1
|
Koonin E, Lee B. Diversity and evolution of viroids and viroid-like agents with circular RNA genomes revealed by metatranscriptome mining. Nucleic Acids Res 2025; 53:gkae1278. [PMID: 39727156 PMCID: PMC11797063 DOI: 10.1093/nar/gkae1278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024] Open
Abstract
Viroids, the agents of several plant diseases, are the smallest and simplest known replicators that consist of covalently closed circular (ccc) RNA molecules between 200 and 400 nucleotides in size. Viroids encode no proteins and rely on host RNA polymerases for replication, but some contain ribozymes involved in replication intermediate processing. Although other viroid-like agents with cccRNAs genomes, such as satellite RNAs, ribozyviruses and retrozymes, have been discovered, until recently, the spread of these agents in the biosphere appeared narrow, and their actual diversity and evolution remained poorly understood. Extensive, targeted metatranscriptome mining dramatically expanded the known diversity of cccRNAs genomes. These searches identified numerous, diverse viroid-like cccRNAs, many found in environments devoid of plant and animal material, suggesting replication in unicellular eukaryotic and/or prokaryotic hosts. Several cccRNAs are targeted by CRISPR systems, supporting their association with bacteria. In addition to small cccRNAs in the viroid size range, a broad variety of ribozyviruses and novel viruses with cccRNAs genomes, with genomes reaching nearly 5 kilobases, were discovered. Thus, metatranscriptome mining shows that the diversity of viroid-like cccRNAs genomes is far greater than previously suspected, prompting reassessment of the relevance of these replicators for understanding the primordial RNA world.
Collapse
Affiliation(s)
- Eugene V Koonin
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Benjamin D Lee
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
2
|
Forterre P. The Last Universal Common Ancestor of Ribosome-Encoding Organisms: Portrait of LUCA. J Mol Evol 2024; 92:550-583. [PMID: 39158619 DOI: 10.1007/s00239-024-10186-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/25/2024] [Indexed: 08/20/2024]
Abstract
The existence of LUCA in the distant past is the logical consequence of the binary mechanism of cell division. The biosphere in which LUCA and contemporaries were living was the product of a long cellular evolution from the origin of life to the second age of the RNA world. A parsimonious scenario suggests that the molecular fabric of LUCA was much simpler than those of modern organisms, explaining why the evolutionary tempo was faster at the time of LUCA than it was during the diversification of the three domains. Although LUCA was possibly equipped with a RNA genome and most likely lacked an ATP synthase, it was already able to perform basic metabolic functions and to produce efficient proteins. However, the proteome of LUCA and its inferred metabolism remains to be correctly explored by in-depth phylogenomic analyses and updated datasets. LUCA was probably a mesophile or a moderate thermophile since phylogenetic analyses indicate that it lacked reverse gyrase, an enzyme systematically present in all hyperthermophiles. The debate about the position of Eukarya in the tree of life, either sister group to Archaea or descendants of Archaea, has important implications to draw the portrait of LUCA. In the second alternative, one can a priori exclude the presence of specific eukaryotic features in LUCA. In contrast, if Archaea and Eukarya are sister group, some eukaryotic features, such as the spliceosome, might have been present in LUCA and later lost in Archaea and Bacteria. The nature of the LUCA virome is another matter of debate. I suggest here that DNA viruses only originated during the diversification of the three domains from an RNA-based LUCA to explain the odd distribution pattern of DNA viruses in the tree of life.
Collapse
|
3
|
Whelan M, Pelchat M. Role of RNA Polymerase II Promoter-Proximal Pausing in Viral Transcription. Viruses 2022; 14:v14092029. [PMID: 36146833 PMCID: PMC9503719 DOI: 10.3390/v14092029] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
The promoter-proximal pause induced by the binding of the DRB sensitivity-inducing factor (DSIF) and the negative elongation factor (NELF) to RNAP II is a key step in the regulation of metazoan gene expression. It helps maintain a permissive chromatin landscape and ensures a quick transcriptional response from stimulus-responsive pathways such as the innate immune response. It is also involved in the biology of several RNA viruses such as the human immunodeficiency virus (HIV), the influenza A virus (IAV) and the hepatitis delta virus (HDV). HIV uses the pause as one of its mechanisms to enter and maintain latency, leading to the creation of viral reservoirs resistant to antiretrovirals. IAV, on the other hand, uses the pause to acquire the capped primers necessary to initiate viral transcription through cap-snatching. Finally, the HDV RNA genome is transcribed directly by RNAP II and requires the small hepatitis delta antigen to displace NELF from the polymerase and overcome the transcriptional block caused by RNAP II promoter-proximal pausing. In this review, we will discuss the RNAP II promoter-proximal pause and the roles it plays in the life cycle of RNA viruses such as HIV, IAV and HDV.
Collapse
|
4
|
Fearns R. Negative‐strand RNA Viruses. Virology 2021. [DOI: 10.1002/9781119818526.ch3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Gilman C, Heller T, Koh C. Chronic hepatitis delta: A state-of-the-art review and new therapies. World J Gastroenterol 2019; 25:4580-4597. [PMID: 31528088 PMCID: PMC6718034 DOI: 10.3748/wjg.v25.i32.4580] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/03/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
Chronic delta hepatitis is the most severe form of viral hepatitis affecting nearly 65 million people worldwide. Individuals with this devastating illness are at higher risk for developing cirrhosis and hepatocellular carcinoma. Delta virus is a defective RNA virus that requires hepatitis B surface antigen for propagation in humans. Infection can occur in the form of a co-infection with hepatitis B, which can be self-limiting, vs superinfection in a patient with established hepatitis B infection, which often leads to chronicity in majority of cases. Current noninvasive tools to assess for advanced liver disease have limited utility in delta hepatitis. Guidelines recommend treatment with pegylated interferon, but this is limited to patients with compensated disease and is efficacious in about 30% of those treated. Due to limited treatment options, novel agents are being investigated and include entry, assembly and export inhibitors of viral particles in addition to stimulators of the host immune response. Future clinical trials should take into consideration the interaction of hepatitis B and hepatitis D as suppression of one virus can lead to the activation of the other. Also, surrogate markers of treatment efficacy have been proposed.
Collapse
MESH Headings
- Antiviral Agents/pharmacology
- Antiviral Agents/therapeutic use
- Coinfection/drug therapy
- Coinfection/epidemiology
- Coinfection/virology
- Drug Therapy, Combination/methods
- Global Burden of Disease
- Hepatitis B Surface Antigens/immunology
- Hepatitis B Surface Antigens/metabolism
- Hepatitis B virus/immunology
- Hepatitis B virus/pathogenicity
- Hepatitis B, Chronic/drug therapy
- Hepatitis B, Chronic/epidemiology
- Hepatitis B, Chronic/virology
- Hepatitis D, Chronic/drug therapy
- Hepatitis D, Chronic/epidemiology
- Hepatitis D, Chronic/virology
- Hepatitis Delta Virus/immunology
- Hepatitis Delta Virus/pathogenicity
- Humans
- Interferon-alpha/pharmacology
- Interferon-alpha/therapeutic use
- Lipopeptides/pharmacology
- Lipopeptides/therapeutic use
- Organic Anion Transporters, Sodium-Dependent/antagonists & inhibitors
- Organic Anion Transporters, Sodium-Dependent/metabolism
- Piperidines/pharmacology
- Piperidines/therapeutic use
- Pyridines/pharmacology
- Pyridines/therapeutic use
- Randomized Controlled Trials as Topic
- Review Literature as Topic
- Superinfection/drug therapy
- Superinfection/epidemiology
- Superinfection/virology
- Symporters/antagonists & inhibitors
- Symporters/metabolism
- Therapies, Investigational/methods
- Treatment Outcome
- Virus Assembly/drug effects
- Virus Internalization/drug effects
Collapse
Affiliation(s)
- Christy Gilman
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Theo Heller
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Christopher Koh
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| |
Collapse
|
6
|
Xuan N, Rajashekar B, Picimbon JF. DNA and RNA-dependent polymerization in editing of Bombyx chemosensory protein (CSP) gene family. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.aggene.2019.100087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
7
|
Abeywickrama-Samarakoon N, Cortay JC, Sureau C, Alfaiate D, Levrero M, Dény P. [Hepatitis delta virus replication and the role of the small hepatitis delta protein S-HDAg]. Med Sci (Paris) 2018; 34:833-841. [PMID: 30451678 DOI: 10.1051/medsci/2018209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hepatitis delta virus (HDV) is a mammalian defective virus. Its genome is a small single-stranded circular RNA of approximately 1,680 nucleotides. To spread, HDV relies on hepatitis B virus envelope proteins that are needed for viral particle assembly and egress. Severe clinical features of HBV-HDV infection include acute fulminant hepatitis and chronic liver fibrosis leading to cirrhosis and hepatocellular carcinoma. One uniqueness of HDV relies on its genome similarity to viroids, small plant infectious uncoated RNAs. Devoid of viral replicase activity, HDV has to use host DNA-dependant RNA Pol II to replicate its genomic RNA. Thus, one can ask how does this replication occur? We describe first here the major steps of the viral RNA transcription and replication and then we detail the role of the Small HD protein in these processes, especially with regard to the Pol II recruitment.
