1
|
Lv L, Yang X, Zhang Y, Ren X, Zeng S, Zhang Z, Wang Q, Lv J, Gao P, Dorf ME, Li S, Zhao L, Fu B. hnRNPAB inhibits Influenza A virus infection by disturbing polymerase activity. Antiviral Res 2024; 228:105925. [PMID: 38944160 DOI: 10.1016/j.antiviral.2024.105925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/02/2024] [Accepted: 06/05/2024] [Indexed: 07/01/2024]
Abstract
Influenza A virus (IAV) continuously poses a considerable threat to global health through seasonal epidemics and recurring pandemics. IAV RNA-dependent RNA polymerases (FluPol) mediate the transcription of RNA and replication of the viral genome. Searching for targets that inhibit viral polymerase activity helps us develop better antiviral drugs. Here, we identified heterogeneous nuclear ribonucleoprotein A/B (hnRNPAB) as an anti-influenza host factor. hnRNPAB interacts with NP of IAV to inhibit the interaction between PB1 and NP, which is dependent on the 5-amino-acid peptide of the hnRNPAB C-terminal domain (aa 318-322). We further found that the 5-amino-acid peptide blocks the interaction between PB1 and NP to destroy the FluPol activity. In vivo studies demonstrate that hnRNPAB-deficient mice display higher viral burdens, enhanced cytokine production, and increased mortality after influenza infection. These data demonstrate that hnRNPAB perturbs FluPol complex conformation to inhibit IAV infection, providing insights into anti-influenza defense mechanisms.
Collapse
Affiliation(s)
- Linyue Lv
- Department of Rheumatology and Immunology, State Key Laboratory of Virology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Xue Yang
- Department of Rheumatology and Immunology, State Key Laboratory of Virology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Yuelan Zhang
- Department of Rheumatology and Immunology, State Key Laboratory of Virology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Xiaoyan Ren
- Department of Rheumatology and Immunology, State Key Laboratory of Virology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Shaowei Zeng
- Department of Rheumatology and Immunology, State Key Laboratory of Virology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Zhuyou Zhang
- Department of Rheumatology and Immunology, State Key Laboratory of Virology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Qinyang Wang
- Department of Rheumatology and Immunology, State Key Laboratory of Virology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Jiaxi Lv
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Pengyue Gao
- Department of Immunology, Yangtze University Health Science Center, Jingzhou, 434023, China
| | - Martin E Dorf
- Department of Microbiology & Immunobiology, Harvard Medical School, Boston, MA, 02115. USA
| | - Shitao Li
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA, 70112, USA
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bishi Fu
- Department of Rheumatology and Immunology, State Key Laboratory of Virology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
2
|
Pei X, Wang Z, He W, Li S, Chen X, Fan Z, Lan Y, Yuan L, Xu P. ER-tethered RNA-binding protein controls NADPH oxidase translation for hydrogen peroxide homeostasis. Redox Biol 2024; 71:103126. [PMID: 38503217 PMCID: PMC10963860 DOI: 10.1016/j.redox.2024.103126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/04/2024] [Accepted: 03/14/2024] [Indexed: 03/21/2024] Open
Abstract
Hydrogen peroxide (H2O2) functions as a signaling molecule in diverse cellular processes. While cells have evolved the capability to detect and manage changes in H2O2 levels, the mechanisms regulating key H2O2-producing enzymes to maintain optimal levels, especially in pancreatic beta cells with notably weak antioxidative defense, remain unclear. We found that the protein EI24 responds to changes in H2O2 concentration and regulates the production of H2O2 by controlling the translation of NOX4, an enzyme that is constitutively active, achieved by recruiting an RNA-binding protein, RTRAF, to the 3'-UTR of Nox4. Depleting EI24 results in RTRAF relocating into the nucleus, releasing the brake on NOX4 translation. The excessive production of H2O2 by liberated NOX4 further suppresses the translation of the key transcription factor MafA, ultimately preventing its binding to the Ins2 gene promoter and subsequent transcription of insulin. Treatment with a specific NOX4 inhibitor or the antioxidant NAC reversed these effects and alleviated the diabetic symptoms in beta-cell specific Ei24-KO mice. This study revealed a new mechanism through which cells regulate oxidative stress at the translational level, involving an ER-tethered RNA-binding protein that controls the expression of the key H2O2-producing enzyme NOX4.
Collapse
Affiliation(s)
- Xintong Pei
- Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhe Wang
- Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenting He
- Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shunqin Li
- Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaowei Chen
- Center for High Throughput Sequencing, Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhen Fan
- Center for High Throughput Sequencing, Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yongguang Lan
- Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lin Yuan
- Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Pingyong Xu
- Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100101, China; Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| |
Collapse
|
3
|
Cao M, Jia Q, Li J, Zhao L, Zhu L, Zhang Y, Li S, Deng T. Naturally occurring PA E206K point mutation in 2009 H1N1 pandemic influenza viruses impairs viral replication at high temperatures. Virol Sin 2024; 39:71-80. [PMID: 37979619 PMCID: PMC10877435 DOI: 10.1016/j.virs.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/10/2023] [Indexed: 11/20/2023] Open
Abstract
The emergence of influenza virus A pandemic H1N1 in April 2009 marked the first pandemic of the 21st century. In this study, we observed significant differences in the polymerase activities of two clinical 2009 H1N1 influenza A virus isolates from Chinese and Japanese patients. Sequence comparison of the three main protein subunits (PB2, PB1, and PA) of the viral RNA-dependent RNA polymerase complex and subsequent mutational analysis revealed that a single amino acid substitution (E206K) was responsible for the observed impaired replication phenotype. Further in vitro experiments showed that presence of PAE206K decreased the replication of influenza A/WSN/33 virus in mammalian cells and a reduction in the virus's pathogenicity in vivo. Mechanistic studies revealed that PAE206K is a temperature-sensitive mutant associated with the inability to transport PB1-PA complex to the nucleus at high temperature (39.5 °C). Hence, this naturally occurring variant in the PA protein represents an ideal candidate mutation for the development of live attenuated influenza vaccines.
Collapse
Affiliation(s)
- Mengmeng Cao
- National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Qiannan Jia
- National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Jinghua Li
- National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Lili Zhao
- National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Li Zhu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yufan Zhang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shan Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tao Deng
- National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China; CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
4
|
Ma L, Zheng H, Ke X, Gui R, Yao Z, Xiong J, Chen Q. Mutual antagonism of mouse-adaptation mutations in HA and PA proteins on H9N2 virus replication. Virol Sin 2024; 39:56-70. [PMID: 37967718 PMCID: PMC10877434 DOI: 10.1016/j.virs.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/10/2023] [Indexed: 11/17/2023] Open
Abstract
Avian H9N2 viruses have wide host range among the influenza A viruses. However, knowledge of H9N2 mammalian adaptation is limited. To explore the molecular basis of the adaptation to mammals, we performed serial lung passaging of the H9N2 strain A/chicken/Hunan/8.27 YYGK3W3-OC/2018 (3W3) in mice and identified six mutations in the hemagglutinin (HA) and polymerase acidic (PA) proteins. Mutations L226Q, T511I, and A528V of HA were responsible for enhanced pathogenicity and viral replication in mice; notably, HA-L226Q was the key determinant. Mutations T97I, I545V, and S594G of PA contributed to enhanced polymerase activity in mammalian cells and increased viral replication levels in vitro and in vivo. PA-T97I increased viral polymerase activity by accelerating the viral polymerase complex assembly. Our findings revealed that the viral replication was affected by the presence of PA-97I and/or PA-545V in combination with a triple-point HA mutation. Furthermore, the double- and triple-point PA mutations demonstrated antagonistic effect on viral replication when combined with HA-226Q. Notably, any combination of PA mutations, along with double-point HA mutations, resulted in antagonistic effect on viral replication. We also observed antagonism in viral replication between PA-545V and PA-97I, as well as between HA-528V and PA-545V. Our findings demonstrated that several antagonistic mutations in HA and PA proteins affect viral replication, which may contribute to the H9N2 virus adaptation to mice and mammalian cells. These findings can potentially contribute to the monitoring of H9N2 field strains for assessing their potential risk in mammals.
Collapse
Affiliation(s)
- Liping Ma
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430207, China; Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430207, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huabin Zheng
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430207, China; Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430207, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xianliang Ke
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430207, China; Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430207, China
| | - Rui Gui
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430207, China; Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430207, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhongzi Yao
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430207, China; Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430207, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiasong Xiong
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430207, China; Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430207, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Quanjiao Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430207, China; Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430207, China; Hubei Jiangxia Laboratory, Wuhan, 430207, China.
| |
Collapse
|
5
|
Lefkowitz RB, Miller CM, Martinez-Caballero JD, Ramos I. Epigenetic Control of Innate Immunity: Consequences of Acute Respiratory Virus Infection. Viruses 2024; 16:197. [PMID: 38399974 PMCID: PMC10893272 DOI: 10.3390/v16020197] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Infections caused by acute respiratory viruses induce a systemic innate immune response, which can be measured by the increased levels of expression of inflammatory genes in immune cells. There is growing evidence that these acute viral infections, alongside transient transcriptomic responses, induce epigenetic remodeling as part of the immune response, such as DNA methylation and histone modifications, which might persist after the infection is cleared. In this article, we first review the primary mechanisms of epigenetic remodeling in the context of innate immunity and inflammation, which are crucial for the regulation of the immune response to viral infections. Next, we delve into the existing knowledge concerning the impact of respiratory virus infections on the epigenome, focusing on Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Influenza A Virus (IAV), and Respiratory Syncytial Virus (RSV). Finally, we offer perspectives on the potential consequences of virus-induced epigenetic remodeling and open questions in the field that are currently under investigation.
Collapse
Affiliation(s)
- Rivka Bella Lefkowitz
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (R.B.L.); (C.M.M.)
| | - Clare M. Miller
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (R.B.L.); (C.M.M.)
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Juan David Martinez-Caballero
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (R.B.L.); (C.M.M.)
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Irene Ramos
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (R.B.L.); (C.M.M.)
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
6
|
Çağlayan E, Turan K. An in silico prediction of interaction models of influenza A virus PA and human C14orf166 protein from yeast-two-hybrid screening data. Proteins 2023; 91:1235-1244. [PMID: 37265372 DOI: 10.1002/prot.26534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 05/13/2023] [Accepted: 05/18/2023] [Indexed: 06/03/2023]
Abstract
The human C14orf166 protein, also known as RNA transcription, translation, and transport factor, shows positive modulatory activity on the cellular RNA polymerase II enzyme. This protein is a component of the tRNA-splicing ligase complex and is involved in RNA metabolism. It also functions in the nucleo-cytoplasmic transport of RNA molecules. The C14orf166 protein has been reported to be associated with some types of cancer. It has been shown that the C14orf166 protein binds to the influenza A virus RNA polymerase PA subunit and has a stimulating effect on viral replication. In this study, candidate interactor proteins for influenza A virus PA protein were screened with a Y2H assay using HEK293 Matchmaker cDNA. The C14orf166 protein fragments in different sizes were found to interact with the PA. The three-dimensional structures of the viral PA and C14orf166 proteins interacting with the PA were generated using the I-TASSER algorithm. The interaction models between these proteins were predicted with the ClusPro protein docking algorithm and analyzed with PyMol software. The results revealed that the carboxy-terminal end of the C14orf166 protein is involved in this interaction, and it is highly possible that it binds to the carboxy-terminal of the PA protein. Although amino acid residues in the interaction area of the PA protein with the C14orf166 showed distribution from 450th to 700th position, the intense interaction region was revealed to be at amino acid positions 610-630.
