1
|
Brázda V, Dobrovolná M, Bohálová N, Mergny JL. G-quadruplexes in the evolution of hepatitis B virus. Nucleic Acids Res 2023; 51:7198-7204. [PMID: 37395407 PMCID: PMC10415126 DOI: 10.1093/nar/gkad556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/23/2023] [Accepted: 06/19/2023] [Indexed: 07/04/2023] Open
Abstract
Hepatitis B virus (HBV) is one of the most dangerous human pathogenic viruses found in all corners of the world. Recent sequencing of ancient HBV viruses revealed that these viruses have accompanied humanity for several millenia. As G-quadruplexes are considered to be potential therapeutic targets in virology, we examined G-quadruplex-forming sequences (PQS) in modern and ancient HBV genomes. Our analyses showed the presence of PQS in all 232 tested HBV genomes, with a total number of 1258 motifs and an average frequency of 1.69 PQS per kbp. Notably, the PQS with the highest G4Hunter score in the reference genome is the most highly conserved. Interestingly, the density of PQS motifs is lower in ancient HBV genomes than in their modern counterparts (1.5 and 1.9/kb, respectively). This modern frequency of 1.90 is very close to the PQS frequency of the human genome (1.93) using identical parameters. This indicates that the PQS content in HBV increased over time to become closer to the PQS frequency in the human genome. No statistically significant differences were found between PQS densities in HBV lineages found in different continents. These results, which constitute the first paleogenomics analysis of G4 propensity, are in agreement with our hypothesis that, for viruses causing chronic infections, their PQS frequencies tend to converge evolutionarily with those of their hosts, as a kind of 'genetic camouflage' to both hijack host cell transcriptional regulatory systems and to avoid recognition as foreign material.
Collapse
Affiliation(s)
- Václav Brázda
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Michaela Dobrovolná
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
- Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Natália Bohálová
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Jean-Louis Mergny
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
- Laboratoire d’Optique et Biosciences (LOB), Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91120 Palaiseau, France
| |
Collapse
|
2
|
Dunay E, Owens LA, Dunn CD, Rukundo J, Atencia R, Cole MF, Cantwell A, Emery Thompson M, Rosati AG, Goldberg TL. Viruses in sanctuary chimpanzees across Africa. Am J Primatol 2023; 85:e23452. [PMID: 36329642 PMCID: PMC9812903 DOI: 10.1002/ajp.23452] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
Abstract
Infectious disease is a major concern for both wild and captive primate populations. Primate sanctuaries in Africa provide critical protection to thousands of wild-born, orphan primates confiscated from the bushmeat and pet trades. However, uncertainty about the infectious agents these individuals potentially harbor has important implications for their individual care and long-term conservation strategies. We used metagenomic next-generation sequencing to identify viruses in blood samples from chimpanzees (Pan troglodytes) in three sanctuaries in West, Central, and East Africa. Our goal was to evaluate whether viruses of human origin or other "atypical" or unknown viruses might infect these chimpanzees. We identified viruses from eight families: Anelloviridae, Flaviviridae, Genomoviridae, Hepadnaviridae, Parvoviridae, Picobirnaviridae, Picornaviridae, and Rhabdoviridae. The majority (15/26) of viruses identified were members of the family Anelloviridae and represent the genera Alphatorquevirus (torque teno viruses) and Betatorquevirus (torque teno mini viruses), which are common in chimpanzees and apathogenic. Of the remaining 11 viruses, 9 were typical constituents of the chimpanzee virome that have been identified in previous studies and are also thought to be apathogenic. One virus, a novel tibrovirus (Rhabdoviridae: Tibrovirus) is related to Bas-Congo virus, which was originally thought to be a human pathogen but is currently thought to be apathogenic, incidental, and vector-borne. The only virus associated with disease was rhinovirus C (Picornaviridae: Enterovirus) infecting one chimpanzee subsequent to an outbreak of respiratory illness at that sanctuary. Our results suggest that the blood-borne virome of African sanctuary chimpanzees does not differ appreciably from that of their wild counterparts, and that persistent infection with exogenous viruses may be less common than often assumed.
Collapse
Affiliation(s)
- Emily Dunay
- Department of Pathobiological Sciences, School of Veterinary MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Leah A. Owens
- Department of Pathobiological Sciences, School of Veterinary MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Christopher D. Dunn
- Department of Pathobiological Sciences, School of Veterinary MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Joshua Rukundo
- Ngamba Island Chimpanzee Sanctuary/Chimpanzee TrustEntebbeUganda
| | - Rebeca Atencia
- Jane Goodall Institute CongoPointe‐NoireRepublic of Congo
| | - Megan F. Cole
- Department of AnthropologyUniversity of New MexicoAlbuquerqueNew MexicoUSA
| | - Averill Cantwell
- Department of PsychologyUniversity of MichiganAnn ArborMichiganUSA
| | | | - Alexandra G. Rosati
- Department of PsychologyUniversity of MichiganAnn ArborMichiganUSA
- Department of AnthropologyUniversity of MichiganAnn ArborMichiganUSA
| | - Tony L. Goldberg
- Department of Pathobiological Sciences, School of Veterinary MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| |
Collapse
|
3
|
Kaewchot S, Tangsudjai S, Sariya L, Mongkolphan C, Saechin A, Sariwongchan R, Panpeth N, Thongsahuan S, Suksai P. Zoonotic pathogens survey in free-living long-tailed macaques in Thailand. Int J Vet Sci Med 2022; 10:11-18. [PMID: 35291581 PMCID: PMC8890534 DOI: 10.1080/23144599.2022.2040176] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Long-tailed macaques (Macaca fascicularis) are known to harbour a variety of infectious pathogens, including zoonotic species. Long-tailed macaques and humans coexist in Thailand, which creates potential for interspecies pathogen transmission. This study was conducted to assess the presence of B virus, Mycobacterium spp., simian foamy virus (SFV), hepatitis B virus (HBV), and Plasmodium spp. in 649 free-living Thai long-tailed macaques through polymerase-chain reaction. DNA of SFV (56.5%), HBV (0.3%), and Plasmodium spp. (2.2%) was detected in these macaques, whereas DNA of B virus and Mycobacterium spp. was absent. SFV infection in long-tailed macaques is broadly distributed in Thailand and is correlated with age. The HBV sequences in this study were similar to HBV sequences from orangutans. Plasmodium spp. DNA was identified as P. inui. Collectively, our results indicate that macaques can carry zoonotic pathogens, which have a public health impact. Surveillance and awareness of pathogen transmission between monkeys and humans are important.
Collapse
Affiliation(s)
- Supakarn Kaewchot
- Department of National Parks, Wildlife and Plant Conservation, Bangkok, Thailand
| | - Siriporn Tangsudjai
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Ladawan Sariya
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Chalisa Mongkolphan
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Aeknarin Saechin
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Rattana Sariwongchan
- Department of National Parks, Wildlife and Plant Conservation, Bangkok, Thailand
| | - Natanon Panpeth
- Department of National Parks, Wildlife and Plant Conservation, Bangkok, Thailand
| | | | - Parut Suksai
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
4
|
Abstract
Over the last two decades, the viromes of our closest relatives, the African great apes (AGA), have been intensively studied. Comparative approaches have unveiled diverse evolutionary patterns, highlighting both stable host-virus associations over extended evolutionary timescales and much more recent viral emergence events. In this chapter, we summarize these findings and outline how they have shed a new light on the origins and evolution of many human-infecting viruses. We also show how this knowledge can be used to better understand the evolution of human health in relation to viral infections.
Collapse
|
5
|
Locarnini SA, Littlejohn M, Yuen LKW. Origins and Evolution of the Primate Hepatitis B Virus. Front Microbiol 2021; 12:653684. [PMID: 34108947 PMCID: PMC8180572 DOI: 10.3389/fmicb.2021.653684] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/21/2021] [Indexed: 12/14/2022] Open
Abstract
Recent interest in the origins and subsequent evolution of the hepatitis B virus (HBV) has strengthened with the discovery of ancient HBV sequences in fossilized remains of humans dating back to the Neolithic period around 7,000 years ago. Metagenomic analysis identified a number of African non-human primate HBV sequences in the oldest samples collected, indicating that human HBV may have at some stage, evolved in Africa following zoonotic transmissions from higher primates. Ancestral genotype A and D isolates were also discovered from the Bronze Age, not in Africa but rather Eurasia, implying a more complex evolutionary and migratory history for HBV than previously recognized. Most full-length ancient HBV sequences exhibited features of inter genotypic recombination, confirming the importance of recombination and the mutation rate of the error-prone viral replicase as drivers for successful HBV evolution. A model for the origin and evolution of HBV is proposed, which includes multiple cross-species transmissions and favors subsequent recombination events that result in a pathogen and can successfully transmit and cause persistent infection in the primate host.
Collapse
Affiliation(s)
- Stephen A Locarnini
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Margaret Littlejohn
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Lilly K W Yuen
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
6
|
Glebe D, Goldmann N, Lauber C, Seitz S. HBV evolution and genetic variability: Impact on prevention, treatment and development of antivirals. Antiviral Res 2020; 186:104973. [PMID: 33166575 DOI: 10.1016/j.antiviral.2020.104973] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 12/15/2022]
Abstract
Hepatitis B virus (HBV) poses a major global health burden with 260 million people being chronically infected and 890,000 dying annually from complications in the course of the infection. HBV is a small enveloped virus with a reverse-transcribed DNA genome that infects hepatocytes and can cause acute and chronic infections of the liver. HBV is endemic in humans and apes representing the prototype member of the viral family Hepadnaviridae and can be divided into 10 genotypes. Hepadnaviruses have been found in all vertebrate classes and constitute an ancient viral family that descended from non-enveloped progenitors more than 360 million years ago. The de novo emergence of the envelope protein gene was accompanied with the liver-tropism and resulted in a tight virus-host association. The oldest HBV genomes so far have been isolated from human remains of the Bronze Age and the Neolithic (~7000 years before present). Despite the remarkable stability of the hepadnaviral genome over geological eras, HBV is able to rapidly evolve within an infected individual under pressure of the immune response or during antiviral treatment. Treatment with currently available antivirals blocking intracellular replication of HBV allows controlling of high viremia and improving liver health during long-term therapy of patients with chronic hepatitis B (CHB), but they are not sufficient to cure the disease. New therapy options that cover all HBV genotypes and emerging viral variants will have to be developed soon. In addition to the antiviral treatment of chronically infected patients, continued efforts to expand the global coverage of the currently available HBV vaccine will be one of the key factors for controlling the rising global spread of HBV. Certain improvements of the vaccine (e.g. inclusion of PreS domains) could counteract known problems such as low or no responsiveness of certain risk groups and waning anti-HBs titers leading to occult infections, especially with HBV genotypes E or F. But even with an optimal vaccine and a cure for hepatitis B, global eradication of HBV would be difficult to achieve because of an existing viral reservoir in primates and bats carrying closely related hepadnaviruses with zoonotic potential.
