1
|
Abstract
Following the success of and the high demand for recombinant protein-based therapeutics during the last 25 years, the pharmaceutical industry has invested significantly in the development of novel treatments based on biologics. Mammalian cells are the major production systems for these complex biopharmaceuticals, with Chinese hamster ovary (CHO) cell lines as the most important players. Over the years, various engineering strategies and modeling approaches have been used to improve microbial production platforms, such as bacteria and yeasts, as well as to create pre-optimized chassis host strains. However, the complexity of mammalian cells curtailed the optimization of these host cells by metabolic engineering. Most of the improvements of titer and productivity were achieved by media optimization and large-scale screening of producer clones. The advances made in recent years now open the door to again consider the potential application of systems biology approaches and metabolic engineering also to CHO. The availability of a reference genome sequence, genome-scale metabolic models and the growing number of various “omics” datasets can help overcome the complexity of CHO cells and support design strategies to boost their production performance. Modular design approaches applied to engineer industrially relevant cell lines have evolved to reduce the time and effort needed for the generation of new producer cells and to allow the achievement of desired product titers and quality. Nevertheless, important steps to enable the design of a chassis platform similar to those in use in the microbial world are still missing. In this review, we highlight the importance of mammalian cellular platforms for the production of biopharmaceuticals and compare them to microbial platforms, with an emphasis on describing novel approaches and discussing still open questions that need to be resolved to reach the objective of designing enhanced modular chassis CHO cell lines.
Collapse
|
2
|
Mohammadian O, Rajabibazl M, Pourmaleki E, Bayat H, Ahani R, Rahimpour A. Development of an improved lentiviral based vector system for the stable expression of monoclonal antibody in CHO cells. Prep Biochem Biotechnol 2019; 49:822-829. [PMID: 31156045 DOI: 10.1080/10826068.2019.1621893] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Therapeutic monoclonal antibodies (mAbs) have become the dominant products in biopharmaceutical industry. Mammalian cell expression systems including Chinese hamster ovary (CHO) cells are the most commonly used hosts for the production of complex recombinant proteins. However, development of stable, high producing CHO cell lines suffers from the low expression level and instability of the transgene. The increasing efforts in the development of novel therapeutic antibodies and the advent of biosimilars have revealed the necessity for the development of improved platforms for rapid production of products for initial characterization and testing. In line with this premise, vector design and engineering has been applied to improve the expression level and stability of the transgene. This study reports the application of an improved lentiviral vector system containing the human interferon-β scaffold attachment region (IFN-SAR) for the development of antibody producing stable CHO cells. mAb expressing clones producing 1100 µg/L of IgG1 monoclonal antibody were isolated without extensive screening of a large number of clones. Our results here indicate the positive effects of IFN-SAR on stable mAb expression using lentiviral based expression vectors. We also observed that although IFN-SAR can improve light chain (LC) and heavy chain (HC) gene copy numbers in stable cell pools, mAb expression in single cell clones was not affected by the transgene copy number.
Collapse
Affiliation(s)
- Omid Mohammadian
- a Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Masoumeh Rajabibazl
- a Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences , Tehran , Iran.,b Nano-Technology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Es'hagh Pourmaleki
- b Nano-Technology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences , Tehran , Iran.,c Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Hadi Bayat
- b Nano-Technology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences , Tehran , Iran.,d Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University , Tehran , Iran
| | - Roshanak Ahani
- b Nano-Technology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Azam Rahimpour
- b Nano-Technology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences , Tehran , Iran.,c Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| |
Collapse
|
3
|
Lent-On-Plus Lentiviral vectors for conditional expression in human stem cells. Sci Rep 2016; 6:37289. [PMID: 27853296 PMCID: PMC5112523 DOI: 10.1038/srep37289] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 10/28/2016] [Indexed: 12/25/2022] Open
Abstract
Conditional transgene expression in human stem cells has been difficult to achieve due to the low efficiency of existing delivery methods, the strong silencing of the transgenes and the toxicity of the regulators. Most of the existing technologies are based on stem cells clones expressing appropriate levels of tTA or rtTA transactivators (based on the TetR-VP16 chimeras). In the present study, we aim the generation of Tet-On all-in-one lentiviral vectors (LVs) that tightly regulate transgene expression in human stem cells using the original TetR repressor. By using appropriate promoter combinations and shielding the LVs with the Is2 insulator, we have constructed the Lent-On-Plus Tet-On system that achieved efficient transgene regulation in human multipotent and pluripotent stem cells. The generation of inducible stem cell lines with the Lent-ON-Plus LVs did not require selection or cloning, and transgene regulation was maintained after long-term cultured and upon differentiation toward different lineages. To our knowledge, Lent-On-Plus is the first all-in-one vector system that tightly regulates transgene expression in bulk populations of human pluripotent stem cells and its progeny.
Collapse
|
4
|
Yoshida W, Tomikawa J, Inaki M, Kimura H, Onodera M, Hata K, Nakabayashi K. An insulator element located at the cyclin B1 interacting protein 1 gene locus is highly conserved among mammalian species. PLoS One 2015; 10:e0131204. [PMID: 26110280 PMCID: PMC4481373 DOI: 10.1371/journal.pone.0131204] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 05/30/2015] [Indexed: 11/25/2022] Open
Abstract
Insulators are cis-elements that control the direction of enhancer and silencer activities (enhancer-blocking) and protect genes from silencing by heterochromatinization (barrier activity). Understanding insulators is critical to elucidate gene regulatory mechanisms at chromosomal domain levels. Here, we focused on a genomic region upstream of the mouse Ccnb1ip1 (cyclin B1 interacting protein 1) gene that was methylated in E9.5 embryos of the C57BL/6 strain, but unmethylated in those of the 129X1/SvJ and JF1/Ms strains. We hypothesized the existence of an insulator-type element that prevents the spread of DNA methylation within the 1.8 kbp segment, and actually identified a 242-bp and a 185-bp fragments that were located adjacent to each other and showed insulator and enhancer activities, respectively, in reporter assays. We designated these genomic regions as the Ccnb1ip1 insulator and the Ccnb1ip1 enhancer. The Ccnb1ip1 insulator showed enhancer-blocking activity in the luciferase assays and barrier activity in the colony formation assays. Further examination of the Ccnb1ip1 locus in other mammalian species revealed that the insulator and enhancer are highly conserved among a wide variety of species, and are located immediately upstream of the transcriptional start site of Ccnb1ip1. These newly identified cis-elements may be involved in transcriptional regulation of Ccnb1ip1, which is important in meiotic crossing-over and G2/M transition of the mitotic cell cycle.
Collapse
Affiliation(s)
- Wataru Yoshida
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Setagaya, Tokyo, Japan
- * E-mail: (WY); (KN)
| | - Junko Tomikawa
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Setagaya, Tokyo, Japan
| | - Makoto Inaki
- Department of Human Genetics, National Research Institute for Child Health and Development, Setagaya, Tokyo, Japan
| | - Hiroshi Kimura
- Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | - Masafumi Onodera
- Department of Human Genetics, National Research Institute for Child Health and Development, Setagaya, Tokyo, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Setagaya, Tokyo, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Setagaya, Tokyo, Japan
- * E-mail: (WY); (KN)
| |
Collapse
|
5
|
Harraghy N, Calabrese D, Fisch I, Girod PA, LeFourn V, Regamey A, Mermod N. Epigenetic regulatory elements: Recent advances in understanding their mode of action and use for recombinant protein production in mammalian cells. Biotechnol J 2015; 10:967-78. [DOI: 10.1002/biot.201400649] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/20/2015] [Accepted: 05/20/2015] [Indexed: 12/18/2022]
|
6
|
Mariati, Koh EYC, Yeo JHM, Ho SCL, Yang Y. Toward stable gene expression in CHO cells. Bioengineered 2015; 5:340-5. [PMID: 25482237 DOI: 10.4161/bioe.32111] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Maintaining high gene expression level during long-term culture is critical when producing therapeutic recombinant proteins using mammalian cells. Transcriptional silencing of promoters, most likely due to epigenetic events such as DNA methylation and histone modifications, is one of the major mechanisms causing production instability. Previous studies demonstrated that the core CpG island element (IE) from the hamster adenine phosphoribosyltransferase gene is effective to prevent DNA methylation. We generated one set of modified human cytomegalovirus (hCMV) promoters by insertion of one or two copies of IE in either forward or reverse orientations into different locations of the hCMV promoter. The modified hCMV with one copy of IE inserted between the hCMV enhancer and core promoter in reverse orientation (MR1) was most effective at enhancing expression stability in CHO cells without comprising expression level when compared with the wild type hCMV. We also found that insertion of IE into a chimeric murine CMV (mCMV) enhancer and human elongation factor-1α core (hEF) promoter in reverse orientation did not enhance expression stability, indicating that the effect of IE on expression stability is possibly promoter specific.
