1
|
Stewart AG, Fishman JA. Surveillance and prevention of infection in clinical xenotransplantation. Clin Microbiol Rev 2025; 38:e0015023. [PMID: 39887237 PMCID: PMC11905366 DOI: 10.1128/cmr.00150-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025] Open
Abstract
SUMMARYXenotransplantation, the transplantation of living organs, tissues, or cells between species, carries the potential to address the global shortage of human organs for patients with end-stage organ failure. Recent advances in genetic engineering have improved prospects for clinical xenotransplantation by reducing immune and inflammatory responses to grafts, controlling coagulation on endothelial surfaces, and modifying viral risks, including the porcine endogenous retrovirus (PERV). Management of infectious risks posed by clinical xenotransplantation requires meticulous attention to the biosecure breeding and microbiological surveillance of source animals and recipients and consideration of novel infection control requirements. Infectious risks in xenotransplantation stem from both known human pathogens in immunosuppressed transplant recipients and from porcine organisms for which the clinical manifestations, microbial assays, and therapies are generally limited. Both known and unknown zoonoses may be transmitted from pigs to humans. Some pig-specific pathogens do not infect human cells but have systemic manifestations when active within the xenograft, including porcine cytomegalovirus/porcine roseolovirus (PCMV/PRV), which contributes to graft rejection and consumptive coagulopathy. The role of porcine endogenous retrovirus (PERV) in humans remains uncertain despite the absence of documented transmissions and the availability of swine with inactivated genomic PERV. New technologies, such as metagenomic sequencing and multi-omics approaches, will be essential for detection of novel infections and for understanding interactions between the xenograft, the host's immune system, and potential pathogens. These approaches will allow development of infection control protocols, pathogen surveillance requirements, and tailored antimicrobial therapies to enhance the safety and success of clinical xenotransplantation.
Collapse
Affiliation(s)
- Adam G. Stewart
- Transplant Infectious Disease and Compromised Host Program, MGH Transplant Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Jay A. Fishman
- Transplant Infectious Disease and Compromised Host Program, MGH Transplant Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Affiliation(s)
- Jay A Fishman
- From the Transplant and Immunocompromised Host Program, Infectious Disease Division and Transplant Center, Massachusetts General Hospital and Harvard Medical School, Boston
| |
Collapse
|
3
|
Lu TF, Sun B, Yu TY, Wu YJ, Zhou J, Wu SG. Porcine Endogenous Retroviruses: Quantification of the Viral Copy Number for the Four Miniature Pig Breeds in China. Front Microbiol 2022; 13:840347. [PMID: 35369498 PMCID: PMC8965148 DOI: 10.3389/fmicb.2022.840347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
Domestic pigs has served not only as one of the most important economy livestock but also as ideal organ-source animals owing to similarity in anatomy, physiology, and organ size to humans. Howerer, the barrier of the cross-species transmission risk of porcine endogenous retrovirus (PERVs) blocked the pig-to-human xenotransplantation. PERVs are integrated into pigs’ genomes and cannot be eliminated by designated or specified pathogen-free breeding. PERVs are an important biosafety issue in xenotransplantation because they can be released from normal pig cells and infect human cells in vitro under certain conditions. Screening and analyzing the presence of PERVs in pig genome will provide essential parameters for pig breed sources. In China, four miniature pig breeds, such as Guizhou miniature pig (GZ), Bama miniature pig (BM), Wuzhishan miniature pig (WZS), and Juema miniature pig (JM), were the main experimental miniature pig breeds, which were widely used. In this study, PCR was performed to amplify env-A, env-B, and env-C for all individuals from the four breeds. The results revealed that PERV env-A and env-B were detected in all individuals and the lowest ratios of PERV env-C was 17.6% (3/17) in the GZ breed. Then, PERV pol and GAPDH were detected using the droplet digital PCR (ddPCR) method. As the reference of GAPDH copy number, the copy numbers of PERVs were at the median of 12, 16, 14, and 16 in the four miniature pig breeds (GZ, BM, WZS, and JM), respectively. Furthermore, the copy number of the PERV pol gene in many organs from the GZ breed was analyzed using ddPCR. The copy numbers of PERV pol gene were at the median of 7 copies, 8 copies, 8 copies, 11 copies, 5 copies, 6 copies, and 7 copies in heart, liver, spleen, lung, kidney, muscle, and skin, and the maximum number was 11 copies in the lung. The minimum number was 5 copies in the kidney as the reference of GAPDH. These data suggest that GZ breed has the lower PERVs copy number in the genome, and may be an ideal organ-source miniature pig breed for the study of the pig-to-human xenotransplantation.
Collapse
Affiliation(s)
- Tao-Feng Lu
- Institute for Laboratory Animal Research, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Bo Sun
- The First Clinical Medical College, Jinan University, Guangzhou, China
| | - Tai-Yong Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yan-Jun Wu
- Institute for Laboratory Animal Research, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jie Zhou
- Shanghai Laboratory Animal Research Center, Shanghai, China
| | - Shu-Guang Wu
- Institute for Laboratory Animal Research, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
4
|
High Prevalence of Recombinant Porcine Endogenous Retroviruses (PERV-A/Cs) in Minipigs: A Review on Origin and Presence. Viruses 2021; 13:v13091869. [PMID: 34578447 PMCID: PMC8473008 DOI: 10.3390/v13091869] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/17/2022] Open
Abstract
Minipigs play an important role in biomedical research and they have also been used as donor animals for preclinical xenotransplantations. Since zoonotic microorganisms including viruses can be transmitted when pig cells, tissues or organs are transplanted, virus safety is an important feature in xenotransplantation. Whereas most porcine viruses can be eliminated from pig herds by different strategies, this is not possible for porcine endogenous retroviruses (PERVs). PERVs are integrated in the genome of pigs and some of them release infectious particles able to infect human cells. Whereas PERV-A and PERV-B are present in all pigs and can infect cells from humans and other species, PERV-C is present in most, but not all pigs and infects only pig cells. Recombinant viruses between PERV-A and PERV-C have been found in some pigs; these recombinants infect human cells and are characterized by high replication rates. PERV-A/C recombinants have been found mainly in minipigs of different origin. The possible reasons of this high prevalence of PERV-A/C in minipigs, including inbreeding and higher numbers and expression of replication-competent PERV-C in these animals, are discussed in this review. Based on these data, it is highly recommended to use only pig donors in clinical xenotransplantation that are negative for PERV-C.
Collapse
|
5
|
Zhang Y, Xing X, Huang L, Wu Y, Li P, Li R, Liu G. Screening pigs for xenotransplantation in China: investigation of porcine endogenous retrovirus in Diannan small-eared pigs. Virus Genes 2020; 56:202-208. [PMID: 31916138 DOI: 10.1007/s11262-019-01722-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 12/12/2019] [Indexed: 12/28/2022]
Abstract
Porcine endogenous retrovirus (PERV), which integrates as a provirus into the genome of pig cells, is an important biosafety issue in xenotransplantation. Screening and analyzing the presence and expression of PERV will provide essential parameters for assessing the biosafety of donor sources. In the present study, we investigated the prevalence of PERV in Diannan small-eared pigs, a unique closed colony that is distributed in southern Yunnan Province in southwestern China. PCR was performed to amplify env-A, env-B, env-C, pol, gag, and mtDNA in peripheral blood samples. The results revealed that PERV env-A, env-B, pol, and gag were detected in all individuals, but env-C was deficient in most pigs, suggesting that the main subtypes of PERVs in Diannan small-eared pigs are PERV-A and PERV-B. Furthermore, PERV pol and the porcine housekeeping gene GAPDH were detected by RT-PCR in all peripheral blood samples, indicating that PERV had transcriptional activity. Finally, the consensus sequences of PERV-A and PERV-B were amplified and digested with KpnI and MboI. Interestingly, a total of seven digestion patterns were obtained, which is less than that observed in other pig breeds. The PCR products were cloned into the pUCm-T vector and sequenced. The results showed that all of the inserts were highly homologous to either PERV-A or PERV-B, and the ratios of PERV-A and PERV-B were 21.1% and 78.9%, respectively. These data suggest that Diannan small-eared pigs may be a candidate donor source for xenotransplantation.
Collapse
Affiliation(s)
- Yunfei Zhang
- Center for Medical Experiments, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Xiaowei Xing
- Center for Medical Experiments, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Lihua Huang
- Center for Medical Experiments, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Yong Wu
- Clinical Laboratory, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Peng Li
- Department of General Surgery, Yanan Hospital Affiliated to Kunming Medical University, Kunming, 650051, Yunnan, China
| | - Ruhong Li
- Department of General Surgery, Yanan Hospital Affiliated to Kunming Medical University, Kunming, 650051, Yunnan, China.
| | - Gang Liu
- The Institute of Reproduction and Stem Cell Engineering, Central South University, Changsha, 410078, Hunan, China.
| |
Collapse
|
6
|
Fishman JA. Infectious disease risks in xenotransplantation. Am J Transplant 2018; 18:1857-1864. [PMID: 29513380 DOI: 10.1111/ajt.14725] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/01/2018] [Accepted: 03/02/2018] [Indexed: 01/25/2023]
Abstract
Hurdles exist to clinical xenotransplantation including potential infectious transmission from nonhuman species to xenograft recipients. In anticipation of clinical trials of xenotransplantation, the associated infectious risks have been investigated. Swine and immunocompromised humans share some potential pathogens. Swine herpesviruses including porcine cytomegalovirus (PCMV) and porcine lymphotropic herpesvirus (PLHV) are largely species-specific and do not, generally, infect human cells. Human cellular receptors exist for porcine endogenous retrovirus (PERV), which infects certain human-derived cell lines in vitro. PERV-inactivated pigs have been produced recently. Human infection due to PERV has not been described. A screening paradigm can be applied to exclude potential human pathogens from "designated pathogen free" breeding colonies. Various microbiological assays have been developed for screening and diagnosis including antibody-based tests and qualitative and quantitative molecular assays for viruses. Additional assays may be required to diagnose pig-specific organisms in human xenograft recipients. Significant progress has been made in the evaluation of the potential infectious risks of clinical xenotransplantation. Infectious risk would be amplified by intensive immunosuppression. The available data suggest that risks of xenotransplant-associated recipient infection are manageable and that clinical trials can be performed safely. Possible infectious risks of xenotransplantation to the community at large are undefined but merit consideration.