Collapse
Affiliation(s)
- Dieter Glebe
- Institute of Medical Virology, Justus Liebig University of Giessen, National Reference Centre for Hepatitis B Viruses and Hepatitis D Viruses, Schubertstr. 81, 35392, Giessen, Germany; German Center for Infection Research (DZIF), Partner Sites Giessen, Heidelberg, Hannover, Germany.
| | - Nora Goldmann
- Institute of Medical Virology, Justus Liebig University of Giessen, National Reference Centre for Hepatitis B Viruses and Hepatitis D Viruses, Schubertstr. 81, 35392, Giessen, Germany
| | - Chris Lauber
- Division of Virus-Associated Carcinogenesis, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany; Research Group Computational Virology, Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Helmholtz Centre for Infection Research and the Hannover Medical School, Cluster of Excellence RESIST, Hannover Medical School, 30625, Hannover, Germany; German Center for Infection Research (DZIF), Partner Sites Giessen, Heidelberg, Hannover, Germany
| | - Stefan Seitz
- Division of Virus-Associated Carcinogenesis, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany; Department of Infectious Diseases, Molecular Virology, University of Heidelberg, 69120, Heidelberg, Germany; German Center for Infection Research (DZIF), Partner Sites Giessen, Heidelberg, Hannover, Germany.
| |
Collapse
|
7
|
Leroux N, Nouhin J, Prak S, Roth B, Rouet F, Dussart P, Marx N. Prevalence and Phylogenetic Analysis of Hepatitis B in Captive and Wild-Living Pileated Gibbons (Hylobates pileatus) in Cambodia. INT J PRIMATOL 2020. [DOI: 10.1007/s10764-020-00168-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Cagliani R, Forni D, Sironi M. Mode and tempo of human hepatitis virus evolution. Comput Struct Biotechnol J 2019; 17:1384-1395. [PMID: 31768229 PMCID: PMC6872792 DOI: 10.1016/j.csbj.2019.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/19/2019] [Accepted: 09/21/2019] [Indexed: 02/07/2023] Open
Abstract
Human viral hepatitis, a major cause of morbidity and mortality worldwide, is caused by highly diverse viruses with different genetic, ecological, and pathogenetic features. Technological advances that allow throughput sequencing of viral genomes, as well as the development of computational tools to analyze such genome data, have largely expanded our knowledge on the host range and evolutionary history of human hepatitis viruses. Thus, with the exclusion of hepatitis D virus, close or distant relatives of these human pathogens were identified in a number of domestic and wild mammals. Also, sequences of human viral strains isolated from different geographic locations and over different time-spans have allowed the application of phylogeographic and molecular dating approaches to large viral phylogenies. In this review, we summarize the most recent insights into our understanding of the evolutionary events and ecological contexts that determined the origin and spread of human hepatitis viruses.
Collapse
Affiliation(s)
- Rachele Cagliani
- Bioinformatics, Scientific Institute, IRCCS E. MEDEA, 23842 Bosisio Parini, Lecco, Italy
| | - Diego Forni
- Bioinformatics, Scientific Institute, IRCCS E. MEDEA, 23842 Bosisio Parini, Lecco, Italy
| | - Manuela Sironi
- Bioinformatics, Scientific Institute, IRCCS E. MEDEA, 23842 Bosisio Parini, Lecco, Italy
| |
Collapse
|
9
|
Evaluation of HBV-Like Circulation in Wild and Farm Animals from Brazil and Uruguay. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16152679. [PMID: 31357451 PMCID: PMC6695864 DOI: 10.3390/ijerph16152679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/02/2019] [Accepted: 07/08/2019] [Indexed: 12/20/2022]
Abstract
The origin of the hepatitis B virus is a subject of wide deliberation among researchers. As a result, increasing academic interest has focused on the spread of the virus in different animal species. However, the sources of viral infection for many of these animals are unknown since transmission may occur from animal to animal, human to human, animal to human, and human to animal. The aim of this study was to evaluate hepadnavirus circulation in wild and farm animals (including animals raised under wild or free conditions) from different sites in Brazil and Uruguay using serological and molecular tools. A total of 487 domestic wild and farm animals were screened for hepatitis B virus (HBV) serological markers and tested via quantitative and qualitative polymerase chain reaction (PCR) to detect viral DNA. We report evidence of HBsAg (surface antigen of HBV) and total anti-HBc (HBV core antigen) markers as well as low-copy hepadnavirus DNA among domestic and wild animals. According to our results, which were confirmed by partial genome sequencing, as the proximity between humans and animals increases, the potential for pathogen dispersal also increases. A wider knowledge and understanding of reverse zoonoses should be sought for an effective One Health response.
Collapse
|
10
|
Caballero A, Tabernero D, Buti M, Rodriguez-Frias F. Hepatitis B virus: The challenge of an ancient virus with multiple faces and a remarkable replication strategy. Antiviral Res 2018; 158:34-44. [PMID: 30059722 DOI: 10.1016/j.antiviral.2018.07.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 07/24/2018] [Accepted: 07/26/2018] [Indexed: 02/07/2023]
Abstract
The hepatitis B virus (HBV) is the prototype member of the Hepadnaviridae, an ancient family of hepatotropic DNA viruses, which may have originated from 360 to 430 million years ago and with evidence of endogenization in reptilian genomes >200 million years ago. The virus is currently estimated to infect more than 250 million humans. The extremely successful spread of this pathogen among the human population is explained by its multiple particulate forms, effective transmission strategies (particularly perinatal transmission), long induction period and low associated mortality. These characteristics confer selective advantages, enabling the virus to persist in small, disperse populations and spread worldwide, with high prevalence rates in many countries. The HBV replication strategy is remarkably complex and includes a multiplicity of particulate structures. In addition to the common virions containing DNA in a relaxed circular (rcDNA) or double-stranded linear (dslDNA) forms, the viral population includes virion-like particles containing RNA or "empty" (viral envelopes and capsids without genomes), subviral particles (only an envelope) and even naked capsids. Consequently, several forms of the genome coexist in a single infection: (i) the "traveler" forms found in serum, including rcDNA and dslDNA, which originate from retrotranscription of a messenger RNA (the pregenomic RNA, another form of the viral genome itself) and (ii) forms confined to the host cell nucleus, including covalently closed circular DNA (cccDNA), which leads to a minichromosome form associated with histones and viral proteins, and double-stranded DNA integrated into the host genome. This complex composition lends HBV a kind of "multiple personality". Are these additional particles and genomic forms simple intermediaries/artifacts or do they play a role in the viral life cycle?
Collapse
Affiliation(s)
- Andrea Caballero
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d'Hebron and Universitat Autònoma de Barcelona (UAB), 119-129 Passeig Vall d'Hebron, Clinical Laboratories, 08035 Barcelona, Spain.
| | - David Tabernero
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d'Hebron and Universitat Autònoma de Barcelona (UAB), 119-129 Passeig Vall d'Hebron, Clinical Laboratories, 08035 Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 3-5 Avenida Monforte de Lemos, pavilion 11, 28029 Madrid, Spain.
| | - Maria Buti
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 3-5 Avenida Monforte de Lemos, pavilion 11, 28029 Madrid, Spain; Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d'Hebron and Universitat Autònoma de Barcelona (UAB), 119-129 Passeig Vall d'Hebron, General Hospital, Internal Medicine 2, 08035 Barcelona, Spain.
| | - Francisco Rodriguez-Frias
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d'Hebron and Universitat Autònoma de Barcelona (UAB), 119-129 Passeig Vall d'Hebron, Clinical Laboratories, 08035 Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 3-5 Avenida Monforte de Lemos, pavilion 11, 28029 Madrid, Spain.
| |
Collapse
|
11
|
Mühlemann B, Jones TC, Damgaard PDB, Allentoft ME, Shevnina I, Logvin A, Usmanova E, Panyushkina IP, Boldgiv B, Bazartseren T, Tashbaeva K, Merz V, Lau N, Smrčka V, Voyakin D, Kitov E, Epimakhov A, Pokutta D, Vicze M, Price TD, Moiseyev V, Hansen AJ, Orlando L, Rasmussen S, Sikora M, Vinner L, Osterhaus ADME, Smith DJ, Glebe D, Fouchier RAM, Drosten C, Sjögren KG, Kristiansen K, Willerslev E. Ancient hepatitis B viruses from the Bronze Age to the Medieval period. Nature 2018; 557:418-423. [PMID: 29743673 DOI: 10.1038/s41586-018-0097-z] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 04/06/2018] [Indexed: 12/16/2022]
Abstract
Hepatitis B virus (HBV) is a major cause of human hepatitis. There is considerable uncertainty about the timescale of its evolution and its association with humans. Here we present 12 full or partial ancient HBV genomes that are between approximately 0.8 and 4.5 thousand years old. The ancient sequences group either within or in a sister relationship with extant human or other ape HBV clades. Generally, the genome properties follow those of modern HBV. The root of the HBV tree is projected to between 8.6 and 20.9 thousand years ago, and we estimate a substitution rate of 8.04 × 10-6-1.51 × 10-5 nucleotide substitutions per site per year. In several cases, the geographical locations of the ancient genotypes do not match present-day distributions. Genotypes that today are typical of Africa and Asia, and a subgenotype from India, are shown to have an early Eurasian presence. The geographical and temporal patterns that we observe in ancient and modern HBV genotypes are compatible with well-documented human migrations during the Bronze and Iron Ages1,2. We provide evidence for the creation of HBV genotype A via recombination, and for a long-term association of modern HBV genotypes with humans, including the discovery of a human genotype that is now extinct. These data expose a complexity of HBV evolution that is not evident when considering modern sequences alone.
Collapse
Affiliation(s)
- Barbara Mühlemann
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Terry C Jones
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, UK.,Institute of Virology, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | | | - Morten E Allentoft
- Centre for GeoGenetics, Natural History Museum, University of Copenhagen, Copenhagen, Denmark
| | - Irina Shevnina
- Archaeological Laboratory, Faculty of History and Law, A. A. Baitursynov Kostanay State University, Kostanay, Kazakhstan
| | - Andrey Logvin
- Archaeological Laboratory, Faculty of History and Law, A. A. Baitursynov Kostanay State University, Kostanay, Kazakhstan
| | - Emma Usmanova
- Saryarka Archaeological Institute, Karaganda State University, Karaganda, Kazakhstan
| | | | - Bazartseren Boldgiv
- Department of Biology, School of Arts and Sciences, National University of Mongolia, Ulaanbaatar, Mongolia
| | - Tsevel Bazartseren
- Laboratory of Virology, Institute of Veterinary Medicine, Mongolian University of Life Sciences, Ulaanbaatar, Mongolia
| | | | - Victor Merz
- Pavlodar State University, Pavlodar, Kazakhstan
| | - Nina Lau
- Centre for Baltic and Scandinavian Archaeology, Schleswig, Germany
| | - Václav Smrčka
- Institute for History of Medicine and Foreign Languages of the First Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | - Egor Kitov
- N. N. Miklouho-Maklay Institute of Ethnology and Anthropology, Russian Academy of Sciences, Moscow, Russia
| | - Andrey Epimakhov
- South Ural Department, Institute of History and Archaeology UBRAS, South Ural State University, Chelyabinsk, Russia
| | - Dalia Pokutta
- Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
| | | | - T Douglas Price
- Department of Historical Studies, University of Gothenburg, Gothenburg, Sweden
| | - Vyacheslav Moiseyev
- Department of Physical Anthropology, Peter the Great Museum of Anthropology and Ethnography, Saint-Petersburg, Russia
| | - Anders J Hansen
- Centre for GeoGenetics, Natural History Museum, University of Copenhagen, Copenhagen, Denmark
| | - Ludovic Orlando
- Centre for GeoGenetics, Natural History Museum, University of Copenhagen, Copenhagen, Denmark.,Laboratoire d'Anthropobiologie Moléculaire et d'Imagerie de Synthèse, CNRS UMR 5288, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Simon Rasmussen
- Department of Bio and Health Informatics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Martin Sikora
- Centre for GeoGenetics, Natural History Museum, University of Copenhagen, Copenhagen, Denmark
| | - Lasse Vinner
- Centre for GeoGenetics, Natural History Museum, University of Copenhagen, Copenhagen, Denmark
| | - Albert D M E Osterhaus
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Derek J Smith
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Dieter Glebe
- Institute of Medical Virology, Justus Liebig University of Giessen, Giessen, Germany.,National Reference Centre for Hepatitis B and D Viruses, German Center for Infection Research (DZIF), Giessen, Germany
| | - Ron A M Fouchier
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Christian Drosten
- Institute of Virology, Charité, Universitätsmedizin Berlin, Berlin, Germany.,German Center for Infection Research (DZIF), Braunschweig, Germany
| | - Karl-Göran Sjögren
- Department of Historical Studies, University of Gothenburg, Gothenburg, Sweden
| | | | - Eske Willerslev
- Centre for GeoGenetics, Natural History Museum, University of Copenhagen, Copenhagen, Denmark. .,Cambridge GeoGenetics Group, Department of Zoology, University of Cambridge, Cambridge, UK. .,Wellcome Trust Sanger Institute, Hinxton, UK.