Collapse
Affiliation(s)
- Mariati
- a Bioprocessing Technology Institute; Agency for Science, Technology, and Research (A*STAR); Singapore, Republic of Singapore
| | | | | | | | | |
Collapse
|
7
|
Hagedorn C, Lipps HJ, Rupprecht S. The epigenetic regulation of autonomous replicons. Biomol Concepts 2015; 1:17-30. [PMID: 25961982 DOI: 10.1515/bmc.2010.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The discovery of autonomous replicating sequences (ARSs) in Saccharomyces cerevisiae in 1979 was considered a milestone in unraveling the regulation of replication in eukaryotic cells. However, shortly afterwards it became obvious that in Saccharomyces pombe and all other higher organisms ARSs were not sufficient to initiate independent replication. Understanding the mechanisms of replication is a major challenge in modern cell biology and is also a prerequisite to developing application-oriented autonomous replicons for gene therapeutic treatments. This review will focus on the development of non-viral episomal vectors, their use in gene therapeutic applications and our current knowledge about their epigenetic regulation.
Collapse
|
8
|
Wong SP, Argyros O, Harbottle RP. Sustained expression from DNA vectors. ADVANCES IN GENETICS 2014; 89:113-152. [PMID: 25620010 DOI: 10.1016/bs.adgen.2014.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
DNA vectors have the potential to become powerful medical tools for treatment of human disease. The human body has, however, developed a range of defensive strategies to detect and silence foreign or misplaced DNA, which is more typically encountered during infection or chromosomal damage. A clinically relevant human gene therapy vector must overcome or avoid these protections whilst delivering sustained levels of therapeutic gene product without compromising the vitality of the recipient host. Many non-viral DNA vectors trigger these defense mechanisms and are subsequently destroyed or rendered silent. Thus, without modification or considered design, the clinical utility of a typical DNA vector is fundamentally limited due to the transient nature of its transgene expression. The development of safe and persistently expressing DNA vectors is a crucial prerequisite for its successful clinical application and subsequently remains, therefore, one of the main strategic tasks of non-viral gene therapy research. In this chapter we will describe our current understanding of the mechanisms that can destroy or silence DNA vectors and discuss strategies, which have been utilized to improve their sustenance and the level and duration of their transgene expression.
Collapse
Affiliation(s)
- Suet Ping Wong
- Leukocyte Biology Section, National Heart & Lung Institute, Imperial College London, London, UK
| | - Orestis Argyros
- Division of Pharmacology-Pharmacotechnology, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Richard P Harbottle
- DNA Vector Research, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| |
Collapse
|
9
|
Impact of Using Different Promoters and Matrix Attachment Regions on Recombinant Protein Expression Level and Stability in Stably Transfected CHO Cells. Mol Biotechnol 2014; 57:138-44. [DOI: 10.1007/s12033-014-9809-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
10
|
Mariati, Yeo JHM, Koh EYC, Ho SCL, Yang Y. Insertion of core CpG island element into human CMV promoter for enhancing recombinant protein expression stability in CHO cells. Biotechnol Prog 2014; 30:523-34. [DOI: 10.1002/btpr.1919] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 04/02/2014] [Indexed: 01/17/2023]
Affiliation(s)
- Mariati
- Bioprocessing Technology Inst., Agency for Science, Technology and Research (A*STAR); Singapore 138668 Singapore
| | - Jessna H. M. Yeo
- Bioprocessing Technology Inst., Agency for Science, Technology and Research (A*STAR); Singapore 138668 Singapore
| | - Esther Y. C. Koh
- Bioprocessing Technology Inst., Agency for Science, Technology and Research (A*STAR); Singapore 138668 Singapore
| | - Steven C. L. Ho
- Bioprocessing Technology Inst., Agency for Science, Technology and Research (A*STAR); Singapore 138668 Singapore
| | - Yuansheng Yang
- Bioprocessing Technology Inst., Agency for Science, Technology and Research (A*STAR); Singapore 138668 Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University; Singapore 637459 Singapore
| |
Collapse
|
11
|
Benabdellah K, Gutierrez-Guerrero A, Cobo M, Muñoz P, Martín F. A chimeric HS4-SAR insulator (IS2) that prevents silencing and enhances expression of lentiviral vectors in pluripotent stem cells. PLoS One 2014; 9:e84268. [PMID: 24400083 PMCID: PMC3882226 DOI: 10.1371/journal.pone.0084268] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 11/21/2013] [Indexed: 12/02/2022] Open
Abstract
Chromatin insulators, such as the chicken β-globin locus control region hypersensitive site 4 (HS4), and scaffold/matrix attachment regions (SARs/MARs) have been incorporated separately or in combination into retroviral vectors (RVs) in order to increase transgene expression levels, avoid silencing and reduce expression variability. However, their incorporation into RVs either produces a reduction on titer and/or expression levels or do not have sufficient effect on stem cells. In order to develop an improved insulator we decided to combine SAR elements with HS4 insulators. We designed several synthetic shorter SAR elements containing 4 or 5 MAR/SARs recognition signatures (MRS) and studied their effects on a lentiviral vector (LV) expressing eGFP through the SFFV promoter (SE). A 388 bp SAR element containing 5 MRS, named SAR2, was as efficient or superior to the other SARs analyzed. SAR2 enhanced transgene expression and reduced silencing and variability on human embryonic stem cells (hESCs). We next compared the effect of different HS4-based insulators, the HS4-Core (250 bp), the HS4-Ext (400 bp) and the HS4-650 (650 bp). All HS4 elements reduced silencing and expression variability but they also had a negative effect on transgene expression levels and titer. In general, the HS4-650 element had a better overall effect. Based on these data we developed a chimeric insulator, IS2, combining the SAR2 and the HS4-650. When incorporated into the 3′ LTR of the SE LV, the IS2 element was able to enhance expression, avoid silencing and reduce variability of expression on hESCs. Importantly, these effects were maintained after differentiation of the transduced hESCs toward the hematopoietic linage. Neither the HS4-650 nor the SAR2 elements had these effects. The IS2 element is therefore a novel insulator that confers expression stability and enhances expression of LVs on stem cells.
Collapse
Affiliation(s)
- Karim Benabdellah
- Human DNA Variability Department, GENYO - Centre for Genomic and Oncological Research (Pfizer/University of Granada/Andalusian Regional Government), PTS Granada, Granada, Spain
- * E-mail: (FM); (KB)
| | - Alejandra Gutierrez-Guerrero
- Human DNA Variability Department, GENYO - Centre for Genomic and Oncological Research (Pfizer/University of Granada/Andalusian Regional Government), PTS Granada, Granada, Spain
| | - Marién Cobo
- Human DNA Variability Department, GENYO - Centre for Genomic and Oncological Research (Pfizer/University of Granada/Andalusian Regional Government), PTS Granada, Granada, Spain
| | - Pilar Muñoz
- Human DNA Variability Department, GENYO - Centre for Genomic and Oncological Research (Pfizer/University of Granada/Andalusian Regional Government), PTS Granada, Granada, Spain
| | - Francisco Martín
- Human DNA Variability Department, GENYO - Centre for Genomic and Oncological Research (Pfizer/University of Granada/Andalusian Regional Government), PTS Granada, Granada, Spain
- * E-mail: (FM); (KB)
| |
Collapse
|
12
|
Festa M, Brun P, Piccinini R, Castagliuolo I, Basso B, Zecconi A. Staphylococcus aureus Efb protein expression in Nicotiana tabacum and immune response to oral administration. Res Vet Sci 2013; 94:484-9. [PMID: 23158852 DOI: 10.1016/j.rvsc.2012.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 10/16/2012] [Accepted: 10/20/2012] [Indexed: 10/27/2022]
Abstract
Staphylococcus aureus (S. aureus) is one of the most widespread agent of diseases in humans and animals. In dairy cows, S. aureus is the most frequently isolated contagious pathogens in mastitis cases and vaccines are one of the potential tools to control the infections, thus decreasing the use of antibiotics. Among all the virulence factors produced by S. aureus, extra cellular fibrinogen binding protein (Efb) is an important one in the pathogenesis of mastitis. Plants are useful bioreactors to produce antigens and the aim of the study was the production of Efb in two cultivars of Nicotiana tabacum as a mean to produce vaccine against S. aureus in plants. A matrix attachment region (MAR) sequence was inserted near the two borders of transfer-DNA in the transformation vector in the two possible orientations. The presence of MAR elements in the transformation system significantly improved transformation efficiency and Efb protein yield up to a 2% level on total soluble protein (TSP). Mice orally immunized with transgenic lyophilized leaves produced an antigen-specific immune response.
