1
|
Chang-Gonzalez AC, Akitsu A, Mallis RJ, Lang MJ, Reinherz EL, Hwang W. Load-based divergence in the dynamic allostery of two TCRs recognizing the same pMHC. eLife 2025; 13:RP104280. [PMID: 40192121 PMCID: PMC11975369 DOI: 10.7554/elife.104280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025] Open
Abstract
Increasing evidence suggests that mechanical load on the αβ T-cell receptor (TCR) is crucial for recognizing the antigenic peptide-bound major histocompatibility complex (pMHC) molecule. Our recent all-atom molecular dynamics (MD) simulations revealed that the inter-domain motion of the TCR is responsible for the load-induced catch bond behavior of the TCR-pMHC complex and peptide discrimination (Chang-Gonzalez et al., 2024). To further examine the generality of the mechanism, we perform all-atom MD simulations of the B7 TCR under different conditions for comparison with our previous simulations of the A6 TCR. The two TCRs recognize the same pMHC and have similar interfaces with pMHC in crystal structures. We find that the B7 TCR-pMHC interface stabilizes under ∼15 pN load using a conserved dynamic allostery mechanism that involves the asymmetric motion of the TCR chassis. However, despite forming comparable contacts with pMHC as A6 in the crystal structure, B7 has fewer high-occupancy contacts with pMHC and exhibits higher mechanical compliance during the simulation. These results indicate that the dynamic allostery common to the TCRαβ chassis can amplify slight differences in interfacial contacts into distinctive mechanical responses and nuanced biological outcomes.
Collapse
MESH Headings
- Molecular Dynamics Simulation
- Allosteric Regulation
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Humans
- Major Histocompatibility Complex
- Protein Binding
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/metabolism
Collapse
Affiliation(s)
| | - Aoi Akitsu
- Laboratory of Immunobiology, Dana-Farber Cancer InstituteBostonUnited States
- Department of Medical Oncology, Dana-Farber Cancer InstituteBostonUnited States
- Department of Medicine, Harvard Medical SchoolBostonUnited States
| | - Robert J Mallis
- Laboratory of Immunobiology, Dana-Farber Cancer InstituteBostonUnited States
- Department of Medical Oncology, Dana-Farber Cancer InstituteBostonUnited States
- Department of Dermatology, Harvard Medical SchoolBostonUnited States
| | - Matthew J Lang
- Department of Chemical and Biomolecular Engineering, Vanderbilt UniversityNashvilleUnited States
- Department of Molecular Physiology and Biophysics, Vanderbilt UniversityNashvilleUnited States
| | - Ellis L Reinherz
- Laboratory of Immunobiology, Dana-Farber Cancer InstituteBostonUnited States
- Department of Medical Oncology, Dana-Farber Cancer InstituteBostonUnited States
- Department of Medicine, Harvard Medical SchoolBostonUnited States
| | - Wonmuk Hwang
- Department of Biomedical Engineering, Texas A&M UniversityCollege StationUnited States
- Department of Materials Science & Engineering, Texas A&M UniversityCollege StationUnited States
- Center for AI and Natural Sciences, Korea Institute for Advanced StudySeoulRepublic of Korea
- Department of Physics & Astronomy, Texas A&M UniversityCollege StationUnited States
| |
Collapse
|
2
|
Chang-Gonzalez AC, Akitsu A, Mallis RJ, Lang MJ, Reinherz EL, Hwang W. Load-based divergence in the dynamic allostery of two TCRs recognizing the same pMHC. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.16.618634. [PMID: 39464111 PMCID: PMC11507873 DOI: 10.1101/2024.10.16.618634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Increasing evidence suggests that mechanical load on the αβ T cell receptor (TCR) is crucial for recognizing the antigenic peptide-loaded major histocompatibility complex (pMHC) molecule. Our recent all-atom molecular dynamics (MD) simulations revealed that the inter-domain motion of the TCR is responsible for the load-induced catch bond behavior of the TCR-pMHC complex and peptide discrimination. To further examine the generality of the mechanism, we perform all-atom MD simulations of the B7 TCR under different conditions for comparison with our previous simulations of the A6 TCR. The two TCRs recognize the same pMHC and have similar interfaces with pMHC in crystal structures. We find that the B7 TCR-pMHC interface stabilizes under ~15-pN load using a conserved dynamic allostery mechanism that involves the asymmetric motion of the TCR chassis. However, despite forming comparable contacts with pMHC as A6 in the crystal structure, B7 has fewer high-occupancy contacts with pMHC and exhibits higher mechanical compliance during the simulation. These results indicate that the dynamic allostery common to the TCRαβ chassis can amplify slight differences in interfacial contacts into distinctive mechanical responses and nuanced biological outcomes.
Collapse
Affiliation(s)
- Ana C. Chang-Gonzalez
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Aoi Akitsu
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Robert J. Mallis
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, USA
| | - Matthew J. Lang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Ellis L. Reinherz
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Wonmuk Hwang
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
- Department of Materials Science & Engineering, Texas A&M University, College Station, TX, USA
- Department of Physics & Astronomy, Texas A&M University, College Station, TX, USA
- Center for AI and Natural Sciences, Korea Institute for Advanced Study, Seoul, Republic of Korea
| |
Collapse
|
3
|
Callery EL, Morais CLM, Taylor JV, Challen K, Rowbottom AW. Investigation of Long-Term CD4+ T Cell Receptor Repertoire Changes Following SARS-CoV-2 Infection in Patients with Different Severities of Disease. Diagnostics (Basel) 2024; 14:2330. [PMID: 39451653 PMCID: PMC11507081 DOI: 10.3390/diagnostics14202330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/04/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND The difference in the immune response to severe acute respiratory syndrome coro-navirus 2 (SARS-CoV-2) in patients with mild versus severe disease remains poorly understood. Recent scientific advances have recognised the vital role of both B cells and T cells; however, many questions remain unanswered, particularly for T cell responses. T cells are essential for helping the generation of SARS-CoV-2 antibody responses but have also been recognised in their own right as a major factor influencing COVID-19 disease outcomes. The examination of T cell receptor (TCR) family differences over a 12-month period in patients with varying COVID-19 disease severity is crucial for understanding T cell responses to SARS-CoV-2. METHODS We applied a machine learning approach to analyse TCR vb family responses in COVID-19 patients (n = 151) across multiple timepoints and disease severities alongside SARS-CoV-2 infection-naïve (healthy control) individ-uals (n = 62). RESULTS Blood samples from hospital in-patients with moderate, severe, or critical disease could be classified with an accuracy of 94%. Furthermore, we identified significant variances in TCR vb family specificities between disease and control subgroups. CONCLUSIONS Our findings suggest advantageous and disadvantageous TCR repertoire patterns in relation to disease severity. Following validation in larger cohorts, our methodology may be useful in detecting protective immunity and the assessment of long-term outcomes, particularly as we begin to unravel the immunological mechanisms leading to post-COVID complications.
Collapse
Affiliation(s)
- Emma L. Callery
- Department of Immunology, Lancashire Teaching Hospitals NHS Foundation, Preston PR2 9HT, UK;
| | - Camilo L. M. Morais
- Institute of Chemistry, Federal University of Rio Grande do Norte, Natal 59072-970, Brazil;
| | - Jemma V. Taylor
- Department of Immunology, Lancashire Teaching Hospitals NHS Foundation, Preston PR2 9HT, UK;
| | - Kirsty Challen
- Department of Emergency Medicine, Lancashire Teaching Hospitals NHS Foundation, Preston PR2 9HT, UK;
| | - Anthony W. Rowbottom
- Department of Immunology, Lancashire Teaching Hospitals NHS Foundation, Preston PR2 9HT, UK;
- School of Medicine, University of Central Lancashire, Preston PR1 2HE, UK
| |
Collapse
|
4
|
Kusuda M, Nakasone H, Yoshimura K, Okada Y, Tamaki M, Matsuoka A, Ishikawa T, Meno T, Nakamura Y, Kawamura M, Takeshita J, Kawamura S, Yoshino N, Misaki Y, Gomyo A, Tanihara A, Kimura SI, Kako S, Kanda Y. Gene expression and TCR amino acid sequences selected by HLA-A02:01-restricted CTLs specific to HTLV-1 in ATL patients. Br J Haematol 2023; 202:578-588. [PMID: 37317804 DOI: 10.1111/bjh.18918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/16/2023]
Abstract
Adult T-cell leukaemia/lymphoma (ATL) is an aggressive malignancy of peripheral T cells caused by human T-cell lymphotropic virus type-1 (HTLV-1). Tax is the most important regulatory protein for HTLV-1. We aimed to reveal a unique amino acid sequence (AA) of complementarity-determining region 3 (CDR3) of the T-cell receptor (TCR)β and TCRα chains of HLA-A*02:01-restricted Tax11-19 -specific cytotoxic T cells (Tax-CTLs). The gene expression profiles (GEP) of Tax-CTLs were assessed by the next-generation sequence (NGS) method with SMARTer technology. Tax-CTLs seemed to be oligoclonal, and their gene compositions were skewed. The unique motifs of 'DSWGK' in TCRα and 'LAG' in TCRβ at CDR3 were observed in almost all patients. Tax-CTL clones harbouring the 'LAG' motif with BV28 had a higher binding score than those without either of them, besides a higher binding score associated with longer survival. Tax-CTLs established from a single cell showed killing activities against Tax-peptide-pulsed HLA-A2+ T2 cell lines. GEP of Tax-CTLs revealed that genes associated with immune response activity were well preserved in long-term survivors with stable status. These methods and results can help us better understand immunity against ATL, and should contribute to future studies on the clinical application of adoptive T-cell therapies.