| |
Collapse
|
12
|
Li S, Wang Z, Li Y, Ding G. Adaptive evolution of proteins in hepatitis B virus during divergence of genotypes. Sci Rep 2017; 7:1990. [PMID: 28512348 PMCID: PMC5434055 DOI: 10.1038/s41598-017-02012-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/03/2017] [Indexed: 12/12/2022] Open
Abstract
Hepatitis B virus (HBV) is classified into several genotypes, correlated with different geographic distributions, clinical outcomes and susceptible human populations. It is crucial to investigate the evolutionary significance behind the diversification of HBV genotypes, because it improves our understanding of their pathological differences and pathogen-host interactions. Here, we performed comprehensive analysis of HBV genome sequences collected from public database. With a stringent criteria, we generated a dataset of 2992 HBV genomes from eight major genotypes. In particular, we applied a specified classification of non-synonymous and synonymous variants in overlapping regions, to distinguish joint and independent gene evolutions. We confirmed the presence of selective constraints over non-synonymous variants in consideration of overlapping regions. We then performed the McDonald-Kreitman test and revealed adaptive evolutions of non-synonymous variants during genotypic differentiation. Remarkably, we identified strong positive selection that drove the differentiation of PreS1 domain, which is an essential regulator involved in viral transmission. Our study presents novel evidences for the adaptive evolution of HBV genotypes, which suggests that these viruses evolve directionally for maintenance or improvement of successful infections.
Collapse
Affiliation(s)
- Shengdi Li
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, 200031, Shanghai, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Zhen Wang
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, 200031, Shanghai, China
| | - Yixue Li
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, 200031, Shanghai, China.
- Shanghai Center for Bioinformation Technology, Shanghai Industrial Technology Institute, 1278 Keyuan Road, 201203, Shanghai, China.
| | - Guohui Ding
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, 200031, Shanghai, China.
- Shanghai Center for Bioinformation Technology, Shanghai Industrial Technology Institute, 1278 Keyuan Road, 201203, Shanghai, China.
| |
Collapse
|
13
|
Rasche A, Souza BFDCD, Drexler JF. Bat hepadnaviruses and the origins of primate hepatitis B viruses. Curr Opin Virol 2016; 16:86-94. [PMID: 26897577 DOI: 10.1016/j.coviro.2016.01.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 02/07/2023]
Abstract
The origin of primate HBV (family Hepadnaviridae) is unknown. Hepadnaviruses are ancient pathogens and may have been associated with old mammalian lineages like bats for prolonged time. Indeed, the genetic diversity of bat hepadnaviruses exceeds that of extant hepadnaviruses in other host orders, suggesting a long evolution of hepadnaviruses in bats. Strikingly, a recently detected New World bat hepadnavirus is antigenically related to HBV and can infect human hepatocytes. Together with genetically diverse hepadnaviruses from New World rodents and a non-human primate, these viruses argue for a New World origin of ancestral orthohepadnaviruses. Multiple host switches of bat and primate viruses are evident and bats are likely sources of ancestral hepadnaviruses acquired by primates.
Collapse
Affiliation(s)
- Andrea Rasche
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany
| | - Breno Frederico de Carvalho Dominguez Souza
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany; Infectious Diseases Research Laboratory, University Hospital Professor Edgard Santos, Federal University of Bahia, Salvador, Brazil
| | - Jan Felix Drexler
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany; German Centre for Infection Research (DZIF), partner site Bonn-Cologne, Germany.
| |
Collapse
|
14
|
Littlejohn M, Locarnini S, Yuen L. Origins and Evolution of Hepatitis B Virus and Hepatitis D Virus. Cold Spring Harb Perspect Med 2016; 6:a021360. [PMID: 26729756 DOI: 10.1101/cshperspect.a021360] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Members of the family Hepadnaviridae fall into two subgroups: mammalian and avian. The detection of endogenous avian hepadnavirus DNA integrated into the genomes of zebra finches has revealed a deep evolutionary origin of hepadnaviruses that was not previously recognized, dating back at least 40 million and possibly >80 million years ago. The nonprimate mammalian members of the Hepadnaviridae include the woodchuck hepatitis virus (WHV), the ground squirrel hepatitis virus, and arctic squirrel hepatitis virus, as well as a number of members of the recently described bat hepatitis virus. The identification of hepatitis B viruses (HBVs) in higher primates, such as chimpanzee, gorilla, orangutan, and gibbons that cluster with the human HBV, as well as a number of recombinant forms between humans and primates, further implies a more complex origin of this virus. We discuss the current theories of the origin and evolution of HBV and propose a model that includes cross-species transmissions and subsequent recombination events on a genetic backbone of genotype C HBV infection. The hepatitis delta virus (HDV) is a defective RNA virus requiring the presence of the HBV for the completion of its life cycle. The origins of this virus remain unknown, although some recent studies have suggested an ancient African radiation. The age of the association between HDV and HBV is also unknown.
Collapse
Affiliation(s)
- Margaret Littlejohn
- Molecular Research and Development, Victorian Infectious Diseases Reference Laboratory, Doherty Institute, Melbourne 3000, Australia
| | - Stephen Locarnini
- Molecular Research and Development, Victorian Infectious Diseases Reference Laboratory, Doherty Institute, Melbourne 3000, Australia
| | - Lilly Yuen
- Molecular Research and Development, Victorian Infectious Diseases Reference Laboratory, Doherty Institute, Melbourne 3000, Australia
| |
Collapse
|
15
|
Paraskevis D, Angelis K, Magiorkinis G, Kostaki E, Ho SYW, Hatzakis A. Dating the origin of hepatitis B virus reveals higher substitution rate and adaptation on the branch leading to F/H genotypes. Mol Phylogenet Evol 2015. [PMID: 26220838 DOI: 10.1016/j.ympev.2015.07.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The evolution of hepatitis B virus (HBV), particularly its origins and evolutionary timescale, has been the subject of debate. Three major scenarios have been proposed, variously placing the origin of HBV in humans and great apes from some million years to only a few thousand years ago (ka). To compare these scenarios, we analyzed 105 full-length HBV genome sequences from all major genotypes sampled globally. We found a high correlation between the demographic histories of HBV and humans, as well as coincidence in the times of origin of specific subgenotypes with human migrations giving rise to their host indigenous populations. Together with phylogenetic evidence, this suggests that HBV has co-expanded with modern humans. Based on the co-expansion, we conducted a Bayesian dating analysis to estimate a precise evolutionary timescale for HBV. Five calibrations were used at the origins of F/H genotypes, D4, C3 and B6 from respective indigenous populations in the Pacific and Arctic and A5 from Haiti. The estimated time for the origin of HBV was 34.1ka (95% highest posterior density interval 27.6-41.3ka), coinciding with the dispersal of modern non-African humans. Our study, the first to use full-length HBV sequences, places a precise timescale on the HBV epidemic and also shows that the "branching paradox" of the more divergent genotypes F/H from Amerindians is due to an accelerated substitution rate, probably driven by positive selection. This may explain previously observed differences in the natural history of HBV between genotypes F1 and A2, B1, and D.
Collapse
Affiliation(s)
- Dimitrios Paraskevis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, University of Athens, Athens, Greece.
| | - Konstantinos Angelis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, University of Athens, Athens, Greece; Department of Genetics, Evolution and Environment, University College London, United Kingdom
| | - Gkikas Magiorkinis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, University of Athens, Athens, Greece; Department of Zoology, University of Oxford, United Kingdom
| | - Evangelia Kostaki
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, University of Athens, Athens, Greece
| | - Simon Y W Ho
- School of Biological Sciences, University of Sydney, Sydney, Australia
| | - Angelos Hatzakis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, University of Athens, Athens, Greece
| |
Collapse
|
16
|
Wieland SF. The chimpanzee model for hepatitis B virus infection. Cold Spring Harb Perspect Med 2015; 5:5/6/a021469. [PMID: 26033082 DOI: 10.1101/cshperspect.a021469] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Even before the discovery of hepatitis B virus (HBV), it was known that chimpanzees (Pan troglodytes) are susceptible to human hepatitis viruses. The chimpanzee is the only primate animal model for HBV infections. Much like HBV-infected human patients, chimpanzees can develop acute and chronic HBV infections and consequent hepatitis. Chimpanzees also develop a cellular immune response similar to that observed in humans. For these reasons, the chimpanzee has proven to be an invaluable model for investigations on HBV-driven disease pathogenesis and also the testing of novel antiviral therapies and prophylactic approaches.