Collapse
Affiliation(s)
- Elif Çağlayan
- University of Health Sciences Kartal Koşuyolu High Speciality Educational and Research Hospital, Istanbul, Turkey
| | - Kadir Turan
- Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Marmara University, Istanbul, Turkey
| |
Collapse
|
7
|
Influenza A(H1N1)pdm09 Virus Alters Expression of Endothelial Factors in Pulmonary Vascular Endothelium in Rats. Viruses 2022; 14:v14112518. [PMID: 36423127 PMCID: PMC9697345 DOI: 10.3390/v14112518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/02/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Influenza virus infection may cause endothelial activation and dysfunction. However, it is still not known to what extent the influenza virus can dysregulate the expression of various endothelial proteins. The aim of the study is to identify the level of expression of endothelial nitric oxide synthase (eNOS), plasminogen activator inhibitor-1 (PAI-1), and tissue plasminogen activator (tPA) in the pulmonary vascular endothelium, as well as the concentration of PAI-1 and tPA in the blood plasma in Wistar rats. Animals were intranasally infected with rat-adapted influenza A(H1N1)pdm09 virus. The expression of eNOS, PAI-1 and tPA in the pulmonary vascular endothelium was determined by immunohistochemistry; the concentration of PAI-1 and tPA was analyzed by ELISA at 24 and 96 h post infection (hpi). Thus, the expression of eNOS in the pulmonary vascular endothelium decreased by 1.9-fold at 24 hpi and increased by 2-fold at 96 hpi. The expression of PAI-1 in the pulmonary vascular endothelium increased by 5.23-fold and 6.54-fold at 24 and 96 hpi, respectively. The concentration of PAI-1 in the blood plasma of the rats decreased by 3.84-fold at 96 hpi, but not at 24 hpi. The expression of tPA in the pulmonary vascular endothelium was increased 2.2-fold at 96 hpi. The obtained data indicate the development of endothelial dysfunction that is characterized by the dysregulation of endothelial protein expression in non-lethal and clinically non-severe experimental influenza virus infection.
Collapse
|
8
|
Feng H, Wang Z, Zhu P, Wu L, Shi J, Li Y, Shu J, He Y, Kong H. ARNT Inhibits H5N1 Influenza A Virus Replication by Interacting with the PA Protein. Viruses 2022; 14:v14071347. [PMID: 35891329 PMCID: PMC9318437 DOI: 10.3390/v14071347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 12/04/2022] Open
Abstract
Increasing evidence suggests that the polymerase acidic (PA) protein of influenza A viruses plays an important role in viral replication and pathogenicity. However, information regarding the interaction(s) of host factors with PA is scarce. By using a yeast two-hybrid screen, we identified a novel host factor, aryl hydrocarbon receptor nuclear translocator (ARNT), that interacts with the PA protein of the H5N1 virus. The interaction between PA and human ARNT was confirmed by co-immunoprecipitation and immunofluorescence microscopy. Moreover, overexpression of ARNT downregulated the polymerase activity and inhibited virus propagation, whereas knockdown of ARNT significantly increased the polymerase activity and virus replication. Mechanistically, overexpression of ARNT resulted in the accumulation of PA protein in the nucleus and inhibited both the replication and transcription of the viral genome. Interaction domain mapping revealed that the bHLH/PAS domain of ARNT mainly interacted with the C-terminal domain of PA. Together, our results demonstrate that ARNT inhibits the replication of the H5N1 virus and could be a target for the development of therapeutic strategies against H5N1 influenza viruses.
Collapse
Affiliation(s)
- Huapeng Feng
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (H.F.); (J.S.); (Y.H.)
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (Z.W.); (P.Z.); (L.W.); (J.S.); (Y.L.)
| | - Zeng Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (Z.W.); (P.Z.); (L.W.); (J.S.); (Y.L.)
| | - Pengyang Zhu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (Z.W.); (P.Z.); (L.W.); (J.S.); (Y.L.)
| | - Li Wu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (Z.W.); (P.Z.); (L.W.); (J.S.); (Y.L.)
- Department of Biology, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Jianzhong Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (Z.W.); (P.Z.); (L.W.); (J.S.); (Y.L.)
| | - Yanbing Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (Z.W.); (P.Z.); (L.W.); (J.S.); (Y.L.)
| | - Jianhong Shu
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (H.F.); (J.S.); (Y.H.)
| | - Yulong He
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (H.F.); (J.S.); (Y.H.)
| | - Huihui Kong
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (Z.W.); (P.Z.); (L.W.); (J.S.); (Y.L.)
- Correspondence:
| |
Collapse
|
9
|
Kroupova A, Ackle F, Asanović I, Weitzer S, Boneberg FM, Faini M, Leitner A, Chui A, Aebersold R, Martinez J, Jinek M. Molecular architecture of the human tRNA ligase complex. eLife 2021; 10:e71656. [PMID: 34854379 PMCID: PMC8668186 DOI: 10.7554/elife.71656] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/01/2021] [Indexed: 01/23/2023] Open
Abstract
RtcB enzymes are RNA ligases that play essential roles in tRNA splicing, unfolded protein response, and RNA repair. In metazoa, RtcB functions as part of a five-subunit tRNA ligase complex (tRNA-LC) along with Ddx1, Cgi-99, Fam98B, and Ashwin. The human tRNA-LC or its individual subunits have been implicated in additional cellular processes including microRNA maturation, viral replication, DNA double-strand break repair, and mRNA transport. Here, we present a biochemical analysis of the inter-subunit interactions within the human tRNA-LC along with crystal structures of the catalytic subunit RTCB and the N-terminal domain of CGI-99. We show that the core of the human tRNA-LC is assembled from RTCB and the C-terminal alpha-helical regions of DDX1, CGI-99, and FAM98B, all of which are required for complex integrity. The N-terminal domain of CGI-99 displays structural homology to calponin-homology domains, and CGI-99 and FAM98B associate via their N-terminal domains to form a stable subcomplex. The crystal structure of GMP-bound RTCB reveals divalent metal coordination geometry in the active site, providing insights into its catalytic mechanism. Collectively, these findings shed light on the molecular architecture and mechanism of the human tRNA ligase complex and provide a structural framework for understanding its functions in cellular RNA metabolism.
Collapse
Affiliation(s)
- Alena Kroupova
- Department of Biochemistry, University of ZurichZurichSwitzerland
| | - Fabian Ackle
- Department of Biochemistry, University of ZurichZurichSwitzerland
| | - Igor Asanović
- Max Perutz Labs, Vienna BioCenter (VBC)ViennaAustria
| | | | | | - Marco Faini
- Department of Biology, Institute of Molecular Systems Biology, ETH ZurichZurichSwitzerland
| | - Alexander Leitner
- Department of Biology, Institute of Molecular Systems Biology, ETH ZurichZurichSwitzerland
| | - Alessia Chui
- Department of Biochemistry, University of ZurichZurichSwitzerland
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH ZurichZurichSwitzerland
| | | | - Martin Jinek
- Department of Biochemistry, University of ZurichZurichSwitzerland
| |
Collapse
|
10
|
Keshavarz M, Sabbaghi A, Koushki K, Miri SM, Sarshari B, Vahdat K, Ghaemi A. Epigenetic reprogramming mechanisms of immunity during influenza A virus infection. Microbes Infect 2021; 23:104831. [PMID: 33878459 DOI: 10.1016/j.micinf.2021.104831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/27/2021] [Accepted: 04/05/2021] [Indexed: 11/29/2022]
Abstract
This paper reviews epigenetic mechanisms by which influenza viruses affect cellular gene activity to control their life cycles, aiming to provide new insights into the complexity of functional interactions between viral and cellular factors, as well as to introduce novel targets for therapeutic intervention and vaccine development against influenza infections.
Collapse
Affiliation(s)
- Mohsen Keshavarz
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Ailar Sabbaghi
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Iran
| | - Khadijeh Koushki
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Miri
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Iran
| | - Behrang Sarshari
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Katayoun Vahdat
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Amir Ghaemi
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
11
|
Wang S, Li N, Jin S, Zhang R, Xu T. Polymerase acidic subunit of H9N2 polymerase complex induces cell apoptosis by binding to PDCD 7 in A549 cells. Virol J 2021; 18:75. [PMID: 33849599 PMCID: PMC8045253 DOI: 10.1186/s12985-021-01547-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 04/06/2021] [Indexed: 11/10/2022] Open
Abstract
Background H9N2 influenza virus, a subtype of influenza A virus, can spread across different species and induce the respiratory infectious disease in humans, leading to a severe public health risk and a huge economic loss to poultry production. Increasing studies have shown that polymerase acidic (PA) subunit of RNA polymerase in ribonucleoproteins complex of H9N2 virus involves in crossing the host species barriers, the replication and airborne transmission of H9N2 virus. Methods Here, to further investigate the role of PA subunit during the infection of H9N2 influenza virus, we employed mass spectrometry (MS) to search the potential binding proteins of PA subunit of H9N2 virus. Our MS results showed that programmed cell death protein 7 (PDCD7) is a binding target of PA subunit. Co-immunoprecipitation and pull-down assays further confirmed the interaction between PDCD7 and PA subunit. Overexpression of PA subunit in A549 lung cells greatly increased the levels of PDCD7 in the nuclear and induced cell death assayed by MTT assay. Results Flow cytometry analysis and Western blot results showed that PA subunit overexpression significantly increased the expression of pro-apoptotic protein, bax and caspase 3, and induced cell apoptosis. However, knockout of PDCD7 effectively attenuated the effects of PA overexpression in cell apoptosis. Conclusions In conclusion, the PA subunit of H9N2 virus bind with PDCD7 and regulated cell apoptosis, which provide new insights in the role of PA subunit during H9N2 influenza virus infection. Supplementary Information The online version contains supplementary material available at 10.1186/s12985-021-01547-7.
Collapse
Affiliation(s)
- Shaohua Wang
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, Hebei North University, Zhangjiakou, 075131, Hebei, People's Republic of China
| | - Na Li
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, Hebei North University, Zhangjiakou, 075131, Hebei, People's Republic of China
| | - Shugang Jin
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, Hebei North University, Zhangjiakou, 075131, Hebei, People's Republic of China
| | - Ruihua Zhang
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, Hebei North University, Zhangjiakou, 075131, Hebei, People's Republic of China
| | - Tong Xu
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, Hebei North University, Zhangjiakou, 075131, Hebei, People's Republic of China.
| |
Collapse
|
12
|
Rezinciuc S, Tian Z, Wu S, Hengel S, Pasa-Tolic L, Smallwood HS. Mapping Influenza-Induced Posttranslational Modifications on Histones from CD8+ T Cells. Viruses 2020; 12:v12121409. [PMID: 33302437 PMCID: PMC7762524 DOI: 10.3390/v12121409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/23/2020] [Accepted: 12/02/2020] [Indexed: 12/25/2022] Open
Abstract
T cell function is determined by transcriptional networks that are regulated by epigenetic programming via posttranslational modifications (PTMs) to histone proteins and DNA. Bottom-up mass spectrometry (MS) can identify histone PTMs, whereas intact protein analysis by MS can detect species missed by bottom-up approaches. We used a novel approach of online two-dimensional liquid chromatography-tandem MS with high-resolution reversed-phase liquid chromatography (RPLC), alternating electron transfer dissociation (ETD) and collision-induced dissociation (CID) on precursor ions to maximize fragmentation of uniquely modified species. The first online RPLC separation sorted histone families, then RPLC or weak cation exchange hydrophilic interaction liquid chromatography (WCX-HILIC) separated species heavily clad in PTMs. Tentative identifications were assigned by matching proteoform masses to predicted theoretical masses that were verified with tandem MS. We used this innovative approach for histone-intact protein PTM mapping (HiPTMap) to identify and quantify proteoforms purified from CD8 T cells after in vivo influenza infection. Activation significantly altered PTMs following influenza infection, histone maps changed as T cells migrated to the site of infection, and T cells responding to secondary infections had significantly more transcription enhancing modifications. Thus, HiPTMap identified and quantified proteoforms and determined changes in CD8 T cell histone PTMs over the course of infection.