Collapse
Affiliation(s)
- Machiko Kusuda
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Hideki Nakasone
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
- Division of Stem Cell Regulation, Center for Molecular Medicine, Jichi Medicial University, Shimotsuke, Japan
| | - Kazuki Yoshimura
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Yosuke Okada
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Masaharu Tamaki
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Akari Matsuoka
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Takuto Ishikawa
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Tomohiro Meno
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Yuhei Nakamura
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Masakatsu Kawamura
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Junko Takeshita
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Shunto Kawamura
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Nozomu Yoshino
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Yukiko Misaki
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Ayumi Gomyo
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Aki Tanihara
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Shun-Ichi Kimura
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Shinichi Kako
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Yoshinobu Kanda
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| |
Collapse
|
5
|
Nozuma S, Matsuura E, Tanaka M, Kodama D, Matsuzaki T, Yoshimura A, Sakiyama Y, Nakahata S, Morishita K, Enose-Akahata Y, Jacoboson S, Kubota R, Takashima H. Identification and tracking of HTLV-1-infected T cell clones in virus-associated neurologic disease. JCI Insight 2023; 8:167422. [PMID: 37036006 PMCID: PMC10132145 DOI: 10.1172/jci.insight.167422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/21/2023] [Indexed: 04/11/2023] Open
Abstract
Human T lymphotropic virus type 1-assoicated (HTLV-1-associated) myelopathy/tropical spastic paraparesis (HAM/TSP) is a neuroinflammatory disease caused by the persistent proliferation of HTLV-1-infected T cells. Here, we performed a T cell receptor (TCR) repertoire analysis focused on HTLV-1-infected cells to identify and track the infected T cell clones that are preserved in patients with HAM/TSP and migrate to the CNS. TCRβ repertoire analysis revealed higher clonal expansion in HTLV-1-infected cells compared with noninfected cells from patients with HAM/TSP and asymptomatic carriers (ACs). TCR clonality in HTLV-1-infected cells was similar in patients with HAM/TSP and ACs. Longitudinal analysis showed that the TCR repertoire signature in HTLV-1-infected cells remained stable, and highly expanded infected clones were preserved within each patient with HAM/TSP over years. Expanded HTLV-1-infected clones revealed different distributions between cerebrospinal fluid (CSF) and peripheral blood and were enriched in the CSF of patients with HAM/TSP. Cluster analysis showed similarity in TCRβ sequences in HTLV-1-infected cells, suggesting that they proliferate after common antigen stimulation. Our results indicate that exploring TCR repertoires of HTLV-1-infected cells can elucidate individual clonal dynamics and identify potential pathogenic clones expanded in the CNS.
Collapse
Affiliation(s)
- Satoshi Nozuma
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Eiji Matsuura
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Masakazu Tanaka
- Division of Neuroimmunology, Joint Research Center for Human Retrovirus Infection, and
| | - Daisuke Kodama
- Division of Neuroimmunology, Joint Research Center for Human Retrovirus Infection, and
| | - Toshio Matsuzaki
- Division of Neuroimmunology, Joint Research Center for Human Retrovirus Infection, and
| | - Akiko Yoshimura
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yusuke Sakiyama
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Shingo Nakahata
- Division of HTLV-1/ATL Carcinogenesis and Therapeutics, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, Japan
| | - Kazuhiro Morishita
- Project for Advanced Medical Research and Development, Project Research Division, Frontier Science Research Center, University of Miyazaki, Miyazaki, Japan
| | - Yoshimi Enose-Akahata
- Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorder and Stroke, NIH, Bethesda, Maryland, USA
| | - Steven Jacoboson
- Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorder and Stroke, NIH, Bethesda, Maryland, USA
| | - Ryuji Kubota
- Division of Neuroimmunology, Joint Research Center for Human Retrovirus Infection, and
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
6
|
Clauze A, Enose-Akahata Y, Jacobson S. T cell receptor repertoire analysis in HTLV-1-associated diseases. Front Immunol 2022; 13:984274. [PMID: 36189294 PMCID: PMC9520328 DOI: 10.3389/fimmu.2022.984274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Human T lymphotropic virus 1 (HTLV-1) is a human retrovirus identified as the causative agent in adult T-cell leukemia/lymphoma (ATL) and chronic-progressive neuroinflammatory disorder HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). HTLV-1 is estimated to infect between 5-20 million people worldwide, although most infected individuals remain asymptomatic. HTLV-1 infected persons carry an estimated lifetime risk of approximately 5% of developing ATL, and between 0.25% and 1.8% of developing HAM/TSP. Most HTLV-1 infection is detected in CD4+ T cells in vivo which causes the aggressive malignancy in ATL. In HAM/TSP, the increase of HTLV-1 provirus induces immune dysregulation to alter inflammatory milieu, such as expansion of HTLV-1-specific CD8+ T cells, in the central nervous system of the infected subjects, which have been suggested to underlie the pathogenesis of HAM/TSP. Factors contributing to the conversion from asymptomatic carrier to disease state remain poorly understood. As such, the identification and tracking of HTLV-1-specific T cell biomarkers that may be used to monitor the progression from primary infection to immune dysfunction and disease are of great interest. T cell receptor (TCR) repertoires have been extensively investigated as a mechanism of monitoring adaptive T cell immune response to viruses and tumors. Breakthrough technologies such as single-cell RNA sequencing have increased the specificity with which T cell clones may be characterized and continue to improve our understanding of TCR signatures in viral infection, cancer, and associated treatments. In HTLV-1-associated disease, sequencing of TCR repertoires has been used to reveal repertoire patterns, diversity, and clonal expansions of HTLV-1-specific T cells capable of immune evasion and dysregulation in ATL as well as in HAM/TSP. Conserved sequence analysis has further been used to identify CDR3 motif sequences and exploit disease- or patient-specificity and commonality in HTLV-1-associated disease. In this article we review current research on TCR repertoires and HTLV-1-specific clonotypes in HTLV-1-associated diseases ATL and HAM/TSP and discuss the implications of TCR clonal expansions on HTLV-1-associated disease course and treatments.
Collapse
|
7
|
Tanaka Y, Sato T, Yagishita N, Yamauchi J, Araya N, Aratani S, Takahashi K, Kunitomo Y, Nagasaka M, Kanda Y, Uchimaru K, Morio T, Yamano Y. Potential role of HTLV-1 Tax-specific cytotoxic t lymphocytes expressing a unique t-cell receptor to promote inflammation of the central nervous system in myelopathy associated with HTLV-1. Front Immunol 2022; 13:993025. [PMID: 36081501 PMCID: PMC9446235 DOI: 10.3389/fimmu.2022.993025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/01/2022] [Indexed: 01/09/2023] Open
Abstract
Human T-lymphotropic virus 1 (HTLV-1) infection causes two serious diseases: adult T-cell leukemia/lymphoma (ATL) and HTLV-1-associated myelopathy (HAM). Immunological studies have revealed that HTLV-1 Tax-specific CD8+ cytotoxic T-cells (Tax-CTLs) in asymptomatic carriers (ACs) and ATL patients play an important role in the elimination of HTLV-1-infected host cells, whereas Tax-CTLs in HAM patients trigger an excessive immune response against HTLV-1-infected host cells infiltrating the central nervous system (CNS), leading to local inflammation. Our previous evaluation of HTLV-1 Tax301-309 (SFHSLHLLF)-specific Tax-CTLs (Tax301-309-CTLs) revealed that a unique T-cell receptor (TCR) containing amino acid (AA)-sequence motif PDR, was shared among HLA-A*24:02+ ACs and ATL patients and behaved as an eliminator by strong activity against HTLV-1. However, it remains unclear whether PDR+Tax301-309-CTLs also exist in HLA-A*24:02+ HAM patients and are involved in the pathogenesis of HAM. In the present study, by high-throughput TCR repertoire analysis technology, we revealed TCR repertoires of Tax301-309-CTLs in peripheral blood (PB) of HLA-A*24:02+ HAM patients were skewed, and a unique TCR-motif PDR was conserved in HAM patients (10 of 11 cases). The remaining case dominantly expressed (-DR, P-R, and PD-), which differed by one AA from PDR. Overall, TCRs with unique AA-sequence motifs PDR, or (-DR, P-R, and PD-) accounted for a total of 0.3-98.1% of Tax301-309-CTLs repertoires of HLA-A*24:02+ HAM patients. Moreover, TCR repertoire analysis of T-cells in the cerebrospinal fluid (CSF) from four HAM patients demonstrated the possibility that PDR+Tax301-309-CTLs and (-DR, P-R, and PD-)+Tax301-309-CTLs efficiently migrated and accumulated in the CSF of HAM patients fostering increased inflammation, although we observed no clear significant correlation between the frequencies of them in PB and the levels of CSF neopterin, a known disease activity biomarker of HAM. Furthermore, to better understand the potential function of PDR+Tax301-309-CTLs, we performed immune profiling by single-cell RNA-sequencing of Tax301-309-CTLs, and the result showed that PDR+Tax301-309-CTLs up-regulated the gene expression of natural killer cell marker KLRB1 (CD161), which may be associated with T-cell activation and highly cytotoxic potential of memory T-cells. These findings indicated that unique and shared PDR+Tax301-309-CTLs have a potential role in promoting local inflammation within the CNS of HAM patients.