Collapse
Affiliation(s)
- Jay A Fishman
- Infectious Disease Division and MGH Transplant Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Matczyńska D, Sypniewski D, Gałka S, Sołtysik D, Loch T, Nowak E, Smorąg Z, Bednarek I. Analysis of swine leukocyte antigen class I gene profiles and porcine endogenous retrovirus viremia level in a transgenic porcine herd inbred for xenotransplantation research. J Vet Sci 2018; 19:384-392. [PMID: 29366300 PMCID: PMC5974520 DOI: 10.4142/jvs.2018.19.3.384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 12/29/2017] [Accepted: 01/20/2018] [Indexed: 11/26/2022] Open
Abstract
Molecular characterization of swine leukocyte antigen (SLA) genes is important for elucidating the immune responses between swine-donor and human-recipient in xenotransplantation. Examination of associations between alleles of SLA class I genes, type of pig genetic modification, porcine endogenous retrovirus (PERV) viral titer, and PERV subtypes may shed light on the nature of xenograft acceptance or rejection and the safety of xenotransplantation. No significant difference in PERV gag RNA level between transgenic and non-transgenic pigs was noted; likewise, the type of applied transgene had no impact on PERV viremia. SLA-1 gene profile type may correspond with PERV level in blood and thereby influence infectiveness. Screening of pigs should provide selection of animals with low PERV expression and exclusion of specimens with PERV-C in the genome due to possible recombination between A and C subtypes, which may lead to autoinfection. Presence of PERV-C integrated in the genome was detected in 31.25% of specimens, but statistically significant increased viremia in specimens with PERV-C was not observed. There is a need for multidirectional molecular characterization (SLA typing, viremia estimation, and PERV subtype screening) of animals intended for xenotransplantation research in the interest of xeno-recipient safety.
Collapse
Affiliation(s)
- Daria Matczyńska
- Department of Biotechnology and Genetic Engineering, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Daniel Sypniewski
- Department of Biotechnology and Genetic Engineering, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Sabina Gałka
- Department of Biotechnology and Genetic Engineering, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Dagna Sołtysik
- Department of Biotechnology and Genetic Engineering, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Tomasz Loch
- Department of Biotechnology and Genetic Engineering, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Ewa Nowak
- Department of Biotechnology and Genetic Engineering, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Zdzisław Smorąg
- Department of Animal Reproduction Biotechnology, National Research Institute of Animal Production, 32-083 Balice, Poland
| | - Ilona Bednarek
- Department of Biotechnology and Genetic Engineering, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| |
Collapse
|
8
|
Kimsa-Dudek M, Strzalka-Mrozik B, Kimsa MW, Blecharz I, Gola J, Skowronek B, Janiszewski A, Lipinski D, Zeyland J, Szalata M, Slomski R, Mazurek U. Screening pigs for xenotransplantation: expression of porcine endogenous retroviruses in transgenic pig skin. Transgenic Res 2015; 24:529-36. [PMID: 25812516 DOI: 10.1007/s11248-015-9871-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 03/23/2015] [Indexed: 01/30/2023]
Abstract
Pigs seem to be the answer to worldwide organ donor shortage. Porcine skin may also be applied as a dressing for severe burns. Genetic modifications of donor animals enable reduction of immune response, which prolongs xenograft survival as temporary biological dressing and allows achieving resistance against xenograft rejection. The risk posed by porcine endogenous retroviruses (PERVs) cannot be eliminated by breeding animals under specific-pathogen-free conditions and so all recipients of porcine graft will be exposed to PERVs. Therefore our study has been focused on the assessment of PERV DNA and mRNA level in skin samples of transgenic pigs generated for xenotransplantation. Porcine skin fragments were obtained from 3- to 6-month-old non-transgenic and transgenic Polish Landrace pigs. Transgenic pigs were produced by pronuclear DNA microinjection and were developed to express the human α-galactosidase and the human α-1,2-fucosyltransferase gene. The copy numbers of PERV DNA and RNA were evaluated using real-time Q-PCR and QRT-PCR. Comparative analysis of all PERV subtypes revealed that PERV-A is the main subtype of PERVs in analyzed skin samples. There was no significantly different copy number of PERV-A, PERV-B and PERV-C between non-transgenic pigs, pigs with the human α-galactosidase and pigs expressing the human α-1,2-fucosyltransferase gene, except of PERV-C DNA. It brings the conclusion, that transgenesis process exerts no influence on PERVs transinfection. That is another step forward in the development of pig skin xenografts as burn wounds dressing.
Collapse
Affiliation(s)
- Magdalena Kimsa-Dudek
- Department of Food and Nutrition, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Jednosci 8, 41-200, Sosnowiec, Poland,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
DIAO YUMEI, HONG JING. Feasibility and safety of porcine Descemet’s membrane as a carrier for generating tissue-engineered corneal endothelium. Mol Med Rep 2015; 12:1929-34. [DOI: 10.3892/mmr.2015.3665] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 12/02/2014] [Indexed: 11/06/2022] Open
|
10
|
Porcine endogenous retroviruses in xenotransplantation--molecular aspects. Viruses 2014; 6:2062-83. [PMID: 24828841 PMCID: PMC4036542 DOI: 10.3390/v6052062] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/15/2014] [Accepted: 04/26/2014] [Indexed: 02/06/2023] Open
Abstract
In the context of the shortage of organs and other tissues for use in human transplantation, xenotransplantation procedures with material taken from pigs have come under increased consideration. However, there are unclear consequences of the potential transmission of porcine pathogens to humans. Of particular concern are porcine endogenous retroviruses (PERVs). Three subtypes of PERV have been identified, of which PERV-A and PERV-B have the ability to infect human cells in vitro. The PERV-C subtype does not show this ability but recombinant PERV-A/C forms have demonstrated infectivity in human cells. In view of the risk presented by these observations, the International Xenotransplantation Association recently indicated the existence of four strategies to prevent transmission of PERVs. This article focuses on the molecular aspects of PERV infection in xenotransplantation and reviews the techniques available for the detection of PERV DNA, RNA, reverse transcriptase activity and proteins, and anti-PERV antibodies to enable carrying out these recommendations. These methods could be used to evaluate the risk of PERV transmission in human recipients, enhance the effectiveness and reliability of monitoring procedures, and stimulate discussion on the development of improved, more sensitive methods for the detection of PERVs in the future.
Collapse
|
11
|
Quantitative analysis of porcine endogenous retroviruses in different organs of transgenic pigs generated for xenotransplantation. Curr Microbiol 2013; 67:505-14. [PMID: 23728786 DOI: 10.1007/s00284-013-0397-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 04/29/2013] [Indexed: 10/26/2022]
Abstract
The pig appears to be the most promising animal donor of organs for use in human recipients. Among several types of pathogens found in pigs, one of the greatest problems is presented by porcine endogenous retroviruses (PERVs). Screening of the source pig herd for PERVs should include analysis of both PERV DNA and RNA. Therefore, the present study focuses on quantitative analysis of PERVs in different organs such as the skin, heart, muscle, and liver and blood of transgenic pigs generated for xenotransplantation. Transgenic pigs were developed to express the human α-galactosidase, the human α-1,2-fucosyltransferase gene, or both genetic modifications of the genome (Lipinski et al., Medycyna Wet 66:316-322, 2010; Lipinski et al., Ann Anim Sci 12:349-356, 2012; Wieczorek et al., Medycyna Wet 67:462-466, 2011). The copy numbers of PERV DNA and RNA were evaluated using real-time Q-PCR and QRT-PCR, respectively. Comparative analysis of all PERV subtypes revealed the following relationships: PERV A > PERV B > PERV C. PERV A and B were found in all samples, whereas PERV C was detected in 47 % of the tested animals. The lowest level of PERV DNA was shown in the muscles for PERV A and B and in blood samples for PERV C. The lowest level of PERV A RNA was found in the skin, whereas those of PERV B and C RNA were found in liver specimens. Quantitative analysis revealed differences in the copy number of PERV subtypes between various organs of transgenic pigs generated for xenotransplantation. Our data support the idea that careful pig selection for organ donation with low PERV copy number may limit the risk of retrovirus transmission to the human recipients.
Collapse
|
12
|
Denner J, Tönjes RR. Infection barriers to successful xenotransplantation focusing on porcine endogenous retroviruses. Clin Microbiol Rev 2012; 25:318-43. [PMID: 22491774 PMCID: PMC3346299 DOI: 10.1128/cmr.05011-11] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Xenotransplantation may be a solution to overcome the shortage of organs for the treatment of patients with organ failure, but it may be associated with the transmission of porcine microorganisms and the development of xenozoonoses. Whereas most microorganisms may be eliminated by pathogen-free breeding of the donor animals, porcine endogenous retroviruses (PERVs) cannot be eliminated, since these are integrated into the genomes of all pigs. Human-tropic PERV-A and -B are present in all pigs and are able to infect human cells. Infection of ecotropic PERV-C is limited to pig cells. PERVs may adapt to host cells by varying the number of LTR-binding transcription factor binding sites. Like all retroviruses, they may induce tumors and/or immunodeficiencies. To date, all experimental, preclinical, and clinical xenotransplantations using pig cells, tissues, and organs have not shown transmission of PERV. Highly sensitive and specific methods have been developed to analyze the PERV status of donor pigs and to monitor recipients for PERV infection. Strategies have been developed to prevent PERV transmission, including selection of PERV-C-negative, low-producer pigs, generation of an effective vaccine, selection of effective antiretrovirals, and generation of animals transgenic for a PERV-specific short hairpin RNA inhibiting PERV expression by RNA interference.