Collapse
Affiliation(s)
- Margherita Festa
- Institute of Biophysics CNR-Dept. Life Sciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | | | | | | | | | | |
Collapse
|
13
|
Zhao Q, Lu B, George SK, Yoo JJ, Atala A. Safeguarding pluripotent stem cells for cell therapy with a non-viral, non-integrating episomal suicide construct. Biomaterials 2012; 33:7261-71. [DOI: 10.1016/j.biomaterials.2012.06.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 06/22/2012] [Indexed: 02/03/2023]
|
14
|
Harraghy N, Buceta M, Regamey A, Girod PA, Mermod N. Using matrix attachment regions to improve recombinant protein production. Methods Mol Biol 2012; 801:93-110. [PMID: 21987249 DOI: 10.1007/978-1-61779-352-3_7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Chinese hamster ovary (CHO) cells are the system of choice for the production of complex molecules, such as monoclonal antibodies. Despite significant progress in improving the yield from these cells, the process to the selection, identification, and maintenance of high-producing cell lines remains cumbersome, time consuming, and often of uncertain outcome. Matrix attachment regions (MARs) are DNA sequences that help generate and maintain an open chromatin domain that is favourable to transcription and may also facilitate the integration of several copies of the transgene. By incorporating MARs into expression vectors, an increase in the proportion of high-producer cells as well as an increase in protein production are seen, thereby reducing the number of clones to be screened and time to production by as much as 9 months. In this chapter, we describe how MARs can be used to increase transgene expression and provide protocols for the transfection of CHO cells in suspension and detection of high-producing antibody cell clones.
Collapse
Affiliation(s)
- Niamh Harraghy
- Laboratory of Molecular Biotechnology, University of Lausanne, Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
15
|
Grandjean M, Girod PA, Calabrese D, Kostyrko K, Wicht M, Yerly F, Mazza C, Beckmann JS, Martinet D, Mermod N. High-level transgene expression by homologous recombination-mediated gene transfer. Nucleic Acids Res 2011; 39:e104. [PMID: 21652640 PMCID: PMC3159483 DOI: 10.1093/nar/gkr436] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Gene transfer and expression in eukaryotes is often limited by a number of stably maintained gene copies and by epigenetic silencing effects. Silencing may be limited by the use of epigenetic regulatory sequences such as matrix attachment regions (MAR). Here, we show that successive transfections of MAR-containing vectors allow a synergistic increase of transgene expression. This finding is partly explained by an increased entry into the cell nuclei and genomic integration of the DNA, an effect that requires both the MAR element and iterative transfections. Fluorescence in situ hybridization analysis often showed single integration events, indicating that DNAs introduced in successive transfections could recombine. High expression was also linked to the cell division cycle, so that nuclear transport of the DNA occurs when homologous recombination is most active. Use of cells deficient in either non-homologous end-joining or homologous recombination suggested that efficient integration and expression may require homologous recombination-based genomic integration of MAR-containing plasmids and the lack of epigenetic silencing events associated with tandem gene copies. We conclude that MAR elements may promote homologous recombination, and that cells and vectors can be engineered to take advantage of this property to mediate highly efficient gene transfer and expression.
Collapse
Affiliation(s)
- Mélanie Grandjean
- Laboratory of Molecular Biotechnology, Center for Biotechnology UNIL-EPFL, University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Moreno R, Martínez I, Petriz J, Nadal M, Tintoré X, Gonzalez JR, Gratacós E, Aran JM. The β-Interferon Scaffold Attachment Region Confers High-Level Transgene Expression and Avoids Extinction by Epigenetic Modifications of Integrated Provirus in Adipose Tissue-Derived Human Mesenchymal Stem Cells. Tissue Eng Part C Methods 2011; 17:275-87. [DOI: 10.1089/ten.tec.2010.0383] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Rafael Moreno
- Medical and Molecular Genetics Center, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Itziar Martínez
- Medical and Molecular Genetics Center, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Jordi Petriz
- Biomedical Research Unit, Institut de Recerca Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Marga Nadal
- Translational Research Laboratory, IDIBELL-Institut Català d'Oncologia, Barcelona, Spain
| | - Xavier Tintoré
- Plastic Surgery Service, Capio Hospital General de Catalunya, Barcelona, Spain
| | - Juan Ramón Gonzalez
- Center for Research in Environmental Epidemiology (CREAL) and CIBERESP, Barcelona, Spain
| | - Eduard Gratacós
- Maternal-Fetal Medicine Department, Hospital Clinic-IDIBAPS, University of Barcelona and CIBERER, Barcelona, Spain
| | - Josep M. Aran
- Medical and Molecular Genetics Center, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| |
Collapse
|
17
|
Yang Y, Mariati, Chusainow J, Yap MG. DNA methylation contributes to loss in productivity of monoclonal antibody-producing CHO cell lines. J Biotechnol 2010; 147:180-5. [DOI: 10.1016/j.jbiotec.2010.04.004] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 03/18/2010] [Accepted: 04/11/2010] [Indexed: 11/16/2022]
|
18
|
Haase R, Argyros O, Wong SP, Harbottle RP, Lipps HJ, Ogris M, Magnusson T, Pinto MGV, Haas J, Baiker A. pEPito: a significantly improved non-viral episomal expression vector for mammalian cells. BMC Biotechnol 2010; 10:20. [PMID: 20230618 PMCID: PMC2847955 DOI: 10.1186/1472-6750-10-20] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 03/15/2010] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The episomal replication of the prototype vector pEPI-1 depends on a transcription unit starting from the constitutively expressed Cytomegalovirus immediate early promoter (CMV-IEP) and directed into a 2000 bp long matrix attachment region sequence (MARS) derived from the human beta-interferon gene. The original pEPI-1 vector contains two mammalian transcription units and a total of 305 CpG islands, which are located predominantly within the vector elements necessary for bacterial propagation and known to be counterproductive for persistent long-term transgene expression. RESULTS Here, we report the development of a novel vector pEPito, which is derived from the pEPI-1 plasmid replicon but has considerably improved efficacy both in vitro and in vivo. The pEPito vector is significantly reduced in size, contains only one transcription unit and 60% less CpG motives in comparison to pEPI-1. It exhibits major advantages compared to the original pEPI-1 plasmid, including higher transgene expression levels and increased colony-forming efficiencies in vitro, as well as more persistent transgene expression profiles in vivo. The performance of pEPito-based vectors was further improved by replacing the CMV-IEP with the human CMV enhancer/human elongation factor 1 alpha promoter (hCMV/EF1P) element that is known to be less affected by epigenetic silencing events. CONCLUSIONS The novel vector pEPito can be considered suitable as an improved vector for biotechnological applications in vitro and for non-viral gene delivery in vivo.
Collapse
Affiliation(s)
- Rudolf Haase
- Max von Pettenkofer-Institute, University of Munich, Munich, Germany
- Department of Pharmacy, University of Munich, Munich, Germany
| | - Orestis Argyros
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Suet-Ping Wong
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Hans J Lipps
- Institute for Cell Biology, University of Witten/Herdecke, Witten, Germany
| | - Manfred Ogris
- Department of Pharmacy, University of Munich, Munich, Germany
| | | | | | - Jürgen Haas
- Max von Pettenkofer-Institute, University of Munich, Munich, Germany
- Division of Pathway Medicine, University of Edinburgh, Edinburgh, UK
| | - Armin Baiker
- Max von Pettenkofer-Institute, University of Munich, Munich, Germany
| |
Collapse
|
19
|
Abstract
Lentiviruses are capable of infecting many cells irrespective of their cycling status, stably inserting DNA copies of the viral RNA genomes into host chromosomes. This property has led to the development of lentiviral vectors for high-efficiency gene transfer to a wide variety of cell types, from slowly proliferating hematopoietic stem cells to terminally differentiated neurons. Regardless of their advantage over gammaretroviral vectors, which can only introduce transgenes into target cells that are actively dividing, lentiviral vectors are still susceptible to chromosomal position effects that result in transgene silencing or variegated expression. In this chapter, various genetic regulatory elements are described that can be incorporated within lentiviral vector backbones to minimize the influences of neighboring chromatin on single-copy transgene expression. The modifications include utilization of strong internal enhancer-promoter sequences, addition of scaffold/matrix attachment regions, and flanking the transcriptional unit with chromatin domain insulators. Protocols are provided to evaluate the performance as well as the relative biosafety of lentiviral vectors containing these elements.