Collapse
Affiliation(s)
- Yukie Tanaka
- Department of Molecular Microbiology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan,Research Core, Institute of Research, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tomoo Sato
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan,Division of Neurology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Naoko Yagishita
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Junji Yamauchi
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan,Division of Neurology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Natsumi Araya
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Satoko Aratani
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan,Advanced Business Promotion Department, Business Development Segment, LSI Medience Corporation, Tokyo, Japan
| | - Katsunori Takahashi
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Yasuo Kunitomo
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Misako Nagasaka
- Division of Neurology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan,Chao Family Comprehensive Cancer Center, University of California Irvine School of Medicine, Orange, CA, United States
| | - Yoshinobu Kanda
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan,Division of Hematology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Kaoru Uchimaru
- Department of Hematology and Oncology, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan,Laboratory of Tumor Cell Biology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yoshihisa Yamano
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan,Division of Neurology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan,*Correspondence: Yoshihisa Yamano,
| |
Collapse
|
8
|
Huisman W, Hageman L, Leboux DAT, Khmelevskaya A, Efimov GA, Roex MCJ, Amsen D, Falkenburg JHF, Jedema I. Public T-Cell Receptors (TCRs) Revisited by Analysis of the Magnitude of Identical and Highly-Similar TCRs in Virus-Specific T-Cell Repertoires of Healthy Individuals. Front Immunol 2022; 13:851868. [PMID: 35401538 PMCID: PMC8987591 DOI: 10.3389/fimmu.2022.851868] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/04/2022] [Indexed: 01/11/2023] Open
Abstract
Since multiple different T-cell receptor (TCR) sequences can bind to the same peptide-MHC combination and the number of TCR-sequences that can theoretically be generated even exceeds the number of T cells in a human body, the likelihood that many public identical (PUB-I) TCR-sequences frequently contribute to immune responses has been estimated to be low. Here, we quantitatively analyzed the TCR-repertoires of 190 purified virus-specific memory T-cell populations, directed against 21 epitopes of Cytomegalovirus, Epstein-Barr virus and Adenovirus isolated from 29 healthy individuals, and determined the magnitude, defined as prevalence within the population and frequencies within individuals, of PUB-I TCR and of TCR-sequences that are highly-similar (PUB-HS) to these PUB-I TCR-sequences. We found that almost one third of all TCR nucleotide-sequences represented PUB-I TCR amino-acid (AA) sequences and found an additional 12% of PUB-HS TCRs differing by maximally 3 AAs. We illustrate that these PUB-I and PUB-HS TCRs were structurally related and contained shared core-sequences in their TCR-sequences. We found a prevalence of PUB-I and PUB-HS TCRs of up to 50% among individuals and showed frequencies of virus-specific PUB-I and PUB-HS TCRs making up more than 10% of each virus-specific T-cell population. These findings were confirmed by using an independent TCR-database of virus-specific TCRs. We therefore conclude that the magnitude of the contribution of PUB-I and PUB-HS TCRs to these virus-specific T-cell responses is high. Because the T cells from these virus-specific memory TCR-repertoires were the result of successful control of the virus in these healthy individuals, these PUB-HS TCRs and PUB-I TCRs may be attractive candidates for immunotherapy in immunocompromised patients that lack virus-specific T cells to control viral reactivation.
Collapse
Affiliation(s)
- Wesley Huisman
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands.,Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory for Blood Cell Research, Amsterdam, Netherlands
| | - Lois Hageman
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - Didier A T Leboux
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - Alexandra Khmelevskaya
- Laboratory of Transplantation Immunology, National Research Center for Hematology, Moscow, Russia
| | - Grigory A Efimov
- Laboratory of Transplantation Immunology, National Research Center for Hematology, Moscow, Russia
| | - Marthe C J Roex
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - Derk Amsen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory for Blood Cell Research, Amsterdam, Netherlands
| | | | - Inge Jedema
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
9
|
Nozuma S, Enose-Akahata Y, Johnson KR, Monaco MC, Ngouth N, Elkahloun A, Ohayon J, Zhu J, Jacobson S. Immunopathogenic CSF TCR repertoire signatures in virus-associated neurologic disease. JCI Insight 2021; 6:144869. [PMID: 33616082 PMCID: PMC7934934 DOI: 10.1172/jci.insight.144869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/13/2021] [Indexed: 11/22/2022] Open
Abstract
In this study, we examined and characterized disease-specific TCR signatures in cerebrospinal fluid (CSF) of patients with HTLV-1–associated myelopathy/tropical spastic paraparesis (HAM/TSP). TCR β libraries using unique molecular identifier–based methodologies were sequenced in paired peripheral blood mononuclear cells (PBMCs) and CSF cells from HAM/TSP patients and normal healthy donors (NDs). The sequence analysis demonstrated that TCR β repertoires in CSF of HAM/TSP patients were highly expanded and contained both TCR clonotypes shared with PBMCs and uniquely enriched within the CSF. In addition, we analyzed TCR β repertoires of highly expanded and potentially immunopathologic HTLV-1 Tax11-19–specific CD8+ T cells from PBMCs of HLA-A*0201+ HAM/TSP and identified a conserved motif (PGLAG) in the CDR3 region. Importantly, TCR β clonotypes of expanded clones in HTLV-1 Tax11-19–specific CD8+ T cells were also expanded and enriched in the CSF of the same patient. These results suggest that exploring TCR repertoires of CSF and antigen-specific T cells may provide a TCR repertoire signature in virus-associated neurologic disorders.
Collapse
Affiliation(s)
| | | | - Kory R Johnson
- Bioinformatics Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | | | - Nyater Ngouth
- Viral Immunology Section, Neuroimmunology Branch and
| | - Abdel Elkahloun
- Comparative Genomics and Cancer Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Joan Ohayon
- Neuroimmunology Clinic, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Jun Zhu
- Mokobio Biotechnology R&D Center, Rockville, Maryland, USA
| | | |
Collapse
|
10
|
Nozuma S, Kubota R, Jacobson S. Human T-lymphotropic virus type 1 (HTLV-1) and cellular immune response in HTLV-1-associated myelopathy/tropical spastic paraparesis. J Neurovirol 2020; 26:652-663. [PMID: 32705480 PMCID: PMC7532128 DOI: 10.1007/s13365-020-00881-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 03/29/2020] [Accepted: 07/06/2020] [Indexed: 12/18/2022]
Abstract
Human T-lymphotropic virus type 1 (HTLV-1) is associated with adult T cell leukemia/lymphoma and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). HAM/TSP is an inflammatory disease of the spinal cord and clinically characterized by progressive spastic paraparesis, urinary incontinence, and mild sensory disturbance. The interaction between the host immune response and HTLV-1-infected cells regulates the development of HAM/TSP. HTLV-1 preferentially infects CD4+ T cells and is maintained by proliferation of the infected T cells. HTLV-1-infected cells rarely express viral antigens in vivo; however, they easily express the antigens after short-term culture. Therefore, such virus-expressing cells may lead to activation and expansion of antigen-specific T cell responses. Infected T cells with HTLV-1 and HTLV-1-specific CD8+ cytotoxic T lymphocytes invade the central nervous system and produce various proinflammatory cytokines and chemokines, leading to neuronal damage and degeneration. Therefore, cellular immune responses to HTLV-1 have been considered to play important roles in disease development of HAM/TSP. Recent studies have clarified the viral strategy for persistence in the host through genetic and epigenetic changes by HTLV-1 and host immune responses including T cell function and differentiation. Newly developed animal models could provide the opportunity to uncover the precise pathogenesis and development of clinically effective treatment. Several molecular target drugs are undergoing clinical trials with promising efficacy. In this review, we summarize recent advances in the immunopathogenesis of HAM/TSP and discuss the perspectives of the research on this disease.
