1
|
PRRSV Induces HMGB1 Phosphorylation at Threonine-51 Residue to Enhance Its Secretion. Viruses 2022; 14:v14051002. [PMID: 35632744 PMCID: PMC9144045 DOI: 10.3390/v14051002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/16/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) induces secretion of high mobility group box 1 (HMGB1) to mediate inflammatory response that is involved in the pulmonary injury of infected pigs. Our previous study indicates that protein kinase C-delta (PKC-delta) is essential for HMGB1 secretion in PRRSV-infected cells. However, the underlying mechanism in HMGB1 secretion induced by PRRSV infection is still unclear. Here, we discovered that the phosphorylation level of HMGB1 in threonine residues increased in PRRSV-infected cells. A site-directed mutagenesis study showed that HMGB1 phosphorylation at threonine-51 was associated with HMGB1 secretion induced by PRRSV infection. Co-immunoprecipitation (co-IP) of HMGB1 failed to precipitate PKC-delta, but interestingly, mass spectrometry analysis of the HMGB1 co-IP product showed that PRRSV infection enhanced HMGB1 binding to ribosomal protein S3 (RPS3), which has various extra-ribosomal functions. The silencing of RPS3 by siRNA blocked HMGB1 secretion induced by PRRSV infection. Moreover, the phosphorylation of HMGB1 at threonine-51 was correlated with the interaction between HMGB1 and RPS3. In vivo, PRRSV infection also increased RPS3 levels and nuclear accumulation in pulmonary alveolar macrophages. These results demonstrate that PRRSV may induce HMGB1 phosphorylation at threonine-51 and increase its interaction with RPS3 to enhance HMGB1 secretion. This finding provides insights into the pathogenesis of PRRSV infection.
Collapse
|
2
|
Dong HJ, Zhang R, Kuang Y, Wang XJ. Selective regulation in ribosome biogenesis and protein production for efficient viral translation. Arch Microbiol 2020; 203:1021-1032. [PMID: 33124672 PMCID: PMC7594972 DOI: 10.1007/s00203-020-02094-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/18/2020] [Accepted: 10/13/2020] [Indexed: 11/25/2022]
Abstract
As intracellular parasites, viruses depend heavily on host cell structures and their functions to complete their life cycle and produce new viral particles. Viruses utilize or modulate cellular translational machinery to achieve efficient replication; the role of ribosome biogenesis and protein synthesis in viral replication particularly highlights the importance of the ribosome quantity and/or quality in controlling viral protein synthesis. Recently reported studies have demonstrated that ribosome biogenesis factors (RBFs) and ribosomal proteins (RPs) act as multifaceted regulators in selective translation of viral transcripts. Here we summarize the recent literature on RBFs and RPs and their association with subcellular redistribution, post-translational modification, enzyme catalysis, and direct interaction with viral proteins. The advances described in this literature establish a rationale for targeting ribosome production and function in the design of the next generation of antiviral agents.
Collapse
Affiliation(s)
- Hui-Jun Dong
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Rui Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| | - Yu Kuang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| | - Xiao-Jia Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
3
|
Liu Y, Zhang Y, Wang M, Cheng A, Yang Q, Wu Y, Jia R, Liu M, Zhu D, Chen S, Zhang S, Zhao X, Huang J, Mao S, Ou X, Gao Q, Wang Y, Xu Z, Chen Z, Zhu L, Luo Q, Liu Y, Yu Y, Zhang L, Tian B, Pan L, Chen X. Structures and Functions of the 3' Untranslated Regions of Positive-Sense Single-Stranded RNA Viruses Infecting Humans and Animals. Front Cell Infect Microbiol 2020; 10:453. [PMID: 32974223 PMCID: PMC7481400 DOI: 10.3389/fcimb.2020.00453] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/23/2020] [Indexed: 12/20/2022] Open
Abstract
The 3′ untranslated region (3′ UTR) of positive-sense single-stranded RNA [ssRNA(+)] viruses is highly structured. Multiple elements in the region interact with other nucleotides and proteins of viral and cellular origin to regulate various aspects of the virus life cycle such as replication, translation, and the host-cell response. This review attempts to summarize the primary and higher order structures identified in the 3′UTR of ssRNA(+) viruses and their functional roles.
Collapse
Affiliation(s)
- Yuanzhi Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - XinXin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yin Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zhiwen Xu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zhengli Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qihui Luo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Leichang Pan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoyue Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
4
|
Das AS, Basu A, Kumar R, Borah PK, Bakshi S, Sharma M, Duary RK, Ray PS, Mukhopadhyay R. Post-transcriptional regulation of C-C motif chemokine ligand 2 expression by ribosomal protein L22 during LPS-mediated inflammation. FEBS J 2020; 287:3794-3813. [PMID: 32383535 DOI: 10.1111/febs.15362] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 04/02/2020] [Accepted: 05/05/2020] [Indexed: 11/28/2022]
Abstract
Monocyte infiltration to the site of pathogenic invasion is critical for inflammatory response and host defence. However, this process demands precise regulation as uncontrolled migration of monocytes to the site delays resolution of inflammation and ultimately promotes chronic inflammation. C-C motif chemokine ligand 2 (CCL2) plays a key role in monocyte migration, and hence, its expression should be tightly regulated. Here, we report a post-transcriptional regulation of CCL2 involving the large ribosomal subunit protein L22 (RPL22) in LPS-activated, differentiated THP-1 cells. Early events following LPS treatment include transcriptional upregulation of RPL22 and its nuclear accumulation. The protein binds to the first 20 nt sequence of the 5'UTR of ccl2 mRNA. Simultaneous nuclear translocation of up-frameshift-1 protein and its interaction with RPL22 results in cytoplasmic degradation of the ccl2 mRNA at a later stage. Removal of RPL22 from cells results in increased expression of CCL2 in response to LPS causing disproportionate migration of monocytes. We propose that post-transcriptional regulation of CCL2 by RPL22 fine-tunes monocyte infiltration during a pathogenic insult and maintains homeostasis of the immune response critical to resolution of inflammation. DATABASES: Microarray data are available in NCBI GEO database (Accession No GSE126525).