Collapse
Affiliation(s)
- Stefan F Wieland
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California 92037
| |
Collapse
|
17
|
Riccio EKP, Pratt-Riccio LR, Bianco-Júnior C, Sanchez V, Totino PRR, Carvalho LJM, Daniel-Ribeiro CT. Molecular and immunological tools for the evaluation of the cellular immune response in the neotropical monkey Saimiri sciureus, a non-human primate model for malaria research. Malar J 2015; 14:166. [PMID: 25927834 PMCID: PMC4416248 DOI: 10.1186/s12936-015-0688-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 04/10/2015] [Indexed: 02/07/2023] Open
Abstract
Background The neotropical, non-human primates (NHP) of the genus Saimiri and Aotus are recommended by the World Health Organization as experimental models for the study of human malaria because these animals can be infected with the same Plasmodium that cause malaria in humans. However, one limitation is the lack of immunological tools to assess the immune response in these models. The present study focuses on the development and comparative use of molecular and immunological methods to evaluate the cellular immune response in Saimiri sciureus. Methods Blood samples were obtained from nineteen uninfected Saimiri. Peripheral blood mononuclear cells (PBMC) from these animals and splenocytes from one splenectomized animal were cultured for 6, 12, 18, 24, 48, 72 and 96 hrs in the presence of phorbol-12-myristate-13-acetate and ionomycin. The cytokine levels in the supernatant were detected using human and NHP cytometric bead array Th1/Th2 cytokine kits, the Bio-Plex Pro Human Cytokine Th1/Th2 Assay, enzyme-linked immunosorbent assay, enzyme-linked immunospot assays and intracellular cytokine secretion assays. Cytokine gene expression was examined through TaqMan® Gene Expression Real-Time PCR using predesigned human gene-specific primers and probes or primers and probes designed based on published S. sciureus cytokine sequences. Results The use of five assays based on monoclonal antibodies specific for human cytokines facilitated the detection of IL-2, IL-4 and/or IFN-γ. TaqMan array plates facilitated the detection of 12 of the 28 cytokines assayed. However, only seven cytokines (IL-1A, IL-2, IL-10, IL-12B, IL-17, IFN-β, and TNF) presented relative expression levels of at least 70% of the gene expression observed in human PBMC. The use of primers and probes specific for S. sciureus cytokines facilitated the detection of transcripts that showed relative expression below the threshold of 70%. The most efficient evaluation of cytokine gene expression, in PBMC and splenocytes, was observed after 6–12 hrs of culture, except for LTA in PBMC, whose expression was best analysed after 24 hrs of culture. Conclusions Real-time PCR facilitates the analysis of a large number of cytokines altered during malaria infection, and this technique is considered the best tool for the evaluation of the cellular immune response in S. sciureus.
Collapse
Affiliation(s)
- Evelyn K P Riccio
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil 4365, Pavilhão Leônidas Deane, Salas 513-517, 5° andar Manguinhos, Rio de Janeiro, RJ, CEP: 21040-900, Brazil. .,Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Fiocruz, Reference Centre for Malaria in the Extra-Amazonian Region for the Secretary for Health Surveillance, Ministry of Health, Rio de Janeiro, RJ, Brazil.
| | - Lilian R Pratt-Riccio
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil 4365, Pavilhão Leônidas Deane, Salas 513-517, 5° andar Manguinhos, Rio de Janeiro, RJ, CEP: 21040-900, Brazil. .,Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Fiocruz, Reference Centre for Malaria in the Extra-Amazonian Region for the Secretary for Health Surveillance, Ministry of Health, Rio de Janeiro, RJ, Brazil.
| | - Cesare Bianco-Júnior
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil 4365, Pavilhão Leônidas Deane, Salas 513-517, 5° andar Manguinhos, Rio de Janeiro, RJ, CEP: 21040-900, Brazil. .,Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Fiocruz, Reference Centre for Malaria in the Extra-Amazonian Region for the Secretary for Health Surveillance, Ministry of Health, Rio de Janeiro, RJ, Brazil.
| | - Violette Sanchez
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil 4365, Pavilhão Leônidas Deane, Salas 513-517, 5° andar Manguinhos, Rio de Janeiro, RJ, CEP: 21040-900, Brazil. .,Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Fiocruz, Reference Centre for Malaria in the Extra-Amazonian Region for the Secretary for Health Surveillance, Ministry of Health, Rio de Janeiro, RJ, Brazil. .,Present address: Research Department, Sanofi Pasteur, Lyon, France.
| | - Paulo R R Totino
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil 4365, Pavilhão Leônidas Deane, Salas 513-517, 5° andar Manguinhos, Rio de Janeiro, RJ, CEP: 21040-900, Brazil. .,Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Fiocruz, Reference Centre for Malaria in the Extra-Amazonian Region for the Secretary for Health Surveillance, Ministry of Health, Rio de Janeiro, RJ, Brazil.
| | - Leonardo J M Carvalho
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil 4365, Pavilhão Leônidas Deane, Salas 513-517, 5° andar Manguinhos, Rio de Janeiro, RJ, CEP: 21040-900, Brazil. .,Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Fiocruz, Reference Centre for Malaria in the Extra-Amazonian Region for the Secretary for Health Surveillance, Ministry of Health, Rio de Janeiro, RJ, Brazil.
| | - Cláudio Tadeu Daniel-Ribeiro
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil 4365, Pavilhão Leônidas Deane, Salas 513-517, 5° andar Manguinhos, Rio de Janeiro, RJ, CEP: 21040-900, Brazil. .,Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Fiocruz, Reference Centre for Malaria in the Extra-Amazonian Region for the Secretary for Health Surveillance, Ministry of Health, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
18
|
New insights into the evolutionary rate of hepatitis B virus at different biological scales. J Virol 2015; 89:3512-22. [PMID: 25589664 DOI: 10.1128/jvi.03131-14] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED The evolutionary rates of hepatitis B virus (HBV) estimated using contemporary sequences are 10(2) to 10(4) times higher than those derived from archaeological and genetic evidence. This discrepancy makes the origin of HBV and the time scale of its spread, both of which are critical for studying the burden of HBV pathogenicity, largely unresolved. To evaluate whether the dual demands (i.e., adaptation within hosts and colonization between hosts) of the viral life cycle affect this conundrum, the HBV quasispecies dynamics within and among hosts from a family consisting of a grandmother, her 5 children, and her 2 granddaughters, all of whom presumably acquired chronic HBV through mother-to-infant transmission, were examined by PCR cloning and next-generation sequencing methods. We found that the evolutionary rate of HBV between hosts was considerably lower than that within hosts. Moreover, the between-host substitution rates of HBV decreased as transmission numbers between individuals increased. Both observations were due primarily to changes at nonsynonymous rather than synonymous sites. There were significantly more multiple substitutions than expected for random mutation processes, and 97% of substitutions were changed from common to rare amino acid residues in the database. Continual switching between colonization and adaptation resulted in a rapid accumulation of mutations at a limited number of positions, which quickly became saturated, whereas substitutions at the remaining regions occurred at a much lower rate. Our study may help to explain the time-dependent HBV substitution rates reported in the literature and provide new insights into the origin of the virus. IMPORTANCE It is known that the estimated hepatitis B virus (HBV) substitution rate is time dependent, but the reason behind this observation is still elusive. We hypothesize that owing to the small genome size of HBV, transmission between hosts and adaptation within hosts must exhibit high levels of fitness trade-offs for the virus. By studying the HBV quasispecies dynamics for a chain of sequentially infected transmissions within a family, we found the HBV substitution rate between patients to be negatively correlated with the number of transmissions. Continual switching between hosts resulted in a rapid accumulation of mutations at a limited number of genomic sites, which quickly became saturated in the short term. Nevertheless, substitutions at the remaining regions occurred at a much lower rate. Therefore, the HBV substitution rate decreased as the divergence time increased.
Collapse
|
19
|
Abstract
Human risks of acquiring a zoonotic disease from animals used in biomedical research have declined over the last decade because higher quality research animals have defined microbiologic profiles. Even with diminished risks, the potential for exposure to infectious agents still exists, especially from larger species such as nonhuman primates, which may be obtained from the wild, and from livestock, dogs, ferrets, and cats, which are generally not raised in barrier facilities and are not subject to the intensive health monitoring performed routinely on laboratory rodents and rabbits. Additionally, when laboratory animals are used as models for infectious disease studies, exposure to microbial pathogens presents a threat to human health. Also, with the recognition of emerging diseases, some of which are zoonotic, constant vigilance and surveillance of laboratory animals for zoonotic diseases are still required.
Collapse
Affiliation(s)
- James G. Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Glen Otto
- Animal Resources Ctr University Texas Austin, Austin, TX, USA
| | - Lesley A. Colby
- Department of comparative Medicine University of Washington, Seattle, WA, USA
| |
Collapse
|
20
|
Bonvicino CR, Moreira MA, Soares MA. Hepatitis B virus lineages in mammalian hosts: Potential for bidirectional cross-species transmission. World J Gastroenterol 2014; 20:7665-7674. [PMID: 24976704 PMCID: PMC4069295 DOI: 10.3748/wjg.v20.i24.7665] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/30/2013] [Accepted: 03/13/2014] [Indexed: 02/06/2023] Open
Abstract
The hepatitis B virus (HBV) is a cosmopolitan infectious agent currently affecting over 350 million people worldwide, presently accounting for more than two billion infections. In addition to man, other hepatitis virus strains infect species of several mammalian families of the Primates, Rodentia and Chiroptera orders, in addition to birds. The mounting evidence of HBV infection in African, Asian and neotropical primates draws attention to the potential cross-species, zoonotic transmission of these viruses to man. Moreover, recent evidence also suggests the humans may also function as a source of viral infection to other mammals, particularly to domestic animals like poultry and swine. In this review, we list all evidence of HBV and HBV-like infection of nonhuman mammals and discuss their potential roles as donors or recipients of these viruses to humans and to other closely-related species.
Collapse
|
21
|
Souza BFDCD, Drexler JF, Lima RSD, Rosário MDOHVD, Netto EM. Theories about evolutionary origins of human hepatitis B virus in primates and humans. Braz J Infect Dis 2014; 18:535-43. [PMID: 24726560 PMCID: PMC9428206 DOI: 10.1016/j.bjid.2013.12.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 12/12/2013] [Accepted: 12/13/2013] [Indexed: 12/14/2022] Open
Abstract
Introduction The human hepatitis B virus causes acute and chronic hepatitis and is considered one of the most serious human health issues by the World Health Organization, causing thousands of deaths per year. There are similar viruses belonging to the Hepadnaviridae family that infect non-human primates and other mammals as well as some birds. The majority of non-human primate virus isolates were phylogenetically close to the human hepatitis B virus, but like the human genotypes, the origins of these viruses remain controversial. However, there is a possibility that human hepatitis B virus originated in primates. Knowing whether these viruses might be common to humans and primates is crucial in order to reduce the risk to humans. Objective To review the existing knowledge about the evolutionary origins of viruses of the Hepadnaviridae family in primates. Methods This review was done by reading several articles that provide information about the Hepadnaviridae virus family in non-human primates and humans and the possible origins and evolution of these viruses. Results The evolutionary origin of viruses of the Hepadnaviridae family in primates has been dated back to several thousand years; however, recent analyses of genomic fossils of avihepadnaviruses integrated into the genomes of several avian species have suggested a much older origin of this genus. Conclusion Some hypotheses about the evolutionary origins of human hepatitis B virus have been debated since the ‘90s. One theory suggested a New World origin because of the phylogenetic co-segregation between some New World human hepatitis B virus genotypes F and H and woolly monkey human hepatitis B virus in basal sister-relationship to the Old World non-human primates and human hepatitis B virus variants. Another theory suggests an Old World origin of human hepatitis B virus, and that it would have been spread following prehistoric human migrations over 100,000 years ago. A third theory suggests a co-speciation of human hepatitis B virus in non-human primate hosts because of the proximity between the phylogeny of Old and New World non-human primate and their human hepatitis B virus variants. The importance of further research, related to the subject in South American wild fauna, is paramount and highly relevant for understanding the origin of human hepatitis B virus.