Collapse
Affiliation(s)
- Svetlana Rezinciuc
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Zhixin Tian
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (Z.T.); (S.W.); (S.H.); (L.P.-T.)
| | - Si Wu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (Z.T.); (S.W.); (S.H.); (L.P.-T.)
| | - Shawna Hengel
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (Z.T.); (S.W.); (S.H.); (L.P.-T.)
| | - Ljiljana Pasa-Tolic
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (Z.T.); (S.W.); (S.H.); (L.P.-T.)
| | - Heather S. Smallwood
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
- Children’s Foundation Research Institute, Memphis, TN 38105, USA
- Correspondence: ; Tel.: +1-(901)-448–3068
| |
Collapse
|
13
|
Chua SCJH, Tan HQ, Engelberg D, Lim LHK. Alternative Experimental Models for Studying Influenza Proteins, Host-Virus Interactions and Anti-Influenza Drugs. Pharmaceuticals (Basel) 2019; 12:E147. [PMID: 31575020 PMCID: PMC6958409 DOI: 10.3390/ph12040147] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 12/14/2022] Open
Abstract
Ninety years after the discovery of the virus causing the influenza disease, this malady remains one of the biggest public health threats to mankind. Currently available drugs and vaccines only partially reduce deaths and hospitalizations. Some of the reasons for this disturbing situation stem from the sophistication of the viral machinery, but another reason is the lack of a complete understanding of the molecular and physiological basis of viral infections and host-pathogen interactions. Even the functions of the influenza proteins, their mechanisms of action and interaction with host proteins have not been fully revealed. These questions have traditionally been studied in mammalian animal models, mainly ferrets and mice (as well as pigs and non-human primates) and in cell lines. Although obviously relevant as models to humans, these experimental systems are very complex and are not conveniently accessible to various genetic, molecular and biochemical approaches. The fact that influenza remains an unsolved problem, in combination with the limitations of the conventional experimental models, motivated increasing attempts to use the power of other models, such as low eukaryotes, including invertebrate, and primary cell cultures. In this review, we summarized the efforts to study influenza in yeast, Drosophila, zebrafish and primary human tissue cultures and the major contributions these studies have made toward a better understanding of the disease. We feel that these models are still under-utilized and we highlight the unique potential each model has for better comprehending virus-host interactions and viral protein function.
Collapse
Affiliation(s)
- Sonja C J H Chua
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore.
- NUS Immunology Program, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore.
- CREATE-NUS-HUJ Molecular Mechanisms of Inflammatory Diseases Programme, National University of Singapore, Singapore 138602, Singapore.
| | - Hui Qing Tan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore.
- NUS Immunology Program, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore.
| | - David Engelberg
- CREATE-NUS-HUJ Molecular Mechanisms of Inflammatory Diseases Programme, National University of Singapore, Singapore 138602, Singapore.
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore.
- Department of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| | - Lina H K Lim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore.
- NUS Immunology Program, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore.
| |
Collapse
|
14
|
Abstract
Influenza viruses are a leading cause of seasonal and pandemic respiratory illness. Influenza is a negative-sense single-stranded RNA virus that encodes its own RNA-dependent RNA polymerase (RdRp) for nucleic acid synthesis. The RdRp catalyzes mRNA synthesis, as well as replication of the virus genome (viral RNA) through a complementary RNA intermediate. Virus propagation requires the generation of these RNA species in a controlled manner while competing heavily with the host cell for resources. Influenza virus appropriates host factors to enhance and regulate RdRp activity at every step of RNA synthesis. This review describes such host factors and summarizes our current understanding of the roles they play in viral synthesis of RNA.
Collapse
Affiliation(s)
- Thomas P Peacock
- Department of Medicine, Imperial College London, London W2 1PG, United Kingdom; , , ,
| | - Carol M Sheppard
- Department of Medicine, Imperial College London, London W2 1PG, United Kingdom; , , ,
| | - Ecco Staller
- Department of Medicine, Imperial College London, London W2 1PG, United Kingdom; , , ,
| | - Wendy S Barclay
- Department of Medicine, Imperial College London, London W2 1PG, United Kingdom; , , ,
| |
Collapse
|
15
|
Chen J, Chen J, Gong Y, Zou B, Liu X, Ding L, Huang J, Zhang B, Li J. C14orf166 Is a Biomarker for Predicting Hepatocellular Carcinoma Recurrence. J INVEST SURG 2019; 33:914-923. [PMID: 30907217 DOI: 10.1080/08941939.2019.1586015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Jianxu Chen
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Jiandi Chen
- Department of Endocrinology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Yihang Gong
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Baojia Zou
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Xialei Liu
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Lei Ding
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Jiaxing Huang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, China
| | - Baimeng Zhang
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Jian Li
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
16
|
Pazo A, Pérez-González A, Oliveros JC, Huarte M, Chavez JP, Nieto A. hCLE/RTRAF-HSPC117-DDX1-FAM98B: A New Cap-Binding Complex That Activates mRNA Translation. Front Physiol 2019; 10:92. [PMID: 30833903 PMCID: PMC6388641 DOI: 10.3389/fphys.2019.00092] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 01/25/2019] [Indexed: 11/29/2022] Open
Abstract
hCLE/C14orf166/RTRAF, DDX1, and HSPC117 are components of cytoplasmic mRNA-transporting granules kinesin-associated in dendrites. They have also been found in cytoplasmic ribosome-containing RNA granules that transport specific mRNAs halted for translation until specific neuronal signals renders them accessible to the translation machinery. hCLE associates to DDX1, HSPC117, and FAM98B in HEK293T cells and all four proteins bind to cap analog-containing resins. Competition and elution experiments indicate that binding of hCLE complex to cap resins is independent of eIF4E; the cap-binding factor needed for translation. Purified hCLE free of its associated proteins binds cap with low affinity suggesting that its interacting proteins modulate its cap association. hCLE silencing reduces hCLE accumulation and that of its interacting proteins and decreases mRNA translation. hCLE-associated RNAs have been isolated and sequenced; RNAs involved in mRNA translation are specifically associated. The data suggest that RNA granules may co-transport RNAs encoding proteins involved in specific functions together with RNAs that encode proteins needed for the translation of these specific RNAs and indicate an important role for hCLE modulating mRNA translation.
Collapse
Affiliation(s)
- Alejandra Pazo
- Centro Nacional de Biotecnología (CSIC), Madrid, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Alicia Pérez-González
- Centro Nacional de Biotecnología (CSIC), Madrid, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain
| | | | - Maite Huarte
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Juan Pablo Chavez
- Centro Nacional de Biotecnología (CSIC), Madrid, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Amelia Nieto
- Centro Nacional de Biotecnología (CSIC), Madrid, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain
| |
Collapse
|
17
|
Yamayoshi S, Kiso M, Yasuhara A, Ito M, Shu Y, Kawaoka Y. Enhanced Replication of Highly Pathogenic Influenza A(H7N9) Virus in Humans. Emerg Infect Dis 2019; 24:746-750. [PMID: 29553313 PMCID: PMC5875272 DOI: 10.3201/eid2404.171509] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
To clarify the threat posed by emergence of highly pathogenic influenza A(H7N9) virus infection among humans, we characterized the viral polymerase complex. Polymerase basic 2–482R, polymerase basic 2–588V, and polymerase acidic–497R individually or additively enhanced virus polymerase activity, indicating that multiple replication-enhancing mutations in 1 isolate may contribute to virulence.
Collapse
|
18
|
Global Interactomics Connect Nuclear Mitotic Apparatus Protein NUMA1 to Influenza Virus Maturation. Viruses 2018; 10:v10120731. [PMID: 30572664 PMCID: PMC6316800 DOI: 10.3390/v10120731] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/18/2018] [Accepted: 12/18/2018] [Indexed: 11/17/2022] Open
Abstract
Influenza A virus (IAV) infections remain a major human health threat. IAV has enormous genetic plasticity and can rapidly escape virus-targeted anti-viral strategies. Thus, there is increasing interest to identify host proteins and processes the virus requires for replication and maturation. The IAV non-structural protein 1 (NS1) is a critical multifunctional protein that is expressed to high levels in infected cells. Host proteins that interact with NS1 may serve as ideal targets for attenuating IAV replication. We previously developed and characterized broadly cross-reactive anti-NS1 monoclonal antibodies. For the current study, we used these mAbs to co-immunoprecipitate native IAV NS1 and interacting host proteins; 183 proteins were consistently identified in this NS1 interactome study, 124 of which have not been previously reported. RNAi screens identified 11 NS1-interacting host factors as vital for IAV replication. Knocking down one of these, nuclear mitotic apparatus protein 1 (NUMA1), dramatically reduced IAV replication. IAV genomic transcription and translation were not inhibited but transport of viral structural proteins to the cell membrane was hindered during maturation steps in NUMA1 knockdown (KD) cells.
Collapse
|
19
|
Overexpressed C14orf166 associates with disease progression and poor prognosis in non-small-cell lung cancer. Biosci Rep 2018; 38:BSR20180479. [PMID: 30126850 PMCID: PMC6137245 DOI: 10.1042/bsr20180479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/12/2018] [Accepted: 08/09/2018] [Indexed: 01/05/2023] Open
Abstract
Chromosome 14 ORF 166 (C14orf166), a protein involved in the regulation of RNA transcription and translation, has been reported to possess the potency to promote tumorigenesis; however, the role of C14orf166 in non-small-cell lung cancer (NSCLC) remains unknown. The purpose of the present study was to assess C14orf166 expression and its clinical significance in NSCLC. Immunohistochemical staining, quantitative real-time PCR (qRT-PCR), and Western blotting were used to detect the C14orf166 protein and mRNA expression levels in NSCLC tissues compared with adjacent normal tissues, as well as in NSCLC cells lines compared with normal human bronchial epithelial cells (HBE). Then, the correlations between the C14orf166 expression levels and the clinicopathological features of NSCLC were analyzed. Additionally, the Cox proportional hazard model was used to evaluate the prognostic significance of C14orf166. We found that C14orf166 expression increased in carcinoma tissues compared with their adjacent normal tissues at the protein (P<0.001) and mRNA levels (P<0.001). High expression of C14orf166 was significantly associated with the T stage (P=0.006), lymph node metastasis (P=0.001), advanced TNM stage (P<0.001), and chemotherapy (P<0.001). Moreover, according to the survival analysis, patients with overexpressed C14orf166 were inclined to experience a shorter overall survival and disease-free survival time (P<0.001). Multivariate COX analysis implied that C14orf166 was an independent prognostic biomarker. Taken together, our findings indicate that the overexpression of C14orf166 may contribute to the disease progression of NSCLC, represent a novel prognostic predictor and help high-risk patients make better decisions for subsequent therapy.