Collapse
|
13
|
Degradation Effect of Diepoxide Fixation on Porcine Endogenous Retrovirus DNA in Heart Valves: Molecular Aspects. Int J Artif Organs 2012; 35:25-33. [DOI: 10.5301/ijao.5000071] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2011] [Indexed: 11/20/2022]
Abstract
Purpose Xenotransplantations of porcine cells, tissues, and organs involve a risk of zoonotic viral infections in recipients, including by porcine endogenous retroviruses (PERVs), which are embedded the genome of all pigs. An appropriate preparation of porcine heart valves for transplantation can prevent retroviral infection. Therefore, the present study focuses on the effect of epoxy compounds and glutaraldehyde on the PERV presence in porcine heart valves prepared for clinical use. Methods Porcine aortic heart valves were fixed with ethylene glycol diglycidyl ether (EDGE) at 5°C and 25°C as well as with glutaraldehyde (GA) for 4 weeks. Salting out was used to isolate genomic DNA from native as well as EDGE- and GA-fixed fragments of valves every week. Quantification of PERV-A, PERV-B, and PERV-C DNA was performed by real-time quantitative polymerase chain reaction (QPCR). Results All subtypes of PERVs were detected in native porcine aortic heart valves. The reduction of the PERV-A, PERV-B, and PERV-C DNA copy numbers was observed in the heart valves which were EDGE-fixed at both temperatures, and in GA-fixed ones in the following weeks. After 7 and 14 days of EDGE cross-linking, significant differences between the investigated temperatures were found for the number of PERV-A and PERV-B copies. PERV DNA was completely degraded within the first week of EDGE fixation at 25°C. Conclusions EDGE fixation induces complete PERV genetic material degradation in porcine aortic heart valves. This suggests that epoxy compounds may be alternatively used in the preparation of bioprosthetic heart valves in future.
Collapse
|
14
|
Multiplex high resolution melting assay for estimation of Porcine Endogenous Retrovirus (PERV) relative gene dosage in pigs and detection of PERV infection in xenograft recipients. J Virol Methods 2011; 175:95-100. [PMID: 21545811 DOI: 10.1016/j.jviromet.2011.04.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 04/19/2011] [Accepted: 04/20/2011] [Indexed: 11/20/2022]
Abstract
Porcine Endogenous Retrovirus (PERV) poses an infectious risk in the field of xenotransplantation. This risk may be mitigated by breeding selectively animals bearing favorable PERV genetic characteristics including pigs with low levels of PERV integrated in the genome. A real-time quantitative polymerase chain reaction (PCR) assay employing the Roche High Resolution Melting (HRM) Master was used to estimate the relative gene dosage of PERV pol integrated within the pig genome. When assessed across 99 pigs of the Auckland Island breed numerous animals bearing low gene dosage were identified. The assay was adapted further to perform multiplex PCR for the detection of PERV infection within xenograft recipients. Besides PERV, amplification targets for the multiplex PCR include a pig cell marker for the determination of microchimerism and an internal amplification control (IAC) to assess the efficiency of nucleic acid isolation and effects of PCR inhibition. When 12 patients who had received porcine islet transplants were tested no evidence of PERV infection was found. The assay was shown to be specific, highly reproducible with superior performance over conventional nested PCR. This assay can be used as both a screening tool for PERV proviral levels within donor pigs and as a diagnostic tool to examine PERV transmission in human patients treated with porcine xenotransplantation material.
Collapse
|
15
|
Di Nicuolo G, D'Alessandro A, Andria B, Scuderi V, Scognamiglio M, Tammaro A, Mancini A, Cozzolino S, Di Florio E, Bracco A, Calise F, Chamuleau RAFM. Long-term absence of porcine endogenous retrovirus infection in chronically immunosuppressed patients after treatment with the porcine cell-based Academic Medical Center bioartificial liver. Xenotransplantation 2011; 17:431-9. [PMID: 21158944 DOI: 10.1111/j.1399-3089.2010.00617.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Clinical use of porcine cell-based bioartificial liver (BAL) support in acute liver failure as bridging therapy for liver transplantation exposes the patient to the risk of transmission of porcine endogenous retroviruses (PERVs) to human. This risk may be enhanced when patients receive liver transplant and are subsequently immunosuppressed. As further follow-up of previously reported patients (Di Nicuolo et al. 2005), an assessment of PERV infection was made in the same patient population pharmacologically immunosuppressed for several years after BAL treatment and in healthcare workers (HCWs) involved in the clinical trial at that time. METHODS Plasma and peripheral blood mononuclear cells (PBMCs) from eight patients treated with the Academic Medical Center-BAL (AMC-BAL), who survived to transplant, and 13 HCWs, who were involved in the trial, were assessed to detect PERV infection. A novel quantitative real-time polymerase chain reaction assay has been used. RESULTS Eight patients who received a liver transplant after AMC-BAL treatment are still alive under long-term pharmacological immunosuppression. The current clinical follow-up ranges from 5.6 to 8.7 yr after BAL treatment. A new q-real-time PCR assay has been developed and validated to detect PERV infection. The limit of quantification of PERV DNA was ≥ 5 copies per 1 × 10(5) PBMCs. The linear dynamic range was from 5 × 10(0) to 5 × 10(6) copies. In both patients and HCWs, neither PERV DNA in PBMCs nor PERV RNA in plasma and PBMC samples have been found. CONCLUSION Up to 8.7 yr after exposure to treatment with porcine liver cell-based BAL, no PERV infection has been found in long-term immunosuppressed patients and in HCWs by a new highly sensitive and specific q-real-time PCR assay.
Collapse
|
16
|
Mattiuzzo G, Takeuchi Y. Suboptimal porcine endogenous retrovirus infection in non-human primate cells: implication for preclinical xenotransplantation. PLoS One 2010; 5:e13203. [PMID: 20949092 PMCID: PMC2950858 DOI: 10.1371/journal.pone.0013203] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 09/10/2010] [Indexed: 01/20/2023] Open
Abstract
Background Porcine endogenous retrovirus (PERV) poses a potential risk of zoonotic infection in xenotransplantation. Preclinical transplantation trials using non-human primates (NHP) as recipients of porcine xenografts present the opportunity to assess the zoonosis risk in vivo. However, PERV poorly infects NHP cells for unclear reasons and therefore NHP may represent a suboptimal animal model to assess the risk of PERV zoonoses. We investigated the mechanism responsible for the low efficiency of PERV-A infection in NHP cells. Principal Findings Two steps, cell entry and exit, were inefficient for the replication of high-titer, human-tropic A/C recombinant PERV. A restriction factor, tetherin, is likely to be responsible for the block to matured virion release, supported by the correlation between the levels of inhibition and tetherin expression. In rhesus macaque, cynomolgus macaque and baboon the main receptor for PERV entry, PERV-A receptor 1 (PAR-1), was found to be genetically deficient: PAR-1 genes in these species encode serine at amino acid 109 in place of the leucine in human PAR-1. This genetic defect inevitably impacts in vivo sensitivity to PERV infection of these species. In contrast, African green monkey (AGM) PAR-1 is functional, but PERV infection is still poor. Although the mechanism is unclear, tunicamycin treatment, which removes N-glycosylated sugar chains, increases PERV infection, suggesting a possible role for the glycosylation of the receptors. Conclusions Since cynomolgus macaque and baboon, species often used in pig-to-NHP xenotransplantation experiments, have a defective PAR-1, they hardly represent an ideal animal model to assess the risk of PERV transmission in xenotransplantation. Alternatively, NHP species, like AGM, whose both PARs are functional may represent a better model than baboon and cynomolgus macaque for PERV zoonosis in vivo studies.
Collapse
Affiliation(s)
- Giada Mattiuzzo
- Division of Infection and Immunity, Wohl Virion Centre, University College London, London, United Kingdom
| | - Yasuhiro Takeuchi
- Division of Infection and Immunity, Wohl Virion Centre, University College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
17
|
Valdes-Gonzalez R, Dorantes LM, Bracho-Blanchet E, Rodríguez-Ventura A, White DJG. No evidence of porcine endogenous retrovirus in patients with type 1 diabetes after long-term porcine islet xenotransplantation. J Med Virol 2010; 82:331-4. [PMID: 20029803 DOI: 10.1002/jmv.21655] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Xenotransplantation is a promising alternative for donor shortage to ameliorate physiologic and metabolic disorders. The major concern for xenotransplant is the risk of zoonosis mainly by the porcine endogenous retrovirus (PERV), presentation in the piglet genome. Twenty-three patients with type 1 diabetes were transplanted with porcine islets using collagen-generating devices which were implanted subcutaneously in the anterior wall of the abdomen. Clinical characteristics and metabolic tests were recorded in each visit. They were tested for PERV using PCR and RT-PCR from blood pretransplantation and every 3 months during a 4.6- to 8-year follow-up after their first xenotransplant. Tests by PCR of every DNA sample (780 samples) revealed that there was no PERV infection in the DNA of white cells. No evidence of PERV activation was found in this group of patients with type 1 diabetes during clinical long-term follow-up.