Collapse
Affiliation(s)
- Anindhya Sundar Das
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India
| | - Anandita Basu
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India
| | - Ravi Kumar
- Department of Biological Sciences, Indian Institute of Science Education and Research, West Bengal, India
| | - Pallab Kumar Borah
- Department of Food Engineering and Technology, Tezpur University, Assam, India
| | - Subhojit Bakshi
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India
| | - Manoj Sharma
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India
| | - Raj Kumar Duary
- Department of Food Engineering and Technology, Tezpur University, Assam, India
| | - Partho Sarothi Ray
- Department of Biological Sciences, Indian Institute of Science Education and Research, West Bengal, India
| | - Rupak Mukhopadhyay
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India
| |
Collapse
|
5
|
Kampen KR, Sulima SO, Vereecke S, De Keersmaecker K. Hallmarks of ribosomopathies. Nucleic Acids Res 2020; 48:1013-1028. [PMID: 31350888 PMCID: PMC7026650 DOI: 10.1093/nar/gkz637] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/09/2019] [Accepted: 07/12/2019] [Indexed: 12/11/2022] Open
Abstract
Ribosomopathies are diseases caused by defects in ribosomal constituents or in factors with a role in ribosome assembly. Intriguingly, congenital ribosomopathies display a paradoxical transition from early symptoms due to cellular hypo-proliferation to an elevated cancer risk later in life. Another association between ribosome defects and cancer came into view after the recent discovery of somatic mutations in ribosomal proteins and rDNA copy number changes in a variety of tumor types, giving rise to somatic ribosomopathies. Despite these clear connections between ribosome defects and cancer, the molecular mechanisms by which defects in this essential cellular machinery are oncogenic only start to emerge. In this review, the impact of ribosomal defects on the cellular function and their mechanisms of promoting oncogenesis are described. In particular, we discuss the emerging hallmarks of ribosomopathies such as the appearance of ‘onco-ribosomes’ that are specialized in translating oncoproteins, dysregulation of translation-independent extra-ribosomal functions of ribosomal proteins, rewired cellular protein and energy metabolism, and extensive oxidative stress leading to DNA damage. We end by integrating these findings in a model that can provide an explanation how ribosomopathies could lead to the transition from hypo- to hyper-proliferation in bone marrow failure syndromes with elevated cancer risk.
Collapse
Affiliation(s)
- Kim R Kampen
- Department of Oncology, KU Leuven, LKI - Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Sergey O Sulima
- Department of Oncology, KU Leuven, LKI - Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Stijn Vereecke
- Department of Oncology, KU Leuven, LKI - Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Kim De Keersmaecker
- Department of Oncology, KU Leuven, LKI - Leuven Cancer Institute, 3000 Leuven, Belgium
| |
Collapse
|
6
|
Romero-López C, Berzal-Herranz A. The Role of the RNA-RNA Interactome in the Hepatitis C Virus Life Cycle. Int J Mol Sci 2020; 21:1479. [PMID: 32098260 PMCID: PMC7073135 DOI: 10.3390/ijms21041479] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 02/05/2023] Open
Abstract
RNA virus genomes are multifunctional entities endowed with conserved structural elements that control translation, replication and encapsidation, among other processes. The preservation of these structural RNA elements constraints the genomic sequence variability. The hepatitis C virus (HCV) genome is a positive, single-stranded RNA molecule with numerous conserved structural elements that manage different steps during the infection cycle. Their function is ensured by the association of protein factors, but also by the establishment of complex, active, long-range RNA-RNA interaction networks-the so-called HCV RNA interactome. This review describes the RNA genome functions mediated via RNA-RNA contacts, and revisits some canonical ideas regarding the role of functional high-order structures during the HCV infective cycle. By outlining the roles of long-range RNA-RNA interactions from translation to virion budding, and the functional domains involved, this work provides an overview of the HCV genome as a dynamic device that manages the course of viral infection.
Collapse
Affiliation(s)
- Cristina Romero-López
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN-CSIC), Av. Conocimiento 17, Armilla, 18016 Granada, Spain
| | - Alfredo Berzal-Herranz
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN-CSIC), Av. Conocimiento 17, Armilla, 18016 Granada, Spain
| |
Collapse
|
7
|
Ribosomal Protein L13 Promotes IRES-Driven Translation of Foot-and-Mouth Disease Virus in a Helicase DDX3-Dependent Manner. J Virol 2020; 94:JVI.01679-19. [PMID: 31619563 DOI: 10.1128/jvi.01679-19] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 10/11/2019] [Indexed: 12/22/2022] Open
Abstract
Internal ribosome entry site (IRES)-driven translation is a common strategy among positive-sense, single-stranded RNA viruses for bypassing the host cell requirement of a 5' cap structure. In the current study, we identified the ribosomal protein L13 (RPL13) as a critical regulator of IRES-driven translation of foot-and-mouth disease virus (FMDV) but found that it is not essential for cellular global translation. RPL13 is also a determinant for translation and infection of Seneca Valley virus (SVV) and classical swine fever virus (CSFV), and this suggests that its function may also be conserved in unrelated IRES-containing viruses. We further showed that depletion of DEAD box helicase DDX3 disrupts binding of RPL13 to the FMDV IRES, whereas the reduction in RPL13 expression impairs the ability of DDX3 to promote IRES-driven translation directly. DDX3 cooperates with RPL13 to support the assembly of 80S ribosomes for optimal translation initiation of viral mRNA. Finally, we demonstrated that DDX3 affects the recruitment of the eukaryotic initiation factor eIF3 subunits e and j to the viral IRES. This work provides the first connection between DDX3 and eIF3e/j and recognition of the role of RPL13 in modulating viral IRES-dependent translation. This previously uncharacterized process may be involved in selective mRNA translation.IMPORTANCE Accumulating evidence has unveiled the roles of ribosomal proteins (RPs) belonging to the large 60S subunit in regulating selective translation of specific mRNAs. The translation specificity of the large-subunit RPs in this process is thought provoking, given the role they play canonically in catalyzing peptide bond formation. Here, we have identified the ribosomal protein L13 (RPL13) as a critical regulator of IRES-driven translation during FMDV infection. Our study supports a model whereby the FMDV IRESs recruit helicase DDX3 recognizing RPL13 to facilitate IRES-driven translation, with the assistance of eIF3e and eIF3j. A better understanding of these specific interactions surrounding IRES-mediated translation initiation could have important implications for the selective translation of viral mRNA and thus for the development of effective prevention of viral infection.
Collapse
|
8
|
Chudinova EM, Brodsky IB, Nadezhdina ES. On the interaction of ribosomal protein RPL22e with microtubules. Cell Biol Int 2019; 43:749-759. [PMID: 30958636 DOI: 10.1002/cbin.11141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 03/23/2019] [Indexed: 11/10/2022]
Abstract
Microtubule (MT) protein preparations often contain components of the translation machinery, including ribosome proteins. To understand the biological meaning of it we studied the interaction of ribosomal protein RPL22e with the MT. We found that bacteria expressed purified RPL22e-GFP-6His did co-sediment with brain tubulin MTs with 1.3 µM dissociation coefficient. Such a KD is comparable to some specific MT-associated proteins. Distinct in vitro interaction of RPL22e-GFP with MTs was also observed by TIRF microscopy. In real-time assay, RPL22e-GFP molecules stayed bound to MTs for several seconds, and 15% of them demonstrated random-walk along MTs with diffusion coefficient 0.03 µ2 /s. Deletion of basic areas of RPL22e did not have an impact on KD , and deletion of acidic tail slightly increased association with MTs. Interestingly, the deletion of acidic tail increased diffusion coefficient as well. The interaction of RPL22e with MTs is hardly noticeable in vivo in cultured cells, probably since a significant part of the protein is incorporated into the ribosomes. The mobility of ribosomal protein on the MTs probably prevents its interfering with MT-dependent transport and could ameliorate its transport to the nucleus.