Collapse
Affiliation(s)
- Ali Ramezani
- Department of Anatomy and Regenerative Biology, The George Washington University Medical Center, Washington, DC, USA
| | | |
Collapse
|
20
|
Boundary sequences stabilize transgene expression from subtle position effects in retroviral vectors. Blood Cells Mol Dis 2009; 43:214-20. [PMID: 19632138 DOI: 10.1016/j.bcmd.2009.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 06/11/2009] [Accepted: 06/11/2009] [Indexed: 11/21/2022]
Abstract
Transgene expression shut-down, attenuation and/or variability from integrated retroviral vectors pose a major obstacle to gene therapy trials involving hematopoietic cells. We have undertaken a systematic assessment of the behavior of different configurations containing IFN-beta SAR and/or 5'HS4 beta-globin insulator sequences within a gammaretroviral vector optimized for high-level expression, focusing on the long-term achievement of stable, homogeneous transgene expression in the successfully transduced cells. Introduction of these cis regulatory elements did not perturb virus production and stability. Conversely, the SAR/5'HS4 insulator combination appeared to increase the homogeneity of EGFP expression in mass cultures. Furthermore, a clonal analysis of the dispersion of EGFP expression revealed that the IFN-SAR/5'HS4 insulator dyad was particularly effective in reducing the variability of transgene expression when both sequences were placed in opposite orientations within the retroviral backbone. These results may prove useful for the design of more stable retroviral expression cassettes able to counteract chromosomal position effects.
Collapse
|
21
|
Cai R, Xu W, Dai B, Cai X, Xu R, Lu J. SATB1 binds an intronic MAR sequence in human PI3kgamma in vitro. Mol Biol Rep 2009; 37:1461-5. [PMID: 19430959 DOI: 10.1007/s11033-009-9538-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 02/03/2009] [Indexed: 11/26/2022]
Abstract
In our previous study, an intronic MAR sequence in human PI3Kgamma gene (PIMAR) was identified using bioinformatics and biochemical methods. We used MatInspector software to identify potential binding sites for MAR-binding proteins in PIMAR. In this study, a tissue-specific MAR-binding protein (SATB1) was used to characterize the potential binding sites. Southwestern blot analysis indicates that recombinant SATB1 directly binds PIMAR sequence in vitro. Reporter gene assay showed that overexpression of SATB1 downregulates the luciferase reporter linked with reversed PIMAR by approximately threefold in the NIH-3T3 cell line. These results indicate that SATB1 may play antagonistic roles in PI3Kgamma transcriptional regulation.
Collapse
Affiliation(s)
- Rong Cai
- Department of Biochemistry and Molecular Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | | | | | | | | | | |
Collapse
|
22
|
Dossett ML, Teague RM, Schmitt TM, Tan X, Cooper LJ, Pinzon C, Greenberg PD. Adoptive immunotherapy of disseminated leukemia with TCR-transduced, CD8+ T cells expressing a known endogenous TCR. Mol Ther 2009; 17:742-9. [PMID: 19209146 PMCID: PMC2730935 DOI: 10.1038/mt.2008.300] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Accepted: 12/17/2008] [Indexed: 11/10/2022] Open
Abstract
Adoptive T-cell immunotherapy has shown promise in the treatment of human malignancies, but the challenge of isolating T cells with high avidity for tumor antigens in each patient has limited application of this approach. The transfer into T cells of T-cell receptor (TCR) genes encoding high-affinity TCRs recognizing defined tumor-associated antigens can potentially circumvent this obstacle. Using a well-characterized murine model of adoptive T-cell immunotherapy for widely disseminated leukemia, we demonstrate that TCR gene-modified T cells can cure mice of disseminated tumor. One goal of such adoptive therapy is to establish a persistent memory response to prevent recurrence; however, long-term function of transferred TCR-transduced T cells is limited due to reduced expression of the introduced TCR in vivo in quiescent resting T cells. However, by introducing the TCR into a cell with a known endogenous specificity, activation of these T cells by stimulation through the endogenous TCR can be used to increase expression of the introduced TCR, potentially providing a strategy to increase the total number of tumor-reactive T cells in the host and restore more potent antitumor activity.
Collapse
Affiliation(s)
- Michelle L Dossett
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
The core element of a CpG island protects avian sarcoma and leukosis virus-derived vectors from transcriptional silencing. J Virol 2008; 82:7818-27. [PMID: 18550662 DOI: 10.1128/jvi.00419-08] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Unmethylated CpG islands are known to keep adjacent promoters transcriptionally active. In the CpG island adjacent to the adenosine phosphoribosyltransferase gene, the protection against transcriptional silencing can be attributed to the short CpG-rich core element containing Sp1 binding sites. We report here the insertion of this CpG island core element, IE, into the long terminal repeat of a retroviral vector derived from Rous sarcoma virus, which normally suffers from progressive transcriptional silencing in mammalian cells. IE insertion into a specific position between enhancer and promoter sequences led to efficient protection of the integrated vector from silencing and gradual CpG methylation in rodent and human cells. Individual cell clones with IE-modified reporter vectors display high levels of reporter expression for a sustained period and without substantial variegation in the cell culture. The presence of Sp1 binding sites is important for the protective effect of IE, but at least some part of the entire antisilencing capacity is maintained in IE with mutated Sp1 sites. We suggest that this strategy of antisilencing protection by the CpG island core element may prove generally useful in retroviral vectors.
Collapse
|
24
|
Direct comparison of hepatocyte-specific expression cassettes following adenoviral and nonviral hydrodynamic gene transfer. Gene Ther 2008; 15:594-603. [PMID: 18288213 DOI: 10.1038/sj.gt.3303096] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Hepatocytes are a key target for treatment of inborn errors of metabolism, dyslipidemia and coagulation disorders. The development of potent expression cassettes is a critical target to improve the therapeutic index of gene transfer vectors. Here we evaluated 22 hepatocyte-specific expression cassettes containing a human apo A-I transgene following hydrodynamic transfer of plasmids or adenoviral transfer with E1E3E4-deleted vectors in C57BL/6 mice. The DC172 promoter consisting of a 890 bp human alpha(1)-antitrypsin promoter and two copies of the 160 bp alpha(1)-microglobulin enhancer results in superior expression levels compared to constructs containing the 1.5 kb human alpha(1)-antitrypsin promoter, the 790 bp synthetic liver-specific promoter or the DC190 promoter containing a 520 bp human albumin promoter and two copies of the 99 bp prothrombin enhancer. The most potent expression cassette consists of the DC172 promoter upstream of the transgene and two copies of the hepatic control region-1. Minicircles containing this expression cassette induce persistent physiological human apo A-I or human factor IX levels after hydrodynamic transfer. In conclusion, in this comparative study of 22 hepatocyte-specific expression cassettes, the DC172 promoter in combination with two copies of the hepatic control region-1 induces the highest expression levels following hydrodynamic and adenoviral transfer.
Collapse
|
25
|
Abstract
Retrovirus vectors integrate into the genome, providing stable gene transfer, but integration contributes in part to transcriptional silencing that compromises long-term expression. In the case of gammaretrovirus vectors based on murine leukemia virus, many integration events are completely silenced in undifferentiated stem cells and in transgenic mice. Gammaretrovirus vectors are also subject to variegation in which sister cells bearing the same provirus differentially express, and cell differentiation can lead to extinction of vector expression. In contrast, lentivirus vectors based on human immunodeficiency virus type 1 appear to express more efficiently, although other reports indicate that lentivirus vectors can be silenced. This review summarizes the key features of gammaretrovirus vector silencing. The evidence for and against gene silencing of lentivirus vectors is described with special emphasis on the potential effects of vector design, provirus copy number, and integration site preferences on silencing. This analysis suggests that the difference between selfinactivating (SIN) lentivirus vectors and their modified SIN gammaretrovirus counterparts may be less dramatic than previously thought. It will therefore be important to further characterize the mechanisms of silencing, in order to create better gammaretrovirus and lentivirus vectors that consistently express at single copy for gene therapy.