Collapse
|
20
|
Lee HS, Noh JY, Song JY, Cheong HJ, Choi WS, Jeong HW, Wie S, Kim WJ. Molecular genetic characteristics of influenza A virus clinically isolated during 2011-2016 influenza seasons in Korea. Influenza Other Respir Viruses 2018; 12:497-507. [PMID: 29489060 PMCID: PMC6005628 DOI: 10.1111/irv.12549] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The influenza virus is reportedly associated with 3-5 million cases of severe illness and 250 000-500 000 deaths annually worldwide. OBJECTIVES We investigated the variation of influenza A virus in Korea and examined the association with death. METHODS A total of 13 620 cases were enrolled in the Hospital-based Influenza Morbidity & Mortality surveillance system in Korea during 2011-2016. Among these cases, a total of 4725 were diagnosed with influenza using RT-PCR (influenza A; n = 3696, influenza B; n = 928, co-infection; n = 101). We used 254 viral sequences from the 3696 influenza A cases for phylogenetic analysis using the BioEdit and MEGA 6.06 programs. RESULTS We found that the sequences of A/H3N2 in the 2011-2012 season belong to subgroup 3C.1, whereas the sequences in the 2012-2013 season pertain to subgroup 3C.2. The sequences in the 2013-2014 and 2014-2015 seasons involve subgroups 3C.3a and 3C.2a. The A/H1N1pdm09 subtype belongs to subgroup 6 and contains two clusters. In addition, sequence analysis confirmed the several substitutions of internal genes and gene substitutions associated with drug resistance (I222V in NA and S31N in M2) in the fatal cases. While statistical analysis found no significant associations between genetic differences in the viruses and mortality, mortality was associated with certain host factors, such as chronic lung disease. CONCLUSIONS In conclusion, influenza A virus clade changes occurred in Korea during the 2011-2016 seasons. These data, along with antigenic analysis, can aid in selecting effective vaccine strains. We confirmed that fatality in influenza A cases was related to underlying patient diseases, such as chronic lung disease, and further studies are needed to confirm associations between mortality and viral genetic substitutions.
Collapse
Affiliation(s)
- Han Sol Lee
- Brain Korea 21 Plus for Biomedical ScienceCollege of MedicineKorea UniversitySeoulKorea
| | - Ji Yun Noh
- Division of Infectious DiseasesDepartment of Internal MedicineGuro HospitalCollege of MedicineKorea UniversitySeoulKorea
| | - Joon Young Song
- Division of Infectious DiseasesDepartment of Internal MedicineGuro HospitalCollege of MedicineKorea UniversitySeoulKorea
| | - Hee Jin Cheong
- Division of Infectious DiseasesDepartment of Internal MedicineGuro HospitalCollege of MedicineKorea UniversitySeoulKorea
| | - Won Suk Choi
- Division of Infectious DiseasesDepartment of Internal MedicineAnsan HospitalCollege of MedicineKorea UniversityAnsanKorea
| | - Hye Won Jeong
- Division of Infectious DiseasesDepartment of Internal MedicineCollege of MedicineChungbuk National UniversityCheongjuKorea
| | - Seong‐Heon Wie
- Division of Infectious DiseasesDepartment of Internal MedicineSt. Vincent's HospitalCollege of MedicineThe Catholic University of KoreaSuwonKorea
| | - Woo Joo Kim
- Brain Korea 21 Plus for Biomedical ScienceCollege of MedicineKorea UniversitySeoulKorea
- Division of Infectious DiseasesDepartment of Internal MedicineGuro HospitalCollege of MedicineKorea UniversitySeoulKorea
| |
Collapse
|
21
|
Pham PTV, Turan K, Nagata K, Kawaguchi A. Biochemical characterization of avian influenza viral polymerase containing PA or PB2 subunit from human influenza A virus. Microbes Infect 2018; 20:353-359. [PMID: 29729434 DOI: 10.1016/j.micinf.2018.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 04/21/2018] [Accepted: 04/23/2018] [Indexed: 01/17/2023]
Abstract
Adaptive mutations in viral polymerase, which is composed of PB1, PB2, and PA, of avian influenza viruses are major genetic determinants of the host range. In this study, to elucidate the molecular mechanism of mammalian adaptation of avian viral polymerase, we performed cell-based vRNP reconstitution assays and biochemical analyses using purified recombinant viral polymerase complexes. We found that avian viral polymerase from A/duck/Pennsylvania/10,218/84 (DkPen) enhances the viral polymerase activity in mammalian cells by replacing the PA or PB2 gene with that from human influenza virus A/WSN/33 (WSN). Chimeric constructs between DkPen PA and WSN PA showed that the N-terminal endonuclease domain of WSN PA was essential for the mammalian adaptation of DkPen viral polymerase. We also found that the cap-snatching activity of purified DkPen viral polymerase was more than 5 times weaker than that of WSN in vitro in a PB2 Glu627-dependent manner. However, the cap-snatching activity of DkPen viral polymerase was hardly increased by replacing DkPen PA to WSN PA. These results suggest that the activity of viral genome replication may be enhanced in the DkPen reassortant containing WSN PA.
Collapse
Affiliation(s)
- Phu Tran Vinh Pham
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Kadir Turan
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
| | - Kyosuke Nagata
- Department of Infection Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Atsushi Kawaguchi
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan; Department of Infection Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan; Transborder Medical Research Center, University of Tsukuba, Tsukuba, Japan.
| |
Collapse
|
22
|
Epigenetic control of influenza virus: role of H3K79 methylation in interferon-induced antiviral response. Sci Rep 2018; 8:1230. [PMID: 29352168 PMCID: PMC5775356 DOI: 10.1038/s41598-018-19370-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 12/29/2017] [Indexed: 12/13/2022] Open
Abstract
Influenza virus stablishes a network of virus-host functional interactions, which depends on chromatin dynamic and therefore on epigenetic modifications. Using an unbiased search, we analyzed the epigenetic changes at DNA methylation and post-translational histone modification levels induced by the infection. DNA methylation was unaltered, while we found a general decrease on histone acetylation, which correlates with transcriptional inactivation and may cooperate with the impairment of cellular transcription that causes influenza virus infection. A particular increase in H3K79 methylation was observed and the use of an inhibitor of the specific H3K79 methylase, Dot1L enzyme, or its silencing, increased influenza virus replication. The antiviral response was reduced in conditions of Dot1L downregulation, since decreased nuclear translocation of NF-kB complex, and IFN-β, Mx1 and ISG56 expression was detected. The data suggested a control of antiviral signaling by methylation of H3K79 and consequently, influenza virus replication was unaffected in IFN pathway-compromised, Dot1L-inhibited cells. H3K79 methylation also controlled replication of another potent interferon-inducing virus such as vesicular stomatitis virus, but did not modify amplification of respiratory syncytial virus that poorly induces interferon signaling. Epigenetic methylation of H3K79 might have an important role in controlling interferon-induced signaling against viral pathogens.
Collapse
|
23
|
Gao Z, Hu J, Liang Y, Yang Q, Yan K, Liu D, Wang X, Gu M, Liu X, Hu S, Hu Z, Liu H, Liu W, Chen S, Peng D, Jiao XA, Liu X. Generation and Comprehensive Analysis of Host Cell Interactome of the PA Protein of the Highly Pathogenic H5N1 Avian Influenza Virus in Mammalian Cells. Front Microbiol 2017; 8:739. [PMID: 28503168 PMCID: PMC5408021 DOI: 10.3389/fmicb.2017.00739] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/10/2017] [Indexed: 12/26/2022] Open
Abstract
Accumulating data have identified the important roles of PA protein in replication and pathogenicity of influenza A virus (IAV). Identification of host factors that interact with the PA protein may accelerate our understanding of IAV pathogenesis. In this study, using immunoprecipitation assay combined with liquid chromatography-tandem mass spectrometry, we identified 278 human cellular proteins that might interact with PA of H5N1 IAV. Gene Ontology annotation revealed that the identified proteins are highly associated with viral translation and replication. Further KEGG pathway analysis of the interactome profile highlighted cellular pathways associated with translation, infectious disease, and signal transduction. In addition, Diseases and Functions analysis suggested that these cellular proteins are highly related with Organismal Injury and Abnormalities and Cell Death and Survival. Moreover, two cellular proteins (nucleolin and eukaryotic translation elongation factor 1-alpha 1) identified both in this study and others were further validated to interact with PA using co-immunoprecipitation and co-localization assays. Therefore, this study presented the interactome data of H5N1 IAV PA protein in human cells which may provide novel cellular target proteins for elucidating the potential molecular functions of PA in regulating the lifecycle of IAV in human cells.
Collapse
Affiliation(s)
- Zhao Gao
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou UniversityYangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou UniversityYangzhou, China
| | - Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou UniversityYangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou UniversityYangzhou, China
| | - Yanyan Liang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou UniversityYangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou UniversityYangzhou, China
| | - Qian Yang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou UniversityYangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou UniversityYangzhou, China
| | - Kun Yan
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou UniversityYangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou UniversityYangzhou, China
| | - Dong Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou UniversityYangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou UniversityYangzhou, China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou UniversityYangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou UniversityYangzhou, China
| | - Min Gu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou UniversityYangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou UniversityYangzhou, China
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou UniversityYangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou UniversityYangzhou, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou UniversityYangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou UniversityYangzhou, China
| | - Zenglei Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou UniversityYangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou UniversityYangzhou, China
| | - Huimou Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou UniversityYangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou UniversityYangzhou, China
| | - Wenbo Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou UniversityYangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou UniversityYangzhou, China
| | - Sujuan Chen
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou UniversityYangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou UniversityYangzhou, China
| | - Daxin Peng
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou UniversityYangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou UniversityYangzhou, China
| | - Xin-An Jiao
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou UniversityYangzhou, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou UniversityYangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou UniversityYangzhou, China
| |
Collapse
|
24
|
CGI-99 promotes breast cancer metastasis via autocrine interleukin-6 signaling. Oncogene 2017; 36:3695-3705. [DOI: 10.1038/onc.2016.525] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/22/2016] [Accepted: 12/21/2016] [Indexed: 12/13/2022]
|
25
|
Fan Y, Mok CKP, Chan MCW, Zhang Y, Nal B, Kien F, Bruzzone R, Sanyal S. Cell Cycle-independent Role of Cyclin D3 in Host Restriction of Influenza Virus Infection. J Biol Chem 2017; 292:5070-5088. [PMID: 28130444 PMCID: PMC5377818 DOI: 10.1074/jbc.m117.776112] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Indexed: 12/22/2022] Open
Abstract
To identify new host factors that modulate the replication of influenza A virus, we performed a yeast two-hybrid screen using the cytoplasmic tail of matrix protein 2 from the highly pathogenic H5N1 strain. The screen revealed a high-score interaction with cyclin D3, a key regulator of cell cycle early G1 phase. M2-cyclin D3 interaction was validated through GST pull-down and recapitulated in influenza A/WSN/33-infected cells. Knockdown of Ccnd3 by small interfering RNA significantly enhanced virus progeny titers in cell culture supernatants. Interestingly, the increase in virus production was due to cyclin D3 deficiency per se and not merely a consequence of cell cycle deregulation. A combined knockdown of Ccnd3 and Rb1, which rescued cell cycle progression into S phase, failed to normalize virus production. Infection by influenza A virus triggered redistribution of cyclin D3 from the nucleus to the cytoplasm, followed by its proteasomal degradation. When overexpressed in HEK 293T cells, cyclin D3 impaired binding of M2 with M1, which is essential for proper assembly of progeny virions, lending further support to its role as a putative restriction factor. Our study describes the identification and characterization of cyclin D3 as a novel interactor of influenza A virus M2 protein. We hypothesize that competitive inhibition of M1-M2 interaction by cyclin D3 impairs infectious virion formation and results in attenuated virus production. In addition, we provide mechanistic insights into the dynamic interplay of influenza virus with the host cell cycle machinery during infection.