Collapse
Affiliation(s)
- Elena M Chudinova
- Institute of Protein Research of Russian Academy of Science, Institutskaya str., 4, Pushchino, Moscow Region 142290, Russia.,Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya str., 6, 117198 Moscow, Russia
| | - Ilya B Brodsky
- M.V. Lomonosov Moscow State University, Leninskie Gory, 1-73, 119991 Moscow, Russia
| | - Elena S Nadezhdina
- Institute of Protein Research of Russian Academy of Science, Institutskaya str., 4, Pushchino, Moscow Region 142290, Russia.,M.V. Lomonosov Moscow State University, Leninskie Gory, 1-73, 119991 Moscow, Russia
| |
Collapse
|
9
|
Dutkiewicz M, Ciesiołka J. Form confers function: Case of the 3’X region of the hepatitis C virus genome. World J Gastroenterol 2018; 24:3374-3383. [PMID: 30122877 PMCID: PMC6092582 DOI: 10.3748/wjg.v24.i30.3374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/25/2018] [Accepted: 06/30/2018] [Indexed: 02/06/2023] Open
Abstract
At the 3’ end of genomic hepatitis C virus (HCV) RNA there is a highly conserved untranslated region, the 3’X-tail, which forms part of the 3’UTR. This region plays key functions in regulation of critical processes of the viral life cycle. The 3’X region is essential for viral replication and infectivity. It is also responsible for regulation of switching between translation and transcription of the viral RNA. There is some evidence indicating the contribution of the 3’X region to the translation efficiency of the viral polyprotein and to the encapsidation process. Several different secondary structure models of the 3’X region, based on computer predictions and experimental structure probing, have been proposed. It is likely that the 3’X region adopts more than one structural form in infected cells and that a specific equilibrium between the various forms regulates several aspects of the viral life cycle. The most intriguing explanations of the structural heterogeneity problem of the 3’X region came with the discovery of its involvement in long-range RNA-RNA interactions and the potential for homodimer formation. This article summarizes current knowledge on the structure and function of the 3’X region of hepatitis C genomic RNA, reviews previous opinions, presents new hypotheses and summarizes the questions that still remain unanswered.
Collapse
Affiliation(s)
- Mariola Dutkiewicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland
| | - Jerzy Ciesiołka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland
| |
Collapse
|
10
|
RNA binding protein 24 regulates the translation and replication of hepatitis C virus. Protein Cell 2018; 9:930-944. [PMID: 29380205 PMCID: PMC6208484 DOI: 10.1007/s13238-018-0507-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/10/2017] [Indexed: 12/12/2022] Open
Abstract
The secondary structures of hepatitis C virus (HCV) RNA and the cellular proteins that bind to them are important for modulating both translation and RNA replication. However, the sets of RNA-binding proteins involved in the regulation of HCV translation, replication and encapsidation remain unknown. Here, we identified RNA binding motif protein 24 (RBM24) as a host factor participated in HCV translation and replication. Knockdown of RBM24 reduced HCV propagation in Huh7.5.1 cells. An enhanced translation and delayed RNA synthesis during the early phase of infection was observed in RBM24 silencing cells. However, both overexpression of RBM24 and recombinant human RBM24 protein suppressed HCV IRES-mediated translation. Further analysis revealed that the assembly of the 80S ribosome on the HCV IRES was interrupted by RBM24 protein through binding to the 5'-UTR. RBM24 could also interact with HCV Core and enhance the interaction of Core and 5'-UTR, which suppresses the expression of HCV. Moreover, RBM24 enhanced the interaction between the 5'- and 3'-UTRs in the HCV genome, which probably explained its requirement in HCV genome replication. Therefore, RBM24 is a novel host factor involved in HCV replication and may function at the switch from translation to replication.
Collapse
|
11
|
Fahl SP, Wang M, Zhang Y, Duc ACE, Wiest DL. Regulatory Roles of Rpl22 in Hematopoiesis: An Old Dog with New Tricks. Crit Rev Immunol 2016; 35:379-400. [PMID: 26853850 DOI: 10.1615/critrevimmunol.v35.i5.30] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ribosomal proteins have long been known to serve critical roles in facilitating the biogenesis of the ribosome and its ability to synthesize proteins. However, evidence is emerging that suggests ribosomal proteins are also capable of performing tissue-restricted, regulatory functions that impact normal development and pathological conditions, including cancer. The challenge in studying such regulatory functions is that elimination of many ribosomal proteins also disrupts ribosome biogenesis and/or function. Thus, it is difficult to determine whether developmental abnormalities resulting from ablation of a ribosomal protein result from loss of core ribosome functions or from loss of the regulatory function of the ribosomal protein. Rpl22, a ribosomal protein component of the large 60S subunit, provides insight into this conundrum; Rpl22 is dispensable for both ribosome biogenesis and protein synthesis yet its ablation causes tissue-restricted disruptions in development. Here we review evidence supporting the regulatory functions of Rpl22 and other ribosomal proteins.
Collapse
Affiliation(s)
- Shawn P Fahl
- Blood Cell Development and Function Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| | - Minshi Wang
- Blood Cell Development and Function Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| | - Yong Zhang
- Blood Cell Development and Function Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| | - Anne-Cecile E Duc
- Blood Cell Development and Function Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| | - David L Wiest
- Blood Cell Development and Function Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| |
Collapse
|
12
|
Kim SJ, Strich R. Rpl22 is required for IME1 mRNA translation and meiotic induction in S. cerevisiae. Cell Div 2016; 11:10. [PMID: 27478489 PMCID: PMC4966820 DOI: 10.1186/s13008-016-0024-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/08/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The transition from mitotic cell division to meiotic development in S. cerevisiae requires induction of a transient transcription program that is initiated by Ime1-dependent destruction of the repressor Ume6. Although IME1 mRNA is observed in vegetative cultures, Ime1 protein is not suggesting the presence of a regulatory system restricting translation to meiotic cells. RESULTS This study demonstrates that IME1 mRNA translation requires Rpl22A and Rpl22B, eukaryotic-specific ribosomal protein paralogs of the 60S large subunit. In the absence of Rpl22 function, IME1 mRNA synthesis is normal in cultures induced to enter meiosis. However, Ime1 protein production is reduced and the Ume6 repressor is not destroyed in rpl22 mutant cells preventing early meiotic gene induction resulting in a pre-meiosis I arrest. This role for Rpl22 is not a general consequence of mutating non-essential large ribosomal proteins as strains lacking Rpl29 or Rpl39 execute meiosis with nearly wild-type efficiencies. Several results indicate that Rpl22 functions by enhancing IME1 mRNA translation. First, the Ime1 protein synthesized in rpl22 mutant cells demonstrates the same turnover rate as in wild-type cultures. In addition, IME1 transcript is found in polysome fractions isolated from rpl22 mutant cells indicating that mRNA nuclear export and ribosome association occurs. Finally, deleting the unusually long 5'UTR restores Ime1 levels and early meiotic gene transcription in rpl22 mutants suggesting that Rpl22 enhances translation through this element. Polysome profiles revealed that under conditions of high translational output, Rpl22 maintains high free 60S subunit levels thus preventing halfmer formation, a translation species indicative of mRNAs bound by an unpaired 40S subunit. In addition to meiosis, Rpl22 is also required for invasive and pseudohyphal growth. CONCLUSIONS These findings indicate that Rpl22A and Rpl22B are required to selectively translate IME1 mRNA that is required for meiotic induction and subsequent gametogenesis. In addition, our results imply a more general role for Rpl22 in cell fate switches responding to environmental nitrogen signals.