Collapse
|
18
|
Jung WY, Kim JE, Jung KC, Jin DI, Moran C, Park EW, Jeon JT, Lee JH. Comparison of PERV genomic locations between Asian and European pigs. Anim Genet 2009; 41:89-92. [PMID: 19781037 DOI: 10.1111/j.1365-2052.2009.01953.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Xenotransplantation from pigs provides a possible solution to the shortage of human organs for allotransplantation. Porcine endogenous retroviruses (PERVs) are a possible obstacle to using porcine organs in addition to the immunological barriers. Three main types of PERVs (A, B and C) have been previously investigated in diverse pig breeds. To examine the copy numbers of PERVs and their genomic locations in the Korean native pig genome, we screened a BAC (Bacterial Artificial Chromosome) library with PERV-specific protease primers for initial recognition of PERV-positive clones and three sets of envelope-specific primers for the identification of PERV types. A total of 45 PERV-positive clones, nine PERV-A and 36 PERV-B, have been identified from the library screening and the BAC contigs were constructed using the primers designed from BAC end sequences (BESs). These primers were also used for SCH (Somatic Cell Hybrid) and RH (Radiation Hybrid) mapping of the PERV-positive clones. The results indicate that 45 PERV-positive BAC clones belong to nine contigs and a singleton. SCH and IMpRH (INRA-Minnesota Porcine Radiation Hybrid) mapping results indicated that there are at least eight separate PERV genomic locations, consisting of three PERV-A and five PERV-B. One contig could not be mapped, and two contigs are closely located on SSC7. Southern blotting indicates there may be up to 15 additional sites. Further investigation of these clones will contribute to a general strategy to generate PERV-free lines of pigs suitable for xenotransplantation.
Collapse
Affiliation(s)
- W Y Jung
- Chungnam National University, Daejeon, Korea
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Garkavenko O, Wynyard S, Nathu D, Simond D, Muzina M, Muzina Z, Scobie L, Hector RD, Croxson MC, Tan P, Elliott BR. Porcine endogenous retrovirus (PERV) and its transmission characteristics: a study of the New Zealand designated pathogen-free herd. Cell Transplant 2009; 17:1381-8. [PMID: 19364075 DOI: 10.3727/096368908787648056] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Previously a strategy for monitoring of pigs intended for cell transplantation was developed and successfully applied to several representative herds in New Zealand. A designated pathogen-free (DPF) herd has been chosen as a good candidate for xenotransplantation. This herd has previously tested free of infectious agents relevant to xenotransplantation and we present here an in depth study of porcine endogenous retrovirus (PERV) transmission. A panel of assays that describes the constraints for the transmission of PERV has been suggested. It includes a) infectivity test in coculture of DPF pig primary cells with both human and pig target cell lines; b) RT activity in supernatant of stimulated primary cells from DPF pigs; c) viral load in donor's blood plasma; d) PERV proviral copy number in DPF pig genome; e) PERV class C prevalence in the herd and its recombination potential. There was no evidence of PERV transmission from DPF pig tissue to either pig or human cells. Additionally, there was no evidence of PERV RNA present in pig blood plasma. PERV copy number differs in individual pigs from as low as 3 copies to 30 copies and the presence of PERV-C varied between animals and breeds. In all DPF pigs tested, a specific locus for PERV-C potentially associated with the recombination of PERV in miniature swine was absent. Presented data on the PERV transmission allows us to classify the DPF potential donors as "null" or noninfectious pigs.
Collapse
Affiliation(s)
- O Garkavenko
- Living Cell Technologies Ltd, Manukau 2025, Auckland, New Zealand.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Marcucci KT, Argaw T, Wilson CA, Salomon DR. Identification of two distinct structural regions in a human porcine endogenous retrovirus receptor, HuPAR2, contributing to function for viral entry. Retrovirology 2009; 6:3. [PMID: 19144196 PMCID: PMC2630988 DOI: 10.1186/1742-4690-6-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Accepted: 01/14/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Of the three subclasses of Porcine Endogenous Retrovirus (PERV), PERV-A is able to infect human cells via one of two receptors, HuPAR1 or HuPAR2. Characterizing the structure-function relationships of the two HuPAR receptors in PERV-A binding and entry is important in understanding receptor-mediated gammaretroviral entry and contributes to evaluating the risk of zoonosis in xenotransplantation. RESULTS Chimeras of the non-permissive murine PAR and the permissive HuPAR2, which scanned the entire molecule, revealed that the first 135 amino acids of HuPAR2 are critical for PERV-A entry. Within this critical region, eighteen single residue differences exist. Site-directed mutagenesis used to map single residues confirmed the previously identified L109 as a binding and infectivity determinant. In addition, we identified seven residues contributing to the efficiency of PERV-A entry without affecting envelope binding, located in multiple predicted structural motifs (intracellular, extracellular and transmembrane). We also show that expression of HuPAR2 in a non-permissive cell line results in an average 11-fold higher infectivity titer for PERV-A compared to equal expression of HuPAR1, although PERV-A envelope binding is similar. Chimeras between HuPAR-1 and -2 revealed that the region spanning amino acids 152-285 is responsible for the increase of HuPAR2. Fine mapping of this region revealed that the increased receptor function required the full sequence rather than one or more specific residues. CONCLUSION HuPAR2 has two distinct structural regions. In one region, a single residue determines binding; however, in both regions, multiple residues influence receptor function for PERV-A entry.
Collapse
Affiliation(s)
- Katherine T Marcucci
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | | | | | | |
Collapse
|
21
|
Kim JH, Choi EY, Jung ES, Kwon Y, Lee DS, Hwang DY, Hwang ES. Characterization of Clones of Human Cell Line Infected with Porcine Endogenous Retrovirus (PERV) from Porcine Cell Line, PK-15. Infect Chemother 2009. [DOI: 10.3947/ic.2009.41.1.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Jung Heon Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea
| | - Eun young Choi
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea
| | - Eun-Suk Jung
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea
| | - Yejin Kwon
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea
| | - Dong Suk Lee
- Hamchoon Institute of Fertility & Genetics, Hamchoon Womens Clinic, Seoul, Korea
| | - Do Yeong Hwang
- Hamchoon Institute of Fertility & Genetics, Hamchoon Womens Clinic, Seoul, Korea
| | - Eung Soo Hwang
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
22
|
Fujimura T, Miyagawa S, Takahagi Y, Shigehisa T, Murakami H. Prevalence of porcine endogenous retroviruses in domestic, minature, and genetically modified pigs in Japan. Transplant Proc 2008; 40:594-5. [PMID: 18374138 DOI: 10.1016/j.transproceed.2008.01.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The present study examined the prevalence of porcine endogenous retroviruses (PERV) in pigs available in Japan using polymerase chain reaction (PCR) with primers specific for PERV-A, PERV-B, and PERV-C and for the full-length 5' to 3' long terminal repeat and using PCR-Southern blotting with env A-, env B-, env C-, and pol/pro-specific probes. All 376 pigs tested--Berkshire (B), Landrace (L), Duroc (D), Large White (W), miniature, and genetically modified triple-cross breed (LWD)--harbored both PERV-A and PERV-B genes. However, the prevalence of PERV-C differed among pigs: LWD, miniature, B, D, W, and L pigs were 100% (36/36), 83% (5/6), 68% (129/191), 52% (26/50), 21% (9/43), and 16% (8/50), respectively. These results show that W and L pigs may be preferable as xenotransplantation donors, because they may not produce human-tropic replication-competent hybrids of PERV-A and PERV-C.
Collapse
Affiliation(s)
- T Fujimura
- Animal Engineering Research Institute, Midorigahara, Ibaraki, Japan.
| | | | | | | | | |
Collapse
|
23
|
Louz D, Bergmans HE, Loos BP, Hoeben RC. Reappraisal of biosafety risks posed by PERVs in xenotransplantation. Rev Med Virol 2008; 18:53-65. [PMID: 17987669 DOI: 10.1002/rmv.559] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Donor materials of porcine origin could potentially provide an alternative source of cells, tissues or whole organs for transplantation to humans, but is hampered by the health risk posed by infection with porcine viruses. Although pigs can be bred in such a way that all known exogenous microorganisms are eliminated, this is not feasible for all endogenous pathogens, such as the porcine endogenous retroviruses (PERVs) which are present in the germline of pigs as proviruses. Upon transplantation, PERV proviruses would be transferred to the human recipient along with the xenograft. If xenotransplantation stimulates or facilitates replication of PERVs in the new hosts, a risk exists for adaptation of the virus to humans and subsequent spread of these viruses. In a worst-case scenario, this might result in the emergence of a new viral disease. Although the concerns for disease potential of PERVs are easing, only limited pre-clinical and clinical data are available. Small-scale, well-designed and carefully controlled clinical trials would provide more evidence on the safety of this approach and allow a better appreciation of the risks involved. It is therefore important to have a framework of protective measures and monitoring protocols in place to facilitate such initially small scale clinical trials. This framework will raise ethical and social considerations regarding acceptability.
Collapse
Affiliation(s)
- Derrick Louz
- GMO office, Substances Expertise Centre of the National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.
| | | | | | | |
Collapse
|
24
|
Dieckhoff B, Petersen B, Kues WA, Kurth R, Niemann H, Denner J. Knockdown of porcine endogenous retrovirus (PERV) expression by PERV-specific shRNA in transgenic pigs. Xenotransplantation 2008; 15:36-45. [DOI: 10.1111/j.1399-3089.2008.00442.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Li Z, Ping Y, Shengfu L, Youping L, Jingqiu C, Hong B. Phylogenetic analysis of porcine endogenous retroviruses expressed in Chinese pigs based on envelope sequences. Transplant Proc 2006; 38:2252-7. [PMID: 16980057 DOI: 10.1016/j.transproceed.2006.06.097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The promise of successful clinical xenotransplantation is now offset by the potential risk of transmission of porcine endogenous retrovirus (PERV). PERV consists of three subtypes according to the varieties of env sequences. We analyzed PERV subtypes in two species of Chinese pigs (Banna minipig inbred, BMI, and Wu-Zhi-Shan pig, WZSP). Positive A and B were detected while positive C was absent in the analyzed Chinese pigs. The polymerase chain reaction products were then cloned into a pGEM-T vector system and sequenced. Phylogenetic trees were constructed from the translated amino acids of PERVs and other type C and type D retrovirus, as well as the lentivirus in the GeneBank. The results suggested that PERV-A and PERV-B that exist in Chinese pig genomes share similarities with other PERV from the GeneBank and some type C retroviruses, including lymphotropic, leukemic and endogenous retroviruses.