Collapse
MESH Headings
- Animals
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/virology
- Cell Proliferation/drug effects
- Cytokines/biosynthesis
- Cytokines/immunology
- Disease Models, Animal
- Host-Pathogen Interactions/immunology
- Human T-lymphotropic virus 1/drug effects
- Human T-lymphotropic virus 1/immunology
- Human T-lymphotropic virus 1/pathogenicity
- Humans
- Immunity, Cellular/drug effects
- Immunologic Factors/therapeutic use
- Leukemia-Lymphoma, Adult T-Cell/drug therapy
- Leukemia-Lymphoma, Adult T-Cell/immunology
- Leukemia-Lymphoma, Adult T-Cell/pathology
- Leukemia-Lymphoma, Adult T-Cell/virology
- Lymphocyte Activation/drug effects
- Neurons/drug effects
- Neurons/immunology
- Neurons/pathology
- Neurons/virology
- Neuroprotective Agents/therapeutic use
- Paraparesis, Tropical Spastic/drug therapy
- Paraparesis, Tropical Spastic/immunology
- Paraparesis, Tropical Spastic/pathology
- Paraparesis, Tropical Spastic/virology
- Spinal Cord/drug effects
- Spinal Cord/immunology
- Spinal Cord/virology
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/virology
- Urinary Incontinence/drug therapy
- Urinary Incontinence/immunology
- Urinary Incontinence/pathology
- Urinary Incontinence/virology
Collapse
Affiliation(s)
- Satoshi Nozuma
- Viral Immunology Section, Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Ryuji Kubota
- Division of Neuroimmunology, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, Japan
| | - Steven Jacobson
- Viral Immunology Section, Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
11
|
CD28neg. T lymphocytes of a melanoma patient harbor tumor immunity and a high frequency of germline-encoded and public TCRs. Immunol Res 2017; 66:79-86. [DOI: 10.1007/s12026-017-8976-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
12
|
A Unique T-Cell Receptor Amino Acid Sequence Selected by Human T-Cell Lymphotropic Virus Type 1 Tax 301-309-Specific Cytotoxic T Cells in HLA-A24:02-Positive Asymptomatic Carriers and Adult T-Cell Leukemia/Lymphoma Patients. J Virol 2017; 91:JVI.00974-17. [PMID: 28724766 DOI: 10.1128/jvi.00974-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 07/06/2017] [Indexed: 11/20/2022] Open
Abstract
We previously reported that the T-cell receptor (TCR) repertoire of human T-cell lymphotropic virus type 1 (HTLV-1) Tax301-309-specific CD8+ cytotoxic T cells (Tax301-309-CTLs) was highly restricted and a particular amino acid sequence motif, the PDR motif, was conserved among HLA-A*24:02-positive (HLA-A*24:02+) adult T-cell leukemia/lymphoma (ATL) patients who had undergone allogeneic hematopoietic cell transplantation (allo-HSCT). Furthermore, we found that donor-derived PDR+ CTLs selectively expanded in ATL long-term HSCT survivors with strong CTL activity against HTLV-1. On the other hand, the TCR repertoires in Tax301-309-CTLs of asymptomatic HTLV-1 carriers (ACs) remain unclear. In this study, we directly identified the DNA sequence of complementarity-determining region 3 (CDR3) of the TCR-β chain of Tax301-309-CTLs at the single-cell level and compared not only the TCR repertoires but also the frequencies and phenotypes of Tax301-309-CTLs between ACs and ATL patients. We did not observe any essential difference in the frequencies of Tax301-309-CTLs between ACs and ATL patients. In the single-cell TCR repertoire analysis of Tax301-309-CTLs, 1,458 Tax301-309-CTLs and 140 clones were identified in this cohort. Tax301-309-CTLs showed highly restricted TCR repertoires with a strongly biased usage of BV7, and PDR, the unique motif in TCR-β CDR3, was exclusively observed in all ACs and ATL patients. However, there was no correlation between PDR+ CTL frequencies and HTLV-1 proviral load (PVL). In conclusion, we have identified, for the first time, a unique amino acid sequence, PDR, as a public TCR-CDR3 motif against Tax in HLA-A*24:02+ HTLV-1-infected individuals. Further investigations are warranted to elucidate the role of the PDR+ CTL response in the progression from carrier state to ATL.IMPORTANCE ATL is an aggressive T-cell malignancy caused by HTLV-1 infection. The HTLV-1 regulatory protein Tax aggressively promotes the proliferation of HTLV-1-infected lymphocytes and is also a major target antigen for CD8+ CTLs. In our previous evaluation of Tax301-309-CTLs, we found that a unique amino acid sequence motif, PDR, in CDR3 of the TCR-β chain of Tax301-309-CTLs was conserved among ATL patients after allo-HSCT. Furthermore, the PDR+ Tax301-309-CTL clones selectively expanded and showed strong cytotoxic activities against HTLV-1. On the other hand, it remains unclear how Tax301-309-CTL repertoire exists in ACs. In this study, we comprehensively compared Tax-specific TCR repertoires at the single-cell level between ACs and ATL patients. Tax301-309-CTLs showed highly restricted TCR repertoires with a strongly biased usage of BV7, and PDR, the unique motif in TCR-β CDR3, was conserved in all ACs and ATL patients, regardless of clinical subtype in HTLV-1 infection.
Collapse
|
13
|
Banjara M, Ghosh C, Dadas A, Mazzone P, Janigro D. Detection of brain-directed autoantibodies in the serum of non-small cell lung cancer patients. PLoS One 2017; 12:e0181409. [PMID: 28746384 PMCID: PMC5528996 DOI: 10.1371/journal.pone.0181409] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 07/02/2017] [Indexed: 01/17/2023] Open
Abstract
Antibodies against brain proteins were identified in the plasma of cancer patients and are defined to cause paraneoplastic neurological syndromes. The profiles of brain-directed antibodies in non-small cell lung cancer (NSCLC) are largely unknown. Here, for the first time, we compared autoantibodies against brain proteins in NSCLC (n = 18) against those present in age-matched non-cancer control subjects (n = 18) with a similar life-style, habit, and medical history. Self-recognizing immunoglobulin (IgG) are primarily directed against cells in the cortex (P = 0.008), hippocampus (P = 0.003–0.05), and cerebellum (P = 0.02). More specifically, IgG targets were prominent in the pyramidal, Purkinje, and granule cell layers. Furthermore, autoimmune IgG signals were localized to neurons (81%), astrocytes (48%), and endothelial (29%) cells. While cancer sera yielded overall higher intensity signals, autoantigens of 100, 65, 45, 37, and 30 kDa molecular weights were the most represented. Additionally, a group of 100 kDa proteins seem more prevalent in female adenocarcinoma patients (4/5, 80%). In conclusion, our results revealed autoantigen specificity in NSCLC, which implicitly depends on patient’s demographics and disease history. Patients at risk for lung cancer but with no active disease revealed that the immune profile in NSCLC is disease-dependent.
Collapse
Affiliation(s)
- Manoj Banjara
- Cerebrovascular Research, Cleveland Clinic Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America
| | - Chaitali Ghosh
- Cerebrovascular Research, Cleveland Clinic Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America
- Department of Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America
- * E-mail: (DJ); (CG)
| | - Aaron Dadas
- Department of Biomedical Engineering, Ohio State University, Columbus, OH, United States of America
| | - Peter Mazzone
- Respiratory Centre, Cleveland Clinic, Cleveland, OH, United States of America
| | - Damir Janigro
- Flocel Inc., Cleveland, OH, United States of America
- Department of Physiology, Case Western Reserve University, Cleveland, OH, United States of America
- * E-mail: (DJ); (CG)
| |
Collapse
|
14
|
Root-Bernstein R. Autoimmunity and the microbiome: T-cell receptor mimicry of "self" and microbial antigens mediates self tolerance in holobionts: The concepts of "holoimmunity" (TcR-mediated tolerance for the holobiont) and "holoautoimmunity" (loss of tolerance for the holobiont) are introduced. Bioessays 2016; 38:1068-1083. [PMID: 27594308 PMCID: PMC7161894 DOI: 10.1002/bies.201600083] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
I propose a T-cell receptor (TcR)-based mechanism by which immunity mediates both "genetic self" and "microbial self" thereby, connecting microbiome disease with autoimmunity. The hypothesis is based on simple principles. First, TcR are selected to avoid strong cross-reactivity with "self," resulting in selection for a TcR repertoire mimicking "genetic self." Second, evolution has selected for a "microbial self" that mimics "genetic self" so as to share tolerance. In consequence, our TcR repertoire also mimics microbiome antigenicity, providing a novel mechanism for modulating tolerance to it. Also, the microbiome mimics the TcR repertoire, acting as a secondary immune system. I call this TcR-microbiome mimicry "holoimmunity" to denote immune tolerance to the "holobiont self." Logically, microbiome-host mimicry means that autoimmunity directed at host antigens will also attack components of the microbiome, and conversely, an immunological attack on the microbiome may cross-react with host antigens producing "holoautoimmunity."