Collapse
Affiliation(s)
- Ying Fan
- From the HKU-Pasteur Research Pole and.,Centre of Influenza Research, School of Public Health, LKS Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China.,the Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee DD1 4HN, Scotland, United Kingdom
| | - Chris Ka-Pun Mok
- From the HKU-Pasteur Research Pole and.,Centre of Influenza Research, School of Public Health, LKS Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Michael Chi Wai Chan
- Centre of Influenza Research, School of Public Health, LKS Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Yang Zhang
- From the HKU-Pasteur Research Pole and.,Centre of Influenza Research, School of Public Health, LKS Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China.,the Harbin Institute of Technology, Shenzhen Graduate School, Shenzhen, Guangdong 518055, China
| | - Béatrice Nal
- From the HKU-Pasteur Research Pole and.,Centre of Influenza Research, School of Public Health, LKS Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China.,the Division of Biosciences, College of Health and Life Sciences, Brunel University London, London UB8 3PH, United Kingdom
| | - François Kien
- From the HKU-Pasteur Research Pole and.,Centre of Influenza Research, School of Public Health, LKS Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China.,Ksilink, French-German Advanced Translational Center, Strasbourg 67000, France, and
| | - Roberto Bruzzone
- From the HKU-Pasteur Research Pole and .,Centre of Influenza Research, School of Public Health, LKS Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China.,the Department of Cell Biology and Infection, Institut Pasteur, Paris Cedex 75015, France
| | - Sumana Sanyal
- From the HKU-Pasteur Research Pole and .,Centre of Influenza Research, School of Public Health, LKS Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
26
|
Abstract
At every step of their replication cycle influenza viruses depend heavily on their host cells. The multifaceted interactions that occur between the virus and its host cell determine the outcome of the infection, including efficiency of progeny virus production, tropism, and pathogenicity. In order to understand viral disease and develop therapies for influenza it is therefore pertinent to study the intricate interplay between influenza viruses and their required host factors. Here, we review the current knowledge on host cell factors required by influenza virus at the different stages of the viral replication cycle. We also discuss the roles of host factors in zoonotic transmission of influenza viruses and their potential for developing novel antivirals.
Collapse
|
27
|
Zhou YW, Li R, Duan CJ, Gao Y, Cheng YD, He ZW, Zeng JX, Zhang CF. Expression and clinical significance of C14orf166 in esophageal squamous cell carcinoma. Mol Med Rep 2016; 15:605-612. [PMID: 28000881 PMCID: PMC5364856 DOI: 10.3892/mmr.2016.6056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 11/04/2016] [Indexed: 01/05/2023] Open
Abstract
C14orf166, a 28 kD protein regulating RNA transcription and translation, may serve a critical role in oncogenesis. The aim of the current study was to explore the association between C14orf166 expression and esophageal squamous cell carcinoma (ESCC) and to draw attention to the association between C14orf166 and the initiation, progression and prognosis of ESCC. C14orf166 expression in ESCC and paired normal tissues was detected by immunohistochemical staining, western blotting and reverse transcription-quantitative polymerase chain reaction, and the association between C14orf166 expression and clinicopathological characters of ESCC was analyzed. Survival analysis was used to assess the prognostic significance of C14orf166 and it was observed that C14orf166 expression was higher in the ESCC tissues when compared with adjacent non-cancerous tissues at protein (P<0.001) and mRNA levels (P<0.001). There was a significant difference in T stage, lymph node metastasis and TNM stage in patients categorized according to different C14orf166 expression levels. The overexpression of C14orf166 was associated with a shorter overall survival and disease-free survival, and multivariate analysis indicated that C14orf166 was an independent prognostic indicator. The present study indicates that the expression of C14orf166 is elevated in ESCC, and is potentially a valuable prognostic predictor for ESCC.
Collapse
Affiliation(s)
- Yan-Wu Zhou
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Rong Li
- Department of Gastroenterology, Xiangya Third Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Chao-Jun Duan
- Institute of Medical Science, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yang Gao
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yuan-Da Cheng
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Zhi-Wei He
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jun-Xian Zeng
- Department of Clinical Medicine, Hunan Xiangnan College, Chenzhou, Hunan 423043, P.R. China
| | - Chun-Fang Zhang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
28
|
Pohl MO, Lanz C, Stertz S. Late stages of the influenza A virus replication cycle-a tight interplay between virus and host. J Gen Virol 2016; 97:2058-2072. [PMID: 27449792 DOI: 10.1099/jgv.0.000562] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
After successful infection and replication of its genome in the nucleus of the host cell, influenza A virus faces several challenges before newly assembled viral particles can bud off from the plasma membrane, giving rise to a new infectious virus. The viral ribonucleoprotein (vRNP) complexes need to exit from the nucleus and be transported to the virus assembly sites at the plasma membrane. Moreover, they need to be bundled to ensure the incorporation of precisely one of each of the eight viral genome segments into newly formed viral particles. Similarly, viral envelope glycoproteins and other viral structural proteins need to be targeted to virus assembly sites for viral particles to form and bud off from the plasma membrane. During all these steps influenza A virus heavily relies on a tight interplay with its host, exploiting host-cell proteins for its own purposes. In this review, we summarize current knowledge on late stages of the influenza virus replication cycle, focusing on the role of host-cell proteins involved in this process.
Collapse
Affiliation(s)
- Marie O Pohl
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Caroline Lanz
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Silke Stertz
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
29
|
Kuo RL, Li ZH, Li LH, Lee KM, Tam EH, Liu HM, Liu HP, Shih SR, Wu CC. Interactome Analysis of the NS1 Protein Encoded by Influenza A H1N1 Virus Reveals a Positive Regulatory Role of Host Protein PRP19 in Viral Replication. J Proteome Res 2016; 15:1639-48. [PMID: 27096427 DOI: 10.1021/acs.jproteome.6b00103] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Influenza A virus, which can cause severe respiratory illnesses in infected individuals, is responsible for worldwide human pandemics. The NS1 protein encoded by this virus plays a crucial role in regulating the host antiviral response through various mechanisms. In addition, it has been reported that NS1 can modulate cellular pre-mRNA splicing events. To investigate the biological processes potentially affected by the NS1 protein in host cells, NS1-associated protein complexes in human cells were identified using coimmunoprecipitation combined with GeLC-MS/MS. By employing software to build biological process and protein-protein interaction networks, NS1-interacting cellular proteins were found to be related to RNA splicing/processing, cell cycle, and protein folding/targeting cellular processes. By monitoring spliced and unspliced RNAs of a reporter plasmid, we further validated that NS1 can interfere with cellular pre-mRNA splicing. One of the identified proteins, pre-mRNA-processing factor 19 (PRP19), was confirmed to interact with the NS1 protein in influenza A virus-infected cells. Importantly, depletion of PRP19 in host cells reduced replication of influenza A virus. In summary, the interactome of influenza A virus NS1 in host cells was comprehensively profiled, and our findings reveal a novel regulatory role for PRP19 in viral replication.
Collapse
Affiliation(s)
| | | | | | | | | | - Helene M Liu
- Department of Clinical Laboratory Sciences and Medical Technology, College of Medicine, National Taiwan University , Taipei 10617, Taiwan
| | - Hao-Ping Liu
- Department of Veterinary Medicine, National Chung Hsing University , Taichung 40227, Taiwan
| | | | | |
Collapse
|
30
|
Chen M, Ye Y, Zou B, Guo S, Zhou F, Lu K, Liu J, Xu Z, Han H, Liu Z, Li Y, Yao K, Liu C, Qin Z. C14orf166 is a high-risk biomarker for bladder cancer and promotes bladder cancer cell proliferation. J Transl Med 2016; 14:55. [PMID: 26905879 PMCID: PMC4765182 DOI: 10.1186/s12967-016-0801-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 01/27/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND C14orf166 (chromosome 14 open reading frame 166) plays a crucial role in some tumors, but its role in bladder cancer hasn't been explored. METHOD We determined C14orf166 expression in uroepithelial cell, bladder cancer cells, normal bladder tissues and bladder cancer tissues using quantitative RT-PCR and western blot, we then analyzed the correlation between C14orf166 expression and clinicopathologic characteristics in a cohort of 149 patients with bladder cancer. Finally we downregulated C14orf166 and determined its role in the proliferation of bladder cancer cell lines using MTT assay, colony formation assay and cell cycle assay. RESULTS We demonstrated C14orf166 was upregulated in bladder cancer cells and tissues, C14orf166 expression was significantly correlated with larger tumor size (P = 0.001), lymph node involvement (P < 0.001), histological differentiation (P < 0.001), survival time and vital states, and high C14orf166 expression correlated with poor survival, these results suggested C14orf166 served as a high-risk marker for bladder cancer. Knockdown of C14orf166 decreased the proliferation rate and colony formation ability of bladder cancer cells, and arrested cell cycle in G1/S transition. Further analysis showed that C14orf166 knockdown caused abnormal expression of key proteins for G1/S transition, such as Cyclin D1, P21, P27 and Rb phosphorylation. CONCLUSIONS This study demonstrates that C14orf166 promotes bladder cancer cell proliferation and can be a novel prognostic biomarker for patients with bladder cancer.
Collapse
Affiliation(s)
- Mingkun Chen
- State Key Laboratory of Oncology in South China, 510060, Guangzhou, Guangdong, People's Republic of China. .,Department of Urology, The Third Affiliated Hospital of Southern Medical University, 510630, Guangzhou, Guangdong, People's Republic of China.
| | - Yunlin Ye
- State Key Laboratory of Oncology in South China, 510060, Guangzhou, Guangdong, People's Republic of China. .,Department of Urology, Cancer Center, Sun Yat-sen University, 510060, Guangzhou, Guangdong, People's Republic of China.
| | - Baojia Zou
- State Key Laboratory of Oncology in South China, 510060, Guangzhou, Guangdong, People's Republic of China. .,Department of Urology, Cancer Center, Sun Yat-sen University, 510060, Guangzhou, Guangdong, People's Republic of China.
| | - Suping Guo
- Department of Radiotherapy, Cancer Center, Sun Yat-sen University, 510060, Guangzhou, Guangdong, People's Republic of China.
| | - Fangjian Zhou
- State Key Laboratory of Oncology in South China, 510060, Guangzhou, Guangdong, People's Republic of China. .,Department of Urology, Cancer Center, Sun Yat-sen University, 510060, Guangzhou, Guangdong, People's Republic of China.
| | - Keshi Lu
- Department of Urology, Shenzhen Children's Hospital, 518026, Shenzhen, Guangdong, People's Republic of China.
| | - Jianye Liu
- Department of Urology, The Third Xiangya Hospital of Central South University, 410000, Changhsa, Hunan, People's Republic of China.
| | - Zhenzhou Xu
- Department of Urology, Hunan Cancer Hospital, 410000, Changsha, Hunan, People's Republic of China.
| | - Hui Han
- State Key Laboratory of Oncology in South China, 510060, Guangzhou, Guangdong, People's Republic of China. .,Department of Urology, Cancer Center, Sun Yat-sen University, 510060, Guangzhou, Guangdong, People's Republic of China.
| | - Zhuowei Liu
- State Key Laboratory of Oncology in South China, 510060, Guangzhou, Guangdong, People's Republic of China. .,Department of Urology, Cancer Center, Sun Yat-sen University, 510060, Guangzhou, Guangdong, People's Republic of China.
| | - Yonghong Li
- State Key Laboratory of Oncology in South China, 510060, Guangzhou, Guangdong, People's Republic of China. .,Department of Urology, Cancer Center, Sun Yat-sen University, 510060, Guangzhou, Guangdong, People's Republic of China.
| | - Kai Yao
- State Key Laboratory of Oncology in South China, 510060, Guangzhou, Guangdong, People's Republic of China. .,Department of Urology, Cancer Center, Sun Yat-sen University, 510060, Guangzhou, Guangdong, People's Republic of China.
| | - Cundong Liu
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, 510630, Guangzhou, Guangdong, People's Republic of China.