Collapse
Affiliation(s)
- James Ellis
- Developmental Biology Program, Hospital for Sick Children, Toronto, ON, Canada M5G 1L7.
| |
Collapse
|
26
|
Hino S, Akasaka K, Matsuoka M. Sea urchin arylsulfatase insulator exerts its anti-silencing effect without interacting with the nuclear matrix. J Mol Biol 2006; 357:18-27. [PMID: 16426632 DOI: 10.1016/j.jmb.2005.12.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Revised: 12/13/2005] [Accepted: 12/16/2005] [Indexed: 10/25/2022]
Abstract
Chromatin insulators have been shown to stabilize transgene expression. Although insulators have been suggested to regulate the subcellular localization of chromosomes, it is still unclear whether this property is important for their anti-silencing activity. To investigate the underlying mechanisms governing the anti-silencing function of insulators, we studied the association of sea urchin arylsulfatase insulator (ArsI) with the nuclear matrix, which is a key component of the subnuclear localization of the genome. ArsI did not potentiate the nuclear matrix association with the transgene, even though it showed strong anti-silencing activity. This observation was in clear contrast to the results of the experiment using a human interferon-beta scaffold attachment region, in which the anti-silencing effect coincided with the enhanced matrix association. Chromatin immunoprecipitation analyses suggested that the absence of the matrix binding by ArsI was due to a lack of its binding to CCCTC-binding factor (CTCF), a protein known to be associated with matrix binding by chicken beta-globin insulator. Furthermore, ArsI maintained the nucleosome occupancy within the transgene at a constant level during long-term culture, although ArsI itself was not a nucleosome-excluding sequence. Taken together, these results suggest that this insulator exerts its anti-silencing activity by counteracting silencing-associated factors to maintain local chromatin environment, rather than by remodeling the subnuclear localization of the transgene locus.
Collapse
Affiliation(s)
- Shinjiro Hino
- Laboratory of Virus Immunology, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan.
| | | | | |
Collapse
|
27
|
Bode J, Winkelmann S, Götze S, Spiker S, Tsutsui K, Bi C, A K P, Benham C. Correlations between scaffold/matrix attachment region (S/MAR) binding activity and DNA duplex destabilization energy. J Mol Biol 2005; 358:597-613. [PMID: 16516920 DOI: 10.1016/j.jmb.2005.11.073] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Revised: 11/02/2005] [Accepted: 11/04/2005] [Indexed: 10/25/2022]
Abstract
Scaffold or matrix-attachment regions (S/MARs) are thought to be involved in the organization of eukaryotic chromosomes and in the regulation of several DNA functions. Their characteristics are conserved between plants and humans, and a variety of biological activities have been associated with them. The identification of S/MARs within genomic sequences has proved to be unexpectedly difficult, as they do not appear to have consensus sequences or sequence motifs associated with them. We have shown that S/MARs do share a characteristic structural property, they have a markedly high predicted propensity to undergo strand separation when placed under negative superhelical tension. This result agrees with experimental observations, that S/MARs contain base-unpairing regions (BURs). Here, we perform a quantitative evaluation of the association between the ease of stress-induced DNA duplex destabilization (SIDD) and S/MAR binding activity. We first use synthetic oligomers to investigate how the arrangement of localized unpairing elements within a base-unpairing region affects S/MAR binding. The organizational properties found in this way are applied to the investigation of correlations between specific measures of stress-induced duplex destabilization and the binding properties of naturally occurring S/MARs. For this purpose, we analyze S/MAR and non-S/MAR elements that have been derived from the human genome or from the tobacco genome. We find that S/MARs exhibit long regions of extensive destabilization. Moreover, quantitative measures of the SIDD attributes of these fragments calculated under uniform conditions are found to correlate very highly (r2>0.8) with their experimentally measured S/MAR-binding strengths. These results suggest that duplex destabilization may be involved in the mechanisms by which S/MARs function. They suggest also that SIDD properties may be incorporated into an improved computational strategy to search genomic DNA sequences for sites having the necessary attributes to function as S/MARs, and even to estimate their relative binding strengths.
Collapse
Affiliation(s)
- Jürgen Bode
- German Research Center for Biotechnology, RDIF/Epigenetic Regulation, D-38124 Braunschweig, Mascheroder Weg 1, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Barzon L, Stefani AL, Pacenti M, Palù G. Versatility of gene therapy vectors through viruses. Expert Opin Biol Ther 2005; 5:639-62. [PMID: 15934840 DOI: 10.1517/14712598.5.5.639] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Several viruses have been engineered for gene therapy applications, and the specific properties of each viral vector have been exploited to target a variety of inherited and acquired diseases. Preclinical and clinical studies demonstrated that viral vectors are highly versatile tools capable of efficient transfer of foreign genetic information into almost all cell types and tissues. Gene therapy applications depend on vector characteristics, such as host range, cell- or tissue-specific targeting, genome integration, efficiency and duration of transgene expression, packaging capacity, and suitability for scale-up production. This review discusses the advances in the development of viral vectors, with particular emphasis on how knowledge of virus biology has been exploited to design a variety of vectors with improved safety characteristics and efficiency, potentially suitable for a large number of gene therapy applications.
Collapse
Affiliation(s)
- Luisa Barzon
- Department of Histology, Microbiology and Medical Biotechnologies, University of Padova, Via Gabelli 63, I-35121 Padova, Italy.
| | | | | | | |
Collapse
|
29
|
Ellis J. Silencing and Variegation of Gammaretrovirus and Lentivirus Vectors. Hum Gene Ther 2005. [DOI: 10.1089/hum.2005.16.ft-126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
30
|
Cooper LJN, Topp MS, Pinzon C, Plavec I, Jensen MC, Riddell SR, Greenberg PD. Enhanced transgene expression in quiescent and activated human CD8+ T cells. Hum Gene Ther 2005; 15:648-58. [PMID: 15242525 DOI: 10.1089/1043034041361217] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The level of expression of retroviral vector-encoded proteins in T cells, decreasing during periods of quiescence, could be an obstacle to their clinical utility. To identify promoter systems that could increase the strength and persistence of transgene expression in primary human CD8(+) T cells, we designed a panel of Moloney retroviral vectors to express a destabilized enhanced green fluorescent protein (d4EGFP) reporter protein (t(1/2) = 4 hr). We found that the promoters phosphoglycerate kinase (Pgk), beta-actin, and long terminal repeat (LTR) produced the highest levels of d4EGFP expression in proliferating T cells, but that expression dramatically declined in quiescent cells with all promoters. To improve gene expression, we examined the effect of the beta-interferon (IFN) scaffold attachment region (SAR). This SAR augmented expression from mammalian promoters in cycling T cells, but had a small effect on maintenance of expression in resting T cells. However, when the SAR was combined with the LTR promoter, it significantly enhanced expression in resting and cycling cells. These data support use of the IFN-beta SAR with the LTR in Moloney retroviral vectors to help sustain gene expression in resting primary human CD8(+) T cells and to enhance gene expression in activated T cells.
Collapse
Affiliation(s)
- Laurence J N Cooper
- Pediatric Oncology, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA 91010, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Jenke ACW, Scinteie MF, Stehle IM, Lipps HJ. Expression of a transgene encoded on a non-viral episomal vector is not subject to epigenetic silencing by cytosine methylation. Mol Biol Rep 2005; 31:85-90. [PMID: 15293783 DOI: 10.1023/b:mole.0000031363.35839.46] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Currently available vectors for mammalian cells suffer from a number of limitations which make them only partially useful for genetic modification of eukaryotic cells and organisms and for gene therapy. While integration of a vector can lead to unpredictable interactions with the host genome and silencing of the integrated transgene, most non-integrating vectors mediate only transient expression of a transgene. All available vector types can lead to transformation of the recipient cell and many of them can cause serious immunological side effects in the organism. The ideal vector has to be free of these side effects and should allow long-term expression of a transgene in the absence of selection. In this report we describe a novel non-viral episomal expression system fulfilling these criteria. The gene encoding the truncated rat NGF-receptor gene under the control of the CMV-promoter was inserted into a vector construct containing a scaffold/matrix attached region (S/MAR). This vector was then transfected into CHO cells and human HaCat cells. We show that this vector replicates episomally in these cells and is mitotically stable in the abscence of selection over more than 100 generations. Moreover, we provide the first experimental data that the CMV-promoter in an episome is not subject to silencing by cytosine methylation, thus allowing long-term expression of the transgene in the absence of selection.