Collapse
|
15
|
Heather JM, Best K, Oakes T, Gray ER, Roe JK, Thomas N, Friedman N, Noursadeghi M, Chain B. Dynamic Perturbations of the T-Cell Receptor Repertoire in Chronic HIV Infection and following Antiretroviral Therapy. Front Immunol 2016; 6:644. [PMID: 26793190 PMCID: PMC4707277 DOI: 10.3389/fimmu.2015.00644] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 12/10/2015] [Indexed: 01/23/2023] Open
Abstract
HIV infection profoundly affects many parameters of the immune system and ultimately leads to AIDS, yet which factors are most important for determining resistance, pathology, and response to antiretroviral treatment – and how best to monitor them – remain unclear. We develop a quantitative high-throughput sequencing pipeline to characterize the TCR repertoires of HIV-infected individuals before and after antiretroviral therapy, working from small, unfractionated samples of peripheral blood. This reveals the TCR repertoires of HIV+ individuals to be highly perturbed, with considerably reduced diversity as a small proportion of sequences are highly overrepresented. HIV also causes specific qualitative changes to the repertoire including an altered distribution of V gene usage, depletion of public TCR sequences, and disruption of TCR networks. Short-term antiretroviral therapy has little impact on most of the global damage to repertoire structure, but is accompanied by rapid changes in the abundance of many individual TCR sequences, decreases in abundance of the most common sequences, and decreases in the majority of HIV-associated CDR3 sequences. Thus, high-throughput repertoire sequencing of small blood samples that are easy to take, store, and process can shed light on various aspects of the T-cell immune compartment and stands to offer insights into patient stratification and immune reconstitution.
Collapse
Affiliation(s)
- James M Heather
- Division of Infection and Immunity, University College London , London , UK
| | - Katharine Best
- Division of Infection and Immunity, University College London, London, UK; Centre for Mathematics and Physics in the Life Sciences and Experimental Biology (CoMPLEX), University College London, London, UK
| | - Theres Oakes
- Division of Infection and Immunity, University College London , London , UK
| | - Eleanor R Gray
- Division of Infection and Immunity, University College London , London , UK
| | - Jennifer K Roe
- Division of Infection and Immunity, University College London , London , UK
| | - Niclas Thomas
- Division of Infection and Immunity, University College London , London , UK
| | - Nir Friedman
- Department of Immunology, Weizmann Institute , Rehovot , Israel
| | - Mahdad Noursadeghi
- Division of Infection and Immunity, University College London , London , UK
| | - Benjamin Chain
- Division of Infection and Immunity, University College London , London , UK
| |
Collapse
|
16
|
Sonntag K, Eckert F, Welker C, Müller H, Müller F, Zips D, Sipos B, Klein R, Blank G, Feuchtinger T, Schumm M, Handgretinger R, Schilbach K. Chronic graft-versus-host-disease in CD34(+)-humanized NSG mice is associated with human susceptibility HLA haplotypes for autoimmune disease. J Autoimmun 2015; 62:55-66. [PMID: 26143958 DOI: 10.1016/j.jaut.2015.06.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/27/2015] [Accepted: 06/07/2015] [Indexed: 11/26/2022]
Abstract
Chronic graft-versus-host disease (cGVHD) is a significant hurdle to long-term hematopoietic stem-cell transplantation success. Insights into the pathogenesis and mechanistical investigations of novel therapeutic strategies are limited as appropriate animal models are missing. The immunodeficient NSG mouse - when humanized with human bone marrow, fetal liver and thymus (BLT NSG) - is prone for cGVHD, yet mainly affects the skin. In contrast, the NSG mouse humanized exclusively with CD34(+)-selected, CD3(+)-depleted stem cells (CD34(+)NSG) has neither been described for acute nor chronic GVHD so far. This is the first report about the development of systemic autoimmune cGVHD ≥24 weeks post stem cell receipt involving lung, liver, skin, gingiva and intestine in two NSG cohorts humanized with CD34(+) grafts from different donors. Affected mice presented with sclerodermatous skin, fibrotic lung, severe hepatitis, and massive dental malformation/loss. CD4(+)-dominated, TH2-biased, bulky T-cell infiltrates featured highly skewed T cell receptor (TCR) repertoires, clonal expansions, and autoreactive TCRs. In affected tissues profibrotic IL-13 and -4 dominated over TH1 cytokines IFN-γ and TNF-α. Thus, the time point of manifestation and the phenotype match human systemic pleiotropic sclerodermatous GVHD. The CD34(+)NSG-model's intrinsic deficiency of thymus, thymus-derived regulatory T cells (nTreg) and B cells emphasizes the role of the genetic polymorphism and the cytokines in the pathogenesis of cGVHD. Importantly, the only factor discriminating diseased versus non-diseased CD34(+)NSG cohorts were two risk HLA haplotypes that in human mediate susceptibility for autoimmune disease (psoriasis). Thus, the CD34(+)NSG model may serve as a platform for addressing issues related to the pathophysiology and treatment of human autoimmunity and chronic GVHD.
Collapse
Affiliation(s)
- Katja Sonntag
- Department of General Pediatrics, Oncology/Hematology, Eberhard Karls University Tübingen, Hoppe-Seyler-Str. 1, 72076 Tübingen, Germany
| | - Franziska Eckert
- Department of General Pediatrics, Oncology/Hematology, Eberhard Karls University Tübingen, Hoppe-Seyler-Str. 1, 72076 Tübingen, Germany; Department of Radiation Oncology, Eberhard Karls University Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
| | - Christian Welker
- Department of General Pediatrics, Oncology/Hematology, Eberhard Karls University Tübingen, Hoppe-Seyler-Str. 1, 72076 Tübingen, Germany
| | - Hartmut Müller
- Institute of Pathology, Eberhard Karls University Tübingen, Liebermeisterstraße 8, 72076 Tübingen, Germany
| | - Friederike Müller
- Department of General Pediatrics, Oncology/Hematology, Eberhard Karls University Tübingen, Hoppe-Seyler-Str. 1, 72076 Tübingen, Germany
| | - Daniel Zips
- Department of Radiation Oncology, Eberhard Karls University Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
| | - Bence Sipos
- Institute of Pathology, Eberhard Karls University Tübingen, Liebermeisterstraße 8, 72076 Tübingen, Germany
| | - Reinhild Klein
- Laboratory for Immunopathology, Eberhard Karls University Tübingen, Otfried-Müller-Straße 10, 72076 Tübingen, Germany
| | - Gregor Blank
- Department of General Pediatrics, Oncology/Hematology, Eberhard Karls University Tübingen, Hoppe-Seyler-Str. 1, 72076 Tübingen, Germany
| | - Tobias Feuchtinger
- Pediatric Hematology, Oncology and Stem Cell Transplantation Dr. von Hauner'sches Kinderspital, Ludwig-Maximilian-University Munich, Lindwurmstraße 4, 80337 München, Germany
| | - Michael Schumm
- Department of General Pediatrics, Oncology/Hematology, Eberhard Karls University Tübingen, Hoppe-Seyler-Str. 1, 72076 Tübingen, Germany
| | - Rupert Handgretinger
- Department of General Pediatrics, Oncology/Hematology, Eberhard Karls University Tübingen, Hoppe-Seyler-Str. 1, 72076 Tübingen, Germany
| | - Karin Schilbach
- Department of General Pediatrics, Oncology/Hematology, Eberhard Karls University Tübingen, Hoppe-Seyler-Str. 1, 72076 Tübingen, Germany.
| |
Collapse
|
17
|
Ziegler H, Welker C, Sterk M, Haarer J, Rammensee HG, Handgretinger R, Schilbach K. Human Peripheral CD4(+) Vδ1(+) γδT Cells Can Develop into αβT Cells. Front Immunol 2014; 5:645. [PMID: 25709606 PMCID: PMC4329445 DOI: 10.3389/fimmu.2014.00645] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 12/03/2014] [Indexed: 11/16/2022] Open
Abstract
The lifelong generation of αβT cells enables us to continuously build immunity against pathogens and malignancies despite the loss of thymic function with age. Homeostatic proliferation of post-thymic naïve and memory T cells and their transition into effector and long-lived memory cells balance the decreasing output of naïve T cells, and recent research suggests that also αβT-cell development independent from the thymus may occur. However, the sites and mechanisms of extrathymic T-cell development are not yet understood in detail. γδT cells represent a small fraction of the overall T-cell pool, and are endowed with tremendous phenotypic and functional plasticity. γδT cells that express the Vδ1 gene segment are a minor population in human peripheral blood but predominate in epithelial (and inflamed) tissues. Here, we characterize a CD4+ peripheral Vδ1+ γδT-cell subpopulation that expresses stem-cell and progenitor markers and is able to develop into functional αβT cells ex vivo in a simple culture system and in vivo. The route taken by this process resembles thymic T-cell development. However, it involves the re-organization of the Vδ1+ γδTCR into the αβTCR as a consequence of TCR-γ chain downregulation and the expression of surface Vδ1+Vβ+ TCR components, which we believe function as surrogate pre-TCR. This transdifferentiation process is readily detectable in vivo in inflamed tissue. Our study provides a conceptual framework for extrathymic T-cell development and opens up a new vista in immunology that requires adaptive immune responses in infection, autoimmunity, and cancer to be reconsidered.