Collapse
Affiliation(s)
- Stephen J Kim
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Two Medical Center Dr., Stratford, NJ 08055 USA
| | - Randy Strich
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Two Medical Center Dr., Stratford, NJ 08055 USA
| |
Collapse
|
13
|
Making Bunyaviruses Talk: Interrogation Tactics to Identify Host Factors Required for Infection. Viruses 2016; 8:v8050130. [PMID: 27187446 PMCID: PMC4885085 DOI: 10.3390/v8050130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 05/03/2016] [Accepted: 05/06/2016] [Indexed: 12/26/2022] Open
Abstract
The identification of host cellular genes that act as either proviral or antiviral factors has been aided by the development of an increasingly large number of high-throughput screening approaches. Here, we review recent advances in which these new technologies have been used to interrogate host genes for the ability to impact bunyavirus infection, both in terms of technical advances as well as a summary of biological insights gained from these studies.
Collapse
|
14
|
Iwakiri D. Multifunctional non-coding Epstein-Barr virus encoded RNAs (EBERs) contribute to viral pathogenesis. Virus Res 2015; 212:30-8. [PMID: 26292159 DOI: 10.1016/j.virusres.2015.08.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/09/2015] [Accepted: 08/10/2015] [Indexed: 12/11/2022]
Abstract
Epstein-Barr Virus (EBV) is known as an oncogenic herpesvirus implicated in the pathogenesis of various malignancies. It has been reported that EBV non-coding RNAs (ncRNAs) including EBV-encoded small RNAs (EBERs) and EBV-miRNAs contribute to viral pathogenesis. EBERs that are expressed abundantly in latently EBV-infected cells have been reported to play significant roles in tumorigenesis by EBV. Furthermore, it was demonstrated that the modulation of host innate immune signals by EBERs contributes to EBV-mediated pathogenesis including oncogenesis. Recently it was demonstrated that EBERs are secreted via exosomes by EBV-infected cells. It was also demonstrated that exosomes contain a number of EBV-encoded miRNAs. Various mRNAs have been identified as targets for regulation by EBV-miRNAs in host cells, therefore, EBERs and EBV-miRNAs might function through the transfer of exosomes.
Collapse
Affiliation(s)
- Dai Iwakiri
- Institute for Genetic Medicine, Hokkaido University, N15 W7 Kita-Ku, Sapporo 060-0815, Japan.
| |
Collapse
|
15
|
Zhou X, Liao WJ, Liao JM, Liao P, Lu H. Ribosomal proteins: functions beyond the ribosome. J Mol Cell Biol 2015; 7:92-104. [PMID: 25735597 DOI: 10.1093/jmcb/mjv014] [Citation(s) in RCA: 475] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 12/05/2014] [Indexed: 01/05/2023] Open
Abstract
Although ribosomal proteins are known for playing an essential role in ribosome assembly and protein translation, their ribosome-independent functions have also been greatly appreciated. Over the past decade, more than a dozen of ribosomal proteins have been found to activate the tumor suppressor p53 pathway in response to ribosomal stress. In addition, these ribosomal proteins are involved in various physiological and pathological processes. This review is composed to overview the current understanding of how ribosomal stress provokes the accumulation of ribosome-free ribosomal proteins, as well as the ribosome-independent functions of ribosomal proteins in tumorigenesis, immune signaling, and development. We also propose the potential of applying these pieces of knowledge to the development of ribosomal stress-based cancer therapeutics.
Collapse
Affiliation(s)
- Xiang Zhou
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Wen-Juan Liao
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jun-Ming Liao
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Peng Liao
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Hua Lu
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
16
|
Epstein-Barr Virus-Encoded RNAs: Key Molecules in Viral Pathogenesis. Cancers (Basel) 2014; 6:1615-30. [PMID: 25101570 PMCID: PMC4190559 DOI: 10.3390/cancers6031615] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 07/18/2014] [Accepted: 07/21/2014] [Indexed: 12/25/2022] Open
Abstract
The Epstein-Barr virus (EBV) is known as an oncogenic herpesvirus that has been implicated in the pathogenesis of various malignancies. EBV-encoded RNAs (EBERs) are non-coding RNAs expressed abundantly in latently EBV-infected cells. Herein, I summarize the current understanding of the functions of EBERs, including the interactions with cellular factors through which EBERs contribute to EBV-mediated pathogenesis. Previous studies have demonstrated that EBERs are responsible for malignant phenotypes in lymphoid cells, and can induce several cytokines that can promote the growth of various EBV-infected cancer cells. EBERs were also found to bind retinoic acid-inducible gene I (RIG-I) and thus activate its downstream signaling. Furthermore, EBERs induce interleukin-10, an autocrine growth factor for Burkitt’s lymphoma cells, by activating RIG-I/interferon regulatory factor 3 pathway, suggesting that EBER-mediated innate immune signaling modulation contributes to EBV-mediated oncogenesis. Recently, EBV-infected cells were reported to secret EBERs, which were then recognized by toll-like receptor 3 (TLR3), leading to the induction of type I interferon and inflammatory cytokines, and subsequent immune activation. Furthermore, EBER1 was detected in the sera of patients with active EBV-infectious diseases, suggesting that EBER1-meidated TLR3 signaling activation could account for the pathogenesis of active EBV-infectious diseases.