Collapse
Affiliation(s)
| | - Jan Felix Drexler
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany
| | | | | | - Eduardo Martins Netto
- Infectious Diseases Research Laboratory, University Hospital Professor Edgard Santos, Universidade Federal da Bahia, Salvador, BA, Brazil.
| |
Collapse
|
22
|
Dupinay T, Gheit T, Roques P, Cova L, Chevallier-Queyron P, Tasahsu SI, Le Grand R, Simon F, Cordier G, Wakrim L, Benjelloun S, Trépo C, Chemin I. Discovery of naturally occurring transmissible chronic hepatitis B virus infection among Macaca fascicularis from Mauritius Island. Hepatology 2013; 58:1610-1620. [PMID: 23536484 DOI: 10.1002/hep.26428] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 03/25/2013] [Indexed: 01/05/2023]
Abstract
UNLABELLED Despite a high prevalence of hepatitis B virus (HBV) infection in endangered apes, no HBV infection has been reported in small, old-world monkeys. In search for a small, nonhuman primate model, we investigated the prevalence of HBV infection in 260 macaque (Cercopithecidae) sera of various geographical origins (i.e., Morocco, Mauritius Island, and Asia). HBV-positive markers were detected in cynomolgus macaques (Macaca fascicularis) from Mauritius Island only, and, remarkably, HBV DNA was positive in 25.8% (31 of 120) and 42% (21 of 50) of serum and liver samples, respectively. Strong liver expression of hepatitis B surface antigen and hepatitis B core antigen was detected in approximately 20%-30% of hepatocytes. Furthermore, chronic infection with persisting HBV DNA was documented in all 6 infected macaques during an 8-month follow-up period. Whole HBV genome-sequencing data revealed that it was genotype D subtype ayw3 carrying substitution in position 67 of preS1. To confirm infectivity of this isolate, 3 Macaca sylvanus were inoculated with a pool of M. fascicularis serum and developed an acute HBV infection with 100% sequence homology, compared with HBV inoculum. We demonstrated the presence of a chronic HBV infection in M. fascicularis from Mauritius Island. This closely human-related HBV might have been transmitted from humans, because the initial breeding colony originated from very few ancestors 300 years ago when it was implemented by Portuguese who imported a handful of macaques from Java to Mauritius Island. CONCLUSION This report on natural, persisting HBV infection among cynomolgus macaques provides the first evidence for the existence of a novel, small simian model of chronic HBV infection, immunologically close to humans, that should be most valuable for the study of immunotherapeutic approaches against chronic hepatitis B.
Collapse
Affiliation(s)
- Tatiana Dupinay
- Université de Lyon, Lyon, France; INSERM U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France; CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France; Ecole pratique des hautes études, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Locarnini S, Littlejohn M, Aziz MN, Yuen L. Possible origins and evolution of the hepatitis B virus (HBV). Semin Cancer Biol 2013; 23:561-75. [PMID: 24013024 DOI: 10.1016/j.semcancer.2013.08.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 08/27/2013] [Indexed: 02/06/2023]
Abstract
All members of the family Hepadnaviridae are primarily viruses which contain double-stranded DNA genomes that are replicated via reverse transcription of a pregenomic RNA template. There are two subgroups within this family: mammalian and avian. The avian member's include the duck hepatitis B virus (DHBV), heron hepatitis B virus, Ross goose hepatitis B virus, stork hepatitis B virus and the recently identified parrot hepatitis B virus. More recently, the detection of endogenous avian hepadnavirus DNA integrated into the genomes of zebra finches has revealed a deep evolutionary origin of hepadnaviruses that was not previously recognised, dating back over 40 million years ago. The non-primate mammalian members of the Hepadnaviridae include the woodchuck hepatitis virus (WHV), the ground squirrel hepatitis virus and arctic squirrel virus, as well as the recently described bat hepatitis virus. The identification of hepatitis B virus (HBV) in higher primates such as chimpanzee, gorilla, orangutan, and gibbons that cluster with the human genotypes further implies a more complex origin of this virus. By studying the molecular epidemiology of HBV in indigenous and relict populations in Asia-Pacific we propose a model for the origin and evolution of HBV that involves multiple cross-species transmissions and subsequent recombination events on a background of genotype C HBV infection.
Collapse
Affiliation(s)
- Stephen Locarnini
- Research & Molecular Development, Victorian Infectious Diseases Reference Laboratory, Melbourne, Australia.
| | | | | | | |
Collapse
|
24
|
Liu B, Wen X, Huang C, Wei Y. Unraveling the complexity of hepatitis B virus: from molecular understanding to therapeutic strategy in 50 years. Int J Biochem Cell Biol 2013; 45:1987-96. [PMID: 23819994 DOI: 10.1016/j.biocel.2013.06.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 06/18/2013] [Accepted: 06/21/2013] [Indexed: 02/05/2023]
Abstract
Hepatitis B virus (HBV) is a well-known hepadnavirus with a double-stranded circular DNA genome. Although HBV was first described approximately 50 years ago, the precise mechanisms of HBV infection and effective therapeutic strategies remain unclear. Here, we focus on summarizing the complicated mechanisms of HBV replication and infection, as well as genomic factors and epigenetic regulation. Additionally, we discuss in vivo models of HBV, as well as diagnosis, prevention and therapeutic drugs for HBV. Together, the data in this 50-year review may provide new clues to elucidate molecular mechanisms of HBV pathogenesis and shed new light on the future HBV therapies.
Collapse
Affiliation(s)
- Bo Liu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | | | | | | |
Collapse
|
25
|
Bouckaert R, Alvarado-Mora MV, Pinho JRR. Evolutionary rates and HBV: issues of rate estimation with Bayesian molecular methods. Antivir Ther 2013; 18:497-503. [PMID: 23792904 DOI: 10.3851/imp2656] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2012] [Indexed: 12/18/2022]
Abstract
BACKGROUND HBV infection is a public health problem affecting approximately 2 billion people and leading to >350 million chronic carriers of the virus worldwide. Phylogenetic analysis can give valuable insight to help in clarifying the history of viral infections around the world and in elucidating routes of transmission of the different viral strains present in the infected host population. These analyses rely on an accurate estimate of the rate of mutations. METHODS In this study, we investigated the robustness of rate estimations based on Bayesian analysis obtained so far and examined, in particular, the choice of prior for the substitution rate. RESULTS Most previous studies have concentrated on estimating the parameters of simple demographic models for HBV, such as exponential growth and constant population size. Here, we introduce a method that automatically partitions the genome in components that show a different rate of mutation and fit different substitution models. CONCLUSIONS In conclusion, we find that, due to inaccuracy in the sampling dates from the samples where viral sequences were obtained, lack of a sufficiently large geographical and time spread of available and trustworthy sample dates, sensitivity to priors and model misspecification and rate estimation based on molecular methods, are not reliable. We suggest that rate estimates taking into account calibration points based on relevant historical events are more robust due to the lack of trustworthy sampling dates. For example, the known history of colonization of the Americas should be used to accurately study the current diversity of genotype F, which is the most frequent genotype in almost all Spanish speaking countries in South America.
Collapse
|
26
|
Paraskevis D, Magiorkinis G, Magiorkinis E, Ho SYW, Belshaw R, Allain JP, Hatzakis A. Dating the origin and dispersal of hepatitis B virus infection in humans and primates. Hepatology 2013; 57:908-16. [PMID: 22987324 DOI: 10.1002/hep.26079] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Revised: 09/06/2012] [Accepted: 09/06/2012] [Indexed: 12/11/2022]
Abstract
UNLABELLED The origin of hepatitis B virus (HBV) infection in humans and other primates remains largely unresolved. Understanding the origin of HBV is crucial because it provides a framework for studying the burden, and subsequently the evolution, of HBV pathogenicity with respect to changes in human population size and life expectancy. To investigate this controversy we examined the relationship between HBV phylogeny and genetic diversity of modern humans, investigated the timescale of global HBV dispersal, and tested the hypothesis of HBV-human co-divergence. We find that the global distribution of HBV genotypes and subgenotypes are consistent with the major prehistoric modern human migrations. We calibrate the HBV molecular clock using the divergence times of different indigenous human populations based on archaeological and genetic evidence and show that HBV jumped into humans around 33,600 years ago; 95% higher posterior density (HPD): 22,000-47,100 years ago (estimated substitution rate: 2.2 × 10(-6) ; 95% HPD: 1.5-3.0 × 10(-6) substitutions/site/year). This coincides with the origin of modern non-African humans. Crucially, the most pronounced increase in the HBV pandemic correlates with the global population increase over the last 5,000 years. We also show that the non-human HBV clades in orangutans and gibbons resulted from cross-species transmission events from humans that occurred no earlier than 6,100 years ago. CONCLUSION Our study provides, for the first time, an estimated timescale for the HBV epidemic that closely coincides with dates of human dispersals, supporting the hypothesis that HBV has been co-expanding and co-migrating with human populations for the last 40,000 years. (HEPATOLOGY 2013).
Collapse
Affiliation(s)
- Dimitrios Paraskevis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, University of Athens, Athens, Greece.
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
As the threat of exposure to emerging and reemerging viruses within a naive population increases, it is vital that the basic mechanisms of pathogenesis and immune response be thoroughly investigated. By using animal models in this endeavor, the response to viruses can be studied in a more natural context to identify novel drug targets, and assess the efficacy and safety of new products. This is especially true in the advent of the Food and Drug Administration's animal rule. Although no one animal model is able to recapitulate all the aspects of human disease, understanding the current limitations allows for a more targeted experimental design. Important facets to be considered before an animal study are the route of challenge, species of animals, biomarkers of disease, and a humane endpoint. This chapter covers the current animal models for medically important human viruses, and demonstrates where the gaps in knowledge exist.
Collapse
|
28
|
Kahila Bar-Gal G, Kim MJ, Klein A, Shin DH, Oh CS, Kim JW, Kim TH, Kim SB, Grant PR, Pappo O, Spigelman M, Shouval D. Tracing hepatitis B virus to the 16th century in a Korean mummy. Hepatology 2012; 56:1671-80. [PMID: 22610996 DOI: 10.1002/hep.25852] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Accepted: 05/14/2012] [Indexed: 12/14/2022]
Abstract
UNLABELLED A rare find of a mummified child from the 16th century AD, in Korea, with relatively preserved organs, enabled a search for ancient hepatitis B virus (aHBV) DNA sequences from laparoscopic-derived liver biopsies. Analysis of the complete aHBV genome (3,215 base pairs) revealed a unique HBV genotype C2 (HBV/C2) sequence commonly spread in Southeast Asia, which probably represents an HBV that infected the Joseon Dynasty population in Korea. Comparison of the aHBV sequences with contemporary HBV/C2 DNA sequences revealed distinctive differences along four open reading frames. Genetic diversity between contemporary and recovered aHBV/C2 DNA may be the result of immunologic, environmental, and/or pharmacologic pressures. The calculated time of most recent common ancestor suggests that the Korean HBV sequence origin dates back at least 3,000 years and possibly as long as 100,000 years. This isolate most likely represents the earliest human HBV sequence that colonized Southeast Asia by human migration. CONCLUSION This study describes the complete sequence of the oldest HBV isolate and the most ancient full viral genome known so far.
