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
|
7
|
Oleszak EL, Chang JR, Friedman H, Katsetos CD, Platsoucas CD. Theiler's virus infection: a model for multiple sclerosis. Clin Microbiol Rev 2004; 17:174-207. [PMID: 14726460 PMCID: PMC321460 DOI: 10.1128/cmr.17.1.174-207.2004] [Citation(s) in RCA: 214] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Both genetic background and environmental factors, very probably viruses, appear to play a role in the etiology of multiple sclerosis (MS). Lessons from viral experimental models suggest that many different viruses may trigger inflammatory demyelinating diseases resembling MS. Theiler's virus, a picornavirus, induces in susceptible strains of mice early acute disease resembling encephalomyelitis followed by late chronic demyelinating disease, which is one of the best, if not the best, animal model for MS. During early acute disease the virus replicates in gray matter of the central nervous system but is eliminated to very low titers 2 weeks postinfection. Late chronic demyelinating disease becomes clinically apparent approximately 2 weeks later and is characterized by extensive demyelinating lesions and mononuclear cell infiltrates, progressive spinal cord atrophy, and axonal loss. Myelin damage is immunologically mediated, but it is not clear whether it is due to molecular mimicry or epitope spreading. Cytokines, nitric oxide/reactive nitrogen species, and costimulatory molecules are involved in the pathogenesis of both diseases. Close similarities between Theiler's virus-induced demyelinating disease in mice and MS in humans, include the following: major histocompatibility complex-dependent susceptibility; substantial similarities in neuropathology, including axonal damage and remyelination; and paucity of T-cell apoptosis in demyelinating disease. Both diseases are immunologically mediated. These common features emphasize the close similarities of Theiler's virus-induced demyelinating disease in mice and MS in humans.
Collapse
Affiliation(s)
- Emilia L Oleszak
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19106, USA.
| | | | | | | | | |
Collapse
|
8
|
Howard LM, Neville KL, Haynes LM, Dal Canto MC, Miller SD. CD154 blockade results in transient reduction in Theiler's murine encephalomyelitis virus-induced demyelinating disease. J Virol 2003; 77:2247-50. [PMID: 12525660 PMCID: PMC140904 DOI: 10.1128/jvi.77.3.2247-2250.2003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transient CD154 blockade at the onset of Theiler's murine encephalomyelitis virus-induced demyelinating disease ameliorated disease progression for 80 days, reduced immune cell infiltration, and transiently increased viral loads in the central nervous system. Peripheral antiviral and autoimmune T-cell responses were normal, and disease severity returned to control levels by day 120.
Collapse
Affiliation(s)
- Laurence M Howard
- Departments of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | |
Collapse
|
9
|
Deng C, Minguela A, Hussain RZ, Lovett-Racke AE, Radu C, Ward ES, Racke MK. Expression of the tyrosine phosphatase SRC homology 2 domain-containing protein tyrosine phosphatase 1 determines T cell activation threshold and severity of experimental autoimmune encephalomyelitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:4511-8. [PMID: 11970996 DOI: 10.4049/jimmunol.168.9.4511] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is a CD4 Th1-mediated inflammatory demyelinating disorder of the CNS and a well-established animal model for multiple sclerosis. Src homology 2 domain-containing protein tyrosine phosphatase 1 (SHP-1) is a cytosolic tyrosine phosphatase that is involved in regulating the T cell activation cascade from signals initiated through the TCR. To study the role of SHP-1 in EAE pathogenesis, we immunized B10.PL mice heterozygous for deletion of the SHP-1 gene (me(v+/-)) and B10.PL wild-type mice with the immunodominant epitope of myelin basic protein (MBP Ac1-11). T cell proliferation and IFN-gamma production were significantly increased in me(v+/-) mice after immunization with MBP Ac1-11. The frequency of MBP Ac1-11-specific CD4 T cells, analyzed by staining with fluorescently labeled tetramers (MBP1-11[4Y]: I-A(u) complexes), was increased in the draining lymph node cells of me(v+/-) mice compared with wild-type mice. In addition, me(v+/-) mice developed a more severe course of EAE with epitope spreading to proteolipid protein peptide 43-64. Finally, expansion of MBP Ac1-11-specific T cells in response to Ag was enhanced in me(v+/-) T cells, particularly at lower Ag concentrations. These data demonstrate that the level of SHP-1 plays an important role in regulating the activation threshold of autoreactive T cells.