Collapse
Affiliation(s)
- Z Li
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Guoxuexiang 37, Chengdu 610041, P.R. China
| | | | | | | | | | | |
Collapse
|
26
|
Moalic Y, Blanchard Y, Félix H, Jestin A. Porcine endogenous retrovirus integration sites in the human genome: features in common with those of murine leukemia virus. J Virol 2006; 80:10980-8. [PMID: 16928752 PMCID: PMC1642138 DOI: 10.1128/jvi.00904-06] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Porcine endogenous retroviruses (PERV) are a major concern when porcine tissues and organs are used for xenotransplantation. PERV has been shown to infect human cells in vitro, highlighting a potential zoonotic risk. No pathology is associated with PERV in its natural host, but the pathogenic potential might differ in the case of cross-species transmission and can only be inferred from knowledge of related gammaretroviruses. We therefore investigated the integration features of the PERV DNA in the human genome in vitro in order to further characterize the risk associated with PERV transmission. In this study, we characterized 189 PERV integration site sequences from human HEK-293 cells. Data showed that PERV integration was strongly enhanced at transcriptional start sites and CpG islands and that the frequencies of integration events increased with the expression levels of the genes, except for the genes with the highest levels of expression, which were disfavored for integration. Finally, we extracted genomic sequences directly flanking the integration sites and found an original 8-base statistical palindromic consensus sequence [TG(int)GTACCAGC]. All these results show similarities between PERV and murine leukemia virus integration site selection, suggesting that gammaretroviruses have a common pattern of integration and that the mechanisms of target site selection within a retrovirus genus might be similar.
Collapse
Affiliation(s)
- Yann Moalic
- Laboratoire de Génétique Virale et Biosecurité, AFSSA, BP53, 22440 Ploufragan, France
| | | | | | | |
Collapse
|
27
|
Yu P, Zhang L, Li SF, Li YP, Cheng JQ, Lu YR, Bu H. Long-term effects on HEK-293 cell line after co-culture with porcine endogenous retrovirus. Transplant Proc 2005; 37:496-9. [PMID: 15808688 DOI: 10.1016/j.transproceed.2004.12.296] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Xenotransplantation of pig organs, tissues, and cells bears the risk of interspecies transmission of porcine endogenous retrovirus (PERV). To evaluate the long-term effect of PERV infection on human cells, human embryonic kidney cell line HEK-293 cells were co-cultured with PERV produced by the porcine kidney PK15 cell line for 24 hours and the infected HEK-293 cells were continually cultured for 6 months. PERV-gag, pol gene and gag protein were detected in infected HEK-293 cells by PCR and immunofluorescent staining. PERV from the supernatant of infected HEK-293 cells was same as that from PK15 in morphology. The concentration of reverse transcriptase in the supernatant of infected HEK-293 cells was almost 200 times lower than that of PK15 cells. Except that infected HEK-293 cells doubled a little earlier than the control and infected cells grew in serum-free medium poorly, further study for cell morphology and growth showed no significant difference between infected HEK-293 cells and uninfected control. These results suggested although PERV from PK15 could infect human cells in vitro, there was no significant acute effect attributable to PERV infection on the growth of HEK-293 cells by 6 months culture.
Collapse
Affiliation(s)
- P Yu
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, PR China
| | | | | | | | | | | | | |
Collapse
|
28
|
Di Nicuolo G, van de Kerkhove MP, Hoekstra R, Beld MGHM, Amoroso P, Battisti S, Starace M, di Florio E, Scuderi V, Scala S, Bracco A, Mancini A, Chamuleau RAFM, Calise F. No evidence of in vitro and in vivo porcine endogenous retrovirus infection after plasmapheresis through the AMC-bioartificial liver. Xenotransplantation 2005; 12:286-92. [PMID: 15943777 DOI: 10.1111/j.1399-3089.2005.00226.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Currently a number of bioartificial livers (BAL) based on porcine liver cells have been developed as a treatment to bridge acute liver failure patients to orthotopic liver transplantation or liver regeneration. These xenotransplantation related treatments hold the risk of infection of treated patients by porcine endogenous retrovirus (PERV) released from the porcine cells, as in vitro infection experiments and transplantations in immunocompromised mice have shown that PERV is able to infect human cells. The Academic Medical Center (AMC)-BAL, unlike other BALs, is characterized by direct contact between porcine liver cells and human plasma, and might therefore be permissive for PERV transfer. METHODS Prior to a clinical phase I trial, human plasma perfused through the AMC-BAL was investigated for PERV DNA and RNA. Moreover productive infectivity was analyzed by exposing the plasma to HEK-293 cells that were subsequently tested for PERV DNA, PERV RNA and reverse transcriptase activity. RESULTS Although PERV DNA was detected in the perfused plasma, no productive infectivity was detected. Consequently fourteen patients were treated with the AMC-BAL and monitored for PERV transmission. Immediately after treatment the plasma of the patients was positive for PERV DNA, most probably due to porcine liver cell lysis. The PERV DNA was cleared within 2 weeks post-treatment and no PERV RNA was detected. No productive infectivity in human embryonic kidney (HEK)-293 cells exposed to plasma of treated patients was detectable. CONCLUSION To conclude, no release of infective PERV particles from the AMC-BAL was observed. Therefore we consider the AMC-BAL as safe, however careful surveillance of patients will be continued.
Collapse
|
29
|
Yu P, Zhang L, Li S, Li Y, Cheng J, Lu Y, Zeng Y, Bu H. Screening and analysis of porcine endogenous retrovirus in Chinese Banna minipig inbred line. Transplant Proc 2005; 36:2485-7. [PMID: 15561290 DOI: 10.1016/j.transproceed.2004.07.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Pigs have been the most likely animal as the source of cells, tissues, and organs for xenotransplantation. But the use of pigs in xenotransplantation is associated with the risk of porcine endogenous retrovirus (PERV) transmission. Previous studies have identified that the proviruses are integrated into the genome of normal pigs and that virus particles released from the porcine cells can infect human cells in vitro. As a unique inbred pig, Banna minipig inbred (BMI) has a huge potential value for xenotransplantation and medical research. It has been the focal experimental animal for pig-to-human xenotransplantation in China, due to its clear genetic background and tiny individual differences. To evaluate whether the potential risk of PERV exists in inbred pigs, a series of screening experiments were performed herein. The results of PCR with primers specific for gag, pol, and env showed that proviruses existed in the genome of BMI, and the PERV subtypes were PERV-A and PERV-B. PERV mRNA was expressed functionally in BMI. Positive results of an RT assay identified that PERV in BMI had potential infectivity, but the concentration of PERV reverse transcriptase in BMI was almost 20 times lower than that of HIV. These results suggested that gag, pol and env genes of PERV were not lost during inbreeding, which created favorable conditions to produce viral particles that could possibly infect human cells in xenotransplantation.
Collapse
Affiliation(s)
- P Yu
- Laboratory of Transplant Engineering and Immunology, Departmentment of Pathology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Molecular Cloning and Phylogenetic Analysis of PERVs from Domestic Pigs in Korea (env gene sequences). JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2005. [DOI: 10.5187/jast.2005.47.2.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Winkler ME, Winkler M, Burian R, Hecker J, Loss M, Przemeck M, Lorenz R, Patience C, Karlas A, Sommer S, Denner J, Martin U. Analysis of pig-to-human porcine endogenous retrovirus transmission in a triple-species kidney xenotransplantation model. Transpl Int 2005; 17:848-58. [PMID: 15864489 DOI: 10.1007/s00147-005-0808-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2003] [Revised: 12/01/2003] [Accepted: 05/04/2004] [Indexed: 10/25/2022]
Abstract
Clinical pig-to-human xenotransplantation might be associated with the risk of transmission of xenozoonoses, especially porcine endogenous retroviruses (PERVs). We have established a pig-to-humanised-cynomolgus monkey xenotransplantation model allowing the analysis of potential PERV-transmission from normal or transgenic porcine organs to human vascular tissue. Pig-to-human kidney xenotransplantation was performed in cynomolgus monkeys. An interposition graft constructed from a human saphena vein replaced the porcine kidney vein. After graft rejection and/or death of the recipient (survival 2, 4, 6, 13, 16, 19 days), the human interposition grafts were removed. Human endothelial cells (huECs) were isolated from the interposition grafts and cultivated in vitro. Explanted human vascular tissue, isolated huECs, plasma and serum samples of the graft recipients were characterised by flow cytometry and immunohistochemistry and screened for indications of PERV transmission by quantitative polymerase chain reaction (PCR), reverse transcriptase-polymerase chain reaction (RT-PCR) and RT assay. PERV-specific immune response of recipients was analysed by Western blot. No evidence of PERV infection or PERV-specific immune response was detected.