Collapse
Affiliation(s)
| | - Jean-Claude Cortay
- Inserm, U1052 - UMR CNRS 5286, Centre de recherche en cancérologie de Lyon, Lyon, France
| | - Camille Sureau
- Laboratoire de virologie moléculaire, Inserm UMR S_1134, Institut National de Transfusion Sanguine, Paris, France
| | - Dulce Alfaiate
- Département de pathologie et immunologie, université de Genève, Suisse
| | - Massimo Levrero
- Inserm, U1052 - UMR CNRS 5286, Centre de recherche en cancérologie de Lyon, Lyon, France - Service d'hépato-gastroentérologie, Hôpital de la Croix Rousse, université Lyon-I, France
| | - Paul Dény
- Inserm, U1052 - UMR CNRS 5286, Centre de recherche en cancérologie de Lyon, Lyon, France - Laboratoire de microbiologie clinique, groupe des Hôpitaux universitaires de Paris-Seine Saint Denis, UFR santé médecine, biologie humaine, université Paris 13, Bobigny, France
| |
Collapse
|
8
|
Magnius L, Taylor J, Mason WS, Sureau C, Dény P, Norder H, Ictv Report Consortium. ICTV Virus Taxonomy Profile: Deltavirus. J Gen Virol 2018; 99:1565-1566. [PMID: 30311870 DOI: 10.1099/jgv.0.001150] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Hepatitis delta virus, the only member of the only species in the genus Deltavirus, is a unique human pathogen. Its ~1.7 kb circular negative-sense RNA genome encodes a protein, hepatitis delta antigen, which occurs in two forms, small and large, both with unique functions. Hepatitis delta virus uses host RNA polymerase II to replicate via double rolling circle RNA synthesis. Newly synthesized linear RNAs are circularized after autocatalytic cleavage and ligation. Hepatitis delta virus requires the envelope of the helper virus, hepatitis B virus (family Hepadnaviridae), to produce infectious particles. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of Deltavirus which is available at www.ictv.global/report/deltavirus.
Collapse
Affiliation(s)
- Lars Magnius
- 1Ulf Lundahls Foundation, 10061 Stockholm, Sweden
| | - John Taylor
- 2Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | - Camille Sureau
- 3Institut National de la Transfusion Sanguine (INTS), CNRS-INSERM U1134, Paris, France
| | - Paul Dény
- 4Centre de Recherches en Cancérologie de Lyon, INSERM U1052, UMR CNRS 5286, Team Hepatocarcinogenesis and Viral Infection, Lyon, France
| | - Helene Norder
- 5Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 41345 Gothenburg, Sweden
| | | |
Collapse
|
9
|
Chao M, Lin CC, Lin FM, Li HP, Iang SB. Whole-genome analysis of genetic recombination of hepatitis delta virus: molecular domain in delta antigen determining trans-activating efficiency. J Gen Virol 2016; 96:3460-3469. [PMID: 26407543 DOI: 10.1099/jgv.0.000297] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hepatitis delta virus (HDV) is the only animal RNA virus that has an unbranched rod-like genome with ribozyme activity and is replicated by host RNA polymerase. HDV RNA recombination was previously demonstrated in patients and in cultured cells by analysis of a region corresponding to the C terminus of the delta antigen (HDAg), the only viral-encoded protein. Here, a whole-genome recombination map of HDV was constructed using an experimental system in which two HDV-1 sequences were co-transfected into cultured cells and the recombinants were analysed by sequencing of cloned reverse transcription-PCR products. Fifty homologous recombinants with 60 crossovers mapping to 22 junctions were identified from 200 analysed clones. Small HDAg chimeras harbouring a junction newly detected in the recombination map were then constructed. The results further indicated that the genome-replication level of HDV was sensitive to the sixth amino acid within the N-terminal 22 aa of HDAg. Therefore, the recombination map established in this study provided a tool for not only understanding HDV RNA recombination, but also elucidating the related mechanisms, such as molecular elements responsible for the trans-activation levels of the small HDAg.
Collapse
Affiliation(s)
- Mei Chao
- Division of Microbiology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Guishan, Taoyuan 33302, Taiwan
- Department of Microbiology and Immunology, Chang Gung University, Guishan, Taoyuan 33302, Taiwan
| | - Chia-Chi Lin
- Division of Microbiology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Guishan, Taoyuan 33302, Taiwan
| | - Feng-Ming Lin
- Division of Microbiology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Guishan, Taoyuan 33302, Taiwan
| | - Hsin-Pai Li
- Division of Microbiology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Guishan, Taoyuan 33302, Taiwan
- Department of Microbiology and Immunology, Chang Gung University, Guishan, Taoyuan 33302, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Guishan, Taoyuan 33302, Taiwan
| | - Shan-Bei Iang
- Molecular Medicine Research Center, Chang Gung University, Guishan, Taoyuan 33302, Taiwan
| |
Collapse
|
10
|
Flores R, Owens RA, Taylor J. Pathogenesis by subviral agents: viroids and hepatitis delta virus. Curr Opin Virol 2016; 17:87-94. [PMID: 26897654 DOI: 10.1016/j.coviro.2016.01.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 01/21/2016] [Accepted: 01/29/2016] [Indexed: 12/18/2022]
Abstract
The viroids of plants are the simplest known infectious genetic elements. They have RNA genomes of up to 400 nucleotides in length and no protein encoding capacity. Hepatitis delta virus (HDV), an infectious agent found only in humans co-infected with hepatitis B virus (HBV), is just slightly more complex, with an RNA genome of about 1700 nucleotides, and the ability to express just one small protein. Viroid and HDV RNAs share several features that include circular structure, compact folding, and replication via a rolling-circle mechanism. Both agents were detected because of their obvious pathogenic effects. Their simplicity demands a greater need than conventional RNA or DNA viruses to redirect host components for facilitating their infectious cycle, a need that directly and indirectly incites pathogenic effects. The mechanisms by which these pathogenic effects are produced are the topic of this review. In this context, RNA silencing mediates certain aspects of viroid pathogenesis.
Collapse
Affiliation(s)
- Ricardo Flores
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, Valencia 46022, Spain.
| | - Robert A Owens
- Molecular Plant Pathology Laboratory, USDA-ARS, Beltsville, MD 20705, USA.
| | - John Taylor
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| |
Collapse
|
11
|
Huang CR, Lo SJ. Hepatitis D virus infection, replication and cross-talk with the hepatitis B virus. World J Gastroenterol 2014; 20:14589-14597. [PMID: 25356023 PMCID: PMC4209526 DOI: 10.3748/wjg.v20.i40.14589] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 05/12/2014] [Accepted: 06/23/2014] [Indexed: 02/06/2023] Open
Abstract
Viral hepatitis remains a worldwide public health problem. The hepatitis D virus (HDV) must either coinfect or superinfect with the hepatitis B virus (HBV). HDV contains a small RNA genome (approximately 1.7 kb) with a single open reading frame (ORF) and requires HBV supplying surface antigens (HBsAgs) to assemble a new HDV virion. During HDV replication, two isoforms of a delta antigen, a small delta antigen (SDAg) and a large delta antigen (LDAg), are produced from the same ORF of the HDV genome. The SDAg is required for HDV replication, whereas the interaction of LDAg with HBsAgs is crucial for packaging of HDV RNA. Various clinical outcomes of HBV/HDV dual infection have been reported, but the molecular interaction between HBV and HDV is poorly understood, especially regarding how HBV and HDV compete with HBsAgs for assembling virions. In this paper, we review the role of endoplasmic reticulum stress induced by HBsAgs and the molecular pathway involved in their promotion of LDAg nuclear export. Because the nuclear sublocalization and export of LDAg is regulated by posttranslational modifications (PTMs), including acetylation, phosphorylation, and isoprenylation, we also summarize the relationship among HBsAg-induced endoplasmic reticulum stress signaling, LDAg PTMs, and nuclear export mechanisms in this review.
Collapse
|
12
|
Lin CC, Yang ZW, Iang SB, Chao M. Reduced genetic distance and high replication levels increase the RNA recombination rate of hepatitis delta virus. Virus Res 2014; 195:79-85. [PMID: 25172581 DOI: 10.1016/j.virusres.2014.08.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/13/2014] [Accepted: 08/19/2014] [Indexed: 12/25/2022]
Abstract
Hepatitis delta virus (HDV) replication is carried out by host RNA polymerases. Since homologous inter-genotypic RNA recombination is known to occur in HDV, possibly via a replication-dependent process, we hypothesized that the degree of sequence homology and the replication level should be related to the recombination frequency in cells co-expressing two HDV sequences. To confirm this, we separately co-transfected cells with three different pairs of HDV genomic RNAs and analyzed the obtained recombinants by RT-PCR followed by restriction fragment length polymorphism and sequencing analyses. The sequence divergence between the clones ranged from 24% to less than 0.1%, and the difference in replication levels was as high as 100-fold. As expected, significant differences were observed in the recombination frequencies, which ranged from 0.5% to 47.5%. Furthermore, varying the relative amounts of parental RNA altered the dominant recombinant species produced, suggesting that template switching occurs frequently during the synthesis of genomic HDV RNA. Taken together, these data suggest that during the host RNA polymerase-driven RNA recombination of HDV, both inter- and intra-genotypic recombination events are important in shaping the genetic diversity of HDV.