Collapse
Affiliation(s)
- Gila Kahila Bar-Gal
- The Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Species association of hepatitis B virus (HBV) in non-human apes; evidence for recombination between gorilla and chimpanzee variants. PLoS One 2012; 7:e33430. [PMID: 22432021 PMCID: PMC3303819 DOI: 10.1371/journal.pone.0033430] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 02/08/2012] [Indexed: 01/28/2023] Open
Abstract
Hepatitis B virus (HBV) infections are widely distributed in humans, infecting approximately one third of the world's population. HBV variants have also been detected and genetically characterised from Old World apes; Gorilla gorilla (gorilla), Pan troglodytes (chimpanzee), Pongo pygmaeus (orang-utan), Nomascus nastusus and Hylobates pileatus (gibbons) and from the New World monkey, Lagothrix lagotricha (woolly monkey). To investigate species-specificity and potential for cross species transmission of HBV between sympatric species of apes (such as gorillas and chimpanzees in Central Africa) or between humans and chimpanzees or gorillas, variants of HBV infecting captive wild-born non-human primates were genetically characterised. 9 of 62 chimpanzees (11.3%) and two from 11 gorillas (18%) were HBV-infected (15% combined frequency), while other Old world monkey species were negative. Complete genome sequences were obtained from six of the infected chimpanzee and both gorillas; those from P. t .ellioti grouped with previously characterised variants from this subspecies. However, variants recovered from P. t. troglodytes HBV variants also grouped within this clade, indicative of transmission between sub-species, forming a paraphyletic clade. The two gorilla viruses were phylogenetically distinct from chimpanzee and human variants although one showed evidence for a recombination event with a P.t.e.-derived HBV variant in the partial X and core gene region. Both of these observations provide evidence for circulation of HBV between different species and sub-species of non-human primates, a conclusion that differs from the hypothesis if of strict host specificity of HBV genotypes.
Collapse
|
30
|
Abstract
Hepatitis B may cause a varying spectrum of diseases ranging from an asymptomatic or mild anicteric acute illness, to severe or fulminant hepatitis. Similarly, the outcome of chronic hepatitis B is variable. Viral factors associated with outcome of chronic hepatitis B virus (HBV) infection include hepatitis B e antigen status, HBV DNA, genotype, and HBV variants. HBV genotypes and subgenotypes have been associated with differences in clinical and virological characteristics, indicating that they may play a role in the virus-host relationship. A total of ten hepatitis B virus genotypes have been defined with a distinct geographical distribution. Hitherto, genotypes A, B, C and D have been studied most extensively. The HBV genotype appears to influence not only the natural history of HBV related liver disease but also the response to HBV treatment. HBV genotypes are also linked with both core promoter and BCP mutations. Progression to chronic infection appears to occur more frequently following acute infection with genotypes A and D than with the other studied genotypes. Genotypes A and B appear to have higher rates of spontaneous HBeAg seroconversion. More advanced liver disease and progression to HCC is more often seen in chronic infection with genotypes C and D in contrast to genotypes A and B. More specifically, genotypes A1, C, B2-B5 and H appear to be associated with more serious complications than genotypes A2, B1 and B6. These observations suggest important pathogenic differences between HBV genotypes. Genotypes A and B have higher response rates to interferon based therapy than genotypes C and D. Knowledge of HBV genotype enables clinicians to identify those patients at increased risk of disease progression whilst aiding the selection of appropriate antiviral therapy. Genotyping and monoclonal subtyping can provide useful information for epidemiological studies. In conclusion, genotyping of chronic HBV infections can help practicing physicians identify those at risk of disease progression and determine optimal anti-viral therapy.
Collapse
Affiliation(s)
- Sudeep Tanwar
- Centre for Hepatology, University College London Royal Free Campus, Rowland Hill Street Hampstead, London, NW3 2PF, UK.
| | | |
Collapse
|
31
|
Tian J, Xia K, She R, Li W, Ding Y, Wang J, Chen M, Yin J. Detection of Hepatitis B virus in serum and liver of chickens. Virol J 2012; 9:2. [PMID: 22217003 PMCID: PMC3306199 DOI: 10.1186/1743-422x-9-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 01/04/2012] [Indexed: 12/24/2022] Open
Abstract
Hepatitis B virus (HBV) is one of the most important human pathogens. Its existence in food animals could present a significant threat to public health. The objective of this study was to determine if HBV is present in serum and liver of chickens. A total of 129 serum samples from broiler chickens were collected for the detection of HBV antigens and antibodies, and 193 liver samples were tested for HBV DNA sequence by PCR and for the existence of HBV antigens by immunohistochemistry. The overall prevalence of HBsAg, anti-HBs, anti-HBc was 28.68%, 53.49%, 17.05%, respectively, whereas HBeAg, anti-HBe were barely detectable. Three serum samples were found to be positive for both HBsAg and HBeAg. Further analysis of these samples with transmission electron microscopy (TEM) revealed two morphologic particles with 20 nm and 40 nm in diameter, which were similar to small spherical and Danes particles of HBV. The viral DNA sequence identified in two of the chicken livers shared 92.2% of one known HBV strain and 97.9% nucleotide sequence of another HBV strain. Our results showed the existence of HBV in chickens. This would present a significant risk to people who work with live chickens or chicken products if HBV found in chicken could be confirmed to be the same as human HBV.
Collapse
Affiliation(s)
- Jijing Tian
- Department of Veterinary Pathology, Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Sa-Nguanmoo P, Tanaka Y, Ratanakorn P, Sugiyama M, Murakami S, Payungporn S, Sommanustweechai A, Mizokami M, Poovorawan Y. Cross-species transmission of gibbon and orangutan hepatitis B virus to uPA/SCID mice with human hepatocytes. Virus Res 2011; 158:209-215. [PMID: 21510984 DOI: 10.1016/j.virusres.2011.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 03/31/2011] [Accepted: 04/01/2011] [Indexed: 01/21/2023]
Abstract
To investigate the potential of cross-species transmission of non-human primate HBV to humans, severe combined immunodeficiency mice transgenic for urokinase-type plasminogen activator, in which the mouse liver has been engrafted with human hepatocytes, were inoculated with non-human primate HBV. HBV-DNA positive serum samples from a gibbon or orangutan were inoculated into 6 chimeric mice. HBV-DNA, hepatitis B surface antigen (HBsAg), and HB core-related antigen in sera and HBV cccDNA in liver were detectable in 2 of 3 mice each from the gibbon and orangutan. Likewise, applying immunofluorescence HBV core protein was only found in human hepatocytes expressing human albumin. The HBV sequences from mouse sera were identical to those from orangutan and gibbon sera determined prior to inoculation. In conclusion, human hepatocytes have been infected with gibbon/orangutan HBV.
Collapse
Affiliation(s)
- Pattaratida Sa-Nguanmoo
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Foupouapouognigni Y, Mba SA, Njouom R. Prevalence of hepatitis B virus infection among Cercopithecidae monkeys in Cameroon. J Med Primatol 2011; 40:194-6. [DOI: 10.1111/j.1600-0684.2011.00471.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Mugisha L, Kaiser M, Ellerbrok H, Pauli G, Opuda-Asibo J, Joseph OO, Leendertz FH. The "original" hepatitis B virus of Eastern chimpanzees (Pan trogrodytes schweinfurthii). Virus Res 2010; 155:372-5. [PMID: 20970465 DOI: 10.1016/j.virusres.2010.10.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 09/30/2010] [Accepted: 10/14/2010] [Indexed: 12/19/2022]
Abstract
Little is known about Hepatitis B Virus (HBV) infections in chimpanzees. Therefore, we investigated the prevalence of chimpanzee HBV (chHBV) infections in captive, wild born chimpanzees in the sanctuary on Ngamba Island, Uganda and one sample from a wild free ranging chimpanzee. In one third of the plasma samples (32.4%; 12/37) we detected antibodies to Hepatitis B (core) antigen. Amongst those individuals HBV DNA was detected in one captive wild born and the wild chimpanzee. In contrast to the only available earlier described HBV sequence from the subspecies Pan troglodytes schweinfurthii, there was no evidence of recombination with human HBV. Our sequences therefore are likely to present the "original" chHBV from P. t. schweinfurthii.
Collapse
Affiliation(s)
- Lawrence Mugisha
- Chimpanzee Sanctuary & Wildlife Conservation Trust, PO Box 884, Entebbe, Uganda
| | | | | | | | | | | | | |
Collapse
|
35
|
Njouom R, Mba SAS, Nerrienet E, Foupouapouognigni Y, Rousset D. Detection and characterization of hepatitis B virus strains from wild-caught gorillas and chimpanzees in Cameroon, Central Africa. INFECTION GENETICS AND EVOLUTION 2010; 10:790-6. [PMID: 20471498 DOI: 10.1016/j.meegid.2010.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 05/04/2010] [Accepted: 05/07/2010] [Indexed: 12/18/2022]
Abstract
Previous epidemiological studies have reported a high prevalence of hepatitis B virus (HBV) infection in chimpanzees in Gabon and Congo, Central Africa. There is no data for this species from Cameroon. To date few cases of active HBV infection have been documented in gorillas and only one complete HBV sequence has been described from a wild-caught gorilla originating from Cameroon and housed in Germany. Since gorillas are apes found in Cameroon, we thus investigated the prevalence and genetic relationships of HBV infecting apes in this area. We subjected 185 wild-caught apes' plasmas, including 159 from chimpanzees and 26 from gorillas to ELISA screening for HBV surface antigen (HBsAg). Subsequently, we detected HBV DNA, sequenced the whole HBV genome and performed phylogenetic analysis. Eleven (6.9%) chimpanzees and 3 (11.6%) gorillas plasma were found HBsAg positive, of which 8 and 3 were positive for HBV DNA, respectively. Phylogenetic analyses revealed that the 3 new gorilla HBV sequences grouped together with the single available HBV sequence from gorilla. Evidence of recombination between HBV Pan troglodytes troglodytes and Pan troglodytes vellerosus was observed in two of the Cameroonian strains. Findings from our study show that HBV infection is endemic in wild-born gorillas and chimpanzees in Cameroon, and that there is evidence of recombination between HBV strains circulating in chimpanzees. We demonstrated the existence of gorillas' specific HBV strains distinct but related to those found in chimpanzees living in the same habitat in Cameroon, providing substantial evidence of species association of HBV in NHPs.
Collapse
Affiliation(s)
- Richard Njouom
- Laboratoire de Virologie, Centre Pasteur du Cameroun, Yaounde, Cameroon.
| | | | | | | | | |
Collapse
|
36
|
Abstract
The pathogenesis of hepatitis B virus (HBV) is complex and it appears that molecular variants play a role in this process. HBV undergoes numerous rounds of error prone production within an infected host. The resulting quasispecies are heterogeneous and in the absence of archaeological records of past infection, the evolution of HBV can only be inferred indirectly from its epidemiology and by genetic analysis. This review gathered the controversies about the HBV origin and factors influencing its quasispecies. Also, it provided some evidence on how HBV genotypes correlated with human history and patterns of migration. It is our belief that this topic deserves further attention and thus it is likely that more critical research work will be performed to elucidate the unknown mechanisms and processes in this area.