Collapse
|
17
|
Ivanov AV, Malygin AA, Karpova GG. Common features in arrangements of ribosomal protein S26e binding sites on its pre-mRNA and 18S rRNA. Mol Biol 2014. [DOI: 10.1134/s002689331403008x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Romero-López C, Berzal-Herranz A. Unmasking the information encoded as structural motifs of viral RNA genomes: a potential antiviral target. Rev Med Virol 2013; 23:340-354. [PMID: 23983005 PMCID: PMC7169113 DOI: 10.1002/rmv.1756] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 07/23/2013] [Accepted: 07/24/2013] [Indexed: 02/05/2023]
Abstract
RNA viruses show enormous capacity to evolve and adapt to new cellular and molecular contexts, a consequence of mutations arising from errors made by viral RNA-dependent RNA polymerase during replication. Sequence variation must occur, however, without compromising functions essential for the completion of the viral cycle. RNA viruses are safeguarded in this respect by their genome carrying conserved information that does not code only for proteins but also for the formation of structurally conserved RNA domains that directly perform these critical functions. Functional RNA domains can interact with other regions of the viral genome and/or proteins to direct viral translation, replication and encapsidation. They are therefore potential targets for novel therapeutic strategies. This review summarises our knowledge of the functional RNA domains of human RNA viruses and examines the achievements made in the design of antiviral compounds that interfere with their folding and therefore their function.
Collapse
Affiliation(s)
- Cristina Romero-López
- Instituto de Parasitología y Biomedicina 'López-Neyra', IPBLN-CSIC, PTS Granada, Armilla, Granada, Spain
| | | |
Collapse
|
19
|
Ahmed W, Khan G. The labyrinth of interactions of Epstein-Barr virus-encoded small RNAs. Rev Med Virol 2013; 24:3-14. [PMID: 24105992 DOI: 10.1002/rmv.1763] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/15/2013] [Accepted: 08/16/2013] [Indexed: 12/25/2022]
Abstract
Epstein-Barr Virus (EBV) is an oncogenic herpesvirus implicated in the pathogenesis of a number of human malignancies. However, the mechanism by which EBV leads to malignant transformation is not clear. A number of viral latent gene products, including non-protein coding small RNAs, are believed to be involved. Epstein-Barr virus-encoded RNA 1 (EBER1) and EBER2 are two such RNA molecules that are abundantly expressed (up to 10(7) copies) in all EBV-infected cells, but their function remains poorly understood. These polymerase III transcripts have extensive secondary structure and exist as ribonucleoproteins. An accumulating body of evidence suggests that EBERs play an important role, directly or indirectly, in EBV-induced oncogenesis. Here, we summarize the current understanding of the complex interactions of EBERs with various cellular factors and the potential pathways by which these small RNAs are able to influence EBV-infected cells to proliferate and to induce tumorigenesis. The exosome pathway is probably involved in the cellular excretion of EBERs and facilitating some of their biological effects.
Collapse
Affiliation(s)
- Waqar Ahmed
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | | |
Collapse
|
20
|
Park IW, Ndjomou J, Wen Y, Liu Z, Ridgway ND, Kao CC, He JJ. Inhibition of HCV replication by oxysterol-binding protein-related protein 4 (ORP4) through interaction with HCV NS5B and alteration of lipid droplet formation. PLoS One 2013; 8:e75648. [PMID: 24069433 PMCID: PMC3775767 DOI: 10.1371/journal.pone.0075648] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 08/20/2013] [Indexed: 12/21/2022] Open
Abstract
Hepatitis C virus (HCV) RNA replication involves complex interactions among the 3’x RNA element within the HCV 3’ untranslated region, viral and host proteins. However, many of the host proteins remain unknown. In this study, we devised an RNA affinity chromatography /2D/MASS proteomics strategy and identified nine putative 3’ X-associated host proteins; among them is oxysterol-binding protein-related protein 4 (ORP4), a cytoplasmic receptor for oxysterols. We determined the relationship between ORP4 expression and HCV replication. A very low level of constitutive ORP4 expression was detected in hepatocytes. Ectopically expressed ORP4 was detected in the endoplasmic reticulum and inhibited luciferase reporter gene expression in HCV subgenomic replicon cells and HCV core expression in JFH-1-infected cells. Expression of ORP4S, an ORP4 variant that lacked the N-terminal pleckstrin-homology domain but contained the C-terminal oxysterol-binding domain also inhibited HCV replication, pointing to an important role of the oxysterol-binding domain in ORP4-mediated inhibition of HCV replication. ORP4 was found to associate with HCV NS5B and its expression led to inhibition of the NS5B activity. ORP4 expression had little effect on intracellular lipid synthesis and secretion, but it induced lipid droplet formation in the context of HCV replication. Taken together, these results demonstrate that ORP4 is a negative regulator of HCV replication, likely via interaction with HCV NS5B in the replication complex and regulation of intracellular lipid homeostasis. This work supports the important role of lipids and their metabolism in HCV replication and pathogenesis.
Collapse
Affiliation(s)
- In-Woo Park
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Center for AIDS Research, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Jean Ndjomou
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Yahong Wen
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Ziqing Liu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Neale D. Ridgway
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - C. Cheng Kao
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Johnny J. He
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Center for AIDS Research, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- University of North Texas Health Science Center, Fort Worth, Texas, United States of America
- * E-mail:
| |
Collapse
|
21
|
Bai Y, Zhou K, Doudna JA. Hepatitis C virus 3'UTR regulates viral translation through direct interactions with the host translation machinery. Nucleic Acids Res 2013; 41:7861-74. [PMID: 23783572 PMCID: PMC3763534 DOI: 10.1093/nar/gkt543] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The 3′ untranslated region (3′UTR) of hepatitis C virus (HCV) messenger RNA stimulates viral translation by an undetermined mechanism. We identified a high affinity interaction, conserved among different HCV genotypes, between the HCV 3′UTR and the host ribosome. The 3′UTR interacts with 40S ribosomal subunit proteins residing primarily in a localized region on the 40S solvent-accessible surface near the messenger RNA entry and exit sites. This region partially overlaps with the site where the HCV internal ribosome entry site was found to bind, with the internal ribosome entry site-40S subunit interaction being dominant. Despite its ability to bind to 40S subunits independently, the HCV 3′UTR only stimulates translation in cis, without affecting the first round translation rate. These observations support a model in which the HCV 3′UTR retains ribosome complexes during translation termination to facilitate efficient initiation of subsequent rounds of translation.