Collapse
Affiliation(s)
- Chia-Chi Lin
- Division of Mcrobiology, Graduate Institue of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-yang 333, Taiwan.
| | - Zhi-Wei Yang
- Division of Mcrobiology, Graduate Institue of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-yang 333, Taiwan.
| | - Shan-Bei Iang
- Division of Mcrobiology, Graduate Institue of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-yang 333, Taiwan.
| | - Mei Chao
- Division of Mcrobiology, Graduate Institue of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-yang 333, Taiwan; Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Tao-yang 333, Taiwan.
| |
Collapse
|
13
|
Beeharry Y, Rocheleau L, Pelchat M. Conserved features of an RNA promoter for RNA polymerase II determined from sequence heterogeneity of a hepatitis delta virus population. Virology 2014; 450-451:165-73. [DOI: 10.1016/j.virol.2013.12.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 12/11/2013] [Accepted: 12/15/2013] [Indexed: 01/08/2023]
|
14
|
Freitas N, Cunha C. Searching for nuclear export elements in hepatitis D virus RNA. World J Virol 2013; 2:123-135. [PMID: 24255883 PMCID: PMC3832856 DOI: 10.5501/wjv.v2.i3.123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 07/26/2013] [Accepted: 08/09/2013] [Indexed: 02/05/2023] Open
Abstract
AIM: To search for the presence of cis elements in hepatitis D virus (HDV) genomic and antigenomic RNA capable of promoting nuclear export.
METHODS: We made use of a well characterized chloramphenicol acetyl-transferase reporter system based on plasmid pDM138. Twenty cDNA fragments corresponding to different HDV genomic and antigenomic RNA sequences were inserted in plasmid pDM138, and used in transfection experiments in Huh7 cells. The relative amounts of HDV RNA in nuclear and cytoplasmic fractions were then determined by real-time polymerase chain reaction and Northern blotting. The secondary structure of the RNA sequences that displayed nuclear export ability was further predicted using a web interface. Finally, the sensitivity to leptomycin B was assessed in order to investigate possible cellular pathways involved in HDV RNA nuclear export.
RESULTS: Analysis of genomic RNA sequences did not allow identifying an unequivocal nuclear export element. However, two regions were found to promote the export of reporter mRNAs with efficiency higher than the negative controls albeit lower than the positive control. These regions correspond to nucleotides 266-489 and 584-920, respectively. In addition, when analyzing antigenomic RNA sequences a nuclear export element was found in positions 214-417. Export mediated by the nuclear export element of HDV antigenomic RNA is sensitive to leptomycin B suggesting a possible role of CRM1 in this transport pathway.
CONCLUSION: A cis-acting nuclear export element is present in nucleotides 214-417 of HDV antigenomic RNA.
Collapse
|
15
|
Sikora D, Zhang D, Bojic T, Beeharry Y, Tanara A, Pelchat M. Identification of a binding site for ASF/SF2 on an RNA fragment derived from the hepatitis delta virus genome. PLoS One 2013; 8:e54832. [PMID: 23349975 PMCID: PMC3548785 DOI: 10.1371/journal.pone.0054832] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 12/19/2012] [Indexed: 02/07/2023] Open
Abstract
The hepatitis delta virus (HDV) is a small (∼1700 nucleotides) RNA pathogen which encodes only one open reading frame. Consequently, HDV is dependent on host proteins to replicate its RNA genome. Recently, we reported that ASF/SF2 binds directly and specifically to an HDV-derived RNA fragment which has RNA polymerase II promoter activity. Here, we localized the binding site of ASF/SF2 on the HDV RNA fragment by performing binding experiments using purified recombinant ASF/SF2 combined with deletion analysis and site-directed mutagenesis. In addition, we investigated the requirement of ASF/SF2 for HDV RNA replication using RNAi-mediated knock-down of ASF/SF2 in 293 cells replicating HDV RNA. Overall, our results indicate that ASF/SF2 binds to a purine-rich region distant from both the previously published initiation site of HDV mRNA transcription and binding site of RNAP II, and suggest that this protein is not involved in HDV replication in the cellular system used.
Collapse
Affiliation(s)
- Dorota Sikora
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Dajiang Zhang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Teodora Bojic
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Yasnee Beeharry
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Ali Tanara
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Martin Pelchat
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- * E-mail:
| |
Collapse
|
16
|
Evidence for an RNA polymerization activity in axolotl and Xenopus egg extracts. PLoS One 2010; 5:e14411. [PMID: 21203452 PMCID: PMC3009717 DOI: 10.1371/journal.pone.0014411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 11/24/2010] [Indexed: 01/09/2023] Open
Abstract
We have previously reported a post-transcriptional RNA amplification observed in vivo following injection of in vitro synthesized transcripts into axolotl oocytes, unfertilized (UFE) or fertilized eggs. To further characterize this phenomenon, low speed extracts (LSE) from axolotl and Xenopus UFE were prepared and tested in an RNA polymerization assay. The major conclusions are: i) the amphibian extracts catalyze the incorporation of radioactive ribonucleotide in RNase but not DNase sensitive products showing that these products correspond to RNA; ii) the phenomenon is resistant to α-amanitin, an inhibitor of RNA polymerases II and III and to cordycepin (3′dAMP), but sensitive to cordycepin 5′-triphosphate, an RNA elongation inhibitor, which supports the existence of an RNA polymerase activity different from polymerases II and III; the detection of radiolabelled RNA comigrating at the same length as the exogenous transcript added to the extracts allowed us to show that iii) the RNA polymerization is not a 3′ end labelling and that iv) the radiolabelled RNA is single rather than double stranded. In vitro cell-free systems derived from amphibian UFE therefore validate our previous in vivo results hypothesizing the existence of an evolutionary conserved enzymatic activity with the properties of an RNA dependent RNA polymerase (RdRp).
Collapse
|
17
|
Phosphorylation of serine 177 of the small hepatitis delta antigen regulates viral antigenomic RNA replication by interacting with the processive RNA polymerase II. J Virol 2009; 84:1430-8. [PMID: 19923176 DOI: 10.1128/jvi.02083-09] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recent studies revealed that posttranslational modifications (e.g., phosphorylation and methylation) of the small hepatitis delta antigen (SHDAg) are required for hepatitis delta virus (HDV) replication from antigenomic to genomic RNA. The phosphorylation of SHDAg at serine 177 (Ser(177)) is involved in this step, and this residue is crucial for interaction with RNA polymerase II (RNAP II), the enzyme assumed to be responsible for antigenomic RNA replication. This study demonstrated that SHDAg dephosphorylated at Ser(177) interacted preferentially with hypophosphorylated RNAP II (RNAP IIA), which generally binds at the transcription initiation sites. In contrast, the Ser(177)-phosphorylated counterpart (pSer(177)-SHDAg) exhibited preferential binding to hyperphosphorylated RNAP II (RNAP IIO). In addition, RNAP IIO associated with pSer(177)-SHDAg was hyperphosphorylated at both the Ser(2) and Ser(5) residues of its carboxyl-terminal domain (CTD), which is a hallmark of the transcription elongation isoform. Moreover, the RNAP II CTD kinase inhibitor 5,6-dichloro-1-beta-D-ribofuranosyl-benzimidazole (DRB) not only blocked the interaction between pSer(177)-SHDAg and RNAP IIO but also inhibited HDV antigenomic RNA replication. Our results suggest that the phosphorylation of SHDAg at Ser177 shifted its affinitytoward the RNAP IIO isoform [corrected] and thus is a switch for HDV antigenomic RNA replication from the initiation to the elongation stage.
Collapse
|
18
|
Hepatitis delta virus RNA replication. Viruses 2009; 1:818-31. [PMID: 21994571 PMCID: PMC3185533 DOI: 10.3390/v1030818] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 11/03/2009] [Accepted: 11/03/2009] [Indexed: 12/12/2022] Open
Abstract
Hepatitis delta virus (HDV) is a distant relative of plant viroids in the animal world. Similar to plant viroids, HDV replicates its circular RNA genome using a double rolling-circle mechanism. Nevertheless, the production of hepatitis delta antigen (HDAg), which is indispensible for HDV replication, is a unique feature distinct from plant viroids, which do not encode any protein. Here the HDV RNA replication cycle is reviewed, with emphasis on the function of HDAg in modulating RNA replication and the nature of the enzyme involved.
Collapse
|
19
|
Abstract
Hepatitis delta virus (HDV) is a subviral agent dependent upon hepatitis B virus (HBV). HDV uses the envelope proteins of HBV to achieve assembly and infection of target cells. Otherwise, the replication of the RNA genome of HDV is totally different from that of its helper virus, and involves redirection of host polymerase activity. This chapter is concerned with recent developments in our understanding of the genome replication process.
Collapse
Affiliation(s)
- John M Taylor
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
20
|
Han Z, Alves C, Gudima S, Taylor J. Intracellular localization of hepatitis delta virus proteins in the presence and absence of viral RNA accumulation. J Virol 2009; 83:6457-63. [PMID: 19369324 PMCID: PMC2698582 DOI: 10.1128/jvi.00008-09] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2009] [Accepted: 04/11/2009] [Indexed: 02/08/2023] Open
Abstract
Hepatitis delta virus (HDV) encodes one protein, hepatitis delta antigen (deltaAg), a 195-amino-acid RNA binding protein essential for the accumulation of HDV RNA-directed RNA transcripts. It has been accepted that deltaAg localizes predominantly to the nucleolus in the absence of HDV genome replication while in the presence of replication, deltaAg facilitates HDV RNA transport to the nucleoplasm and helps redirect host RNA polymerase II (Pol II) to achieve transcription and accumulation of processed HDV RNA species. This study used immunostaining and confocal microscopy to evaluate factors controlling the localization of deltaAg in the presence and absence of replicating and nonreplicating HDV RNAs. When deltaAg was expressed in the absence of full-length HDV RNAs, it colocalized with nucleolin, a predominant nucleolar protein. With time, or more quickly after induced cell stress, there was a redistribution of both deltaAg and nucleolin to the nucleoplasm. Following expression of nonreplicating HDV RNAs, deltaAg moved to the nucleoplasm, but nucleolin was unchanged. When deltaAg was expressed along with replicating HDV RNA, it was found predominantly in the nucleoplasm along with Pol II. This localization was insensitive to inhibitors of HDV replication, suggesting that the majority of deltaAg in the nucleoplasm reflects ribonucleoprotein accumulation rather than ongoing transcription. An additional approach was to reevaluate several forms of deltaAg altered at specific locations considered to be essential for protein function. These studies provide evidence that deltaAg does not interact directly with either Pol II or nucleolin and that forms of deltaAg which support replication are also capable of prior nucleolar transit.