Collapse
MESH Headings
- Animals
- Antigen-Presenting Cells/immunology
- Cells, Cultured
- Cytokines/biosynthesis
- Disease Progression
- Encephalomyelitis, Autoimmune, Experimental/enzymology
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Immunoglobulin Variable Region/genetics
- Intracellular Signaling Peptides and Proteins
- Lymphocyte Activation
- Mice
- Mice, Knockout
- Mice, Transgenic
- Myelin Basic Protein/immunology
- Myelin Proteolipid Protein/immunology
- Peptide Fragments/immunology
- Protein Phosphatase 1
- Protein Tyrosine Phosphatase, Non-Receptor Type 6
- Protein Tyrosine Phosphatases/genetics
- Protein Tyrosine Phosphatases/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- T-Lymphocytes/enzymology
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Caishu Deng
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Markovic-Plese S, Cortese I, Wandinger KP, McFarland HF, Martin R. CD4+CD28- costimulation-independent T cells in multiple sclerosis. J Clin Invest 2001; 108:1185-94. [PMID: 11602626 PMCID: PMC209525 DOI: 10.1172/jci12516] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Multiple lines of evidence suggest that CD4+ lymphocytes initiate autoimmune responses against myelin antigens in multiple sclerosis (MS). The increased frequency of activated myelin-specific cells in MS patients indicates that the activation of autoreactive cells represents a central event in the pathogenesis of the disease. We identified a CD4+ subpopulation that is characterized phenotypically by the persistent absence of surface CD28 expression and functionally by CD28-independent activation and Th1 cytokine secretion. Owing to their costimulation-independent activation and their expression of a full agonist signaling activation pattern, CD4+CD28- cells have the potential to initiate autoimmune responses in the central nervous system, a compartment devoid of professional antigen presenting cells. Long-term memory CD4+CD28- cells produce high amounts of IFN-gamma and maximally upregulate IFN-gamma and IL-12Rbeta2 chain expression in the absence of costimulation. They exhibit prominent growth characteristics and increased survival after activation, likely related to their persistent lack of CTLA-4 surface expression. The CD4+CD28- population is expanded in a subgroup of MS patients. Myelin basic protein-specific cells detected in this cell subset may play an important role in the inflammatory response within the central nervous system.
Collapse
MESH Headings
- Adult
- Antigens, CD
- CD28 Antigens/genetics
- CD28 Antigens/metabolism
- CD4-Positive T-Lymphocytes/immunology
- Female
- Gene Expression
- Glycoproteins/genetics
- Humans
- Immunoglobulins/genetics
- In Vitro Techniques
- Interferon-gamma/biosynthesis
- Interferon-gamma/genetics
- Lymphocyte Activation
- Male
- Middle Aged
- Multiple Sclerosis/genetics
- Multiple Sclerosis/immunology
- Myelin Basic Protein/immunology
- Phenotype
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Cell Surface
- Receptors, Interleukin/biosynthesis
- Receptors, Interleukin/genetics
- Receptors, Interleukin-12
- Signal Transduction
- Signaling Lymphocytic Activation Molecule Family Member 1
- T-Lymphocyte Subsets/immunology
Collapse
Affiliation(s)
- S Markovic-Plese
- Neuroimmunology Branch, National Institute of Neurological Diseases and Stroke (NINDS), NIH, 10 Center Drive, Bethesda, MD 20892-1400, USA
| | | | | | | | | |
Collapse
|
11
|
Markovic-Plese S, Cortese I, Wandinger KP, McFarland HF, Martin R. CD4+CD28– costimulation-independent T cells in multiple sclerosis. J Clin Invest 2001. [DOI: 10.1172/jci200112516] [Citation(s) in RCA: 172] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
12
|
Soldan SS, Fogdell-Hahn A, Brennan MB, Mittleman BB, Ballerini C, Massacesi L, Seya T, McFarland HF, Jacobson S. Elevated serum and cerebrospinal fluid levels of soluble human herpesvirus type 6 cellular receptor, membrane cofactor protein, in patients with multiple sclerosis. Ann Neurol 2001; 50:486-93. [PMID: 11603380 DOI: 10.1002/ana.1135] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Membrane cofactor protein (CD46) is a member of a family of glycoproteins that are regulators of complement and prevent activation of complement on autologous cells. Recently, CD46 has been identified as the cellular receptor for human herpesvirus Type 6 (HHV-6). Elevated levels of soluble CD46 have been described in several autoimmune disorders, and may be implicated in the pathogenesis of these diseases. As several reports have supported an association of HHV-6 and multiple sclerosis, it was of interest to compare levels of soluble CD46 in the sera of multiple sclerosis patients to that of healthy controls, other neurological disease controls, and other inflammatory disease controls. Using an immunoaffinity column comprised of immobilized monoclonal antibodies to CD46, serum levels of soluble CD46 were found to be significantly elevated in multiple sclerosis patients compared with healthy and other neurological disease controls. Moreover, multiple sclerosis patients who tested positive for HHV-6 DNA in serum had significantly elevated levels of soluble CD46 in their serum compared with those who were negative for HHV-6 DNA. A significant increase in soluble CD46 was also found in the serum of other inflammatory disease controls tested compared to healthy controls. Additionally, a significant correlation was demonstrated between levels of soluble CD46 in the serum and cerebrospinal fluid of multiple sclerosis patients. Collectively, these data suggest that elevated levels of soluble CD46 may contribute to the pathogenesis of inflammatory diseases, including multiple sclerosis.
Collapse
Affiliation(s)
- S S Soldan
- Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|