Collapse
Affiliation(s)
- Hendrik Ziegler
- Department of Hematology and Oncology, University Children's Hospital, University of Tübingen , Tübingen , Germany
| | - Christian Welker
- Department of Hematology and Oncology, University Children's Hospital, University of Tübingen , Tübingen , Germany
| | - Marco Sterk
- Department of Hematology and Oncology, University Children's Hospital, University of Tübingen , Tübingen , Germany
| | - Jan Haarer
- Department of Hematology and Oncology, University Children's Hospital, University of Tübingen , Tübingen , Germany
| | - Hans-Georg Rammensee
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen , Tübingen , Germany
| | - Rupert Handgretinger
- Department of Hematology and Oncology, University Children's Hospital, University of Tübingen , Tübingen , Germany
| | - Karin Schilbach
- Department of Hematology and Oncology, University Children's Hospital, University of Tübingen , Tübingen , Germany
| |
Collapse
|
18
|
Rajala HLM, Olson T, Clemente MJ, Lagström S, Ellonen P, Lundan T, Hamm DE, Zaman SAU, Lopez Marti JM, Andersson EI, Jerez A, Porkka K, Maciejewski JP, Loughran TP, Mustjoki S. The analysis of clonal diversity and therapy responses using STAT3 mutations as a molecular marker in large granular lymphocytic leukemia. Haematologica 2014; 100:91-9. [PMID: 25281507 DOI: 10.3324/haematol.2014.113142] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
T-cell large granular lymphocytic leukemia and chronic lymphoproliferative disorder of natural killer cells are intriguing entities between benign and malignant lymphoproliferation. The molecular pathogenesis has partly been uncovered by the recent discovery of somatic activating STAT3 and STAT5b mutations. Here we show that 43% (75/174) of patients with T-cell large granular lymphocytic leukemia and 18% (7/39) with chronic lymphoproliferative disorder of natural killer cells harbor STAT3 mutations when analyzed by quantitative deep amplicon sequencing. Surprisingly, 17% of the STAT3-mutated patients carried multiple STAT3 mutations, which were located in different lymphocyte clones. The size of the mutated clone correlated well with the degree of clonal expansion of the T-cell repertoire analyzed by T-cell receptor beta chain deep sequencing. The analysis of sequential samples suggested that current immunosuppressive therapy is not able to reduce the level of the mutated clone in most cases, thus warranting the search for novel targeted therapies. Our findings imply that the clonal landscape of large granular lymphocytic leukemia is more complex than considered before, and a substantial number of patients have multiple lymphocyte subclones harboring different STAT3 mutations, thus mimicking the situation in acute leukemia.
Collapse
Affiliation(s)
- Hanna L M Rajala
- Hematology Research Unit, Department of Hematology, University of Helsinki and Helsinki University Central Hospital Cancer Center, Helsinki, Finland
| | - Thomas Olson
- University of Virginia Cancer Center, Charlottesville, VA, USA
| | - Michael J Clemente
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Sonja Lagström
- Institute for Molecular Medicine (FIMM), University of Helsinki, Finland
| | - Pekka Ellonen
- Institute for Molecular Medicine (FIMM), University of Helsinki, Finland
| | - Tuija Lundan
- Department of Clinical Chemistry and TYKSLAB, University of Turku and Turku University Central Hospital, Finland
| | | | | | | | - Emma I Andersson
- Hematology Research Unit, Department of Hematology, University of Helsinki and Helsinki University Central Hospital Cancer Center, Helsinki, Finland
| | - Andres Jerez
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA Hematology and Medical Oncology Department, Hospital Universitario Morales Meseguer, Universidad de Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Kimmo Porkka
- Hematology Research Unit, Department of Hematology, University of Helsinki and Helsinki University Central Hospital Cancer Center, Helsinki, Finland
| | - Jaroslaw P Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Satu Mustjoki
- Hematology Research Unit, Department of Hematology, University of Helsinki and Helsinki University Central Hospital Cancer Center, Helsinki, Finland
| |
Collapse
|
19
|
Frigstad T, Løset GÅ, Sandlie I, Bogen B. A public T cell receptor recognized by a monoclonal antibody specific for the D-J junction of the β-chain. Scand J Immunol 2013; 78:345-51. [PMID: 23841814 DOI: 10.1111/sji.12098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 06/27/2013] [Indexed: 11/30/2022]
Abstract
It is becoming increasingly clear that T cell responses against many antigens are dominated by public α/β T cell receptors (TCRs) with restricted heterogeneity. Because expression of public TCRs may be related to resistance, or predisposition to diseases, it is relevant to measure their frequencies. Although staining with tetrameric peptide/major histocompatibility complex (pMHC) molecules gives information about specificity, it does not give information about the TCR composition of the individual T cells that stain. Moreover, next-generation sequencing of TCR does not yield information on pairing of α- and β-chains in single T cells. In an effort to overcome these limitations, we have here investigated the possibility of raising a monoclonal antibody (moAb) that recognizes a public TCR. As a model system, we have used T cells responding to the 91-101 CDR3 peptide of an Ig L-chain (λ2³¹⁵), presented by the MHC class II molecule I-E(d). The CD4⁺ T cell responses against this pMHC are dominated by a receptor composed of Vα3Jα1;Vβ6DβJβ1.1. Even the V(D)J junctions are to a large extent shared between T cell clones derived from different BALB/c mice. We here describe a murine moAb (AB10) of B10.D2 origin that recognizes this public TCR, while binding to peripheral T cells is negligible. Binding of the moAb is abrogated by introduction of two Gly residues in the D-J junction of the CDR3 of the β-chain. A model for the public TCR determinant is presented.
Collapse
Affiliation(s)
- T Frigstad
- Centre for Immune Regulation and Institute of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | | | | | | |
Collapse
|
20
|
Miles JJ, Douek DC, Price DA. Bias in the αβ T-cell repertoire: implications for disease pathogenesis and vaccination. Immunol Cell Biol 2011; 89:375-87. [PMID: 21301479 DOI: 10.1038/icb.2010.139] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The naïve T-cell repertoire is vast, containing millions of unique T-cell receptor (TCR) structures. Faced with such diversity, the mobilization of TCR structures from this enormous pool was once thought to be a stochastic, even chaotic, process. However, steady and systematic dissection over the last 20 years has revealed that this is not the case. Instead, the TCR repertoire deployed against individual antigens is routinely ordered and biased. Often, identical and near-identical TCR repertoires can be observed across different individuals, suggesting that the system encompasses an element of predictability. This review provides a catalog of αβ TCR bias by disease and by species, and discusses the mechanisms that govern this inherent and widespread phenomenon.
Collapse
Affiliation(s)
- John J Miles
- T Cell Modulation Laboratory, Department of Infection, Immunity and Biochemistry, Cardiff University School of Medicine, Cardiff, UK.
| | | | | |
Collapse
|
21
|
Tanaka Y, Nakasone H, Yamazaki R, Sato K, Sato M, Terasako K, Kimura SI, Okuda S, Kako S, Oshima K, Tanihara A, Nishida J, Yoshikawa T, Nakatsura T, Sugiyama H, Kanda Y. Single-cell analysis of T-cell receptor repertoire of HTLV-1 Tax-specific cytotoxic T cells in allogeneic transplant recipients with adult T-cell leukemia/lymphoma. Cancer Res 2010; 70:6181-6192. [PMID: 20647322 DOI: 10.1158/0008-5472.can-10-0678] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Adult T-cell leukemia (ATL) is a lymphoproliferative malignancy associated with human T-cell lymphotropic virus type 1 (HTLV-1) infection. Recently, it has been shown that allogeneic hematopoietic stem cell transplantation (allo-HSCT) is an effective treatment for ATL, and that HTLV-1 Tax-specific CD8(+) cytotoxic T cells (CTL) contribute to the graft-versus-ATL effect. In the present study, we, for the first time, analyzed the T-cell receptor (TCR) repertoire of isolated Tax(301-309) (SFHSLHLLF)-specific CTLs in HLA-A*2402(+) ATL patients before and after allo-HSCT by single-cell reverse transcription-PCR. The Tax(301-309)-specific CTLs in bone marrow and peripheral blood showed highly restricted oligoclonal diversity. In addition, a unique conserved amino acid motif of "P-D/P-R" in TCR-beta complementarity-determining region 3 in either BV7- or BV18-expressing CTLs was observed not only in all of the samples from ATL patients, but also in samples from the same patient before and after HSCT. Furthermore, the P-D/P-R motif-bearing CTL clones established from peripheral blood samples after HSCT exhibited strong killing activity against the HTLV-1-infected T cells of the patient. CTL clones were not established in vitro from samples prior to allo-HSCT. In addition, CTL clones with a strong killing activity were enriched in vivo after HSCT in the patient. Hence, Tax(301-309)-specific CTLs in ATL patients might have a preference for TCR construction and induce strong immune responses against the HTLV-1-infected T cells of patients, which contribute to the graft-versus-ATL effects after allo-HSCT. However, further analyses with a larger number of patients and more frequent sampling after allo-HSCT is required to confirm these findings.