Collapse
Affiliation(s)
- Monica E Winkler
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Kuddus RH, Metes DM, Nalesnik MA, Logar AJ, Rao AS, Fung JJ. Porcine cell microchimerism but lack of productive porcine endogenous retrovirus (PERV) infection in naive and humanized SCID-beige mice treated with porcine peripheral blood mononuclear cells. Transpl Immunol 2005; 13:15-24. [PMID: 15203124 DOI: 10.1016/j.trim.2004.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2003] [Revised: 12/30/2003] [Accepted: 01/09/2004] [Indexed: 11/17/2022]
Abstract
Pigs are considered a suitable source of cells and organs for xenotransplantation. All known strains of pigs contain porcine endogenous retrovirus (PERV) and PERV released by porcine cells may infect human cells in vitro and severe-combined immunodeficient (SCID) mice in vivo. Humanized SCID (hu-SCID) mice develop immune response to porcine antigens. Here we investigated PERV transmission in humanized SCID-beige mice using porcine peripheral blood mononuclear cells (PBMC) as the donor tissue (and the source of PERV). Mice were infused in the peritoneal cavity with 1.5-3.0 x 10(7) unfractionated human PBMC. Unfractionated porcine PBMC (1.5-3.0 x 10(7) cell/mouse) were infused to the mice simultaneously with human PBMC or 3 weeks after human PBMC infusion. The treated mice were monitored for weight and skin changes, donor cell chimerism, anti-pig antibodies and PERV transmission. All humanized mice tested 5-12 weeks after human PBMC transplantation were macrochimeric (up to 40% of cells in blood) for human cells, where 99% of the human cells were T-lymphocytes. Although human B lymphocytes were very rare in the blood of humanized mice at that point, the mice were positive for human anti-pig natural antibodies. The control SCID-beige mice or mice treated with porcine PBMC alone were negative for anti-porcine antibodies. Approximately 70% of the humanized mice treated with porcine PBMC were also microchimeric for porcine cells. Although some tissue samples of these mice were positive for PERV DNA in the absence of porcine DNA indicating PERV infection, the infection was non-productive as PERV transcripts were not detectable in those tissues. PERV infection of human and mouse cells in vitro by co-culturing with porcine PBMC was also non-productive. Humanized SCID-beige mice suffered weight loss and occasional minor skin changes due to graft vs. host disease caused by human PBMC but none of the mice showed observable effect attributable to the apparent PERV infection alone.
Collapse
Affiliation(s)
- Ruhul H Kuddus
- College of Medicine, Drexel University, Philadelphia, PA 19102, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Winkler ME, Winkler M, Burian R, Hecker J, Loss M, Przemeck M, Lorenz R, Patience C, Karlas A, Sommer S, Denner J, Martin U. Analysis of pig-to-human porcine endogenous retrovirus transmission in a triple-species kidney xenotransplantation model. Transpl Int 2004. [DOI: 10.1111/j.1432-2277.2004.tb00520.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Li Z, Ping Y, Shengfu L, Hong B, Youping L, Yangzhi Z, Jingqiu C. Phylogenetic relationship of porcine endogenous retrovirus (PERV) in Chinese pigs with some type C retroviruses. Virus Res 2004; 105:167-73. [PMID: 15351490 DOI: 10.1016/j.virusres.2004.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2004] [Revised: 05/28/2004] [Accepted: 05/28/2004] [Indexed: 11/17/2022]
Abstract
PCR amplification of proviral DNA extracted from peripheral blood lymphocytes of three Chinese pigs (Banna minipig inbreed (BMI), Wu-Zhi-Shan pig (WZSP) and Neijiang pig (NJP)), using primers corresponding to highly conserved regions of reverse transcriptase (RT) of pol gene and nucleocapsid sequence of gag gene. PCR products were then extracted and cloned into pGEM-T vector. Phylogenetic analysis of the nucleotide sequences of PERV-BMI, PERV-WZSP and PERV-WZSP revealed that they were of retroviral origin. Phylogenetic trees were constructed from the translated amino acids of PERVs and other type C retrovirus, as well as lentivirus of GenBank. The research demonstrated that PERVs of Chinese pigs and other PERVs were closely related to other pathogenic type C retroviruses. From the gag analysis, a novel subgroup of PERV was identified and this novel sequence described in this report would allow such investigation to be actively pursued.
Collapse
Affiliation(s)
- Zhang Li
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | | | | | | | | | | | | |
Collapse
|
35
|
Edamura K, Nasu K, Iwami Y, Nishimura R, Ogawa H, Sasaki N, Ohgawara H. Prevalence of porcine endogenous retrovirus in domestic pigs in Japan and its potential infection in dogs xenotransplanted with porcine pancreatic islet cells. J Vet Med Sci 2004; 66:129-35. [PMID: 15031539 DOI: 10.1292/jvms.66.129] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The prevalence of porcine endogenous retrovirus (PERV) proviral DNA among various pig breeds raised in Japan was investigated by polymerase chain reaction (PCR). Moreover, potential infection of PERV was investigated by PCR and reverse transcriptase-polymerase chain reaction (RT-PCR) in experimentally induced diabetic dogs (n=5) implanted with the diffusion chamber type bio-artificial endocrine pancreas (Bio-AEP) containing porcine pancreatic endocrine (PE) cells. No immunosuppressant was used after the transplantation. PERV gag, pol, env-A and env-B genes were detected in any pigs examined. In two of three Landrace breeds, env-C gene was absent. PERV proviral DNAs and viral RNAs were also detected from the cultured porcine PE-cells. In the peripheral blood mononuclear cells and the spleen obtained at 6, 30, 32, 36, 79 weeks of xenotransplantation in dogs, however, no evidence of microchimerism, infection and viremia were confirmed. These results suggested that the risk of PERV infection through xenotransplantation of Bio-AEP containing porcine islet cells without immunosuppressants may be quite low.
Collapse
Affiliation(s)
- Kazuya Edamura
- Laboratory of Veterinary Emergency Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
36
|
Cunningham DA, Dos Santos Cruz GJ, Fernández-Suárez XM, Whittam AJ, Herring C, Copeman L, Richards A, Langford GA. ACTIVATION OF PRIMARY PORCINE ENDOTHELIAL CELLS INDUCES RELEASE OF PORCINE ENDOGENOUS RETROVIRUSES. Transplantation 2004; 77:1071-9. [PMID: 15087774 DOI: 10.1097/01.tp.0000114966.20491.50] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Endothelial cells form the interface between the porcine graft and the recipient and frequently become activated after xenotransplantation. To evaluate the safety of xenotransplantation further, we assessed the effect of cellular activation on the expression and release of porcine endogenous retroviruses from primary endothelial cells isolated from transgenic and nontransgenic pigs. METHODS Primary porcine endothelial cells, cultured from pigs transgenic for human decay accelerating factor, were treated with human tumor necrosis factor-alpha, porcine interferon-gamma, or lipopolysaccharide. The release of porcine endogenous retroviruses into the supernatant was monitored at 24-hr intervals (up to 72 hr) by polymerase chain reaction-based reverse transcriptase (PBRT) assay. Activated and unactivated endothelial cells were co-cultured with human cells to investigate the capacity of any virus released from the porcine cells to infect human cells. RESULTS Virus was not detected in supernatants from quiescent cells by PBRT analysis. The number of viral particles released from endothelial cells was 10 to 5 x 10 viral particles/mL after cellular activation with tumor necrosis factor-alpha, interferon-gamma, or lipopolysaccharide, as shown by PBRT analysis. In contrast, in vitro infection of human cells was observed with unactivated endothelial cells only and was not observed in co-cultures with the activated porcine cells. CONCLUSIONS Cytokine treatment of primary porcine endothelial cells results in an increase in the release of virus into the supernatant, but the observed increase in viral titer was not mirrored by an increase in infectivity toward human cells.
Collapse
Affiliation(s)
- Deirdre A Cunningham
- Department of Parasitology, National Institute for Medical Research, Mill Hill, London, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Scobie L, Taylor S, Wood JC, Suling KM, Quinn G, Meikle S, Patience C, Schuurman HJ, Onions DE. Absence of replication-competent human-tropic porcine endogenous retroviruses in the germ line DNA of inbred miniature Swine. J Virol 2004; 78:2502-9. [PMID: 14963152 PMCID: PMC369242 DOI: 10.1128/jvi.78.5.2502-2509.2004] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The potential transmission of porcine endogenous retroviruses (PERVs) has raised concern in the development of porcine xenotransplantation products. Our previous studies have resulted in the identification of animals within a research herd of inbred miniature swine that lack the capacity to transmit PERV to human cells in vitro. In contrast, other animals were capable of PERV transmission. The PERVs that were transmitted to human cells are recombinants between PERV-A and PERV-C in the post-VRA region of the envelope (B. A. Oldmixon, J. C. Wood, T. A. Ericsson, C. A. Wilson, M. E. White-Scharf, G. Andersson, J. L. Greenstein, H. J. Schuurman, and C. Patience, J. Virol. 76:3045-3048, 2002); these viruses we term PERV-A/C. This observation prompted us to determine whether these human-tropic replication-competent (HTRC) PERV-A/C recombinants were present in the genomic DNA of these miniature swine. Genomic DNA libraries were generated from one miniature swine that transmitted HTRC PERV as well as from one miniature swine that did not transmit HTRC PERV. HTRC PERV-A/C proviruses were not identified in the germ line DNAs of these pigs by using genomic mapping. Similarly, although PERV-A loci were identified in both libraries that possessed long env open reading frames, the Env proteins encoded by these loci were nonfunctional according to pseudotype assays. In the absence of a germ line source for HTRC PERV, further studies are warranted to assess the mechanisms by which HTRC PERV can be generated. Once identified, it may prove possible to generate animals with further reduced potential to produce HTRC PERV.