Collapse
Affiliation(s)
- Andreas C W Jenke
- Institute of Cell Biology, University of Witten/Herdecke, Witten, Germany
| | | | | | | |
Collapse
|
32
|
Hino S, Fan J, Taguwa S, Akasaka K, Matsuoka M. Sea urchin insulator protects lentiviral vector from silencing by maintaining active chromatin structure. Gene Ther 2004; 11:819-28. [PMID: 14985785 DOI: 10.1038/sj.gt.3302227] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Suppressed expression of transgenes in vivo is the major obstacle in the gene therapy. For the long-term expression, we utilized a chromatin insulator from sea urchin arylsulfatase (Ars) gene locus (Ars insulator, ArsI), which has been shown to epigenetically regulate gene expression across species. ArsI was able to prevent silencing of the transgene in a myeloid cell line, HL-60, and a murine embryonic stem cell line, CCE, in an orientation-dependent manner, but not in Huh-7, K562 and MCF-7 cells, indicating that the effect of ArsI on gene silencing was cell type dependent. Although anti-silencing effect of ArsI was almost equivalent to that of chicken beta-globin insulator, incorporation of ArsI into lentiviral vector had little effect on the virus titer compared with chicken beta-globin insulator. Clonal analysis of transduced HL-60 cells revealed that ArsI protects the lentiviral vector from position effects regardless of its orientation. Furthermore, chromatin immunoprecipitation assays revealed that a high acetylation level was observed in the promoter of the insulated vector, whereas that of ArsI was independent of its anti-silencing capacity. In addition to it having little deteriorative effect on the virus titer, the identified anti-silencing effect of ArsI suggested its possibility for application in gene therapy.
Collapse
Affiliation(s)
- S Hino
- Laboratory of Virus Immunology, Institute for Virus Research, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | |
Collapse
|
33
|
Recillas-Targa F, Valadez-Graham V, Farrell CM. Prospects and implications of using chromatin insulators in gene therapy and transgenesis. Bioessays 2004; 26:796-807. [PMID: 15221861 DOI: 10.1002/bies.20059] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Gene therapy has emerged from the idea of inserting a wild-type copy of a gene in order to restore the proper expression and function of a damaged gene. Initial efforts have focused on finding the proper vector and delivery method to introduce a corrected gene to the affected tissue or cell type. Even though these first attempts are clearly promising, several problems remain unsolved. A major problem is the influence of chromatin structure on transgene expression. To overcome chromatin-dependent repressive transgenic states, researchers have begun to use chromatin regulatory elements to drive transgene expression. Insulators or chromatin boundaries are able to protect a transgene against chromatin position effects at their genomic integration sites, and they are able to maintain transgene expression for long periods of time. Therefore, these elements may be very useful tools in gene therapy applications for ensuring high-level and stable expression of transgenes.
Collapse
Affiliation(s)
- Félix Recillas-Targa
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México.
| | | | | |
Collapse
|
34
|
Hejnar J, Elleder D, Hájková P, Walter J, Blazková J, Svoboda J. Demethylation of host-cell DNA at the site of avian retrovirus integration. Biochem Biophys Res Commun 2003; 311:641-8. [PMID: 14623319 DOI: 10.1016/j.bbrc.2003.10.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The transcriptional activity of an integrated retroviral copy strongly depends on the adjacent host-cell DNA at the site of integration. Transcribed DNA loci as well as cis-acting sequences like enhancers or CpG islands usually permit expression of nearby integrated proviruses. In contrast, proviruses residing close to cellular silencers tend to transcriptional silencing and CpG methylation. Little is known, however, about the influence of provirus integration on the target sequence in the host genome. Here, we report interesting features of a simplified Rous sarcoma virus integrated into a non-transcribed hypermethylated DNA sequence in the Syrian hamster genome. After integration, CpG methylation of this sequence has been lost almost completely and hypomethylated DNA permits proviral transcription and hamster cell transformation by the proviral v-src oncogene. This, however, is not a stable state, and non-transformed revertants bearing transcriptionally silenced proviruses segregate with a high rate. The provirus silencing is followed by DNA methylation of both provirus regulatory regions and adjacent cellular sequences. This CpG methylation is very dense and resistant to the demethylation effects of 5-aza-2(')-deoxycytidine and/or trichostatin A. Our description exemplifies the capacity of retroviruses/retroviral vectors to overcome, at least transiently, negative position effects of DNA methylation at the site of integration.
Collapse
Affiliation(s)
- Jirí Hejnar
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Flemingovo námestí 2, 16637 6, Prague, Czech Republic.
| | | | | | | | | | | |
Collapse
|
35
|
Ma Y, Ramezani A, Lewis R, Hawley RG, Thomson JA. High-level sustained transgene expression in human embryonic stem cells using lentiviral vectors. Stem Cells 2003; 21:111-7. [PMID: 12529558 DOI: 10.1634/stemcells.21-1-111] [Citation(s) in RCA: 220] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Here we describe the sustained expression of transgenes introduced into human embryonic stem (ES) cells using self-inactivating lentiviral vectors. At low multiplicity of infection, vesicular stomatitis virus-pseudotyped vectors containing a green fluorescent protein (GFP) transgene under the control of a human elongation factor 1alpha promoter transduced human ES cells at high efficiency. The majority of the transduced ES cells, which harbored low numbers of integrated vectors, continued to express GFP after 60 days of culture. Incorporation of a scaffold attachment region (SAR) from the human interferon-beta gene into the lentiviral vector backbone increased the average level of GFP expression, and inclusion of the SAR together with a chromatin insulator from the 5' end of the chicken beta-globin locus reduced the variability in GFP expression. When the transduced ES cells were induced to differentiate into CD34(+) hematopoietic precursors in vitro, GFP expression was maintained with minimal silencing. The ability to efficiently introduce active transgenes into human ES cells will facilitate gain-of-function studies of early developmental processes in the human system. These results also have important implications for the possible future use of gene-modified human ES cells in transplantation and tissue regeneration applications.
Collapse
Affiliation(s)
- Yue Ma
- National Primate Research Center, School of Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | | | | | | | | |
Collapse
|
36
|
Ramezani A, Hawley TS, Hawley RG. Performance- and safety-enhanced lentiviral vectors containing the human interferon-beta scaffold attachment region and the chicken beta-globin insulator. Blood 2003; 101:4717-24. [PMID: 12586614 DOI: 10.1182/blood-2002-09-2991] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Retroviral vectors are the most efficient means of stable gene delivery to hematopoietic stem cells (HSCs). However, transgene expression from retroviral vectors is frequently subject to the negative influence of chromosomal sequences flanking the site of integration. Toward the development of autonomous transgene expression cassettes, we inserted the human interferon-beta scaffold attachment region (IFN-SAR) and the chicken beta-globin 5' DNase I hypersensitive site 4 (5'HS4) insulator both separately and together into a series of self-inactivating (SIN) lentiviral vector backbones. Transduced cells of the human CD34+ hematopoietic progenitor line KG1a-pooled populations as well as individual clones harboring single integrants--were analyzed for reporter expression during culture periods of up to 4 months. Vectors carrying both the 5'HS4 insulator and the IFN-SAR consistently outperformed control vectors without inserts as well as vectors carrying either element alone. The performance of a set of vectors containing the murine stem cell virus long terminal repeat as an internal promoter was subsequently assessed during in vitro monocytic differentiation of transduced primary human CD34+ cord blood cells. Similar to what was observed in the KG1a hematopoietic progenitor cell model, optimal reporter expression in primary monocytes was obtained with the vector bearing both regulatory elements. These findings indicate that the 5'HS4/IFN-SAR combination is particularly effective at maintaining open chromatin domains permissive for high-level transgene expression at early and late stages of hematopoietic development, and thus could be of utility in HSC-directed retroviral vector-mediated gene transfer applications.
Collapse
Affiliation(s)
- Ali Ramezani
- Hematopoiesis Department, Flow Cytometry Facility, American Red Cross, Rockville, MD 20855, USA
| | | | | |
Collapse
|
37
|
Ehrhardt A, Peng PD, Xu H, Meuse L, Kay MA. Optimization of cis-acting elements for gene expression from nonviral vectors in vivo. Hum Gene Ther 2003; 14:215-25. [PMID: 12639302 DOI: 10.1089/10430340360535779] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
While naked DNA gene transfer in vivo usually results in transient gene expression, in some cases long-term transgene expression can be achieved. Here we demonstrate that cis-acting DNA elements flanking the transgene expression cassette and components in the plasmid backbone can significantly influence expression levels from nonviral vectors. To demonstrate this, we administered our most robust human coagulation factor IX (hFIX) expression cassette placed in two different plasmid backbones, into the livers of mice, by hydrodynamic transfection. We found that placing the expression cassette within a minimal plasmid vector pHM5, a modified version of pUC19, resulted in 10 times higher serum hFIX expression levels (up to 20000 ng/ml, 400% of normal hFIX serum levels), compared to a pBluescript backbone. To optimally increase expression levels from a nonviral vector, we added matrix attachment regions (MARs) as cis-acting DNA elements flanking the hFIX expression cassette. We detected five fold higher hFIX expression levels in vivo for up to 1-year posttransfection from a vector that contained the chicken MAR from the lysozyme locus. Together, the present work demonstrates that in addition to the transgene expression cassette, cis-acting DNA elements within and outside of the plasmid backbone need to be evaluated to achieve optimal expression levels in a nonviral gene therapy approach.