Collapse
Affiliation(s)
- Yun Bai
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA, Department of Chemistry, University of California, Berkeley, CA 94720, USA and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
22
|
Systematic analysis of enhancer and critical cis-acting RNA elements in the protein-encoding region of the hepatitis C virus genome. J Virol 2013; 87:5678-96. [PMID: 23487449 DOI: 10.1128/jvi.00840-12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Hepatitis C virus (HCV) causes chronic hepatitis, cirrhosis, and liver cancer. cis-acting RNA elements of the HCV genome are critical for translation initiation and replication of the viral genome. We hypothesized that the coding regions of nonstructural proteins harbor enhancer and essential cis-acting replication elements (CRE). In order to experimentally identify new cis RNA elements, we utilized an unbiased approach to introduce synonymous substitutions. The HCV genome coding for nonstructural proteins (nucleotide positions 3872 to 9097) was divided into 17 contiguous segments. The wobble nucleotide positions of each codon were replaced, resulting in 33% to 41% nucleotide changes. The HCV genome containing one of each of 17 mutant segments (S1 to S17) was tested for genome replication and infectivity. We observed that silent mutations in segment 13 (S13) (nucleotides [nt] 7457 to 7786), S14 (nt 7787 to 8113), S15 (nt 8114 to 8440), S16 (nt 8441 to 8767), and S17 (nt 8768 to 9097) resulted in impaired genome replication, suggesting CRE structures are enriched in the NS5B region. Subsequent high-resolution mutational analysis of NS5B (nt 7787 to 9289) using approximately 51-nucleotide contiguous subsegment mutant viruses having synonymous mutations revealed that subsegments SS8195-8245, SS8654-8704, and SS9011-9061 were required for efficient viral growth, suggesting that these regions act as enhancer elements. Covariant nucleotide substitution analysis of a stem-loop, JFH-SL9098, revealed the formation of an extended stem structure, which we designated JFH-SL9074. We have identified new enhancer RNA elements and an extended stem-loop in the NS5B coding region. Genetic modification of enhancer RNA elements can be utilized for designing attenuated HCV vaccine candidates.
Collapse
|
23
|
Martin F. Fifteen years of the yeast three-hybrid system: RNA-protein interactions under investigation. Methods 2012; 58:367-75. [PMID: 22841566 DOI: 10.1016/j.ymeth.2012.07.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 05/04/2012] [Accepted: 07/13/2012] [Indexed: 01/14/2023] Open
Abstract
In 1996, the Wickens and the Kuhl labs developed the yeast three-hybrid system independently. By expressing two chimeric proteins and one chimeric RNA molecule in Saccharomyces cerevisiae, this method allows in vivo monitoring of RNA-protein interactions by measuring the expression levels of HIS3 and LacZ reporter genes. Specific RNA targets have been used to characterize unknown RNA binding proteins. Previously described RNA binding proteins have also been used as bait to select new RNA targets. Finally, this method has been widely used to investigate or confirm previously suspected RNA-protein interactions. However, this method falls short in some aspects, such as RNA display and selection of false positive molecules. This review will summarize the results obtained with this method from the past 15years, as well as on recent efforts to improve its specificity.
Collapse
Affiliation(s)
- Franck Martin
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg CEDEX, France.
| |
Collapse
|
24
|
Chan CTY, Pang YLJ, Deng W, Babu IR, Dyavaiah M, Begley TJ, Dedon PC. Reprogramming of tRNA modifications controls the oxidative stress response by codon-biased translation of proteins. Nat Commun 2012; 3:937. [PMID: 22760636 PMCID: PMC3535174 DOI: 10.1038/ncomms1938] [Citation(s) in RCA: 341] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 05/31/2012] [Indexed: 11/09/2022] Open
Abstract
Selective translation of survival proteins is an important facet of the cellular stress response. We recently demonstrated that this translational control involves a stress-specific reprogramming of modified ribonucleosides in tRNA. Here we report the discovery of a step-wise translational control mechanism responsible for survival following oxidative stress. In yeast exposed to hydrogen peroxide, there is a Trm4 methyltransferase-dependent increase in the proportion of tRNALEU(CAA) containing m5C at the wobble position, which causes selective translation of mRNA from genes enriched in the TTG codon. Of these genes, oxidative stress increases protein expression from the TTG-enriched ribosomal protein gene RPL22A, but not its unenriched paralog. Loss of either TRM4 or RPL22A confers hypersensitivity to oxidative stress. Proteomic analysis reveals that oxidative stress causes a significant translational bias toward proteins coded by TTG-enriched genes. These results point to stress-induced reprogramming of tRNA modifications and consequential reprogramming of ribosomes in translational control of cell survival.
Collapse
Affiliation(s)
- Clement T Y Chan
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Romero-López C, Berzal-Herranz A. The functional RNA domain 5BSL3.2 within the NS5B coding sequence influences hepatitis C virus IRES-mediated translation. Cell Mol Life Sci 2012; 69:103-113. [PMID: 21598019 PMCID: PMC11115049 DOI: 10.1007/s00018-011-0729-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 04/12/2011] [Accepted: 05/05/2011] [Indexed: 02/06/2023]
Abstract
Hepatitis C virus (HCV) translation is mediated by an internal ribosome entry site (IRES) located at the 5' end of the genomic RNA. The 3' untranslatable region (3'UTR) stimulates translation by the recruitment of protein factors that simultaneously bind to the 5' end of the viral genome. This leads to the formation of a macromolecular complex with a closed loop conformation, similar to that described for the cap-translated mRNAs. We previously demonstrated the existence of a long-range RNA-RNA interaction involving subdomain IIId of the IRES region and the stem-loop 5BSL3.2 of the CRE element at the 3' end of the viral genome. The present study provides evidence that the enhancement of HCV IRES-dependent translation mediated by the 3'UTR is negatively controlled by the CRE region in the human hepatoma cell lines Huh-7 and Hep-G2 in a time-dependent manner. Domain 5BSL3.2 is the major partner in this process. Mutations in this motif lead to an increase in IRES activity by up to eightfold. These data support the existence of a functional high order structure in the HCV genome that involves two evolutionarily conserved RNA elements, domain IIId in the IRES and stem-loop 5BSL3.2 in the CRE region. This interaction could have a role in the circularisation of the viral genome.
Collapse
Affiliation(s)
- Cristina Romero-López
- Instituto de Parasitología y Biomedicina “López-Neyra” IPBLN-CSIC, CSIC, Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento s/n, 18100 Armilla, Granada Spain
| | - Alfredo Berzal-Herranz
- Instituto de Parasitología y Biomedicina “López-Neyra” IPBLN-CSIC, CSIC, Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento s/n, 18100 Armilla, Granada Spain
| |
Collapse
|
26
|
Ahn DG, Shim SB, Moon JE, Kim JH, Kim SJ, Oh JW. Interference of hepatitis C virus replication in cell culture by antisense peptide nucleic acids targeting the X-RNA. J Viral Hepat 2011; 18:e298-306. [PMID: 21692941 DOI: 10.1111/j.1365-2893.2010.01416.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
The RNA-dependent RNA polymerase (RdRp) of hepatitis C virus (HCV) is the essential catalytic enzyme for viral genome replication. It initiates minus-strand RNA synthesis from a highly conserved 98-nt sequence, called the X-RNA, at the 3'-end of the plus-strand viral genome. In this study, we evaluated the antiviral effects of peptide nucleic acids (PNAs) targeting the X-RNA. Our in vitro RdRp assay results showed that PNAs targeting the three major stem-loop (SL) domains of X-RNA can inhibit RNA synthesis initiation. Delivery of X-RNA-targeted PNAs by fusing the PNAs to cell-penetrating peptides (CPPs) into HCV-replicating cells effectively suppressed HCV replication. Electrophoretic mobility shift assays revealed that the PNA targeting the SL3 region at the 5'-end of X-RNA dissociated the viral RdRp from the X-RNA. Furthermore, delivery of the SL3-targeted PNA into HCV-infected cells resulted in the suppression of HCV RNA replication without activation of interferon β expression. Collectively, our results indicate that the HCV X-RNA can be effectively targeted by CPP-fused PNAs to block RNA-protein and/or RNA-RNA interactions essential for viral RNA replication and identify X-RNA SL3 as an RdRp binding site crucial for HCV replication. In addition, the ability to inhibit RNA synthesis initiation by targeting HCV X-RNA using antisense PNAs suggests their promising therapeutic potential against HCV infection.