Collapse
MESH Headings
- Amino Acid Motifs
- Gene Products, tax/immunology
- HLA-A Antigens/immunology
- HLA-A24 Antigen
- Hematopoietic Stem Cell Transplantation
- Human T-lymphotropic virus 1/immunology
- Humans
- Leukemia-Lymphoma, Adult T-Cell/immunology
- Leukemia-Lymphoma, Adult T-Cell/therapy
- Leukemia-Lymphoma, Adult T-Cell/virology
- Peptide Fragments/immunology
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/virology
Collapse
Affiliation(s)
- Yukie Tanaka
- Division of Hematology, Saitama Medical Center, Jichi Medical University, Saitama City, Saitama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Mamedov IZ, Britanova OV, Chkalina AV, Staroverov DB, Amosova AL, Mishin AS, Kurnikova MA, Zvyagin IV, Mutovina ZY, Gordeev AV, Khaidukov SV, Sharonov GV, Shagin DA, Chudakov DM, Lebedev YB. Individual characterization of stably expanded T cell clones in ankylosing spondylitis patients. Autoimmunity 2009; 42:525-36. [PMID: 19657773 DOI: 10.1080/08916930902960362] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Ankylosing spondylitis (AS) is commonly characterized by clonal expansions of T cells. However, these clonal populations are poorly studied and their role in disease initiation and progression remains unclear. Here, we performed mass sequencing of TCR V beta libraries to search for the expanded T cell clones for two AS patients. A number of clones comprising more than 5% of the corresponding TCR V beta family were identified in both patients. For the first time, expanded clones were shown to be stably abundant in blood samples of AS patients for the prolonged period (1.5 and 2.5 years for two patients, correspondingly). These clones were individually characterized in respect to their differentiation status using fluorescent cell sorting with CD27, CD28, and CD45RA markers followed by quantitative identification of each clone within corresponding fraction using real time PCR analysis. Stable clones differed in phenotype and several were shown to belong to the proinflammatory CD27 - /CD28 - population. Their potentially cytotoxic status was confirmed by staining with perforin-specific antibodies. Search for the TCR V beta CRD3 sequences homologous to the identified clones revealed close matches with the previously reported T cell clones from AS and reactive arthritis patients, thus supporting their role in the disease and proposing consensus TCR V beta CDR3 motifs for AS. Interestingly, these motifs were also found to have homology with earlier reported virus-specific CDR3 variants, indicating that viral infections could play role in development of AS.
Collapse
Affiliation(s)
- I Z Mamedov
- Shemiakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Naumov YN, Naumova EN, Yassai MB, Kota K, Welsh RM, Selin LK. Multiple glycines in TCR alpha-chains determine clonally diverse nature of human T cell memory to influenza A virus. THE JOURNAL OF IMMUNOLOGY 2008; 181:7407-19. [PMID: 18981164 DOI: 10.4049/jimmunol.181.10.7407] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Detailed assessment of how the structural properties of T cell receptors affect clonal repertoires of Ag-specific cells is a prerequisite for a better understanding of human antiviral immunity. Herein we examine the alpha TCR repertoires of CD8 T cells reactive against the influenza A viral epitope M1(58-66), restricted by HLA-A2.1. Using molecular cloning, we systematically studied the impact of alpha-chain usage in the formation of T cell memory and revealed that M1(58-66)-specific, clonally diverse VB19 T cells express alpha-chains encoded by multiple AV genes with different CDR3 sizes. A unique feature of these alpha TCRs was the presence of CDR3 fitting to an AGA(G(n))GG-like amino acid motif. This pattern was consistent over time and among different individuals. Further molecular assessment of human CD4(+)CD8(-) and CD4(-)CD8(+) thymocytes led to the conclusion that the poly-Gly/Ala runs in CDR3alpha were a property of immune, but not naive, repertoires and could be attributed to influenza exposure. Repertoires of T cell memory are discussed in the context of clonal diversity, where poly-Gly/Ala runs in the CDR3 of alpha- and beta-chains might provide high levels of TCR flexibility during Ag recognition while gene-encoded CDR1 and CDR2 contribute to the fine specificity of the TCR-peptide MHC interaction.
Collapse
Affiliation(s)
- Yuri N Naumov
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Wlodarski MW, O'Keefe C, Howe EC, Risitano AM, Rodriguez A, Warshawsky I, Loughran TP, Maciejewski JP. Pathologic clonal cytotoxic T-cell responses: nonrandom nature of the T-cell–receptor restriction in large granular lymphocyte leukemia. Blood 2005; 106:2769-80. [PMID: 15914562 DOI: 10.1182/blood-2004-10-4045] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
AbstractT-cell large granular lymphocyte (T-LGL) leukemia is a clonal lymphoproliferation of cytotoxic T cells (CTLs) associated with cytopenias. T-LGL proliferation seems to be triggered/sustained by antigenic drive; it is likely that hematopoietic progenitors are the targets in this process. The antigen-specific portion of the T-cell receptor (TCR), the variable beta (VB)–chain complementarity-determining region 3 (CDR3), can serve as a molecular signature (clonotype) of a T-cell clone. We hypothesized that clonal CTL proliferation develops not randomly but in the context of an autoimmune response. We identified the clonotypic sequence of T-LGL clones in 60 patients, including 56 with known T-LGL and 4 with unspecified neutropenia. Our method also allowed for the measurement of clonal frequencies; a decrease in or loss of the pathogenic clonotype and restoration of the TCR repertoire was found after hematologic remission. We identified 2 patients with identical immunodominant CDR3 sequence. Moreover, we found similarity between multiple immunodominant clonotypes and codominant as well as a nonexpanded, “supporting” clonotypes. The data suggest a nonrandom clonal selection in T-LGL, possibly driven by a common antigen. In contrast, the physiologic clonal CTL repertoire is highly diverse and we were not able to detect any significant clonal sharing in 26 healthy controls.
Collapse
|
25
|
Tynan FE, Burrows SR, Buckle AM, Clements CS, Borg NA, Miles JJ, Beddoe T, Whisstock JC, Wilce MC, Silins SL, Burrows JM, Kjer-Nielsen L, Kostenko L, Purcell AW, McCluskey J, Rossjohn J. T cell receptor recognition of a 'super-bulged' major histocompatibility complex class I-bound peptide. Nat Immunol 2005; 6:1114-22. [PMID: 16186824 DOI: 10.1038/ni1257] [Citation(s) in RCA: 232] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2005] [Accepted: 08/23/2005] [Indexed: 11/08/2022]
Abstract
Unusually long major histocompatibility complex (MHC) class I-restricted epitopes are important in immunity, but their 'bulged' conformation represents a potential obstacle to alphabeta T cell receptor (TCR)-MHC class I docking. To elucidate how such recognition is achieved while still preserving MHC restriction, we have determined here the structure of a TCR in complex with HLA-B(*)3508 presenting a peptide 13 amino acids in length. This complex was atypical of TCR-peptide-MHC class I interactions, being dominated at the interface by peptide-mediated interactions. The TCR assumed two distinct orientations, swiveling on top of the centrally bulged, rigid peptide such that only limited contacts were made with MHC class I. Although the TCR-peptide recognition resembled an antibody-antigen interaction, the TCR-MHC class I contacts defined a minimal 'generic footprint' of MHC-restriction. Thus our findings simultaneously demonstrate the considerable adaptability of the TCR and the 'shape' of MHC restriction.
Collapse
MESH Headings
- Amino Acid Sequence
- Antigen Presentation
- Cell Line
- Crystallography, X-Ray
- Epitopes, T-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/immunology
- HLA-B Antigens/chemistry
- HLA-B Antigens/immunology
- Humans
- Molecular Sequence Data
- Peptides/chemistry
- Peptides/immunology
- Protein Conformation
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- T-Lymphocytes, Cytotoxic/immunology
Collapse
Affiliation(s)
- Fleur E Tynan
- The Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Davis-Harrison RL, Armstrong KM, Baker BM. Two different T cell receptors use different thermodynamic strategies to recognize the same peptide/MHC ligand. J Mol Biol 2005; 346:533-50. [PMID: 15670602 DOI: 10.1016/j.jmb.2004.11.063] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2004] [Revised: 11/12/2004] [Accepted: 11/23/2004] [Indexed: 11/15/2022]
Abstract
A6 and B7 are two alphabeta T cell receptors (TCRs) that recognize the Tax peptide presented by the class I major histocompatibility molecule HLA-A2 (Tax/HLA-A2). Despite the fact that the two TCRs have different CDR loops and use different amino acid residues to contact their ligand, both receptors bind ligand with similar diagonal orientations. Here we show that they also bind with very similar binding affinities and kinetics (the DeltaDeltaG degrees for binding is approximately 0.3kcal/mol at 25 degrees C). The two receptors respond similarly to alterations in the MHC molecule, yet differ dramatically in their responses to ionic strength and temperature. The different responses to temperature indicate markedly different binding thermodynamics, which are not predictable from the surface area buried in the interfaces. A6 and B7 thus represent two TCRs that are both compatible with Tax/HLA-A2, although compatibility has been achieved through the use of different thermodynamic strategies. Finally, neither A6 nor B7 are predicted to undergo large conformational adaptations upon binding, distinguishing them from a number of other TCRs whose structure, thermodynamics, and kinetics have been characterized.