Collapse
Affiliation(s)
- S M Jazayeri
- Hepatitis B Molecular Laboratory, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | | | | |
Collapse
|
37
|
An exon-based comparative variant analysis pipeline to study the scale and role of frameshift and nonsense mutation in the human-chimpanzee divergence. Comp Funct Genomics 2009:406421. [PMID: 19859573 PMCID: PMC2765723 DOI: 10.1155/2009/406421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2009] [Revised: 07/14/2009] [Accepted: 07/18/2009] [Indexed: 11/18/2022] Open
Abstract
Chimpanzees and humans are closely related but differ in many deadly human diseases and other characteristics in physiology, anatomy, and pathology. In spite of decades of extensive research, crucial questions about the
molecular mechanisms behind the differences are yet to be understood. Here I report ExonVar, a novel computational pipeline for Exon-based human-chimpanzee comparative Variant analysis. The objective is to comparatively
analyze mutations specifically those that caused the frameshift and nonsense mutations and to assess their scale and potential impacts on human-chimpanzee divergence. Genomewide analysis of human and chimpanzee exons with ExonVar identified a number of species-specific, exon-disrupting mutations in chimpanzees but much fewer in humans. Many were found on genes involved in
important biological processes such as T cell lineage development, the pathogenesis of inflammatory diseases, and antigen induced cell death. A “less-is-more” model was previously established to illustrate the role of the gene inactivation and disruptions during human evolution. Here this analysis suggested a different model where the chimpanzee-specific exon-disrupting mutations may act as additional evolutionary force that drove the human-chimpanzee divergence. Finally, the analysis revealed a number of sequencing errors in the chimpanzee and human genome sequences and further illustrated that they could be corrected without resequencing.
Collapse
|
38
|
Tatematsu K, Tanaka Y, Kurbanov F, Sugauchi F, Mano S, Maeshiro T, Nakayoshi T, Wakuta M, Miyakawa Y, Mizokami M. A genetic variant of hepatitis B virus divergent from known human and ape genotypes isolated from a Japanese patient and provisionally assigned to new genotype J. J Virol 2009; 83:10538-10547. [PMID: 19640977 PMCID: PMC2753143 DOI: 10.1128/jvi.00462-09] [Citation(s) in RCA: 334] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Accepted: 07/24/2009] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B virus (HBV) of a novel genotype (J) was recovered from an 88-year-old Japanese patient with hepatocellular carcinoma who had a history of residing in Borneo during the World War II. It was divergent from eight human (A to H) and four ape (chimpanzee, gorilla, gibbon, and orangutan) HBV genotypes, as well as from a recently proposed ninth human genotype I, by 9.9 to 16.5% of the entire genomic sequence and did not have evidence of recombination with any of the nine human genotypes and four nonhuman genotypes. Based on a comparison of the entire nucleotide sequence against 1,440 HBV isolates reported, HBV/J was nearest to the gibbon and orangutan genotypes (mean divergences of 10.9 and 10.7%, respectively). Based on a comparison of four open reading frames, HBV/J was closer to gibbon/orangutan genotypes than to human genotypes in the P and large S genes and closest to Australian aboriginal strains (HBV/C4) and orangutan-derived strains in the S gene, whereas it was closer to human than ape genotypes in the C gene. HBV/J shared a deletion of 33 nucleotides at the start of preS1 region with C4 and gibbon genotypes, had an S-gene sequence similar to that of C4, and expressed the ayw subtype. Efficient infection, replication, and antigen expression by HBV/J were experimentally established in two chimeric mice with the liver repopulated for human hepatocytes. The HBV DNA sequence recovered from infected mice was identical to that in the inoculum. Since HBV/J is positioned phylogenetically in between human and ape genotypes, it may help to trace the origin of HBV and merits further epidemiological surveys.
Collapse
Affiliation(s)
- Kanako Tatematsu
- Department of Clinical Molecular Informative Medicine, Nagoya, City University Graduate School of Medical Sciences, Mizuho, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Sa-nguanmoo P, Thongmee C, Ratanakorn P, Pattanarangsan R, Boonyarittichaikij R, Chodapisitkul S, Theamboonlers A, Tangkijvanich P, Poovorawan Y. Prevalence, whole genome characterization and phylogenetic analysis of hepatitis B virus in captive orangutan and gibbon. J Med Primatol 2008; 37:277-289. [PMID: 18466280 DOI: 10.1111/j.1600-0684.2008.00290.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Hepatitis B virus (HBV) is a public health problem worldwide and apart from infecting humans, HBV has been found in non-human primates. METHODS We subjected 93 non-human primates comprising 12 species to ELISA screening for the serological markers HBsAg, antiHBs and antiHBc. Subsequently, we detected HBV DNA, sequenced the whole HBV genome and performed phylogenetic analysis. RESULTS HBV infection was detected in gibbon (4/15) and orangutan (7/53). HBV DNA isolates from two gibbons and seven orangutans were chosen for complete genome amplification. We aligned the Pre-S/S, Pre-C/C and entire genomes with HBV sequences and performed phylogenetic analysis. The gibbon and orangutan viruses clustered within their respective groups. CONCLUSIONS Both geographic location and host species influence which HBV variants are found in gibbons and orangutans. Hence, HBV transmission between humans and non-human primates might be a distinct possibility and additional studies will be required to further investigate this potential risk.
Collapse
Affiliation(s)
- Pattaratida Sa-nguanmoo
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Chauhan R, Kazim SN, Kumar M, Bhattacharjee J, Krishnamoorthy N, Sarin SK. Identification and characterization of genotype A and D recombinant hepatitis B virus from Indian chronic HBV isolates. World J Gastroenterol 2008; 14:6228-36. [PMID: 18985816 PMCID: PMC2761587 DOI: 10.3748/wjg.14.6228] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIM: To confirm the presence of recombination, full-length hepatitis B virus (HBV) from chronic patients was sequenced and analyzed.
METHODS: Full-length HBV genomes from 12 patients were amplified and sequenced in an automated sequencer. Phylogenetic analysis was carried out on full-length, Core and preS2/Surface regions using MEGA software. SimPlot Boot Scanning and amino acid sequence analysis were performed for confirmation of recombination.
RESULTS: Eight patients were infected with genotype D strain; one patient with genotype A and three patients had genotype A and D recombination; two of them had cirrhosis and one had hepatocellular carcinoma. Phylogenetic analysis of core and preS2/surface regions separately showed evidence of genotype A and D recombination. The breakpoints of recombination were found to be at the start of preS2 and at the end of surface coding regions.
CONCLUSION: We identified and characterized recombinant A and D genotype HBV in hepatitis B surface antigen (HBsAg)-positive patients.
Collapse
|
41
|
Kramvis A, Arakawa K, Yu MC, Nogueira R, Stram DO, Kew MC. Relationship of serological subtype, basic core promoter and precore mutations to genotypes/subgenotypes of hepatitis B virus. J Med Virol 2008; 80:27-46. [DOI: 10.1002/jmv.21049] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
42
|
Yang J, Xi Q, Deng R, Wang J, Hou J, Wang X. Identification of interspecies recombination among hepadnaviruses infecting cross-species hosts. J Med Virol 2007; 79:1741-50. [PMID: 17854046 DOI: 10.1002/jmv.20983] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Members of the family Hepadnaviridae are divided into two genera, Orthohepadnavirus (from mammalian) and Avihepadnavirus (from avian). Recombination had been found to occur among human hepatitis B virus (HBV) strains of different genotypes, or between hepadnavirus strains from human and nonhuman primate. To reach a comparatively complete inspection of interspecies recombination events among hepadnavirus strains from various hosts, 837 hepadnavirus complete genome sequences from human and 112 from animals were analyzed by using fragment typing to scan for potential interspecies recombinants. Further bootscanning and phylogenetic analyses of the potential recombinants revealed six genome sequences as interspecies recombinants. Interspecies recombination events were found to occur among HBV strains from human and nonhuman primates, from gibbons of different genera, from chimpanzee and an unknown host, and between two avian hepadnavirus strains from birds of different subfamilies, which was identified for the first time. HBV interspecies recombinants were found to have recombination hot spots similar to that of human HBV intergenotype recombinants, breakpoints frequently locating near gene boundaries. Interspecies recombination found in this study may alter current views on hepadnavirus host specificity.
Collapse
Affiliation(s)
- Jie Yang
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | | | | | | | | | | |
Collapse
|
43
|
Makuwa M, Souquière S, Bourry O, Rouquet P, Telfer P, Mauclère P, Kazanji M, Roques P, Simon F. Complete-genome analysis of hepatitis B virus from wild-born chimpanzees in central Africa demonstrates a strain-specific geographical cluster. J Gen Virol 2007; 88:2679-2685. [PMID: 17872519 DOI: 10.1099/vir.0.82992-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In order to determine whether geographical or species clustering accounts for the distribution of hepatitis B virus (HBV) in subspecies of chimpanzees in Africa, four complete chimpanzee HBV (ChHBV) genome sequences were obtained from eight hepatitis B surface antigen-positive wild-born chimpanzees from Cameroon, Republic of Congo and Gabon. The serological profiles of these chimpanzees corresponded to the acute or chronic highly replicative phase of HBV infection, as confirmed by high plasma HBV loads. Analysis of the sequence alignment of 256 aa (S region) from the eight HBV-infected chimpanzees allowed us to determine the HBV amino acid patterns specific to each chimpanzee subspecies and to their geographical origin. Phylogenetic analysis of both the S region and the complete genome confirmed this distinctive clustering of eight novel ChHBV strains within Pan troglodytes. The strong phylogenetic associations of ChHBV sequences with both chimpanzee subspecies and their geographical origin were therefore confirmed.
Collapse
Affiliation(s)
- Maria Makuwa
- Centre International de Recherches Médicales de Franceville, Unité de Rétrovirologie et Centre de Primatologie, Franceville, Gabon
| | - Sandrine Souquière
- Centre International de Recherches Médicales de Franceville, Unité de Rétrovirologie et Centre de Primatologie, Franceville, Gabon
| | - Olivier Bourry
- Centre International de Recherches Médicales de Franceville, Unité de Rétrovirologie et Centre de Primatologie, Franceville, Gabon
| | - Pierre Rouquet
- Centre International de Recherches Médicales de Franceville, Unité de Rétrovirologie et Centre de Primatologie, Franceville, Gabon
| | - Paul Telfer
- Centre International de Recherches Médicales de Franceville, Unité de Rétrovirologie et Centre de Primatologie, Franceville, Gabon
| | | | - Mirdad Kazanji
- Centre International de Recherches Médicales de Franceville, Unité de Rétrovirologie et Centre de Primatologie, Franceville, Gabon
| | - Pierre Roques
- Service de Neurologie, Commissariat Energie Atomique, Fontenay aux Roses, France
| | - François Simon
- Hôpital St Louis, Service de Microbiologie, Paris, France
| |
Collapse
|
44
|
Welch J, Bienek C, Gomperts E, Simmonds P. Resistance of porcine circovirus and chicken anemia virus to virus inactivation procedures used for blood products. Transfusion 2006; 46:1951-8. [PMID: 17076851 DOI: 10.1111/j.1537-2995.2006.01003.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Virus inactivation procedures are used to prevent contamination of plasma-derived blood products with viruses. Pasteurization or prolonged dry heat has proven effective against several enveloped and nonenveloped viruses and provides an additional layer of safety for plasma products. STUDY DESIGN AND METHODS The resistance of porcine circovirus 2 (PCV2) and chicken anemia virus (CAV), two small, nonenveloped viruses, to standard (pasteurization, 10 hr at 60 degrees C; dry heating, 80 degrees C for 72 hr) and more extreme heat inactivation procedures (temperatures up to 120 degrees C) was determined. The ability of these procedures to inactivate PCV2 and CAV was measured by comparison of in vitro infectivity before and after treatment. RESULTS Infectivity of PCV2 and CAV was reduced by approximately 1.6 and 1.4 log by pasteurization and by 0.75 and 1.25 log by dry-heat treatment, both substantially more resistant than other viruses previously investigated. PCV2 and CAV were additionally almost completely resistant to dry-heat treatment up to 120 degrees C for 30 minutes (mean log infectivity reductions, 1.25 and 0.6), although both were more effectively inactivated when the temperature of wet-heat treatment was increased to 80 degrees C (>3.2 and >3.6 log infectivity reduction). CONCLUSION Although neither PCV2 nor CAV are known to infect humans, their inactivation properties may represent those of other small DNA viruses known to be present (e.g., TT virus, small anellovirus) or potentially present in human plasma. Findings of extreme thermal resistance demonstrate that recipients of plasma-derived therapeutics may potentially still be exposed to small DNA viruses, despite the implementation of viral inactivation steps.