Collapse
Affiliation(s)
- Ziying Han
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111-2497, USA
| | | | | | | |
Collapse
|
21
|
Sikora D, Greco-Stewart VS, Miron P, Pelchat M. The hepatitis delta virus RNA genome interacts with eEF1A1, p54(nrb), hnRNP-L, GAPDH and ASF/SF2. Virology 2009; 390:71-8. [PMID: 19464723 DOI: 10.1016/j.virol.2009.04.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 03/26/2009] [Accepted: 04/29/2009] [Indexed: 02/08/2023]
Abstract
Because of its extremely limited coding capacity, the hepatitis delta virus (HDV) takes over cellular machineries for its replication and propagation. Despite the functional importance of host factors in both HDV biology and pathogenicity, little is known about proteins that associate with its RNA genome. Here, we report the identification of several host proteins interacting with an RNA corresponding to the right terminal stem-loop domain of HDV genomic RNA, using mass spectrometry on a UV crosslinked ribonucleoprotein complex, RNA affinity chromatography, and screening of a library of purified RNA-binding proteins. Co-immunoprecipitation was used to confirm the interactions of eEF1A1, p54(nrb), hnRNP-L, GAPDH and ASF/SF2 with the right terminal stem-loop domain of HDV genomic RNA in vitro, and with both polarities of HDV RNA within HeLa cells. Our discovery that HDV RNA associates with RNA-processing pathways and translation machinery during its replication provides new insights into HDV biology and its pathogenicity.
Collapse
Affiliation(s)
- Dorota Sikora
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Room 4111A, Ottawa, Ontario, Canada, K1H 8M5
| | | | | | | |
Collapse
|
22
|
Hepatitis delta antigen requires a minimum length of the hepatitis delta virus unbranched rod RNA structure for binding. J Virol 2009; 83:4548-56. [PMID: 19244338 DOI: 10.1128/jvi.02467-08] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Hepatitis delta virus (HDV) is a subviral pathogen that increases the severity of liver disease caused by hepatitis B virus. Both the small circular RNA genome and its complement, the antigenome, form a characteristic unbranched rod structure in which approximately 70% of the nucleotides are base paired. These RNAs are associated with the sole virally encoded protein, hepatitis delta antigen (HDAg), in infected cells; however, the nature of the ribonucleoprotein complexes (RNPs) is not well understood. Previous analyses of binding in vitro using native, bacterially expressed HDAg have been hampered by a lack of specificity for HDV RNA. Here, we show that removal of the C-terminal 35 amino acids of HDAg yields a native, bacterially expressed protein, HDAg-160, that specifically binds HDV unbranched rod RNA with high affinity. In an electrophoretic mobility shift assay, this protein produced a discrete, micrococcal nuclease-resistant complex with an approximately 400-nucleotide (nt) segment of HDV unbranched rod RNA. Binding occurred with several segments of HDV RNA, although with various affinities and efficiencies. Analysis of the effects of deleting segments of the unbranched rod indicated that binding did not require one or two specific binding sites within these RNA segments. Rather, a minimum-length HDV RNA unbranched rod approximately 311 nt was essential for RNP formation. The results are consistent with a model in which HDAg binds HDV unbranched rod RNA as multimers of fixed size rather than as individual subunits.
Collapse
|
23
|
Mota S, Mendes M, Freitas N, Penque D, Coelho AV, Cunha C. Proteome analysis of a human liver carcinoma cell line stably expressing hepatitis delta virus ribonucleoproteins. J Proteomics 2008; 72:616-27. [PMID: 19136081 DOI: 10.1016/j.jprot.2008.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Revised: 12/03/2008] [Accepted: 12/04/2008] [Indexed: 01/26/2023]
Abstract
Hepatitis delta virus (HDV) infects human hepatocytes already infected with the hepatitis B virus increasing about ten fold the risk of cirrhosis and fulminant hepatitis. The lack of an appropriate cell culture system capable of supporting virus replication has so far impaired the detailed investigation of the HDV biology including the identification of host factors involved in pathogenesis. Here, we made use of a HDV cDNA stably transfected cell line, Huh7-D12, in a proteomic approach to identify the changes in the protein expression profiles in human liver cells that arise as a consequence of HDV replication. Total protein extracts from Huh7-D12 cells and of the corresponding non transfected human liver carcinoma cell line, Huh7, were separated by 2-DE. Differentially expressed spots were identified by MALDI-TOF followed by database searching. We identified 23 differentially expressed proteins of which 15 were down regulated and 8 up regulated in Huh7-D12 cells. These proteins were found to be involved in different cellular pathways. The down regulation of the histone H1-binding protein and of triosephosphate isomerase was confirmed by Real time PCR, and the up regulation of the La protein and lamin A/C was validated by western blot.
Collapse
Affiliation(s)
- Sérgio Mota
- Unidade de Biologia Molecular, Centro de Malária e outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical, Rua da Junqueira 96, Lisbon, Portugal
| | | | | | | | | | | |
Collapse
|
24
|
Transcription of subgenomic mRNA of hepatitis delta virus requires a modified hepatitis delta antigen that is distinct from antigenomic RNA synthesis. J Virol 2008; 82:9409-16. [PMID: 18653455 DOI: 10.1128/jvi.00428-08] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hepatitis delta virus (HDV) contains a viroid-like, 1.7-kb circular RNA genome, which replicates via a double-rolling-circle model. However, the exact mechanism involved in HDV genome RNA replication and subgenomic mRNA transcription is still unclear. Our previous studies have shown that the replications of genomic and antigenomic HDV RNA strands have different sensitivities to alpha-amanitin and are associated with different nuclear bodies, suggesting that these two strands are synthesized in different transcription machineries in the cells. In this study, we developed a unique quantitative reverse transcription-PCR (qRT-PCR) procedure for detection of various HDV RNA species from an RNA transfection system. Using this qRT-PCR procedure and a series of HDV mutants, we demonstrated that Arg-13 methylation, Lys-72 acetylation, and Ser-177 phosphorylation of small hepatitis delta antigen (S-HDAg) are important for HDV mRNA transcription. In addition, these three S-HDAg modifications are dispensable for antigenomic RNA synthesis but are required for genomic RNA synthesis. Furthermore, the three RNA species had different sensitivities to acetylation and deacetylation inhibitors, showing that the metabolic requirements for the synthesis of HDV antigenomic RNA are different from those for the synthesis of genomic RNA and mRNA. In sum, our data support the hypothesis that the cellular machinery involved in the synthesis of HDV antigenomic RNA is different from that of genomic RNA synthesis and mRNA transcription, even though the antigenomic RNA and the mRNA are made from the same RNA template. We propose that acetylation and deacetylation of HDAg may provide a molecular switch for the synthesis of the different HDV RNA species.
Collapse
|
25
|
ERK1/2-mediated phosphorylation of small hepatitis delta antigen at serine 177 enhances hepatitis delta virus antigenomic RNA replication. J Virol 2008; 82:9345-58. [PMID: 18632853 DOI: 10.1128/jvi.00656-08] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The small hepatitis delta virus (HDV) antigen (SHDAg) plays an essential role in HDV RNA double-rolling-circle replication. Several posttranslational modifications (PTMs) of HDAgs, including phosphorylation, acetylation, and methylation, have been characterized. Among the PTMs, the serine 177 residue of SHDAg is a phosphorylation site, and its mutation preferentially abolishes HDV RNA replication from antigenomic RNA to genomic RNA. Using coimmunoprecipitation analysis, the cellular kinases extracellular signal-related kinases 1 and 2 (ERK1/2) are found to be associated with the Flag-tagged SHDAg mutant (Ser-177 replaced with Cys-177). In an in vitro kinase assay, serine 177 of SHDAg was phosphorylated directly by either Flag-ERK1 or Flag-ERK2. Activation of endogenous ERK1/2 by a constitutively active MEK1 (hemagglutinin-AcMEK1) increased phosphorylation of SHDAg at Ser-177; this phosphorylation was confirmed by immunoblotting using an antibody against phosphorylated S177 and mass spectrometric analysis. Interestingly, we found an increase in the HDV replication from antigenomic RNA to genomic RNA but not in that from genomic RNA to antigenomic RNA. The Ser-177 residue was critical for SHDAg interaction with RNA polymerase II (RNAPII), the enzyme proposed to regulate antigenomic RNA replication. These results demonstrate the role of ERK1/2-mediated Ser-177 phosphorylation in modulating HDV antigenomic RNA replication, possibly through RNAPII regulation. The results may shed light on the mechanisms of HDV RNA replication.