| | - Zike Qin
- State Key Laboratory of Oncology in South China, 510060, Guangzhou, Guangdong, People's Republic of China. .,Department of Urology, Cancer Center, Sun Yat-sen University, 510060, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
31
|
Cheang TY, Zhou HY, Chen W, Zhang B, Liu L, Yang J, Wang S, Li H. C14orf166 overexpression correlates with tumor progression and poor prognosis of breast cancer. J Transl Med 2016; 14:54. [PMID: 26883017 PMCID: PMC4756411 DOI: 10.1186/s12967-016-0805-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/27/2016] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Chromosome 14 open reading frame 166 (C14orf166) is upregulated in various tumors, but its role in breast cancer has not been reported. METHODS Quantitative real-time PCR and western blot were used to determine C14orf166 expression in normal breast epithelial cells (NBEC), breast cancer cells, and four matched pairs of breast cancer tissues and adjacent noncancerous tissues. Using immunohistochemistry, we determined C14orf166 expression in paraffin-embedded tissues from 121 breast cancer patients. Statistical analyses were performed to examine the associations among C14or166 expression, clinicopathological parameters and prognosis outcome of breast cancer. MTT and colony formation assay were used to determine the effect of C14orf166 on cell proliferation by overexpression or knockdown of C14orf166 level. RESULTS C14orf166 was upregulated in breast cancer cell lines and tissues compared with the normal cells and adjacent normal breast tissues, high C14orf166 expression was positively with advancing clinical stage. The correlation analysis between C14orf166 expression and clinicopathological characteristics suggested C14orf166 expression was significantly correlated with clinical stages, T classification, N classification and PR expression, Kaplan-Meier curves with log rank tests showed patients with low C14orf166 expression had better survival, Cox-regression analysis suggested C14orf166 was an unfavorable prognostic factor for breast cancer patients. C14orf166 overexpression promoted breast cancer cell proliferation, whereas knockdown of C14orf166 inhibited this effect. Further analysis found C14orf166 overexpression inhibited cell cycle inhibitors P21 and P27 expression, and increased the levels of Cyclin D1 and phosphorylation of Rb, suggesting C14orf166 contributed to cell proliferation by regulating G1/S transition. CONCLUSION Our findings suggested C14orf166 could be a novel prognostic biomarker of breast cancer, it also contributes to cell proliferation by regulating G1/S transition.
Collapse
Affiliation(s)
- Tuck-yun Cheang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, People's Republic of China.
| | - Hong-Yan Zhou
- Department of Neurological Intensive Care Unit, The First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, People's Republic of China.
| | - Wei Chen
- Department of Medical Imaging, The First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, People's Republic of China.
| | - Bing Zhang
- Department of Medical Imaging, The First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, People's Republic of China.
| | - Liangshuai Liu
- Department of Medical Imaging, The First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, People's Republic of China.
| | - Jianyong Yang
- Department of Medical Imaging, The First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, People's Republic of China.
| | - Shenming Wang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, People's Republic of China.
| | - Heping Li
- Department of Medical Imaging, The First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, People's Republic of China. .,Department of Medical Oncology, The First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, People's Republic of China.
| |
Collapse
|
32
|
hCLE/C14orf166, a cellular protein required for viral replication, is incorporated into influenza virus particles. Sci Rep 2016; 6:20744. [PMID: 26864902 PMCID: PMC4749964 DOI: 10.1038/srep20744] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 01/07/2016] [Indexed: 02/08/2023] Open
Abstract
The influenza A virus polymerase associates with a number of cellular transcription-related factors, including the RNA polymerase II (RNAP II). We previously described that the cellular protein hCLE/C14orf166 interacts with and stimulates influenza virus polymerase as well as RNAP II activities. Here we show that, despite the considerable cellular shut-off observed in infected cells, which includes RNAP II degradation, hCLE protein levels increase throughout infection in a virus replication-dependent manner. Human and avian influenza viruses of various subtypes increase hCLE levels, but other RNA or DNA viruses do not. hCLE colocalises and interacts with viral ribonucleoproteins (vRNP) in the nucleus, as well as in the cytoplasm late in infection. Furthermore, biochemical analysis of purified virus particles and immunoelectron microscopy of infected cells show hCLE in virions, in close association with viral vRNP. These findings indicate that hCLE, a cellular protein important for viral replication, is one of the very few examples of transcription factors that are incorporated into particles of an RNA-containing virus.
Collapse
|
33
|
Influenza Virus and Chromatin: Role of the CHD1 Chromatin Remodeler in the Virus Life Cycle. J Virol 2016; 90:3694-707. [PMID: 26792750 DOI: 10.1128/jvi.00053-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 01/15/2016] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Influenza A virus requires ongoing cellular transcription to carry out the cap-snatching process. Chromatin remodelers modify chromatin structure to produce an active or inactive conformation, which enables or prevents the recruitment of transcriptional complexes to specific genes; viral transcription thus depends on chromatin dynamics. Influenza virus polymerase associates with chromatin components of the infected cell, such as RNA polymerase II (RNAP II) or the CHD6 chromatin remodeler. Here we show that another CHD family member, CHD1 protein, also interacts with the influenza virus polymerase complex. CHD1 recognizes the H3K4me3 (histone 3 with a trimethyl group in lysine 4) histone modification, a hallmark of active chromatin. Downregulation of CHD1 causes a reduction in viral polymerase activity, viral RNA transcription, and the production of infectious particles. Despite the dependence of influenza virus on cellular transcription, RNAP II is degraded when viral transcription is complete, and recombinant viruses unable to degrade RNAP II show decreased pathogenicity in the murine model. We describe the CHD1-RNAP II association, as well as the parallel degradation of both proteins during infection with viruses showing full or reduced induction of degradation. The H3K4me3 histone mark also decreased during influenza virus infection, whereas a histone mark of inactive chromatin, H3K27me3, remained unchanged. Our results indicate that CHD1 is a positive regulator of influenza virus multiplication and suggest a role for chromatin remodeling in the control of the influenza virus life cycle. IMPORTANCE Although influenza virus is not integrated into the genome of the infected cell, it needs continuous cellular transcription to synthesize viral mRNA. This mechanism implies functional association with host genome expression and thus depends on chromatin dynamics. Influenza virus polymerase associates with transcription-related factors, such as RNA polymerase II, and with chromatin remodelers, such as CHD6. We identified the association of viral polymerase with another chromatin remodeler, the CHD1 protein, which positively modulated viral polymerase activity, viral RNA transcription, and virus multiplication. Once viral transcription is complete, RNAP II is degraded in infected cells, probably as a virus-induced mechanism to reduce the antiviral response. CHD1 associated with RNAP II and paralleled its degradation during infection with viruses that induce full or reduced degradation. These findings suggest that RNAP II degradation and CHD1 degradation cooperate to reduce the antiviral response.
Collapse
|
34
|
Influenza virus polymerase: Functions on host range, inhibition of cellular response to infection and pathogenicity. Virus Res 2015; 209:23-38. [DOI: 10.1016/j.virusres.2015.03.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 03/25/2015] [Accepted: 03/26/2015] [Indexed: 01/06/2023]
|
35
|
Watanabe T, Kawaoka Y. Influenza virus-host interactomes as a basis for antiviral drug development. Curr Opin Virol 2015; 14:71-8. [PMID: 26364134 DOI: 10.1016/j.coviro.2015.08.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 08/13/2015] [Accepted: 08/13/2015] [Indexed: 01/07/2023]
Abstract
Currently, antiviral drugs that target specific viral protein functions are available for the treatment of influenza; however, concern regarding the emergence of drug-resistant viruses is warranted, as is the urgent need for new antiviral targets, including non-viral targets, such as host cellular factors. Viruses rely on host cellular functions to replicate, and therefore a thorough understanding of the roles of virus-host interactions during influenza virus replication is essential to develop novel anti-influenza drugs that target the host factors involved in virus replication. Here, we review recent studies that used several approaches to identify host factors involved in influenza virus replication. These studies have permitted the construction of an interactome map of virus-host interactions in the influenza virus life cycle, clarifying the entire life cycle of this virus and accelerating the development of new antiviral drugs with a low propensity for the development of resistance.
Collapse
Affiliation(s)
- Tokiko Watanabe
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 575 Science Drive, Madison, WI 53711, USA; Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan.
| |
Collapse
|
36
|
C14ORF166 overexpression is associated with pelvic lymph node metastasis and poor prognosis in uterine cervical cancer. Tumour Biol 2015. [PMID: 26219895 PMCID: PMC4841849 DOI: 10.1007/s13277-015-3806-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
C14ORF166 (chromosome 14 open reading frame 166) is a transcriptional repressor related to the regulation of centrosome architecture. However, the role of C14ORF166 in the development and progression of cancer remains largely unknown. The aim of this study was to investigate the expression and clinicopathological significance of C14ORF166 in cervical cancer. C14ORF166 expression was analyzed using quantitative real-time PCR (RT-PCR) and Western blotting in cervical cancer cell lines and eight paired cervical cancer samples and the adjacent normal tissues. Immunohistochemistry was used to analyze C14ORF166 protein expression in 148 clinicopathologically characterized cervical cancer specimens. Statistical analyses were performed to evaluate the relationship between the expression of C14ORF166 and clinicopathologic features and prognosis. C14ORF166 mRNA and protein expression were significantly upregulated in cervical cancer cell lines and tissue samples (P < 0.05). Immunohistochemical analysis revealed a high expression of C14ORF166 was observed in 39.9 % (59/148) of the cervical cancer specimens; the remaining samples expressed low levels or did not express any detectable C14ORF166. The chi-square test indicated that high-level expression of C14ORF166 was significantly associated with International Federation of Gynecology and Obstetrics (FIGO) stage (P < 0.001), vital status (P = 0.026), tumor size (P = 0.034), serum squamous cell carcinoma antigen level (SCC-Ag; P = 0.035), and pelvic lymph node metastasis (P < 0.001). Patients with highly expressed C14ORF166 showed a tendency to receive postoperative chemotherapy (P = 0.005) and postoperative radiation (P = 0.008). Furthermore, high C14ORF166 expression was associated with poorer overall survival compared to low C14ORF166 expression, and C14ORF166 was a significant prognostic factor in univariate and multivariate analysis (P < 0.05). High C14ORF166 expression had prognostic value for poor outcome in cervical cancer. C14ORF166 may represent a biomarker of pelvic lymph node metastasis and enable the identification of high-risk patients along with selection of appropriate treatment strategies.
Collapse
|
37
|
Abstract
UNLABELLED Transcription and replication of influenza A virus are carried out in the nuclei of infected cells in the context of viral ribonucleoproteins (RNPs). The viral polymerase responsible for these processes is a protein complex composed of the PB1, PB2, and PA proteins. We previously identified a set of polymerase-associated cellular proteins by proteomic analysis of polymerase-containing intracellular complexes expressed and purified from human cells. Here we characterize the role of NXP2/MORC3 in the infection cycle. NXP2/MORC3 is a member of the Microrchidia (MORC) family that is associated with the nuclear matrix and has RNA-binding activity. Influenza virus infection led to a slight increase in NXP2/MORC3 expression and its partial relocalization to the cytoplasm. Coimmunoprecipitation and immunofluorescence experiments indicated an association of NXP2/MORC3 with the viral polymerase and RNPs during infection. Downregulation of NXP2/MORC3 by use of two independent short hairpin RNAs (shRNAs) reduced virus titers in low-multiplicity infections. Consistent with these findings, analysis of virus-specific RNA in high-multiplicity infections indicated a reduction of viral RNA (vRNA) and mRNA after NXP2/MORC3 downregulation. Silencing of NXP2/MORC3 in a recombinant minireplicon system in which virus transcription and replication are uncoupled showed reductions in cat mRNA and chloramphenicol acetyltransferase (CAT) protein accumulation but no alterations in cat vRNA levels, suggesting that NXP2/MORC3 is important for influenza virus transcription. IMPORTANCE Influenza virus infections appear as yearly epidemics and occasional pandemics of respiratory disease, with high morbidity and occasional mortality. Influenza viruses are intracellular parasites that replicate and transcribe their genomic ribonucleoproteins in the nuclei of infected cells, in a complex interplay with host cell factors. Here we characterized the role of the human NXP2/MORC3 protein, a member of the Microrchidia family that is associated with the nuclear matrix, during virus infection. NXP2/MORC3 associates with the viral ribonucleoproteins in infected cells. Downregulation of NXP2/MORC3 reduced virus titers and accumulations of viral genomic RNA and mRNAs. Silencing of NXP2/MORC3 in an influenza virus CAT minireplicon system diminished CAT protein and cat mRNA levels but not genomic RNA levels. We propose that NXP2/MORC3 plays a role in influenza virus transcription.