Collapse
Affiliation(s)
- Linda Scobie
- Department of Veterinary Pathology, University of Glasgow, Glasgow G61 1QH, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Quinn G, Wood J, Suling K, Arn S, Sachs DH, Schuurman HJ, Patience C. Genotyping of porcine endogenous retroviruses from a family of miniature swine. J Virol 2004; 78:314-9. [PMID: 14671113 PMCID: PMC303422 DOI: 10.1128/jvi.78.1.314-319.2004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The identification of animals in an inbred miniature swine herd that consistently fail to produce replication- competent humantropic porcine endogenous retrovirus (PERV) has prompted studies on the biology of PERV in transmitter and nontransmitter animals. We analyzed PERV RNA transcript profiles in a family of inbred miniature swine (SLA(d/d) haplotype) in which individual members differed in their capacity to generate humantropic and ecotropic (i.e., pigtropic) virus. We identified unique HaeIII and HpaII gag restriction fragment length polymorphism (RFLP) profiles resulting from single nucleotide polymorphisms in blood cells; these were found only in animals that produced humantropic PERV. These HaeIII and HpaII gag RFLP profiles proved to be components of humantropic PERV as they were transmitted to 293 human target cells in vitro. The humantropic HaeIII and HpaII gag RFLP genotypes in the family of study were not present in other miniature swine in the herd that produced humantropic PERV, indicating that these RFLP profiles relate specifically to this family's lineage.
Collapse
Affiliation(s)
- Gary Quinn
- Immerge BioTherapeutics Inc., Cambridge, Massachusetts 02139, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Tönjes RR, Niebert M. Relative age of proviral porcine endogenous retrovirus sequences in Sus scrofa based on the molecular clock hypothesis. J Virol 2003; 77:12363-8. [PMID: 14581574 PMCID: PMC254287 DOI: 10.1128/jvi.77.22.12363-12368.2003] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2003] [Accepted: 08/10/2003] [Indexed: 11/20/2022] Open
Abstract
Porcine endogenous retroviruses (PERV) are discussed as putative infectious agents in xenotransplantation. PERV classes A, B, and C harbor different envelope proteins. Two different types of long terminal repeat (LTR) structures exist, of which both are present only in PERV-A. One type of LTR contains a distinct repeat structure in U3, while the other is repeatless, conferring a lower level of transcriptional activity. Since the different LTR structures are distributed unequally among the proviruses and, apparently, PERV is the only virus harboring two different LTR structures, we were interested in determining which LTR is the ancestor. Replication-competent viruses can still be found today, suggesting an evolutionary recent origin. Our studies revealed that the age of PERV is at most 7.6 x 10(6) years, whereas the repeatless LTR type evolved approximately 3.4 x 10(6) years ago, being the phylogenetically younger structure. The age determined for PERV correlates with the time of separation between pigs (Suidae, Sus scrofa) and their closest relatives, American-born peccaries (Tayassuidae, Pecari tajacu), 7.4 x 10(6) years ago.
Collapse
|
40
|
Niebert M, Tönjes RR. Molecular cloning and functional characterization of infectious PERV and development of diagnostic tests. Curr Top Microbiol Immunol 2003; 278:217-37. [PMID: 12934946 DOI: 10.1007/978-3-642-55541-1_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Pigs are the donor animals of choice for xenotransplantation (XTx) and xenogeneic cell therapy measurements. Most known porcine pathogens can be controlled by conventional means like vaccination, medication or specific pathogen-free breeding conditions. As pigs have co-evolved very closely with humans for a few millennia it is not very likely that even asymptomatic pathogens have escaped attention. Porcine endogenous retroviruses (PERV) are different from conventional pathogens as they are chromosomally fixed in every cell of the animal, hence PERV cannot be easily controlled. While PERV show no phenotype in the porcine host, recent data demonstrate that some polytropic proviruses can be activated by external stimuli and that those can productively infect human cells in vitro. In evaluation of the retrovirological safety of XTx, we determined the number of replication-competent PERV to be limited and to exhibit a heterogeneous distribution, therefore suggesting that they could be removed by conventional breeding. The transcriptional regulation of some PERV due to repetitive elements in their long terminal repeats enables their adaptation to new host cells. The diagnostic tools available, based on immunological and polymerase chain reaction techniques, were shown to be sensitive in both the animal and in vitro, but must still show their potential in human XTx recipients, where they are confronted with very low antigen expression and the phenomenon of microchimerism.
Collapse
Affiliation(s)
- M Niebert
- Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, 63225 Langen, Germany
| | | |
Collapse
|
41
|
Klymiuk N, Müller M, Brem G, Aigner B. Recombination analysis of human-tropic porcine endogenous retroviruses. J Gen Virol 2003; 84:2729-2734. [PMID: 13679607 DOI: 10.1099/vir.0.19284-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Prevention of cross-species infection of porcine endogenous retroviruses (PERV) is crucial for xenotransplantation. The potential risk of infection is caused by replication-competent PERV as well as by hybrid viruses derived from recombination events of distinct PERV genomes. Recently, human-tropic, replication-competent PERV genomes obtaining hybrid sequences have been observed. Here, complete polymorphism pattern analysis was performed on the full-length PERV γ1 clones and on the complete envelope (env) gene sequences published to date. Several recombined full-length clones and a high number of different recombination patterns in the env gene were identified. In addition, recombinations with retroviral genomes not yet known were found. Thus, the potential risk of infection also exists for recombination products, including defective PERV loci.
Collapse
Affiliation(s)
- Nikolai Klymiuk
- Institut für Tierzucht und Genetik, Veterinärmedizinische Universität Wien, A-1210 Vienna, Austria
- ApoGene Biotechnologie, D-86567 Hilgertshausen, Germany
| | - Mathias Müller
- Institut für Tierzucht und Genetik, Veterinärmedizinische Universität Wien, A-1210 Vienna, Austria
| | - Gottfried Brem
- Ludwig-Boltzmann-Institut für Immuno-, Zyto- und Molekulargenetische Forschung Wien, A-1210 Vienna, Austria
- ApoGene Biotechnologie, D-86567 Hilgertshausen, Germany
| | - Bernhard Aigner
- Institut für Tierzucht und Genetik, Veterinärmedizinische Universität Wien, A-1210 Vienna, Austria
- ApoGene Biotechnologie, D-86567 Hilgertshausen, Germany
| |
Collapse
|
42
|
Kuddus RH, Gandhi CR, Rehman KK, Guo F, Watkins SC, Valdivia LA, Fung JJ. Some morphological, growth, and genomic properties of human cells chronically infected with porcine endogenous retrovirus (PERV). Genome 2003; 46:858-69. [PMID: 14608403 DOI: 10.1139/g03-064] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A major concern in using porcine organs for transplantation is the potential of transmission of porcine endogenous retrovirus (PERV). To investigate the long-term effects of PERV infection on human cells, human embryonic kidney cell line HEK-293 infected with PERV PK-15 was maintained for up to 72 passages and samples were harvested at intervals for use in morphological, growth, and genomic analyses. Morphology, DNA content/cell, and doubling time of uninfected and infected cells were similar. Restriction fragment length polymorphism (RFLP) analysis of PCR-amplified nearly full-length PERV genome showed no alterations in band pattern. RFLP analysis of the long terminal repeats (LTR) showed some changes in band pattern, but not in length. Southern blot analysis of genomic DNA of infected cells indicated random integration of PERV without structural alterations in proviral genome. Semi-quantitative PCR demonstrated a gradual increase of proviral load in the infected cells. Sequence analysis of the LTR region of PERV from infected cells indicated a relatively low rate (6.0 × 104/bp or about 2 × 106/bp/generation) of mutation. There were also indications of recombination of PERV strains A and B. Finally, PERV infection had no effect on transcription of human endogenous retrovirus-K (HERV-K) genes. Together, no significant effect attributable to PERV infection was evident on chronically PERV-infected HEK-293 cells.Key words: porcine endogenous retrovirus (PERV), human endogenous retrovirus-K (HERV-K), xenotransplantation, zoonosis.
Collapse
Affiliation(s)
- Ruhul H Kuddus
- Thomas E Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh Medical Center, PA 15261, USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Xenotransplantation, in particular transplantation of pig cells, tissues and organs into human patients, may alleviate the current shortage of suitable allografts available for human transplantation. This overview addresses the physiological, immunological and virological factors considered with regard to xenotransplantation. Among the issues reviewed are the merits of using pigs as xenograft source species, the compatibility of pig and human organ physiology and the immunological hindrances with regard to the various types of rejection and attempts at abrogating rejection. Advances in the prevention of pig organ rejection by creating genetically modified pigs that are more suited to the human microenvironment are also discussed. Finally, with regard to virology, possible zoonotic infections emanating from pigs are reviewed, with special emphasis on the pig endogenous retrovirus (PERV). An in depth account of PERV studies, comprising their discovery as well as recent knowledge of the virus, is given. To date, all retrospective studies on patients with pig xenografts have shown no evidence of PERV transmission, however, many factors make us interpret these results with caution. Although the lack of PERV infection in xenograft recipients up to now is encouraging, more basic research and controlled animal studies that mimic the pig to human xenotransplantation setting more closely are required for safety assessment.