Collapse
|
26
|
Chang J, Nie X, Chang HE, Han Z, Taylor J. Transcription of hepatitis delta virus RNA by RNA polymerase II. J Virol 2008; 82:1118-27. [PMID: 18032511 PMCID: PMC2224410 DOI: 10.1128/jvi.01758-07] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Accepted: 11/06/2007] [Indexed: 12/11/2022] Open
Abstract
Previous studies have indicated that the replication of the RNA genome of hepatitis delta virus (HDV) involves redirection of RNA polymerase II (Pol II), a host enzyme that normally uses DNA as a template. However, there has been some controversy about whether in one part of this HDV RNA transcription, a polymerase other than Pol II is involved. The present study applied a recently described cell system (293-HDV) of tetracycline-inducible HDV RNA replication to provide new data regarding the involvement of host polymerases in HDV transcription. The data generated with a nuclear run-on assay demonstrated that synthesis not only of genomic RNA but also of its complement, the antigenome, could be inhibited by low concentrations of amanitin specific for Pol II transcription. Subsequent studies used immunoprecipitation and rate-zonal sedimentation of nuclear extracts together with double immunostaining of 293-HDV cells, in order to examine the associations between Pol II and HDV RNAs, as well as the small delta antigen, an HDV-encoded protein known to be essential for replication. Findings include evidence that HDV replication is somehow able to direct the available delta antigen to sites in the nucleoplasm, almost exclusively colocalized with Pol II in what others have described as transcription factories.
Collapse
Affiliation(s)
- Jinhong Chang
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111-2497, USA
| | | | | | | | | |
Collapse
|
27
|
Changes in the proteome of Huh7 cells induced by transient expression of hepatitis D virus RNA and antigens. J Proteomics 2008; 71:71-9. [PMID: 18541475 DOI: 10.1016/j.jprot.2007.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 12/13/2007] [Accepted: 12/14/2007] [Indexed: 02/06/2023]
Abstract
Hepatitis delta virus (HDV) infection of human hepatocytes infected with the hepatitis B virus (HBV) is associated with increased liver damage and risk of fulminant disease. Although considerable progress has been made towards the elucidation of the mechanisms of HDV replication and pathogenesis, little is still known about the host factors involved in the different steps of the replication cycle. Here, we made use of a proteomic approach to analyse the global alterations in protein expression that arise in human hepatocytes separately transfected with each of the HDV components. Huh7 cells were transiently transfected with plasmids that code for the small delta antigen (S-HDAg), large delta antigen (L-HDAg), genomic RNA (gRNA), and antigenomic RNA (agRNA), respectively. Total protein extracts were separated by 2-DE and differentially expressed spots were identified by MALDI-TOF followed by database searching. We identified 32 proteins known to be involved in different pathways namely nucleic acid metabolism, protein metabolism, transport, signal transduction, apoptosis, and cell growth. Moreover, the down regulation of hnRNP D, HSP105, and triosephosphate isomerase was further confirmed by Real time PCR.
Collapse
|
28
|
Nucleolar targeting of hepatitis delta antigen abolishes its ability to initiate viral antigenomic RNA replication. J Virol 2007; 82:692-9. [PMID: 17989182 DOI: 10.1128/jvi.01155-07] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hepatitis delta virus (HDV) is a small RNA virus that contains one 1.7-kb single-stranded circular RNA of negative polarity. The HDV particle also contains two isoforms of hepatitis delta antigen (HDAg), small (SHDAg) and large HDAg. SHDAg is required for the replication of HDV, which is presumably carried out by host RNA-dependent RNA polymerases. The localization and the HDAg and host RNA polymerase responsible for HDV replication remain important issues to be addressed. In this study, using recombinant SHDAg fused with a heterologous nucleolar localization sequence (NoLS) to confine its subcellular localization in nucleoli, we aimed to study the effect of SHDAg subcellular localization on HDV RNA replication. The initiation of genomic RNA synthesis from antigenomic template was hardly detectable when SHDAg was fused with the NoLS motif and localized mainly in nucleoli. In contrast, the initiation of antigenomic RNA synthesis was not affected. Drug treatment to release a SHDAg-NoLS mutant from nucleoli could partially restore the replication of HDV genomic RNA from antigenomic RNA. This also recovered the cointeraction between SHDAg and RNA polymerase II. These data strongly suggest that nuclear polymerase (RNA polymerase II) is involved in the synthesis of genomic RNA and that the synthesis of antigenomic RNA can occur in nucleoli. Our results support the idea that the replication of HDV genomic RNA or antigenomic RNA is likely to be carried out by different machineries in different subcellular localizations.
Collapse
|
29
|
Alves C, Freitas N, Cunha C. Characterization of the nuclear localization signal of the hepatitis delta virus antigen. Virology 2007; 370:12-21. [PMID: 17897693 DOI: 10.1016/j.virol.2007.07.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 06/05/2007] [Accepted: 07/31/2007] [Indexed: 12/18/2022]
Abstract
The delta antigen (HDAg) is the only protein encoded by the hepatitis delta virus (HDV) RNA genome. The HDAg contains an RNA binding domain, a dimerization domain, and a nuclear localization signal (NLS). The nuclear import of HDV RNPs is thought to be one of the first tasks of the HDAg during the HDV replication cycle. Using c-myc-PK fusions with several regions of the HDAg in transfection assays in Huh7 cells, we found that the HDAg NLS consists of a single stretch of 10 amino acids, EGAPPAKRAR, located in positions 66-75. Deletion and mutation analysis of this region showed that both the acidic glutamic acid residue at position 66 and the basic arginine residue at position 75 are essential for promoting nuclear import.
Collapse
Affiliation(s)
- Carolina Alves
- Unidade de Biologia Molecular, Centro de Malária e Outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira, 96 1349-008 Lisboa, Portugal
| | | | | |
Collapse
|
30
|
Yamaguchi Y, Mura T, Chanarat S, Okamoto S, Handa H. Hepatitis delta antigen binds to the clamp of RNA polymerase II and affects transcriptional fidelity. Genes Cells 2007; 12:863-75. [PMID: 17584298 DOI: 10.1111/j.1365-2443.2007.01094.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hepatitis delta virus (HDV) is an RNA virus whose replication and transcription are considered to proceed via RNA-dependent RNA synthesis by RNA polymerase II (Pol II), and the viral protein called hepatitis delta antigen (HDAg) is essential for these processes. HDAg was previously shown to stimulate Pol II elongation on both DNA and RNA templates in vitro. Here, the mechanism of elongation control by HDAg was investigated because it serves as a prototype of cellular transcription elongation factors and also plays an interesting role in HDV proliferation. With site-specific photocrosslinking and transcription using reconstituted elongation complexes, evidence is presented that HDAg functionally interacts with the clamp of Pol II, a mobile structure that holds DNA and RNA in place. Strikingly, HDAg not only increases the rate of elongation but also affects the decision of which nucleotide is incorporated. These and our previous findings lead us to propose a model in which HDAg interacts with and loosens the clamp, and thereby accelerates forward translocation of Pol II at the cost of fidelity. By reducing transcriptional fidelity in terms of not only discrimination of incoming nucleotides but also recognition of templates, HDAg may facilitate the unusual RNA-dependent RNA synthesis by Pol II.
Collapse
Affiliation(s)
- Yuki Yamaguchi
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama 226-8501, Japan
| | | | | | | | | |
Collapse
|
31
|
Chao M. RNA recombination in hepatitis delta virus: Implications regarding the abilities of mammalian RNA polymerases. Virus Res 2007; 127:208-15. [PMID: 17296240 DOI: 10.1016/j.virusres.2007.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Revised: 10/02/2006] [Accepted: 01/08/2007] [Indexed: 12/18/2022]
Abstract
Hepatitis delta virus (HDV) requires the surface antigens of hepatitis B virus (HBV) for packaging and transmission, but replicates its RNA in an HBV-independent fashion. HDV contains a 1.7-kb circular RNA genome that is folded into an unbranched rod-like structure via intramolecular base-pairing, and possesses ribozyme activity. The HDV genome does not encode an RNA-dependent RNA polymerase (RdRp), but is instead replicated by host RNA polymerase(s) via a rolling-circle mechanism. As such, HDV is similar to the viroid plant pathogens. Recent findings suggest that HDV can also undergo template-switching recombination, a well-documented process that has been found in a large number of RdRp-encoding RNA viruses and is thought to affect viral evolution and pathogenesis. This mini-review examines HDV RNA recombination and how it may improve our understanding of the capacities of host RNA polymerases beyond typical DNA-directed transcription, and speculates on the role of host RNA polymerase-directed RNA template-switching in the origin of HDV.
Collapse
Affiliation(s)
- Mei Chao
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, 259, Wen-Hwa 1st Road, Kwei-Shan, Tao-yang 333, Taiwan.
| |
Collapse
|
32
|
Chao M, Wang TC, Lee SE. Detection of hepatitis delta virus recombinants in cultured cells co-transfected with cloned genotypes I and IIb DNA sequences. J Virol Methods 2006; 137:252-8. [PMID: 16860882 DOI: 10.1016/j.jviromet.2006.06.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2005] [Revised: 06/13/2006] [Accepted: 06/15/2006] [Indexed: 01/03/2023]
Abstract
It was reported previously that hepatitis delta virus (HDV), the only animal virus in which replication is performed by cellular RNA polymerase(s), undergoes RNA recombination. However, the previous RNA transfection system was somewhat limited in terms of practical application. Cultured cells were transfected with plasmids expressing replication-competent genotypes I and IIb HDV genomic RNAs to develop a better system for studying the fundamental aspects of HDV RNA recombination and HDV-related RNA species were examined using restriction fragment length polymorphisms and sequence analysis of cloned RT-PCR products. This novel experimental system generated efficiently recombinants between the two parental HDV sequences, but not between replication-defective HDV constructs. The genome organization of the HDV recombinants produced in this system resembled that observed previously in cultured cells co-transfected with genome I and IIb RNAs. These data indicate that replication-dependent HDV RNA recombination can be catalyzed by host RNA polymerases in cultured cells co-transfected with two cloned HDV sequences. This new DNA-based system is simpler than the previous RNA-based method of study, and generates a higher recombination frequency, facilitating study of HDV RNA recombination.