Collapse
Affiliation(s)
- Jon Welch
- Virus Evolution Group, Center for Infectious Diseases, University of Edinburgh, Summerhall, Edinburgh, UK
| | | | | | | |
Collapse
|
45
|
Makuwa M, Souquière S, Clifford SL, Mouinga-Ondeme A, Bawe-Johnson M, Wickings EJ, Latour S, Simon F, Roques P. Identification of hepatitis B virus genome in faecal sample from wild living chimpanzee (Pan troglodytes troglodytes) in Gabon. J Clin Virol 2006; 34 Suppl 1:S83-8. [PMID: 16461230 DOI: 10.1016/s1386-6532(05)80016-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Non-invasive faecal sampling in the equatorial forest in Gabon allowed the first identification of the hepatitis B virus (HBV-Ch(RC170)) genome in samples collected from wild chimpanzees (Pan troglodytes troglodytes). The HBV-Ch(RCl70)sequence clustered with 100% bootstrap support with previous viral sequences obtained from Pan troglodytes subspecies. This is the first evidence of HBV infection in wild apes and confirms that the HBV-like strains thus far characterized in captive apes are directly related to those circulating in the wild.
Collapse
Affiliation(s)
- M Makuwa
- Laboratoire de Rétrovirologie, Centre International de Recherches Médicales, Franceville, Gabon.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Hepatitis B virus (HBV) infection is widely distributed in both human and ape populations throughout the world and is a major cause of human morbidity and mortality. HBV variants are currently classified into the human genotypes A to H and species-associated chimpanzee and gibbon/orangutan groups. To examine the role of recombination in the evolution of HBV, large-scale data retrieval and automated phylogenetic analysis (TreeOrder scanning) were carried out on all available published complete genome sequences of HBV. We detected a total of 24 phylogenetically independent potential recombinants (different genotype combinations or distinct breakpoints), eight of which were previously undescribed. Instances of intergenotype recombination were observed in all human and ape HBV variants, including evidence for a novel gibbon/genotype C recombinant among HBV variants from Vietnam. By recording sequence positions in trees generated from sequential fragments across the genome, violations of phylogeny between trees also provided evidence for frequent intragenotype recombination between members of genotypes A, D, F/H, and gibbon variants but not in B, C, or the Asian B/C recombinant group. In many cases, favored positions for both inter- and intragenotype recombination matched positions of phylogenetic reorganization between the human and ape genotypes, such as the end of the surface gene and the core gene, where sequence relationships between genotypes changed in the TreeOrder scan. These findings provide evidence for the occurrence of past, extensive recombination events in the evolutionary history of the currently classified genotypes of HBV and potentially in changes in its global epidemiology and associations with human disease.
Collapse
Affiliation(s)
- Peter Simmonds
- Centre for Infectious Diseases, University of Edinburgh, Summerhall, Edinburgh EH9 1QH, United Kingdom.
| | | |
Collapse
|
47
|
Magiorkinis EN, Magiorkinis GN, Paraskevis DN, Hatzakis AE. Re-analysis of a human hepatitis B virus (HBV) isolate from an East African wild born Pan troglodytes schweinfurthii: Evidence for interspecies recombination between HBV infecting chimpanzee and human. Gene 2005; 349:165-71. [PMID: 15777724 DOI: 10.1016/j.gene.2004.12.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2004] [Revised: 11/22/2004] [Accepted: 12/15/2004] [Indexed: 12/15/2022]
Abstract
According to current estimates, hepatitis B virus (HBV) has infected 2 billion people worldwide and among them, 360 million suffer from chronic HBV infection. Except humans, HBV or HBV-like viruses have also been isolated from different species of apes and mammals. Although recombination has been described to occur extensively between different genotypes within the human HBV lineage, no recombination event has ever been reported between human and non-human primate HBV sequences. It was our objective to perform an exhaustive search for recombination between human and non-human primate HBV strains among all available full-length human and non-human primate HBV sequences, using bootscanning and phylogenetic analyses. Intriguingly, we found that an HBV sequence isolated from a wild born Pan troglodytes schweinfurthii in East Africa-FG-is a recombinant consisting of HBV infecting chimpanzee (ChHBV) and human genotype C. More specifically, in a fragment of approximately 500 nt (positions 551-1050 spanning half of the RT domain of pol, which overlaps with half of the coding region of the small surface protein), FG grouped with HBV genotype C, while in the rest of the genome it grouped with ChHBV sequences. Phylogenetic analyses showed that in the latter region FG was more closely related to the Pan troglodytes troglodytes subspecies, forming an outlier to this group. Moreover, we show evidence that the recombination event occurred after the initial dispersion of HBV genotype C in humans. Finally, our findings point out that although rare recombination between HBV viruses infecting different species occurs.
Collapse
Affiliation(s)
- Emmanuil N Magiorkinis
- National Retrovirus Reference Center, Department of Hygiene and Epidemiology, University of Athens, School of Medicine, Mikras Asias 75, GR-11527, Athens, Greece
| | | | | | | |
Collapse
|
48
|
Sall AA, Starkman S, Reynes JM, Lay S, Nhim T, Hunt M, Marx N, Simmonds P. Frequent infection of Hylobates pileatus (pileated gibbon) with species-associated variants of hepatitis B virus in Cambodia. J Gen Virol 2005; 86:333-337. [PMID: 15659752 DOI: 10.1099/vir.0.80274-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
As well as being distributed widely in human populations, hepatitis B virus (HBV) infections occur frequently in chimpanzee, gibbon and other ape populations in sub-Saharan Africa and South-East Asia. To investigate the frequency and genetic relationships of HBV infecting gibbons in Cambodia, pileated gibbons (Hylobates pileatus) that were originally wild-caught were screened for surface antigen. Twelve of 26 (46 %) were positive, of which 11 were positive for HBV DNA. Phylogenetic analysis of complete genome sequences revealed two distinct genetic groups in the gibbon/orangutan clade. Three were similar to previously described variants infecting H. pileatus in Thailand and eight formed a distinct clade, potentially representing distinct strains of HBV circulating in geographically separated populations in South-East Asia. Because of the ability of HBV to cross species barriers, large reservoirs of infection in gibbons may hamper ongoing attempts at permanent eradication of HBV infection from human populations in South-East Asia through immunization.
Collapse
Affiliation(s)
- A A Sall
- Institut Pasteur du Cambodge, 5 Boulevard Monivong, Phnom Penh, Cambodia
| | - S Starkman
- Centre for Infectious Diseases, University of Edinburgh, Summerhall, Edinburgh EH9 1QH, UK
| | - J M Reynes
- Institut Pasteur du Cambodge, 5 Boulevard Monivong, Phnom Penh, Cambodia
| | - S Lay
- Institut Pasteur du Cambodge, 5 Boulevard Monivong, Phnom Penh, Cambodia
| | - T Nhim
- Phnom Tamao Wildlife Rescue Center, Takeo Province, Cambodia
| | - M Hunt
- WildAid Cambodia, Villa 109, Street 99, Chamcarmon District, Phnom Penh, Cambodia
| | - N Marx
- WildAid Cambodia, Villa 109, Street 99, Chamcarmon District, Phnom Penh, Cambodia
| | - P Simmonds
- Centre for Infectious Diseases, University of Edinburgh, Summerhall, Edinburgh EH9 1QH, UK
| |
Collapse
|
49
|
Kramvis A, Kew M, François G. Hepatitis B virus genotypes. Vaccine 2005; 23:2409-23. [PMID: 15752827 DOI: 10.1016/j.vaccine.2004.10.045] [Citation(s) in RCA: 262] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2004] [Revised: 09/27/2004] [Accepted: 10/14/2004] [Indexed: 12/17/2022]
Abstract
Eight genotypes of hepatitis B virus (A-H) are currently recognized, and subgenotypes have recently been described in four of these genotypes (A, B, C and F). The genotypes show a distinct geographical distribution between and even within regions, and are proving to be an invaluable tool in tracing the molecular evolution and patterns and modes of spread of hepatitis B virus. Structural and functional differences between genotypes can influence the severity, course and likelihood of complications, and response to treatment of hepatitis B virus infection and possibly vaccination against the virus. Although the number of studies on these genotypes has increased dramatically during recent years, much remains to be learnt about their full implications.
Collapse
Affiliation(s)
- Anna Kramvis
- MRC/University Molecular Hepatology Research Unit, Department of Medicine, University of the Witwatersrand Medical School, 7 York Road, Parktown, 2193 Johannesburg, South Africa.
| | | | | |
Collapse
|
50
|
Kramvis A, Restorp K, Norder H, Botha JF, Magnius LO, Kew MC. Full genome analysis of hepatitis B virus genotype E strains from South-Western Africa and madagascar reveals low genetic variability. J Med Virol 2005; 77:47-52. [PMID: 16032729 DOI: 10.1002/jmv.20412] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The eight genotypes of hepatitis B virus (HBV), A-H, have a characteristic geographical distribution. The high prevalence of genotype E within a wide expanse of Africa makes it important to characterize this genotype. Although the preS/S region of a large number of genotype E isolates has been sequenced, to date only eight complete genotype E genomes have been published. The aim of this study, therefore, was to sequence and characterize the complete genome of genotype E isolates obtained from geographically distinct regions in Africa, including Namibia, Angola, and Madagascar. The nine newly sequenced genotype E isolates were closely related with an intra-group nucleotide divergence of 1.2%, reflecting their close geographical origin. All genotype E strains have the same characteristics, an in-frame deletion of three nucleotides (one amino acid) in the 5' pre-S1, a signature pattern of amino acids in the pre-S1 region and the serological subtype ayw4. In addition, we have identified another unique attribute of genotype E strains, the introduction of another start codon Met(83) in the pre-S1 region that may result in the translation of an elongated middle hepatitis B surface protein (MHBs).
Collapse
Affiliation(s)
- Anna Kramvis
- MRC/University Molecular Hepatology Research Unit, Department of Medicine, University of the Witwatersrand, Johannesburg, South Africa.
| | | | | | | | | | | |
Collapse
|