Collapse
Affiliation(s)
- D G Ahn
- Department of Biotechnology and Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
27
|
Gao X, Hardwidge PR. Ribosomal protein s3: a multifunctional target of attaching/effacing bacterial pathogens. Front Microbiol 2011; 2:137. [PMID: 21738525 PMCID: PMC3125523 DOI: 10.3389/fmicb.2011.00137] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 06/13/2011] [Indexed: 11/13/2022] Open
Abstract
The extraribosomal functions of ribosomal proteins have drawn significant recent attention. Ribosomal protein S3 (RPS3), a component of the eukaryotic 40S ribosomal subunit, is a multifunctional protein that regulates DNA repair, apoptosis, and the innate immune response to bacterial infection. Here we the review the latest findings about RPS3 extraribosomal functions, with special emphasis on their relation to microbial pathogenesis and enteropathogenic Escherichia coli.
Collapse
Affiliation(s)
- Xiaofei Gao
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center Kansas City, KS, USA
| | | |
Collapse
|
28
|
Cellular gene expression that correlates with EBER expression in Epstein-Barr Virus-infected lymphoblastoid cell lines. J Virol 2011; 85:3535-45. [PMID: 21248031 DOI: 10.1128/jvi.02086-10] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Novel Epstein-Barr Virus (EBV) strains with deletion of either EBER1 or EBER2 and corresponding revertant viruses were constructed and used to infect B lymphocytes to make lymphoblastoid cell lines (LCLs). The LCLs were used in microarray expression profiling to identify genes whose expression correlates with the presence of EBER1 or EBER2. Functions of regulated genes identified in the microarray analysis include membrane signaling, regulation of apoptosis, and the interferon/antiviral response. Although most emphasis has previously been given to EBER1 because it is more abundant than EBER2, the differences in cell gene expression were greater with EBER2 deletion. In this system, deletion of EBER1 or EBER2 had little effect on the EBV transformation frequency of primary B cells or the growth of the resulting LCLs. Using the recombinant viruses and novel EBER expression vectors, the nuclear redistribution of rpL22 protein by EBER1 in 293 cells was confirmed, but in LCLs almost all of the cells had a predominantly cytoplasmic expression of this ribosomal protein, which was not detectably changed by EBER1. The changes in LCL gene expression identified here will provide a basis for identifying the mechanisms of action of EBER RNAs.
Collapse
|
29
|
Samanta M, Takada K. Modulation of innate immunity system by Epstein-Barr virus-encoded non-coding RNA and oncogenesis. Cancer Sci 2010; 101:29-35. [PMID: 19886912 PMCID: PMC11159826 DOI: 10.1111/j.1349-7006.2009.01377.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Epstein-Barr virus (EBV)-encoded small RNAs (EBERs) are polyA-, non-coding RNAs that are expressed abundantly in all forms of cells latently infected with EBV. EBERs (EBER1 and EBER2) contribute to the clonal proliferation of EBV-negative Burkitt's lymphoma (BL) cells in soft agar, tumorigenicity in SCID mice, up-regulation of the bcl-2 oncoprotein, resistance to apoptosis, and maintenance of malignant phenotypes in BL cells. EBERs induce the expression of interleukin (IL)-10 in BL cells, insulin-like growth factor 1 (IGF-I) in gastric and nasopharyngeal carcinoma cells, IL-9 in T cells, and IL-6 in lymphoblastoid cell lines. Additionally, each of these cytokines acts as an autocrine growth factor. In BL cells, EBERs bind the double-stranded RNA-activated protein kinase PKR, inhibit its phosphorylation, and thereby prevent IFN-alpha-mediated apoptosis. In epithelial cells, EBERs confer resistance to Fas-mediated apoptosis by blocking PKR activity. EBERs form complexes with PKR, ribosomal protein L22, lupus erythematosis-associated antigen (La), and retinoic acid-inducible gene I (RIG-I). In BL cells, EBERs activate RIG-I signaling and induce the expression of type-I IFNs and interferon stimulated genes (ISGs) through the activation of RIG-I substrates, nuclear factor-kappa B (NF-kappaB), and IFN regulatory factor 3 (IRF-3), and anti-inflamatory cytokine IL-10 through IRF-3 but not NF-kappaB signaling. EBERs also play critical roles in the growth transformation of B lymphocytes. Although EBER1 and EBER2 exhibit similarities in their primary (54%) and secondary structures, recent findings have shown that recombinant EBVs carrying only the EBER2 gene play a greater role in the growth transformation of B lymphocytes than EBVs carrying only the EBER1 gene. Thus, EBERs play multiple roles in various cell types, and we present a model that highlights the functions of EBERs in EBV-mediated oncogenesis in BL cells.
Collapse
Affiliation(s)
- Mrinal Samanta
- Department of Tumor Virology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | | |
Collapse
|
30
|
Huang C, Chen H, Cassidy W, Howell CD. Peripheral blood gene expression profile associated with sustained virologic response after peginterferon plus ribavirin therapy for chronic hepatitis-C genotype 1. J Natl Med Assoc 2009; 100:1425-33. [PMID: 19110910 DOI: 10.1016/s0027-9684(15)31542-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We investigated the relationship between global gene expression in peripheral blood mononuclear cells (PBMCs) during the first 4 weeks of peginterferon alfa and ribavirin therapy and long-term eradication of hepatitis-C genotype 1 infections in 23 patients. A sustained virologic response (SVR), defined as an undetected serum HCV ribonucleic acid (RNA) at week 72, was the virologic response endpoint. PBMC RNA was prepared at week 0 and week 4 from 23 patients (17 black and 6 white Americans), and hybridized to Affymetrix GeneChip HG-U133 plus 2.0 arrays. Compared to week 0, 269 genes were differentially expressed at week 4 of treatment, including many genes regulated by alpha interferons and associated with host immunity (p<0.0001), cell signal transduction (p<0.001) and cellular protein metabolism (p<0.001). Expression of these 269 genes at week 0 and week 4 did not differ significantly between patients with and without a SVR. In contrast, SVR was associated with differential expression of 98 genes at week 4 (false discovery rate <0.01). Many of the genes have been implicated in control of HCV lifecycle and thus may play important roles in HCV clearance during peginterferon and ribavirin therapy.