Collapse
Affiliation(s)
- Mei Chao
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yang 333, Taiwan.
| | | | | |
Collapse
|
33
|
Abstract
While this volume covers many different aspects of hepatitis delta virus (HDV) replication, the focus in this chapter is on studies of the structure and replication of the HDV RNA genome. An evaluation of such studies is not only an integral part of our understanding of HDV infections but it also sheds new light on some important aspects of cell biology, such as the fidelity of RNA transcription by a host RNA polymerase and on various forms of post-transcriptional RNA processing. Representations of the replication of the RNA genome are frequently simplified to a form of rolling-circle model, analogous to what have been described for plant viroids. One theme of this review is that such models, even after some revision, deceptively simplify the complexity of HDV replication and can fail to make clear major questions yet to be solved.
Collapse
Affiliation(s)
- J M Taylor
- Fox Chase Cancer Center, Philadelphia, PA 19111-2497, USA.
| |
Collapse
|
34
|
Huang WH, Chen CW, Wu HL, Chen PJ. Post-translational modification of delta antigen of hepatitis D virus. Curr Top Microbiol Immunol 2006; 307:91-112. [PMID: 16903222 DOI: 10.1007/3-540-29802-9_5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The hepatitis delta virus (HDV) genome has only one open reading frame, which encodes the viral small delta antigen. After RNA editing, the same open reading frame is extended 19 amino acids at the carboxyl terminus and encodes the large delta antigen. These two viral proteins escort the HDV genome through different cellular compartments for the complicated phases of replication, transcription and, eventually, the formation of progeny virions. To orchestrate these events, the delta antigens have to take distinct cues to traffic to the right compartments and make correct molecular contacts. In eukaryotes, post-translational modification (PTM) is a major mechanism of dictating the multiple functions of a single protein. Multiple PTMs, including phosphorylation, isoprenylation, acetylation, and methylation, have been identified on hepatitis delta antigens. In this chapter we review these PTMs and discuss their functions in regulating and coordinating the life cycle of HDV.
Collapse
Affiliation(s)
- W H Huang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, and Hepatitis Research Center, National Taiwan University Hospital, Taipei
| | | | | | | |
Collapse
|
35
|
Li YJ, Macnaughton T, Gao L, Lai MMC. RNA-templated replication of hepatitis delta virus: genomic and antigenomic RNAs associate with different nuclear bodies. J Virol 2006; 80:6478-86. [PMID: 16775335 PMCID: PMC1488965 DOI: 10.1128/jvi.02650-05] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Lacking an RNA-dependent RNA polymerase, hepatitis delta virus (HDV), which contains a circular RNA of 1.7 kilobases, is nonetheless able to replicate its RNA by use of cellular transcription machineries. Previously, we have shown that the replications of genomic- and antigenomic-strand HDV RNAs have different sensitivities to alpha-amanitin, suggesting that these two strands are synthesized in different transcription machineries in the cells, but the nature of these transcription machineries is not clear. In this study, we performed metabolic labeling and immunofluorescence staining of newly synthesized HDV RNA with bromouridine after HDV RNA transfection into hepatocytes and confirmed that HDV RNA synthesis had both alpha-amanitin-sensitive and -resistant components. The antigenomic RNA labeling was alpha-amanitin resistant and localized to the nucleolus. The genomic RNA labeling was alpha-amanitin sensitive and more diffusely localized in the nucleoplasm. Most of the genomic RNA labeling appeared to colocalize with the PML nuclear bodies. Furthermore, promyelocytic leukemia protein, RNA polymerase II (Pol II), and the Pol I-associated transcription factor SL1 could be precipitated together with hepatitis delta antigen, suggesting the association of HDV replication complex with the Pol I and Pol II transcription machineries. This conclusion was further confirmed by an in vitro replication assay. These findings provide additional evidence that HDV RNA synthesis occurs in the Pol I and Pol II transcription machineries, thus extending the capability of the cellular DNA-dependent RNA polymerases to utilizing RNA as templates.
Collapse
MESH Headings
- Amanitins/pharmacology
- Cell Line, Tumor
- Cell-Free System/metabolism
- Genome, Viral/physiology
- HeLa Cells
- Hepatitis Delta Virus/physiology
- Hepatitis delta Antigens/biosynthesis
- Hepatocytes/metabolism
- Hepatocytes/virology
- Humans
- Immunoprecipitation
- Intranuclear Space/metabolism
- Intranuclear Space/virology
- Microscopy, Fluorescence
- Neoplasm Proteins/metabolism
- Nuclear Proteins/metabolism
- Nucleic Acid Synthesis Inhibitors/pharmacology
- Pol1 Transcription Initiation Complex Proteins/metabolism
- Promyelocytic Leukemia Protein
- RNA/biosynthesis
- RNA/genetics
- RNA Polymerase I/metabolism
- RNA Polymerase II/antagonists & inhibitors
- RNA Polymerase II/metabolism
- RNA, Antisense/biosynthesis
- RNA, Antisense/genetics
- RNA, Circular
- RNA, Viral/biosynthesis
- RNA, Viral/genetics
- Transcription Factors/metabolism
- Transcription, Genetic/drug effects
- Transcription, Genetic/physiology
- Tumor Suppressor Proteins/metabolism
- Virus Replication/drug effects
- Virus Replication/physiology
Collapse
Affiliation(s)
- Yi-Jia Li
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, 2011 Zonal Ave., Los Angeles, CA 90033-1054, USA
| | | | | | | |
Collapse
|
36
|
Chang J, Nie X, Gudima S, Taylor J. Action of inhibitors on accumulation of processed hepatitis delta virus RNAs. J Virol 2006; 80:3205-14. [PMID: 16537588 PMCID: PMC1440370 DOI: 10.1128/jvi.80.7.3205-3214.2006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hepatitis delta virus (HDV) replication involves processing and accumulation of three RNA species: the genome, its exact complement (the antigenome), and a polyadenylated mRNA that acts as a template for the small delta antigen (deltaAg), the only protein of HDV and essential for genome replication. In a recently reported experimental system, addition of tetracycline induced synthesis of a DNA-directed source of deltaAg, producing within 24 h a significant increase in accumulation of newly transcribed and processed HDV RNAs. This induction was used here to study the action of various inhibitors on accumulation. For example, potent and HDV-specific inhibition, in the absence of detected host toxicity, could be obtained with ribavirin, mycophenolic acid, and viramidine. An interpretation is that these inhibitors reduced the available GTP pool, leading to a specific inhibition of the synthesis and accumulation of HDV RNA-directed RNA species. In contrast, no inhibition was observed with L-FMAU (2'-fluoro-5-methyl-beta-L-arabinofuranosyl-uridine), alpha interferon, or pegylated alpha interferon. After modifications to the experimental system, it was also possible to examine the effects of three known host RNA polymerase inhibitors on HDV genome replication: amanitin, 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB), and actinomycin. Of most interest, amanitin at low doses blocked accumulation of HDV RNA-directed mRNA but had less effect on HDV genomic and antigenomic RNAs. Additional experiments indicated that this apparent resistance to amanitin inhibition of genomic and antigenomic RNA relative to mRNA may not reflect a difference in the transcribing polymerase but rather relative differences in the processing and stabilization of nascent RNA transcripts.
Collapse
Affiliation(s)
- Jinhong Chang
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111-2497, USA
| | | | | | | |
Collapse
|
37
|
Lai MMC. RNA replication without RNA-dependent RNA polymerase: surprises from hepatitis delta virus. J Virol 2005; 79:7951-8. [PMID: 15956541 PMCID: PMC1143735 DOI: 10.1128/jvi.79.13.7951-7958.2005] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Michael M C Lai
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, 2011 Zonal Ave., HMR503C, Los Angeles, California 90033, USA.
| |
Collapse
|
38
|
Wang TC, Chao M. RNA recombination of hepatitis delta virus in natural mixed-genotype infection and transfected cultured cells. J Virol 2005; 79:2221-9. [PMID: 15681424 PMCID: PMC546541 DOI: 10.1128/jvi.79.4.2221-2229.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Most RNA viruses encode their own RNA polymerases for genome replication, and increasing numbers of them appear to be capable of undergoing RNA recombination. Here, we provide the first report of intergenotypic recombination in hepatitis delta virus (HDV), the only animal RNA virus that requires host RNA polymerase(s) for viral replication. In vivo, we analyzed RNA species derived from the serum of a patient with mixed genotype I and genotype IIb HDV infection by using multiple restriction fragment length polymorphism (RFLP) assays and sequence analysis of cloned reverse transcription (RT)-PCR products. Six HDV recombinants were isolated from 101 tested clones, and HDV recombination in this patient was further confirmed by RT-PCR with genotype-specific primer pairs. Analysis of the recombination junctions suggested that the HDV genome rearrangement occurred through faithful homologous recombination. We then used an RNA cotransfection cell culture system to investigate HDV RNA recombination in vitro. We found that HDV recombinants could indeed be detected in the transfected cells; some of these possessed recombination junctions identical to those identified in vivo. Furthermore, using a PCR-independent RNase protection assay, we were able to readily identify the recombined HDV RNA species in cultured cells. Taken together, our results demonstrate that HDV RNA recombination occurs in both natural HDV infections and cultured cells, thereby presenting a novel mechanism for HDV evolution.