Collapse
Affiliation(s)
- Anja Ehrhardt
- Departments of Pediatrics and Genetics, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
38
|
Abstract
Currently used vectors in human gene therapy suffer from a number of limitations with respect to safety and reproducibility. There is increasing agreement that the ideal vector for gene therapy should be completely based on chromosomal elements and behave as an independent functional unit after integration into the genome or when retained as an episome. In this review we will first discuss the chromosomal elements, such as enhancers, locus control regions, boundary elements, insulators and scaffold- or matrix-attachment regions, involved in the hierarchic regulation of mammalian gene expression and replication. These elements have been used to design vectors that behave as artificial domains when integrating into the genome. We then discuss recent progress in the use of mammalian artificial chromosomes and small circular non-viral vectors for their use as expression systems in mammalian cells.
Collapse
Affiliation(s)
- H J Lipps
- Institut für Zellbiologie, Universität Witten/Herdecke, Stockumer Strasse 10, D-58448, Witten, Germany.
| | | | | | | | | | | |
Collapse
|
39
|
Goetze S, Gluch A, Benham C, Bode J. Computational and in vitro analysis of destabilized DNA regions in the interferon gene cluster: potential of predicting functional gene domains. Biochemistry 2003; 42:154-66. [PMID: 12515550 DOI: 10.1021/bi026496+] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent evidence adds support to a traditional concept according to which the eukaryotic nucleus is organized into functional domains by scaffold or matrix attachment regions (S/MARs). These regions have previously been predicted to have a high potential for stress-induced duplex destabilization (SIDD). Here we report the parallel results of binding (reassociation) and computational SIDD analyses for regions within the human interferon gene cluster on the short arm of chromosome 9 (9p22). To verify and further refine the biomathematical methods, we focus on a 10 kb region in the cluster with the pseudogene IFNWP18 and the interferon alpha genes IFNA10 and IFNA7. In a series of S/MAR binding assays, we investigate the promoter and termination regions and additional attachment sequences that were detected in the SIDD profile. The promoters of the IFNA10 and the IFNA7 genes have a moderate approximately 20% binding affinity to the nuclear matrix; the termination sequences show stronger association (70-80%) under our standardized conditions. No comparable destabilized elements were detected flanking the IFNWP18 pseudogene, suggesting that selective pressure acts on the physicochemical properties detected here. In extended, noncoding regions a striking periodicity is found of rather restricted SIDD minima with scaffold binding potential. By various criteria, the underlying sequences represent a new class of S/MARs, thought to be involved in a higher level organization of the genome. Together, these data emphasize the relevance of SIDD calculations as a valid approach for the localization of structural, regulatory, and coding regions in the eukaryotic genome.
Collapse
Affiliation(s)
- S Goetze
- German Research Center for Biotechnology/Epigenetic Regulation, Mascheroder Weg 1, D-38124 Braunschweig, Germany
| | | | | | | |
Collapse
|
40
|
Architecture and utilization of highly expressed genomic sites. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s0167-7306(03)38032-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
41
|
Abstract
T cells are tightly controlled cellular machines that monitor changes in epitope presentation. Although T-cell function is regulated by means of numerous interactions with other cell types and soluble factors, the T-cell receptor (TCR) is the only structure on the T-cell surface that defines its antigen-recognition potential. Consequently, the transfer of T-cell receptors into recipient cells can be used as a strategy for the passive transfer of T-cell immunity. In this review, I discuss the pros and cons of TCR gene transfer as a strategy to induce defined virus- and tumour-specific T-cell immunity.
Collapse
Affiliation(s)
- Ton N M Schumacher
- Division of Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| |
Collapse
|
42
|
Swindle CS, Klug CA. Mechanisms that regulate silencing of gene expression from retroviral vectors. JOURNAL OF HEMATOTHERAPY & STEM CELL RESEARCH 2002; 11:449-56. [PMID: 12183830 DOI: 10.1089/15258160260090915] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The propensity of retroviruses toward transcriptional silencing limits their value as gene therapy vectors. Silencing has been shown to be particularly robust when stem cells are used for transduction, posing a significant problem for gene therapy of hematologic diseases. Stability of proviral expression with newer generation vectors is significantly improved over that obtainable with original vectors based on Moloney murine leukemia virus (MoMLV). However, strategies to increase resistance further to retroviral silencing are needed, because newer generation vectors have been shown to remain prone to a significant degree of silencing that could limit their efficacy as gene therapy vectors. Proviral silencing has been attributed to known mechanisms of cellular gene repression, such as DNA methylation and histone modification, as well as uncharacterized mechanisms that act independently of DNA methylation. A further understanding of transcriptional silencing that occurs in stem cells and during hematopoietic development is needed for design of effective vectors for gene therapy of hematologic diseases.
Collapse
Affiliation(s)
- C Scott Swindle
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294-3300, USA
| | | |
Collapse
|
43
|
Schiedner G, Hertel S, Johnston M, Biermann V, Dries V, Kochanek S. Variables affecting in vivo performance of high-capacity adenovirus vectors. J Virol 2002; 76:1600-9. [PMID: 11799154 PMCID: PMC135880 DOI: 10.1128/jvi.76.4.1600-1609.2002] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In high-capacity adenovirus (HC-Ad) vectors the size and/or composition of the vector genome influences vector stability during production and the expression profile following gene transfer. Typically, an HC-Ad vector will contain both a gene or an expression cassette and stuffer DNA that is required to balance the final vector genome to a size of between 27 and 36 kb. To gain an improved understanding of factors that may influence gene expression from HC-Ad vectors, we have generated a series of vectors that carry different combinations of human alpha-1 antitrypsin (hAAT) expression constructs and stuffer DNAs. Expression in vitro did not predict in vivo performance: all vectors expressed hAAT at similar levels when tested in cell culture. Hepatic expression was evaluated following in vivo gene transfer in C57BL/6J mice. hAAT levels obtained from genomic DNA were significantly higher than levels achieved with small cDNA expression cassettes. Expression was independent of the orientation and only marginally influenced by the location of the expression cassette within the vector genome. The use of lambda stuffer DNA resulted in low-level but stable expression for at least 3 months when higher doses were applied. A potential matrix attachment region element was identified within the hAAT gene and caused a 10-fold increase in expression when introduced in an HC-Ad vector genome carrying a phosphoglycerate kinase (pgk) hAAT cDNA construct. We also illustrate the influence of the promoter on anti-hAAT antibody formation in C57BL/6J mice: a human cytomegalovirus but not a pgk promoter resulted in an anti-hAAT antibody response. Thus, the overall design of HC-Ad vectors may significantly influence amounts and duration of gene expression at different levels.
Collapse
Affiliation(s)
- Gudrun Schiedner
- Center for Molecular Medicine (ZMMK), University of Cologne, D-50931 Cologne, Germany.
| | | | | | | | | | | |
Collapse
|
44
|
Mielke C, Christensen MO, Westergaard O, Bode J, Benham CJ, Breindl M. Multiple collagen I gene regulatory elements have sites of stress-induced DNA duplex destabilization and nuclear scaffold/matrix association potential. J Cell Biochem 2002. [DOI: 10.1002/jcb.10034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
45
|
Fedorov LM, Tyrsin OY, Sakk O, Ganscher A, Rapp UR. Generation dependent reduction of tTA expression in double transgenic NZL-2/tTA(CMV) mice. Genesis 2001; 31:78-84. [PMID: 11668682 DOI: 10.1002/gene.10007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Despite the overall successful application of the tet-system to regulate gene expression in vitro and in vivo, nothing is known so far about the long-term stability of this system in transgenic mice. In this study, mice of generation F2, F3, F4, or F10 of two independent tTA(CMV) transgenic lines were bred with NZL-2 mice containing a tTA-responsive bidirectional promoter that allows the simultaneous expression of two reporter genes encoding luciferase and beta-galactosidase. Analysis of the expression of transgenes in double transgenic mice revealed a dramatic reduction of tTA transactivator mRNA over time. As a consequence, the expression of both reporter genes was gradually reduced from generation to generation in tissues of embryonic and adult NZL-2/tTA(CMV) mice. Luciferase activity in NZL-2/tTA(CMV)(F10) mice was reduced 8-10-fold compared to NZL-2/ tTA(CMV)(F2) mice, and beta-galactosidase expression was no longer detectable. In summary, we describe the long-term instability of the tet-system in our NZL-2/tTA(CMV) double transgenic mice. The molecular basis of this observation and experimental tools to overcome this limitation need to be addressed in future.