Collapse
|
38
|
Ortín J, Martín-Benito J. The RNA synthesis machinery of negative-stranded RNA viruses. Virology 2015; 479-480:532-44. [PMID: 25824479 DOI: 10.1016/j.virol.2015.03.018] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 01/14/2015] [Accepted: 03/03/2015] [Indexed: 11/15/2022]
Abstract
The group of Negative-Stranded RNA Viruses (NSVs) includes many human pathogens, like the influenza, measles, mumps, respiratory syncytial or Ebola viruses, which produce frequent epidemics of disease and occasional, high mortality outbreaks by transmission from animal reservoirs. The genome of NSVs consists of one to several single-stranded, negative-polarity RNA molecules that are always assembled into mega Dalton-sized complexes by association to many nucleoprotein monomers. These RNA-protein complexes or ribonucleoproteins function as templates for transcription and replication by action of the viral RNA polymerase and accessory proteins. Here we review our knowledge on these large RNA-synthesis machines, including the structure of their components, the interactions among them and their enzymatic activities, and we discuss models showing how they perform the virus transcription and replication programmes.
Collapse
Affiliation(s)
- Juan Ortín
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CSIC) and CIBER de Enfermedades Respiratorias (ISCIII), Madrid, Spain.
| | - Jaime Martín-Benito
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CSIC), Madrid, Spain.
| |
Collapse
|
39
|
Accumulation of human-adapting mutations during circulation of A(H1N1)pdm09 influenza virus in humans in the United Kingdom. J Virol 2014; 88:13269-83. [PMID: 25210166 PMCID: PMC4249111 DOI: 10.1128/jvi.01636-14] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The influenza pandemic that emerged in 2009 provided an unprecedented opportunity to study adaptation of a virus recently acquired from an animal source during human transmission. In the United Kingdom, the novel virus spread in three temporally distinct waves between 2009 and 2011. Phylogenetic analysis of complete viral genomes showed that mutations accumulated over time. Second- and third-wave viruses replicated more rapidly in human airway epithelial (HAE) cells than did the first-wave virus. In infected mice, weight loss varied between viral isolates from the same wave but showed no distinct pattern with wave and did not correlate with viral load in the mouse lungs or severity of disease in the human donor. However, second- and third-wave viruses induced less alpha interferon in the infected mouse lungs. NS1 protein, an interferon antagonist, had accumulated several mutations in second- and third-wave viruses. Recombinant viruses with the third-wave NS gene induced less interferon in human cells, but this alone did not account for increased virus fitness in HAE cells. Mutations in HA and NA genes in third-wave viruses caused increased binding to α-2,6-sialic acid and enhanced infectivity in human mucus. A recombinant virus with these two segments replicated more efficiently in HAE cells. A mutation in PA (N321K) enhanced polymerase activity of third-wave viruses and also provided a replicative advantage in HAE cells. Therefore, multiple mutations allowed incremental changes in viral fitness, which together may have contributed to the apparent increase in severity of A(H1N1)pdm09 influenza virus during successive waves. IMPORTANCE Although most people infected with the 2009 pandemic influenza virus had mild or unapparent symptoms, some suffered severe and devastating disease. The reasons for this variability were unknown, but the numbers of severe cases increased during successive waves of human infection in the United Kingdom. To determine the causes of this variation, we studied genetic changes in virus isolates from individual hospitalized patients. There were no consistent differences between these viruses and those circulating in the community, but we found multiple evolutionary changes that in combination over time increased the virus's ability to infect human cells. These adaptations may explain the remarkable ability of A(H1N1)pdm09 virus to continue to circulate despite widespread immunity and the apparent increase in severity of influenza over successive waves of infection.
Collapse
|
40
|
Hu J, Liu X. Crucial role of PA in virus life cycle and host adaptation of influenza A virus. Med Microbiol Immunol 2014; 204:137-49. [PMID: 25070354 DOI: 10.1007/s00430-014-0349-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 07/16/2014] [Indexed: 02/01/2023]
Abstract
The PA protein is the third subunit of the polymerase complex of influenza A virus. Compared with the other two polymerase subunits (PB2 and PB1), its precise functions are less defined. However, in recent years, advances in protein expression and crystallization technologies and also the reverse genetics, greatly accelerate our understanding of the essential role of PA in virus infection. Here, we first review the current literature on this remarkably multifunctional viral protein regarding virus life cycle, including viral RNA transcription and replication, viral genome packaging and assembly. We then discuss the various roles of PA in host adaption in avian species and mammals, general virus-host interaction, and host protein synthesis shutoff. We also review the recent findings about the novel proteins derived from PA. Finally, we discuss the prospects of PA as a target for the development of new antiviral approaches and drugs.
Collapse
Affiliation(s)
- Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China
| | | |
Collapse
|
41
|
Recruitment of RED-SMU1 complex by Influenza A Virus RNA polymerase to control Viral mRNA splicing. PLoS Pathog 2014; 10:e1004164. [PMID: 24945353 PMCID: PMC4055741 DOI: 10.1371/journal.ppat.1004164] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 04/21/2014] [Indexed: 12/21/2022] Open
Abstract
Influenza A viruses are major pathogens in humans and in animals, whose genome consists of eight single-stranded RNA segments of negative polarity. Viral mRNAs are synthesized by the viral RNA-dependent RNA polymerase in the nucleus of infected cells, in close association with the cellular transcriptional machinery. Two proteins essential for viral multiplication, the exportin NS2/NEP and the ion channel protein M2, are produced by splicing of the NS1 and M1 mRNAs, respectively. Here we identify two human spliceosomal factors, RED and SMU1, that control the expression of NS2/NEP and are required for efficient viral multiplication. We provide several lines of evidence that in infected cells, the hetero-trimeric viral polymerase recruits a complex formed by RED and SMU1 through interaction with its PB2 and PB1 subunits. We demonstrate that the splicing of the NS1 viral mRNA is specifically affected in cells depleted of RED or SMU1, leading to a decreased production of the spliced mRNA species NS2, and to a reduced NS2/NS1 protein ratio. In agreement with the exportin function of NS2, these defects impair the transport of newly synthesized viral ribonucleoproteins from the nucleus to the cytoplasm, and strongly reduce the production of infectious influenza virions. Overall, our results unravel a new mechanism of viral subversion of the cellular splicing machinery, by establishing that the human splicing factors RED and SMU1 act jointly as key regulators of influenza virus gene expression. In addition, our data point to a central role of the viral RNA polymerase in coupling transcription and alternative splicing of the viral mRNAs.
Collapse
|
42
|
Pérez-Cidoncha M, Killip MJ, Asensio VJ, Fernández Y, Bengoechea JA, Randall RE, Ortín J. Generation of replication-proficient influenza virus NS1 point mutants with interferon-hyperinducer phenotype. PLoS One 2014; 9:e98668. [PMID: 24887174 PMCID: PMC4041880 DOI: 10.1371/journal.pone.0098668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 05/05/2014] [Indexed: 12/24/2022] Open
Abstract
The NS1 protein of influenza A viruses is the dedicated viral interferon (IFN)-antagonist. Viruses lacking NS1 protein expression cannot multiply in normal cells but are viable in cells deficient in their ability to produce or respond to IFN. Here we report an unbiased mutagenesis approach to identify positions in the influenza A NS1 protein that modulate the IFN response upon infection. A random library of virus ribonucleoproteins containing circa 40 000 point mutants in NS1 were transferred to infectious virus and amplified in MDCK cells unable to respond to interferon. Viruses that activated the interferon (IFN) response were subsequently selected by their ability to induce expression of green-fluorescent protein (GFP) following infection of A549 cells bearing an IFN promoter-dependent GFP gene. Using this approach we isolated individual mutant viruses that replicate to high titers in IFN-compromised cells but, compared to wild type viruses, induced higher levels of IFN in IFN-competent cells and had a reduced capacity to counteract exogenous IFN. Most of these viruses contained not previously reported NS1 mutations within either the RNA-binding domain, the effector domain or the linker region between them. These results indicate that subtle alterations in NS1 can reduce its effectiveness as an IFN antagonist without affecting the intrinsic capacity of the virus to multiply. The general approach reported here may facilitate the generation of replication-proficient, IFN-inducing virus mutants, that potentially could be developed as attenuated vaccines against a variety of viruses.
Collapse
Affiliation(s)
- Maite Pérez-Cidoncha
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CSIC), Madrid, Spain
- Ciber de Enfermedades Respiratorias (ISCIII), Madrid, Spain
| | - Marian J. Killip
- School of Biology, Centre for Biomolecular Sciences, University of St Andrews, St Andrews, United Kingdom
| | - Víctor J. Asensio
- Fundació d'Investigació Sanitària de les Illes Balears (FISIB), Bunyola, Mallorca, Spain
| | - Yolanda Fernández
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CSIC), Madrid, Spain
- Ciber de Enfermedades Respiratorias (ISCIII), Madrid, Spain
| | - José A. Bengoechea
- Laboratory Microbial Pathogenesis, Fundació d'Investigació Sanitària de les Illes Balears (FISIB), Bunyola, Mallorca, Spain
- Ciber de Enfermedades Respiratorias (ISCIII), Madrid, Spain
| | - Richard E. Randall
- School of Biology, Centre for Biomolecular Sciences, University of St Andrews, St Andrews, United Kingdom
| | - Juan Ortín
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CSIC), Madrid, Spain
- Ciber de Enfermedades Respiratorias (ISCIII), Madrid, Spain
| |
Collapse
|
43
|
hCLE/C14orf166 associates with DDX1-HSPC117-FAM98B in a novel transcription-dependent shuttling RNA-transporting complex. PLoS One 2014; 9:e90957. [PMID: 24608264 PMCID: PMC3946611 DOI: 10.1371/journal.pone.0090957] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 02/05/2014] [Indexed: 02/05/2023] Open
Abstract
hCLE/C14orf166 is a nuclear and cytoplasmic protein that interacts with the RNAP II, modulates nuclear RNA metabolism and is present in cytoplasmic RNA granules involved in localized translation. Here we have studied whether hCLE shares common interactors in the nucleus and the cytosol, which could shed light on its participation in the sequential phases of RNA metabolism. Nuclear and cytoplasmic purified hCLE-associated factors were identified and proteins involved in mRNA metabolism, motor-related proteins, cytoskeletal and translation-related factors were found. Purified hCLE complexes also contain RNAs and as expected some hCLE-interacting proteins (DDX1, HSPC117, FAM98B) were found both in the nucleus and the cytoplasm. Moreover, endogenous hCLE fractionates in protein complexes together with DDX1, HSPC117 and FAM98B and silencing of hCLE down-regulates their nuclear and cytosolic accumulation levels. Using a photoactivatable hCLE-GFP protein, nuclear import and export of hCLE was observed indicating that hCLE is a shuttling protein. Interestingly, hCLE nuclear import required active transcription, as did the import of DDX1, HSPC117 and FAM98B proteins. The data indicate that hCLE probably as a complex with DDX1, HSPC117 and FAM98B shuttles between the nucleus and the cytoplasm transporting RNAs suggesting that this complex has a prominent role on nuclear and cytoplasmic RNA fate.