Collapse
Affiliation(s)
- Tzu-Chi Wang
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, 259, Wen-Hwa 1st Rd., Kwei-Shan, Tao-yang 333, Taiwan
| | | |
Collapse
|
39
|
Li X, Kuang E, Dai W, Zhou B, Yang F. Efficient inhibition of hepatitis B virus replication by hammerhead ribozymes delivered by hepatitis delta virus. Virus Res 2005; 114:126-32. [PMID: 16054262 DOI: 10.1016/j.virusres.2005.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2005] [Revised: 06/10/2005] [Accepted: 06/10/2005] [Indexed: 12/29/2022]
Abstract
Although it has been suggested that hepatitis delta virus (HDV) can be used as a vector to deliver biologically active RNAs into hepatocytes, modified HDV as a specific transporting and replicating vector in anti-viral research has not been investigated. In this study, we focused on the development of HDV as a replicative vector to deliver hammerhead ribozyme into hepatocytes and the study of the roles of delivered hammerhead ribozyme on the replication of hepatitis B virus (HBV). To investigate the effects of ribozyme delivered by HDV on HBV replication, we designed two hammerhead ribozymes that specifically target the hepatitis B virus genome. These two ribozymes were then inserted into the genome of hepatitis delta virus. Results showed that transfection of cells with tandem modified HDV cDNA resulted in the production of monomer form of sense and anti-sense genomic RNA indicating the recombinant HDV-ribozyme could replicate effectively. Our data also indicated that ribozymes delivered by the modified HDV had higher level of inhibition activity against HBV replication than that of ribozyme alone. This system provides a new approach for the study of mechanisms of HBV replication as well as for the potential treatment of HBV infection.
Collapse
Affiliation(s)
- Xiaojuan Li
- Section of Molecular Virology, State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | | | | | | | | |
Collapse
|
40
|
Gudima SO, Chang J, Taylor JM. Reconstitution in cultured cells of replicating HDV RNA from pairs of less than full-length RNAs. RNA (NEW YORK, N.Y.) 2005; 11:90-8. [PMID: 15574517 PMCID: PMC1370694 DOI: 10.1261/rna.7164905] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2004] [Accepted: 10/11/2004] [Indexed: 05/24/2023]
Abstract
The genome of hepatitis delta virus (HDV) is a small single-stranded circular RNA that is replicated via RNA-directed RNA synthesis. This makes use of a host RNA polymerase, probably pol II, that normally transcribes DNA templates. In vivo, the host polymerase can initiate replication from transfected linear RNAs using intramolecular template-switching. The present studies report that the polymerase could also achieve intermolecular switching leading to "reconstitution" of full-length HDV RNAs following transfection with two linear RNAs that were less than full length and yet lacking different regions of the genome. These two RNAs were synthesized in vitro, gel purified, pre-annealed, and then transfected into delta293, a cell line conditionally expressing the small delta antigen that is essential for HDV replication. Northern analyses of total RNA harvested from transfected cells detected the accumulation of full-length HDV genomic and antigenomic RNAs. Such reconstitution of full-length replicating HDV RNA was also achieved using nine other pairs of antigenomic RNAs and three pairs of genomic RNAs. Annealing of the RNAs prior to transfection was required for detectable HDV reconstitution. A second cell line, Huh7, also supported reconstitution when a pair of RNAs was cotransfected together with mRNA for the small delta protein. Taken together, these results support a model that observed genome reconstitution is a special form of recombination involving intermolecular template switches and they provide insights into the mechanism of RNA-directed RNA transcription catalyzed by a host RNA polymerase.
Collapse
Affiliation(s)
- Severin O Gudima
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111-2497, USA
| | | | | |
Collapse
|
41
|
Gudima SO, Chang J, Taylor JM. Features affecting the ability of hepatitis delta virus RNAs to initiate RNA-directed RNA synthesis. J Virol 2004; 78:5737-44. [PMID: 15140971 PMCID: PMC415839 DOI: 10.1128/jvi.78.11.5737-5744.2004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In models of the replication of human hepatitis delta virus (HDV) RNA, it is generally assumed that circular RNAs are the only templates. However, noncircular HDV RNAs are also produced during replication, and it is known that replication can be initiated by transfection with noncircular RNAs. Therefore, strategies were devised to determine the relative ability of different HDV RNA species to initiate RNA replication. One strategy used in vivo intermolecular competition following cotransfection into cells, between two sequence-marked HDV RNA species. Circular RNA templates were found to be at least severalfold more efficient than a dimeric linear template. Unit-length linear species, that is, equivalent to circles opened at different sites, were in most cases but not always of efficiency comparable to that of each other. Greater-than-unit-length linear species were more efficient than unit-length species, presumably because of the increased opportunities for template switching. Genomic linear RNAs were generally of initiation ability comparable to that of antigenomic RNAs. A second strategy measured the ability of initiation to occur on different regions of HDV RNAs that were twice the unit length. In summary, results from these two experimental strategies make clear that linear HDV RNA species, as well as circles, can contribute to the overall process of HDV genome replication. In addition, the results from the two experimental strategies provided information on the impact of template switching during RNA-directed transcription.
Collapse
Affiliation(s)
- Severin O Gudima
- Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA 19111-2497, USA
| | | | | |
Collapse
|
42
|
Abstract
Intrinsic to the life cycle of hepatitis delta virus (HDV) is the fact that its RNAs undergo different forms of posttranscriptional RNA processing. Transcripts of both the genomic RNA and its exact complement, the antigenomic RNA, undergo ribozyme cleavage and RNA ligation. In addition, antigenomic RNA transcripts can undergo 5' capping, 3' polyadenylation, and even RNA editing by an adenosine deaminase. This study focused on the processing of antigenomic RNA transcripts. Two approaches were used to study the relationship between the events of polyadenylation, ribozyme cleavage, and RNA ligation. The first represented an examination under more controlled conditions of mutations in the poly(A) signal, AAUAAA, which is essential for this processing. We found that when a separate stable source of deltaAg-S, the small delta protein, was provided, the replication ability of the mutated RNA was restored. The second approach involved an examination of the processing in transfected cells of specific Pol II DNA-directed transcripts of HDV antigenomic sequences. The DNA constructs used were such that the RNA transcripts were antigenomic and began at the same 5' site as the mRNA produced during RNA-directed HDV genome replication. A series of such constructs was assembled in order to test the relative abilities of the transcripts to undergo processing by polyadenylation or ribozyme cleavage at sites further 3' on a multimer of HDV sequences. The findings from the two experimental approaches led to significant modifications in the rolling-circle model of HDV genome replication.
Collapse
Affiliation(s)
- Xingcao Nie
- Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111-2497, USA
| | | | | |
Collapse
|
43
|
Mu JJ, Tsay YG, Juan LJ, Fu TF, Huang WH, Chen DS, Chen PJ. The small delta antigen of hepatitis delta virus is an acetylated protein and acetylation of lysine 72 may influence its cellular localization and viral RNA synthesis. Virology 2004; 319:60-70. [PMID: 14967488 DOI: 10.1016/j.virol.2003.10.024] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2003] [Revised: 10/22/2003] [Accepted: 10/23/2003] [Indexed: 12/12/2022]
Abstract
Hepatitis delta virus (HDV) is a single-stranded RNA virus that encodes two viral nucleocapsid proteins named small and large form hepatitis delta antigen (S-HDAg and L-HDAg). The S-HDAg is essential for viral RNA replication while the L-HDAg is required for viral assembly. In this study, we demonstrated that HDAg are acetylated proteins. Metabolic labeling with [(3)H]acetate revealed that both forms of HDAg could be acetylated in vivo. The histone acetyltransferase (HAT) domain of cellular acetyltransferase p300 could acetylate the full-length and the N-terminal 88 amino acids of S-HDAg in vitro. By mass spectrometric analysis of the modified protein, Lys-72 of S-HDAg was identified as one of the acetylation sites. Substitution of Lys-72 to Arg caused the mutant S-HDAg to redistribute from the nucleus to the cytoplasm. The mutant reduced viral RNA accumulation and resulted in the earlier appearance of L-HDAg. These results demonstrated that HDAg is an acetylated protein and mutation of HDAg at Lys-72 modulates HDAg subcellular localization and may participate in viral RNA nucleocytoplasmic shuttling and replication.
Collapse
Affiliation(s)
- Jung-Jung Mu
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
44
|
Qi Y, Ding B. Differential subnuclear localization of RNA strands of opposite polarity derived from an autonomously replicating viroid. THE PLANT CELL 2003; 15:2566-77. [PMID: 14555700 PMCID: PMC280561 DOI: 10.1105/tpc.016576] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2003] [Accepted: 09/13/2003] [Indexed: 05/20/2023]
Abstract
The wide variety of RNAs produced in the nucleus must be localized correctly to perform their functions. However, the mechanism of this localization is poorly understood. We report here the differential subnuclear localization of RNA strands of opposite polarity derived from the replicating Potato spindle tuber viroid (PSTVd). During replication, (+)- and (-)-strand viroid RNAs are produced. We found that in infected cultured cells and plants, the (-)-strand RNA was localized in the nucleoplasm, whereas the (+)-strand RNA was localized in the nucleolus as well as in the nucleoplasm with distinct spatial patterns. Furthermore, the presence of the (+)-PSTVd in the nucleolus caused the redistribution of a small nucleolar RNA. Our results support a model in which (1) the synthesis of the (-)- and (+)-strands of PSTVd RNAs occurs in the nucleoplasm, (2) the (-)-strand RNA is anchored in the nucleoplasm, and (3) the (+)-strand RNA is transported selectively into the nucleolus. Our results imply that the eukaryotic cell has a machinery that recognizes and localizes the opposite strands of an RNA, which may have broad ramifications in the RNA regulation of gene expression and the infection cycle of pathogenic RNAs and in the development of RNA-based methods to control gene expression as well as pathogen infection.