Collapse
Affiliation(s)
- Rebecca L Davis-Harrison
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | |
Collapse
|
27
|
Ozden S, Cochet M, Mikol J, Teixeira A, Gessain A, Pique C. Direct evidence for a chronic CD8+-T-cell-mediated immune reaction to tax within the muscle of a human T-cell leukemia/lymphoma virus type 1-infected patient with sporadic inclusion body myositis. J Virol 2004; 78:10320-7. [PMID: 15367598 PMCID: PMC516372 DOI: 10.1128/jvi.78.19.10320-10327.2004] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human T-cell leukemia/lymphoma virus type 1 (HTLV-1) infection can lead to the development of HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), concomitantly with or without other inflammatory disorders such as myositis. These pathologies are considered immune-mediated diseases, and it is assumed that migration within tissues of both HTLV-1-infected CD4(+) T cells and anti-HTLV-1 cytotoxic T cells represents a pivotal event. However, although HTLV-1-infected T cells were found in inflamed lesions, the antigenic specificity of coinfiltrated CD8(+) T cells remains to be determined. In this study, we performed both ex vivo and in situ analyses using muscle biopsies obtained from an HTLV-1-infected patient with HAM/TSP and sporadic inclusion body myositis. We found that both HTLV-1-infected CD4(+) T cells and CD8(+) T cells directed to the dominant Tax antigen can be amplified from muscle cell cultures. Moreover, we were able to detect in two successive muscle biopsies both tax mRNA-positive mononuclear cells and T cells recognized by the Tax11-19/HLA-A*02 tetramer and positive for perforin. These findings provide the first direct demonstration that anti-Tax cytotoxic T cells are chronically recruited within inflamed tissues of an HTLV-1 infected patient, which validates the cytotoxic immune reaction model for the pathogenesis of HTLV-1-associated inflammatory disease.
Collapse
Affiliation(s)
- Simona Ozden
- Unité d'Epidémiologie et Physiopathologie des Virus Oncogènes, Paris, France
| | | | | | | | | | | |
Collapse
|
28
|
Lim DG, Slavik JM, Bourcier K, Smith KJ, Hafler DA. Allelic variation of MHC structure alters peptide ligands to induce atypical partial agonistic CD8+ T cell function. J Exp Med 2003; 198:99-109. [PMID: 12847139 PMCID: PMC2196091 DOI: 10.1084/jem.20021796] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
T cell receptors recognize small changes in peptide ligands leading to different T cell responses. Here, we analyzed a panel of HLA-A2-Tax11-19 reactive T cell clones to examine how small allelic variations of MHC molecules could alter the functional outcome of antigen recognition. Similar to the effects induced by antigenic altered peptide ligands, weak or partial agonistic T cell functions were identified in individual T cell clones with the recognition of MHC-altered peptide ligands (MAPLs). Interestingly, one subtype of HLA-A2 molecules induced an unusual type of partial agonistic function; proliferation without cytotoxicity. Modeling of crystallographic data indicated that polymorphic amino acids in the HLA-A2 peptide binding groove, especially the D-pocket, were responsible for this partial agonism. Reciprocal mutations of the Tax peptide side chain engaging the D-pocket indeed restored the agonist functions of the MHC-peptide complex. Whereas early intracellular signaling events were not efficiently induced by these MAPLs, phosphorylated c-Jun slowly accumulated with sustained long-term expression. These data indicate that MAPLs can induce atypical partial agonistic T cell function through structural and biochemical mechanisms similar to altered peptide ligands.
Collapse
Affiliation(s)
- Dong-Gyun Lim
- Laboratory of Molecular Immunology, Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Institutes of Medicine, Boston, MA 02115-5817, USA
| | | | | | | | | |
Collapse
|
29
|
Kjer-Nielsen L, Clements CS, Purcell AW, Brooks AG, Whisstock JC, Burrows SR, McCluskey J, Rossjohn J. A structural basis for the selection of dominant alphabeta T cell receptors in antiviral immunity. Immunity 2003; 18:53-64. [PMID: 12530975 DOI: 10.1016/s1074-7613(02)00513-7] [Citation(s) in RCA: 294] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have examined the basis for immunodominant or "public" TCR usage in an antiviral CTL response. Residues encoded by each of the highly selected genetic elements of an immunodominant clonotype recognizing Epstein-Barr virus were critical to the antigen specificity of the receptor. Upon recognizing antigen, the immunodominant TCR undergoes extensive conformational changes in the complementarity determining regions (CDRs), including the disruption of the canonical structures of the germline-encoded CDR1alpha and CDR2alpha loops to produce an enhanced fit with the HLA-peptide complex. TCR ligation induces conformational changes in the TCRalpha constant domain thought to form part of the docking site for CD3epsilon. These findings indicate that TCR immunodominance is associated with structural properties conferring receptor specificity and suggest a novel structural link between TCR ligation and intracellular signaling.
Collapse
MESH Headings
- Amino Acid Sequence
- Binding Sites
- Complementarity Determining Regions/chemistry
- Complementarity Determining Regions/genetics
- Crystallography, X-Ray
- HLA-B8 Antigen/chemistry
- HLA-B8 Antigen/genetics
- Herpesvirus 4, Human/immunology
- Humans
- Immunodominant Epitopes/chemistry
- Immunodominant Epitopes/genetics
- Ligands
- Models, Molecular
- Protein Conformation
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- T-Lymphocytes, Cytotoxic/immunology
Collapse
Affiliation(s)
- Lars Kjer-Nielsen
- Department of Microbiology & Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Kjer-Nielsen L, Clements CS, Brooks AG, Purcell AW, McCluskey J, Rossjohn J. The 1.5 A crystal structure of a highly selected antiviral T cell receptor provides evidence for a structural basis of immunodominance. Structure 2002; 10:1521-32. [PMID: 12429093 DOI: 10.1016/s0969-2126(02)00878-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Despite a potential repertoire of >10(15) alphabeta T cell receptors (TcR), the HLA B8-restricted cytolytic T cell response to a latent antigen of Epstein-Barr virus (EBV) is strikingly limited in the TcR sequences that are selected. Even in unrelated individuals this response is dominated by a single highly restricted TcR clonotype that selects identical combinations of hypervariable Valpha, Vbeta, D, J, and N region genes. We have determined the 1.5 A crystal structure of this "public" TcR, revealing that five of the six hypervariable loops adopt novel conformations providing a unique combining site that contains a deep pocket predicted to overlay the HLA B8-peptide complex. The findings suggest a structural basis for the immunodominance of this clonotype in the immune response to EBV.
Collapse
MESH Headings
- Amino Acid Sequence
- Binding Sites
- Crystallography, X-Ray
- DNA, Complementary/metabolism
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/immunology
- Humans
- Ligands
- Models, Molecular
- Molecular Sequence Data
- Plasmids/metabolism
- Protein Conformation
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
Collapse
Affiliation(s)
- Lars Kjer-Nielsen
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
31
|
Jabri B, Selby JM, Negulescu H, Lee L, Roberts AI, Beavis A, Lopez-Botet M, Ebert EC, Winchester RJ. TCR specificity dictates CD94/NKG2A expression by human CTL. Immunity 2002; 17:487-99. [PMID: 12387742 DOI: 10.1016/s1074-7613(02)00427-2] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Activating and inhibitory CD94/NKG2 receptors regulate CTL responses by altering TCR signaling, thus modifying antigen activation thresholds set during thymic selection. To determine whether their expression was linked to TCR specificity, we examined the TCR repertoire of oligoclonal CTL expansions found in human blood and tissues. High-resolution TCR repertoire analysis revealed that commitment to inhibitory NKG2A expression was a clonal attribute developmentally acquired after TCR expression and during antigen encounter, whereas actual surface expression depended on recent TCR engagement. Further, CTL clones expressing sequence-related TCR, and therefore sharing the same antigen specificity, invariably shared the same NKG2A commitment. These findings suggest that TCR antigenic specificity dictates NKG2A commitment, which critically regulates subsequent activation of CTL.
Collapse
Affiliation(s)
- Bana Jabri
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|