Collapse
Affiliation(s)
- Saema Magre
- Wohl Virion Centre, The Windeyer Institute of Medical Sciences, University College London, 46 Cleveland Street, London W1T 4JF, UK
| | | | | |
Collapse
|
44
|
Wilson CA, Laeeq S, Ritzhaupt A, Colon-Moran W, Yoshimura FK. Sequence analysis of porcine endogenous retrovirus long terminal repeats and identification of transcriptional regulatory regions. J Virol 2003; 77:142-9. [PMID: 12477819 PMCID: PMC140639 DOI: 10.1128/jvi.77.1.142-149.2003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Porcine cells express endogenous retroviruses, some of which are infectious for human cells. To better understand the replication of these porcine endogenous retroviruses (PERVs) in cells of different types and animal species, we have performed studies of the long terminal repeat (LTR) region of known gammaretroviral isolates of PERV. Nucleotide sequence determination of the LTRs of PERV-NIH, PERV-C, PERV-A, and PERV-B revealed that the PERV-A and PERV-B LTRs are identical, whereas the PERV-NIH and PERV-C LTRs have significant sequence differences in the U3 region between each other and with the LTRs of PERV-A and PERV-B. Sequence analysis revealed a similar organization of basal promoter elements compared with other gammaretroviruses, including the presence of enhancer-like repeat elements. The sequences of the PERV-NIH and PERV-C repeat element are similar to that of the PERV-A and PERV-B element with some differences in the organization of these repeats. The sequence of the PERV enhancer-like repeat elements differs significantly from those of other known gammaretroviral enhancers. The transcriptional activities of the PERV-A, PERV-B, and PERV-C LTRs relative to each other were similar in different cell types of different animal species as determined by transient expression assays. On the other hand, the PERV-NIH LTR was considerably weaker in these cell types. The transcriptional activity of all PERV LTRs was considerably lower in porcine ST-IOWA cells than in cell lines from other species. Deletion mutant analysis of the LTR of a PERV-NIH isolate identified regions that transactivate or repress transcription depending on the cell type.
Collapse
Affiliation(s)
- Carolyn A Wilson
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
45
|
Klymiuk N, Müller M, Brem G, Aigner B. Characterization of porcine endogenous retrovirus gamma pro-pol nucleotide sequences. J Virol 2002; 76:11738-43. [PMID: 12388734 PMCID: PMC136799 DOI: 10.1128/jvi.76.22.11738-11743.2002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Endogenous retroviral sequences in the pig genome (PERV) represent a potential infectious risk in xenotransplantation. All known infectious PERV have been asssigned to the PERV gamma1 family, consisting of the subfamilies A, B, and C. The aim of the study was the concise examination of PERV gamma by the analysis of the retroviral pro-pol sequences. The analysis of 52 pro-pol clones amplified in this study revealed eight PERV gamma families. In addition to four already-described families (gamma1, gamma4, gamma5, gamma6), four novel families (gamma7, gamma8, gamma9, gamma10) were identified. Quantitative analysis of the novel PERV gamma sequences in selected breeds revealed variations in the endogenous retroviral load. Open reading frames (ORF) in the amplified proviral fragment were only found for PERV gamma1. In addition, novel ORF-containing PERV gamma1 clones consisting of hybrid sequences were revealed. Sequence comparison from published full-length PERV gamma1 clones of the PERV subfamilies A, B, and C resulted in a lack of strict correlation of the classification of pro-pol and env. The results indicated the occurrence of causative recombination events between retroviral genomes. Thus, our study on PERV gamma provides new data for the evaluation and selection of pigs intended to be used in xenotransplantation.
Collapse
|
46
|
Bartosch B, Weiss RA, Takeuchi Y. PCR-based cloning and immunocytological titration of infectious porcine endogenous retrovirus subgroup A and B. J Gen Virol 2002; 83:2231-2240. [PMID: 12185278 DOI: 10.1099/0022-1317-83-9-2231] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two pig endogenous retroviruses (PERV), PERV-A and -B, productively infect human cells and are therefore considered to constitute a potential risk in pig-to-human xenotransplantation. A PCR-based cloning technique to isolate infectious PERV proviruses was established. Overlapping 3' half and 5' halves of PERV proviral genomes were amplified using DNA extracted from human 293 cells infected with PERV-A or -B. These clones were fused at a unique restriction site in the overlapping region and tested for their infectivity. Representative constructs possessed the same infectious properties as their parent isolates. We also developed a polyclonal anti-PERV serum by using recombinant PERV capsid protein derived from one of the infectious constructs as immunogen and established an immunocytological method for detection and titration of PERV infection. This detection method proved to be more sensitive than the current method of choice (transfer of MLV-lacZ vectors) for infectivity assessment of PERV. These findings should be considered for future characterization of PERV isolates.
Collapse
Affiliation(s)
- Birke Bartosch
- Wohl Virion Centre, The Windeyer Institute of Medical Sciences, University College London, 46 Cleveland Street, London W1T 4JF, UK1
| | - Robin A Weiss
- Wohl Virion Centre, The Windeyer Institute of Medical Sciences, University College London, 46 Cleveland Street, London W1T 4JF, UK1
| | - Yasuhiro Takeuchi
- Wohl Virion Centre, The Windeyer Institute of Medical Sciences, University College London, 46 Cleveland Street, London W1T 4JF, UK1
| |
Collapse
|
47
|
Abstract
Xenotransplantation of porcine organs might provide an unlimited source of donor organs to treat endstage organ failure diseases in humans. However, pigs harbour retroviruses with unknown pathogenic potential as an integral part of their genome. While until recently the risk of interspecies transmission of these porcine endogenous retroviruses (PERV) during xenotransplantation has been thought to be negligible, several reports on infection of human cells in vitro and spread of PERV from transplanted porcine islets in murine model systems have somewhat challenged this view. Here, we compile available data on PERV biology and diagnostics, and discuss the significance of the results with regard to the safety of clinical xenotransplantation.
Collapse
Affiliation(s)
- Jürgen H Blusch
- Max von Pettenkofer-Institute, Department of Virology, Ludwig Maximilians University, Munich, Germany
| | | | | |
Collapse
|
48
|
Lee JH, Webb GC, Allen RDM, Moran C. Characterizing and mapping porcine endogenous retroviruses in Westran pigs. J Virol 2002; 76:5548-56. [PMID: 11991983 PMCID: PMC137029 DOI: 10.1128/jvi.76.11.5548-5556.2002] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Since porcine endogenous retroviruses (PERVs) can infect cultured human cells, they are a potential hazard to xenotransplantation. For this reason, endogenous retroviruses from the Westran (Westmead Hospital transplantation) inbred line of pigs were analyzed by using consensus primers for the type A and type B viruses to amplify 1.8-kb envelope gene fragments. After preliminary analysis with restriction enzymes KpnI and MboI, 31 clones were sequenced. Between types A and B, five recombinant clones were identified. Fifty-five percent of clones (17 of 31) had premature stop codons within the envelope protein-encoding region. Endogenous retroviruses in Westran pigs were physically mapped by fluorescence in situ hybridization (FISH) using PERV-A and PERV-B envelope clones as probes to identify at least 32 integration sites (19 PERV-A sites and 13 PERV-B sites). The chromosomal sites of integration in the Westran strain are quite different from those in the European Large White pig. The recombinant clones suggest that defective PERVs could become infective through recombination and further that PERVs might recombine with human endogenous retroviruses in xenotransplants.
Collapse
Affiliation(s)
- Jun-Heon Lee
- Centre for Advanced Technologies in Animal Genetics and Reproduction, Faculty of Veterinary Science, The University of Sydney, Sydney, New South Wales 2006, Australia
| | | | | | | |
Collapse
|
49
|
Oldmixon BA, Wood JC, Ericsson TA, Wilson CA, White-Scharf ME, Andersson G, Greenstein JL, Schuurman HJ, Patience C. Porcine endogenous retrovirus transmission characteristics of an inbred herd of miniature swine. J Virol 2002; 76:3045-8. [PMID: 11861871 PMCID: PMC135987 DOI: 10.1128/jvi.76.6.3045-3048.2002] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here we report the identification of inbred miniature swine that failed to produce human-tropic replication-competent porcine endogenous retroviruses (HTRC PERVs), using in vitro coculture assays. When HTRC PERVs were isolated from transmitting animals, all were recombinant viruses, with the receptor-binding domain of PERV-A combining with PERV-C-related sequences.
Collapse
Affiliation(s)
- Beth A Oldmixon
- Immerge BioTherapeutics, Inc., Charlestown, Massachusetts02129, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Herring C, Quinn G, Bower R, Parsons N, Logan NA, Brawley A, Elsome K, Whittam A, Fernandez-Suarez XM, Cunningham D, Onions D, Langford G, Scobie L. Mapping full-length porcine endogenous retroviruses in a large white pig. J Virol 2001; 75:12252-65. [PMID: 11711616 PMCID: PMC116122 DOI: 10.1128/jvi.75.24.12252-12265.2001] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2001] [Accepted: 09/26/2001] [Indexed: 11/20/2022] Open
Abstract
Xenotransplantation may bridge the widening gap between the shortage of donor organs and the increasing number of patients waiting for transplantation. However, a major safety issue is the potential cross-species transmission of porcine endogenous retroviruses (PERV). This problem could be resolved if it is possible to produce pigs that do not contain replication-competent copies of this virus. In order to determine the feasibility of this, we have determined the number of potentially replication-competent full-length PERV proviruses and obtained data on their integration sites within the porcine genome. We have screened genomic DNA libraries from a Large White pig for potentially intact proviruses. We identified six unique PERV B proviruses that were apparently intact in all three genes, while the majority of isolated proviruses were defective in one or more genes. No intact PERV A proviruses were found in this pig, despite the identification of multiple defective A proviruses. Genotyping of 30 unrelated pigs for these unique proviruses showed a heterogeneous distribution. Two proviruses were uncommon, present in 7 of 30 and 3 of 30 pigs, while three were each present in 24 of 30 pigs, and one was present in 30 of 30 animals examined. Our data indicate that few PERV proviruses in Large White pigs are capable of productive infection and suggest that many could be removed by selective breeding. Further studies are required to determine if all potentially functional proviruses could be removed by breeding or whether gene knockout techniques will be required to remove the residuum.
Collapse
Affiliation(s)
- C Herring
- Imutran Ltd. (a Novartis Pharma AG Company), Cambridge CB2 2YP, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|