Collapse
Affiliation(s)
- Yijun Qi
- Department of Plant Biology and Plant Biotechnology Center, Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
45
|
Cornillez-Ty CT, Lazinski DW. Determination of the multimerization state of the hepatitis delta virus antigens in vivo. J Virol 2003; 77:10314-26. [PMID: 12970416 PMCID: PMC228508 DOI: 10.1128/jvi.77.19.10314-10326.2003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hepatitis delta virus expresses two essential proteins, the small and large delta antigens, and both are required for viral propagation. Proper function of each protein depends on the presence of a common amino-terminal multimerization domain. A crystal structure, solved using a peptide fragment that contained residues 12 to 60, depicts the formation of an octameric ring composed of antiparallel coiled-coil dimers. Because this crystal structure was solved for only a fragment of the delta antigens, it is unknown whether octamers actually form in vivo at physiological protein concentrations and in the context of either intact delta antigen. To test the relevance of the octameric structure, we developed a new method to probe coiled-coil structures in vivo. We generated a panel of mutants containing cysteine substitutions at strategic locations within the predicted monomer-monomer interface and the dimer-dimer interface. Since the small delta antigen contains no cysteine residues, treatment of cell extracts with a mild oxidizing reagent was expected to induce disulfide bond formation only when the appropriate pairs of cysteine substitution mutants were coexpressed. We indeed found that, in vivo, both the small and large delta antigens assembled as antiparallel coiled-coil dimers. Likewise, we found that both proteins could assume an octameric quaternary structure in vivo. Finally, during the course of these experiments, we found that unprenylated large delta antigen molecules could be disulfide cross-linked via the sole cysteine residue located within the carboxy terminus. Therefore, in vivo, the C terminus likely provides an additional site of protein-protein interaction for the large delta antigen.
Collapse
Affiliation(s)
- Cromwell T Cornillez-Ty
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | |
Collapse
|
46
|
Lin FM, Lee CM, Wang TC, Chao M. Initiation of RNA replication of cloned Taiwan-3 isolate of hepatitis delta virus genotype II in cultured cells. Biochem Biophys Res Commun 2003; 306:966-72. [PMID: 12821137 DOI: 10.1016/s0006-291x(03)01076-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatitis delta virus (HDV) genotype II is the predominant genotype in Taiwan and is associated with less progressive disease than genotype I. Although the Taiwan-3 (T3) clone was the first genotype II HDV isolated in Taiwan, its replication in cultured cells has not previously been established. Here, we demonstrate that cloned T3 HDV is capable of replicating in cultured cells. Furthermore, we show that: (1). the replication level of T3 clones is 100-fold lower than that of a genotype I HDV prototype of Italian origin; (2). both forms of the genotype II T3 delta antigen are expressed; and (3). T3 HDV undergoes RNA editing during replication, with 4.8% of the T3 genomes showing evidence of editing. The low level of RNA replication may be related to the milder clinical outcomes of genotype II HDV infections.
Collapse
Affiliation(s)
- Feng-Ming Lin
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Kwei-Shan, Tao-yang 333, Taiwan
| | | | | | | |
Collapse
|
47
|
Abstract
In a natural setting, hepatitis delta virus (HDV) is only found in patients that are also infected with hepatitis B virus (HBV). In hepatocytes infected with these two viruses, HDV RNA genomes are assembled using the envelope proteins of HBV. Since 1986, we have known that HDV has a small single-stranded RNA genome with a unique circular conformation that is replicated using a host RNA polymerase. These and other features make HDV and its replication unique, at least among agents that infect animals. This mini-review focuses on advances gained over the last 2-3 years, together with an evaluation of HDV questions that are either unsolved or not yet solved satisfactorily.
Collapse
Affiliation(s)
- John M Taylor
- Fox Chase Cancer Center, 7701 Burholme Avenue, Philadelphia, PA 19111-2497, USA.
| |
Collapse
|
48
|
Wang TC, Chao M. Molecular cloning and expression of the hepatitis delta virus genotype IIb genome. Biochem Biophys Res Commun 2003; 303:357-63. [PMID: 12646211 DOI: 10.1016/s0006-291x(03)00338-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Analysis of hepatitis delta virus (HDV) genome sequences has revealed multiple genotypes with different geographical distributions and associated disease patterns. To date, replication-competent cDNA clones of HDV genotypes I, II, and III have been reported. HDV genotypes I, II, and IIb have been found in Taiwan. Although full-length sequences of genotype IIb have been published, its replication competence in cultured cells has yet to be reported. In order to examine this, we obtained a full-length cDNA clone, Taiwan-IIb-1, from a Taiwanese HDV genotype IIb isolate. Comparison of the complete nucleic acid sequence of Taiwan-IIb-1 with previously published genotype IIb isolates indicated that Taiwan-IIb-1 shares 98% identity with another Taiwanese isolate and 92% identity with a Japanese isolate. Transfection of Taiwan-IIb-1 into COS7 cells resulted in accumulation of the HDV genome and appearance of delta antigens, showing that cloned HDV genotype IIb can replicate in cultured cells.
Collapse
Affiliation(s)
- Tzu-Chi Wang
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Kwei-Shan, Tao-yang 333, Taiwan
| | | |
Collapse
|
49
|
Qi Y, Ding B. Replication of Potato spindle tuber viroid in cultured cells of tobacco and Nicotiana benthamiana: the role of specific nucleotides in determining replication levels for host adaptation. Virology 2002; 302:445-56. [PMID: 12441088 DOI: 10.1006/viro.2002.1662] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have developed an electroporation protocol to inoculate cultured cells of tobacco and Nicotiana benthamiana with in vitro transcripts of Potato spindle tuber viroid (PSTVd) to characterize viroid structural features that determine replication efficiency at the cellular level. Both (+)- and (-)-strands of PSTVd were detected by Northern blots as early as 6 h postinoculation (h.p.i.). Accumulation of the (+)-circular PSTVd increased very rapidly starting at 24 h.p.i. and continued beyond 6 days postinoculation. Viroid accumulation in individual cells was visualized by in situ hybridization, which showed that 60-70% of the cells were infected. Previous work showed that C259 --> U substitution converted tomato isolate PSTVd(KF440-2) into a strain that is infectious on tobacco (M. Wassenegger, R. L. Spieker, S. Thalmeir, F.-U. Gast, L. Riedel, and H. L. Sänger, 1996. Virology 226, 191-197). Similarly, C259 --> U or U257 --> A substitution in the Intermediate strain (PSTVd(Int)) conferred infectivity in tobacco (Y. Zhu, Y. Qi, Y. Xun, R. Owens, and B. Ding, 2002. Plant Physiol. 130, 138-146). Our replication assays in tobacco-cultured cells demonstrated that U257 --> A and C259 --> U substitutions each enhanced PSTVd replication by 5- to 10-fold. Replacement of U257 with C, but not with G, also led to enhanced replication in tobacco cells. Replacement of C259 with nucleotide A or G did not enhance replication. Elevated accumulation of the (-)- and (+)-strands of these mutants was in part due to enhanced transcription. Interestingly, all of the nucleotide changes did not alter PSTVd replication levels in N. benthamiana cells. These results provide insights about PSTVd structures that modulate replication efficiency in adapting to a specific host.
Collapse
Affiliation(s)
- Yijun Qi
- Department of Plant Biology and Plant Biotechnology Center, The Ohio State University, Columbus, 43210, USA
| | | |
Collapse
|
50
|
Sheu GT. Initiation of hepatitis delta virus (HDV) replication: HDV RNA encoding the large delta antigen cannot replicate. J Gen Virol 2002; 83:2507-2513. [PMID: 12237434 DOI: 10.1099/0022-1317-83-10-2507] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The hepatitis delta virus (HDV) nucleocapsid consists of a genomic-length RNA of 1.7 kb and approximately equimolar amounts of the small and large forms of the hepatitis delta antigen (S-HDAg and L-HDAg, respectively). Since HDV RNA particles contain not only a genomic RNA species encoding S-HDAg but also an RNA species encoding L-HDAg, which is produced by an RNA-editing process, the question arises as to whether RNAs encoding either L-HDAg or S-HDAg can initiate replication. To study this, two cDNA-free transfection methods were employed: HDV RNA cotransfected with either the S-HDAg-encoding mRNA species or the ribonucleocapsid protein complex, comprising HDV RNA and recombinant S-HDAg. Results showed that the genomic-sense RNA encoding S-HDAg could promote HDV replication, whereas the L-HDAg-encoding RNA species was unable to replicate under the same conditions. The antigenomic RNA species encoding either S-HDAg or L-HDAg could not replicate by either of these procedures. In addition, L-HDAg alone could not promote replication of the genomic RNA but, by supplementing an equal amount of S-HDAg, replication occurred. These data indicate that L-HDAg-encoding RNA species are probably not involved in the initiation of HDV RNA synthesis; instead, their main function may be to serve as template for producing L-HDAg, which regulates HDV RNA synthesis and virion assembly. These results suggest that the genomic RNA species encoding S-HDAg is the only functional genome for HDV infection and explain why the presence of the edited HDV RNA encoding L-HDAg does not interfere with HDV infection.
Collapse
Affiliation(s)
- Gwo-Tarng Sheu
- Institute of Toxicology, Chung Shan Medical University, 110 Sec. 1, Chien-Kuo N. Road, Taichung 40203, Taiwan, Republic of China1
| |
Collapse
|