Collapse
|
46
|
Park F, Kay MA. Modified HIV-1 based lentiviral vectors have an effect on viral transduction efficiency and gene expression in vitro and in vivo. Mol Ther 2001; 4:164-73. [PMID: 11545606 DOI: 10.1006/mthe.2001.0450] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Gene transfer using lentiviral vectors has been recently shown to be enhanced with cis-acting elements in a cell-type-dependent manner in vivo. For this reason, the study reported here was designed to modify lentiviral vectors that express lacZ, human factor IX (FIX), or human alpha1-anti-trypsin (AAT) to study the effect of different cis DNA elements on transduction efficiencies. We found that incorporation of the central polypurine tract sequence (cppt) increased transduction efficiency in vitro while increasing the transduction of non-cell-cycling hepatocytes in vivo. C57Bl/6 scid mice that were administered lentiviral vectors devoid of the cppt (2 x 10(8) transducing units (T.U.)/mouse) had 81% of their lacZ-transduced hepatocytes colabeled with the cell cycle marker 5'-bromo-2'-deoxyuridine (BrdU). In contrast, inclusion of the cppt reduced the colabeling in mouse hepatocytes by 50%. Further modifications in the lentiviral vectors were performed to enhance viral titer and gene expression. We found that the inclusion of a matrix attachment region (MAR) from immunoglobulin-kappa (Igkappa) significantly increased the transduction efficiency, as measured by transgene protein expression and proviral DNA copy number, compared with vectors without Igkappa MAR. In vitro studies using human hepatoma cells demonstrated a significant increase (two- to fourfold) in human AAT and human FIX production when the Igkappa MAR was incorporated. In vivo transduction of partially hepatectomized C57Bl/6 mice given an optimized lentiviral vector containing the cppt and Igkappa MAR (2 x 10(8) T.U./mouse) resulted in sustained therapeutic levels of serum FIX (approximately 65 ng/ml). Our study demonstrates the importance of cis-acting elements to enhancing the transduction ability of lentiviral vectors and the expression of vector transgenes.
Collapse
Affiliation(s)
- F Park
- Program in Human Gene Therapy, Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | | |
Collapse
|
47
|
Abstract
Retrovirus-based vectors provide an efficient means to introduce and express genes in cells of the immune system and have become a popular tool to study immune function. They are easy to manipulate and provide stable, long-term gene expression because they integrate into the genome. Current retroviral vectors do have limitations that affect their usefulness in certain applications. However, recent advances suggest a number of ways in which these vectors might be improved to extend their utility in immunological research.
Collapse
Affiliation(s)
- C Lois
- Department of Biology, California Institute of Technology, MC147-75, 1200 E California Boulevard, Pasadena, CA 91125, USA
| | | | | | | |
Collapse
|
48
|
De Angioletti M, Rovira A, Notaro R, Camacho Vanegas O, Sadelain M, Luzzatto L. Glucose 6-phosphate dehydrogenase expression is less prone to variegation when driven by its own promoter. Gene 2001; 267:221-31. [PMID: 11313149 DOI: 10.1016/s0378-1119(01)00394-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The ability to transfer permanently genes into mammalian cells makes retroviruses suitable vectors for the ultimate purpose of treating inherited genetic disease. However, expression of the retrovirally transferred genes is variable (position effect and expression variegation) because retroviruses are highly susceptible to the influence of the host genome sequences which flank the integration site. We have investigated this phenomenon with respect to the human housekeeping enzyme, glucose 6-phosphate dehydrogenase (hG6PD). We have constructed retroviral vectors in which the hG6PD cDNA is driven by either of two conventional retroviral promoters and enhancers from the Moloney Murine Leukemia Virus (MMLV) and the Myeloproliferative Sarcoma Virus (MPSV) long terminal repeats (LTR) or by the hG6PD own promoter replacing most of enhancer and promoter LTR (GRU5). We have compared the activity of retrovirally transferred hG6PD driven by these promoters after retroviral integration in bulk cultures and in individual clones of murine fibroblasts. The level of hG6PD expressed by the hG6PD promoter of GRU5-G6PD was significantly lower than that expressed by conventional retroviral vectors. However, analysis of the single copy clones showed less variation of expression with GRU5-G6PD (coefficient of variation, CV, 35.5%) than with conventional vectors (CV, 58.9%). Thus we have several vectors competent for reliable transfer and expression of hG6PD. The hG6PD promoter provides reproducible expression of hG6PD and limits the variability of expression. This decreased variability is important in order to help ensuring a consistent level of delivery of the needed gene product in future therapeutic protocols.
Collapse
Affiliation(s)
- M De Angioletti
- Department of Human Genetics, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
49
|
Hejnar J, Hájková P, Plachy J, Elleder D, Stepanets V, Svoboda J. CpG island protects Rous sarcoma virus-derived vectors integrated into nonpermissive cells from DNA methylation and transcriptional suppression. Proc Natl Acad Sci U S A 2001; 98:565-9. [PMID: 11209056 PMCID: PMC14627 DOI: 10.1073/pnas.98.2.565] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
CpG islands are important in the protection of adjacent housekeeping genes from de novo DNA methylation and for keeping them in a transcriptionally active state. However, little is known about their capacity to protect heterologous genes and assure position-independent transcription of adjacent transgenes or retroviral vectors. To tackle this question, we have used the mouse aprt CpG island to flank a Rous sarcoma virus (RSV)-derived reporter vector and followed the transcriptional activity of integrated vectors. RSV is an avian retrovirus which does not replicate in mammalian cells because of several blocks at all levels of the replication cycle. Here we show that our RSV-derived reporter proviruses linked to the mouse aprt gene CpG island remain undermethylated and keep their transcriptional activity after stable transfection into both avian and nonpermissive mammalian cells. This effect is most likely caused by the protection from de novo methylation provided by the CpG island and not by enhancement of the promoter strength. Our results are consistent with previous finding of CpG islands in proximity to active but not inactive proviruses and support further investigation of the protection of the gene transfer vectors from DNA methylation.
Collapse
Affiliation(s)
- J Hejnar
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, CZ 16637 Prague 6, Czech Republic.
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
Fabry disease is an X-linked metabolic disorder caused by a deficiency of alpha-galactosidase A (alpha-Gal A). Lack of this lysosomal hydrolase results in the accumulation of galactose-terminal glycosphingolipids in a number of tissues, including vascular endothelial cells. Premature death is predominantly associated with vascular conditions of the heart, kidneys and brain. Historically, treatment has largely been palliative. Alternative treatments for many lysosomal storage diseases have been developed, including allogeneic organ and bone marrow transplantation, enzyme replacement therapy, and gene therapy. Significant clinical risks still exist with allogeneic transplantations. Alpha-Gal A enzyme replacement therapy has been implemented in clinical trials. This approach has been effective but may have limitations for long-term systemic or cost-effective correction. As an alternative, gene therapy approaches, involving a variety of gene delivery systems, have been pursued for the amelioration of Fabry disease. Fabry disease is a compelling disorder for gene therapy, as target cells are readily accessible and relatively low levels of enzyme correction may suffice to reduce storage. Importantly, metabolic cooperativity effects are also manifested in Fabry disease, wherein corrected cells secrete alpha-Gal A that can correct bystander cells. In addition, a broad therapeutic window probably exists, and mouse models of Fabry disease have been generated to assist studies. As an example, in vitro and in vivo studies using alpha-Gal A-transduced haematopoietic cells from Fabry mice have demonstrated enzymatic correction of recipient cells and dissemination of alpha-Gal A upon transplantation, leading to reduced lipid storage in a number of clinically relevant organs. This corrective enzymatic effect has recently been shown to be even further enhanced upon pre-selection of therapeutically transduced cells prior to transplantation. This review will briefly detail current gene delivery methods and summarize results to date in the context of gene therapy for Fabry disease.
Collapse
Affiliation(s)
- C Siatskas
- Department of Medicine, University of Illinois at Chicago, 60607, USA
| | | |
Collapse
|