Collapse
|
44
|
Abstract
The influenza A viruses cause yearly epidemics and occasional pandemics of respiratory disease, which constitute a serious health and economic burden. Their genome consists of eight single-stranded, negative-polarity RNAs that associate to the RNA polymerase and many nucleoprotein monomers to form ribonucleoprotein complexes (RNPs). Here, we focus on the organization of these RNPs, as well as on the structure and interactions of its constitutive elements and we discuss the mechanisms by which the RNPs transcribe and replicate the viral genome.
Collapse
|
45
|
Kroeker AL, Ezzati P, Coombs KM, Halayko AJ. Influenza A Infection of Primary Human Airway Epithelial Cells Up-Regulates Proteins Related to Purine Metabolism and Ubiquitin-Related Signaling. J Proteome Res 2013; 12:3139-51. [DOI: 10.1021/pr400464p] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Andrea L. Kroeker
- Department of Physiology, Faculty
of Medicine, University of Manitoba, Winnipeg
R3E 0J9, Canada
- Manitoba
Institute of Child
Health, Room 641 John Buhler Research Center, University of Manitoba, Winnipeg R3E 3P4, Canada
- Manitoba Center for Proteomics
and Systems Biology, Room 799 John Buhler Research Centre, University of Manitoba, Winnipeg R3E 3P4, Canada
| | - Peyman Ezzati
- Manitoba Center for Proteomics
and Systems Biology, Room 799 John Buhler Research Centre, University of Manitoba, Winnipeg R3E 3P4, Canada
| | - Kevin M. Coombs
- Department of Physiology, Faculty
of Medicine, University of Manitoba, Winnipeg
R3E 0J9, Canada
- Manitoba
Institute of Child
Health, Room 641 John Buhler Research Center, University of Manitoba, Winnipeg R3E 3P4, Canada
- Manitoba Center for Proteomics
and Systems Biology, Room 799 John Buhler Research Centre, University of Manitoba, Winnipeg R3E 3P4, Canada
- Department of Medical Microbiology,
Faculty of Medicine, University of Manitoba, Winnipeg R3E 0J9, Canada
| | - Andrew J. Halayko
- Department of Physiology, Faculty
of Medicine, University of Manitoba, Winnipeg
R3E 0J9, Canada
- Manitoba
Institute of Child
Health, Room 641 John Buhler Research Center, University of Manitoba, Winnipeg R3E 3P4, Canada
| |
Collapse
|
46
|
Song H, Wang Q, Guo Y, Liu S, Song R, Gao X, Dai L, Li B, Zhang D, Cheng J. Microarray analysis of microRNA expression in peripheral blood mononuclear cells of critically ill patients with influenza A (H1N1). BMC Infect Dis 2013; 13:257. [PMID: 23731466 PMCID: PMC3679792 DOI: 10.1186/1471-2334-13-257] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 05/30/2013] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND With concerns about the disastrous health and economic consequences caused by the influenza pandemic, comprehensively understanding the global host response to influenza virus infection is urgent. The role of microRNA (miRNA) has recently been highlighted in pathogen-host interactions. However, the precise role of miRNAs in the pathogenesis of influenza virus infection in humans, especially in critically ill patients is still unclear. METHODS We identified cellular miRNAs involved in the host response to influenza virus infection by performing comprehensive miRNA profiling in peripheral blood mononuclear cells (PBMCs) from critically ill patients with swine-origin influenza pandemic H1N1 (2009) virus infection via miRNA microarray and quantitative reverse-transcription polymerase chain reaction (qRT-PCR) assays. Receiver operator characteristic (ROC) curve analysis was conducted and area under the ROC curve (AUC) was calculated to evaluate the diagnostic accuracy of severe H1N1 influenza virus infection. Furthermore, an integrative network of miRNA-mediated host-influenza virus protein interactions was constructed by integrating the predicted and validated miRNA-gene interaction data with influenza virus and host-protein-protein interaction information using Cytoscape software. Moreover, several hub genes in the network were selected and validated by qRT-PCR. RESULTS Forty-one significantly differentially expressed miRNAs were found by miRNA microarray; nine were selected and validated by qRT-PCR. QRT-PCR assay and ROC curve analyses revealed that miR-31, miR-29a and miR-148a all had significant potential diagnostic value for critically ill patients infected with H1N1 influenza virus, which yielded AUC of 0.9510, 0.8951 and 0.8811, respectively. We subsequently constructed an integrative network of miRNA-mediated host-influenza virus protein interactions, wherein we found that miRNAs are involved in regulating important pathways, such as mitogen-activated protein kinase signaling pathway, epidermal growth factor receptor signaling pathway, and Toll-like receptor signaling pathway, during influenza virus infection. Some of differentially expressed miRNAs via in silico analysis targeted mRNAs of several key genes in these pathways. The mRNA expression level of tumor protein T53 and transforming growth factor beta receptor 1 were found significantly reduced in critically ill patients, whereas the expression of Janus kinase 2, caspase 3 apoptosis-related cysteine peptidase, interleukin 10, and myxovirus resistance 1 were extremely increased in critically ill patients. CONCLUSIONS Our data suggest that the dysregulation of miRNAs in the PBMCs of H1N1 critically ill patients can regulate a number of key genes in the major signaling pathways associated with influenza virus infection. These differentially expressed miRNAs could be potential therapeutic targets or biomarkers for severe influenza virus infection.
Collapse
Affiliation(s)
- Hao Song
- MOA Key Laboratory of Animal Biotechnology of National Ministry of Agriculture, Institute of Veterinary Immunology, and Research Laboratory of Virology, Immunology & Bioinformatics, Division of Veterinary Microbiology & Virology, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A & F University, Yangling, Xi’an City, Shaanxi Province, 712100, China
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, 100015, China
| | - Qi Wang
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, 100015, China
| | - Yang Guo
- Investigation Group of Molecular Virology, Immunology, Oncology & Systems Biology, Center for Bioinformatics, College of Life Sciences, Northwest A & F University, Yangling, Xi’an City, Shaanxi Province, 712100, China
| | - Shunai Liu
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, 100015, China
| | - Rui Song
- Department of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Xuesong Gao
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, 100015, China
| | - Li Dai
- Investigation Group of Molecular Virology, Immunology, Oncology & Systems Biology, Center for Bioinformatics, College of Life Sciences, Northwest A & F University, Yangling, Xi’an City, Shaanxi Province, 712100, China
| | - Baoshun Li
- Department of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Deli Zhang
- MOA Key Laboratory of Animal Biotechnology of National Ministry of Agriculture, Institute of Veterinary Immunology, and Research Laboratory of Virology, Immunology & Bioinformatics, Division of Veterinary Microbiology & Virology, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A & F University, Yangling, Xi’an City, Shaanxi Province, 712100, China
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Jun Cheng
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, 100015, China
| |
Collapse
|
47
|
Adaptation of avian influenza A virus polymerase in mammals to overcome the host species barrier. J Virol 2013; 87:7200-9. [PMID: 23616660 DOI: 10.1128/jvi.00980-13] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Avian influenza A viruses, such as the highly pathogenic avian H5N1 viruses, sporadically enter the human population but often do not transmit between individuals. In rare cases, however, they establish a new lineage in humans. In addition to well-characterized barriers to cell entry, one major hurdle which avian viruses must overcome is their poor polymerase activity in human cells. There is compelling evidence that these viruses overcome this obstacle by acquiring adaptive mutations in the polymerase subunits PB1, PB2, and PA and the nucleoprotein (NP) as well as in the novel polymerase cofactor nuclear export protein (NEP). Recent findings suggest that synthesis of the viral genome may represent the major defect of avian polymerases in human cells. While the precise mechanisms remain to be unveiled, it appears that a broad spectrum of polymerase adaptive mutations can act collectively to overcome this defect. Thus, identification and monitoring of emerging adaptive mutations that further increase polymerase activity in human cells are critical to estimate the pandemic potential of avian viruses.
Collapse
|
48
|
CHD6, a cellular repressor of influenza virus replication, is degraded in human alveolar epithelial cells and mice lungs during infection. J Virol 2013; 87:4534-44. [PMID: 23408615 DOI: 10.1128/jvi.00554-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The influenza virus polymerase associates to an important number of transcription-related proteins, including the largest subunit of the RNA polymerase II complex (RNAP II). Despite this association, degradation of the RNAP II takes place in the infected cells once viral transcription is completed. We have previously shown that the chromatin remodeler CHD6 protein interacts with the influenza virus polymerase complex, represses viral replication, and relocalizes to inactive chromatin during influenza virus infection. In this paper, we report that CHD6 acts as a negative modulator of the influenza virus polymerase activity and is also subjected to degradation through a process that includes the following characteristics: (i) the cellular proteasome is not implicated, (ii) the sole expression of the three viral polymerase subunits from its cloned cDNAs is sufficient to induce proteolysis, and (iii) degradation is also observed in vivo in lungs of infected mice and correlates with the increase of viral titers in the lungs. Collectively, the data indicate that CHD6 degradation is a general effect exerted by influenza A viruses and suggest that this viral repressor may play an important inhibitory role since degradation and accumulation into inactive chromatin occur during the infection.
Collapse
|
49
|
Cellular protein HAX1 interacts with the influenza A virus PA polymerase subunit and impedes its nuclear translocation. J Virol 2012; 87:110-23. [PMID: 23055567 DOI: 10.1128/jvi.00939-12] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Transcription and replication of the influenza A virus RNA genome occur in the nucleus through the viral RNA-dependent RNA polymerase consisting of PB1, PB2, and PA. Cellular factors that associate with the viral polymerase complex play important roles in these processes. To look for cellular factors that could associate with influenza A virus PA protein, we have carried out a yeast two-hybrid screen using a HeLa cell cDNA library. We identified six cellular proteins that may interact with PA. We focused our study on one of the new PA-interacting proteins, HAX1, a protein with antiapoptotic function. By using glutathione S-transferase pulldown and coimmunoprecipitation assays, we demonstrate that HAX1 specifically interacts with PA in vitro and in vivo and that HAX1 interacts with the nuclear localization signal domain of PA. Nuclear accumulation of PA was increased in HAX1-knockdown cells, and this phenotype could be reversed by reexpression of HAX1, indicating that HAX1 can impede nuclear transport of PA. As a consequence, knockdown of HAX1 resulted in a significant increase in virus yield and polymerase activity in a minigenome assay, and this phenotype could be reversed by reexpression of HAX1, indicating that HAX1 can inhibit influenza A virus propagation. Together, these results not only provide insight into the mechanism underlying nuclear transport of PA but also identify an intrinsic host factor that restricts influenza A virus infection.
Collapse
|
50
|
HMGB1 protein binds to influenza virus nucleoprotein and promotes viral replication. J Virol 2012; 86:9122-33. [PMID: 22696656 DOI: 10.1128/jvi.00789-12] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Influenza virus has evolved replication strategies that hijack host cell pathways. To uncover interactions between viral macromolecules and host proteins, we applied a phage display strategy. A library of human cDNA expression products displayed on filamentous phages was submitted to affinity selection for influenza viral ribonucleoproteins (vRNPs). High-mobility-group box (HMGB) proteins were found to bind to the nucleoprotein (NP) component of vRNPs. HMGB1 and HMGB2 bind directly to the purified NP in the absence of viral RNA, and the HMG box A domain is sufficient to bind the NP. We show that HMGB1 associates with the viral NP in the nuclei of infected cells, promotes viral growth, and enhances the activity of the viral polymerase. The presence of a functional HMGB1 DNA-binding site is required to enhance influenza virus replication. Glycyrrhizin, which reduces HMGB1 binding to DNA, inhibits influenza virus polymerase activity. Our data show that the HMGB1 protein can play a significant role in intranuclear replication of influenza viruses, thus extending previous findings on the bornavirus and on a number of DNA viruses.
Collapse
|