Collapse
Affiliation(s)
- Chao Huang
- Department of Medicine, Baltimore, MD, USA
| | | | | | | |
Collapse
|
31
|
Romero-López C, Berzal-Herranz A. A long-range RNA-RNA interaction between the 5' and 3' ends of the HCV genome. RNA (NEW YORK, N.Y.) 2009; 15:1740-1752. [PMID: 19605533 PMCID: PMC2743058 DOI: 10.1261/rna.1680809] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 06/04/2009] [Indexed: 02/05/2023]
Abstract
The RNA genome of the hepatitis C virus (HCV) contains multiple conserved structural cis domains that direct protein synthesis, replication, and infectivity. The untranslatable regions (UTRs) play essential roles in the HCV cycle. Uncapped viral RNAs are translated via an internal ribosome entry site (IRES) located at the 5' UTR, which acts as a scaffold for recruiting multiple protein factors. Replication of the viral genome is initiated at the 3' UTR. Bioinformatics methods have identified other structural RNA elements thought to be involved in the HCV cycle. The 5BSL3.2 motif, which is embedded in a cruciform structure at the 3' end of the NS5B coding sequence, contributes to the three-dimensional folding of the entire 3' end of the genome. It is essential in the initiation of replication. This paper reports the identification of a novel, strand-specific, long-range RNA-RNA interaction between the 5' and 3' ends of the genome, which involves 5BSL3.2 and IRES motifs. Mutants harboring substitutions in the apical loop of domain IIId or in the internal loop of 5BSL3.2 disrupt the complex, indicating these regions are essential in initiating the kissing interaction. No complex was formed when the UTRs of the related foot and mouth disease virus were used in binding assays, suggesting this interaction is specific for HCV sequences. The present data firmly suggest the existence of a higher-order structure that may mediate a protein-independent circularization of the HCV genome. The 5'-3' end bridge may have a role in viral translation modulation and in the switch from protein synthesis to RNA replication.
Collapse
Affiliation(s)
- Cristina Romero-López
- Departamento de Biología Molecular, Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas, Armilla, 18100 Granada, Spain
| | | |
Collapse
|
32
|
Growth-promoting properties of Epstein-Barr virus EBER-1 RNA correlate with ribosomal protein L22 binding. J Virol 2009; 83:9844-53. [PMID: 19640998 DOI: 10.1128/jvi.01014-09] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Epstein-Barr virus (EBV)-encoded RNAs, EBER-1 and EBER-2, are highly abundant noncoding nuclear RNAs expressed during all forms of EBV latency. The EBERs have been shown to impart significant tumorigenic potential upon EBV-negative Burkitt lymphoma (BL) cells and to contribute to the growth potential of other B-cell lymphoma-, gastric carcinoma-, and nasopharyngeal carcinoma-derived cell lines. However, the mechanisms underlying this EBER-dependent enhancement of cell growth potential remain to be elucidated. Here we focused on the known interaction between EBER-1 and the cellular ribosomal protein L22 and the consequences of this interaction with respect to the growth-promoting properties of the EBERs. L22, a component of 60S ribosomal subunits, binds three sites on EBER-1, and a substantial fraction of available L22 is relocalized from nucleoli to the nucleoplasm in EBV-infected cells. To investigate the hypothesis that EBER-1-mediated relocalization of L22 in EBV-infected cells is critical for EBER-dependent functions, we investigated whether EBER-1 expression is necessary and sufficient for nucleoplasmic retention of L22. Following demonstration of this, we utilized RNA-protein binding assays and fluorescence localization studies to demonstrate that mutation of the L22 binding sites on EBER-1 prevents L22 binding and inhibits EBER-1-dependent L22 relocalization. Finally, the in vivo consequence of preventing L22 relocalization in EBER-expressing cells was examined in soft agar colony formation assays. We demonstrate that BL cells expressing mutated EBER-1 RNAs rendered incapable of binding L22 have significantly reduced capacity to enhance cell growth potential relative to BL cells expressing wild-type EBERs.
Collapse
|
33
|
Houmani JL, Ruf IK. Clusters of basic amino acids contribute to RNA binding and nucleolar localization of ribosomal protein L22. PLoS One 2009; 4:e5306. [PMID: 19390581 PMCID: PMC2668802 DOI: 10.1371/journal.pone.0005306] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Accepted: 03/26/2009] [Indexed: 11/19/2022] Open
Abstract
The ribosomal protein L22 is a component of the 60S eukaryotic ribosomal subunit. As an RNA-binding protein, it has been shown to interact with both cellular and viral RNAs including 28S rRNA and the Epstein-Barr virus encoded RNA, EBER-1. L22 is localized to the cell nucleus where it accumulates in nucleoli. Although previous studies demonstrated that a specific amino acid sequence is required for nucleolar localization, the RNA-binding domain has not been identified. Here, we investigated the hypothesis that the nucleolar accumulation of L22 is linked to its ability to bind RNA. To address this hypothesis, mutated L22 proteins were generated to assess the contribution of specific amino acids to RNA binding and protein localization. Using RNA-protein binding assays, we demonstrate that basic amino acids 80-93 are required for high affinity binding of 28S rRNA and EBER-1 by L22. Fluorescence localization studies using GFP-tagged mutated L22 proteins further reveal that basic amino acids 80-93 are critical for nucleolar accumulation and for incorporation into ribosomes. Our data support the growing consensus that the nucleolar accumulation of ribosomal proteins may not be mediated by a defined localization signal, but rather by specific interaction with established nucleolar components such as rRNA.
Collapse
Affiliation(s)
- Jennifer L. Houmani
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Ingrid K. Ruf
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
34
|
Drexler JF, Kupfer B, Petersen N, Grotto RMT, Rodrigues SMC, Grywna K, Panning M, Annan A, Silva GF, Douglas J, Koay ESC, Smuts H, Netto EM, Simmonds P, Pardini MIDMC, Roth WK, Drosten C. A novel diagnostic target in the hepatitis C virus genome. PLoS Med 2009; 6:e31. [PMID: 19209955 PMCID: PMC2637920 DOI: 10.1371/journal.pmed.1000031] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Accepted: 12/24/2008] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Detection and quantification of hepatitis C virus (HCV) RNA is integral to diagnostic and therapeutic regimens. All molecular assays target the viral 5'-noncoding region (5'-NCR), and all show genotype-dependent variation of sensitivities and viral load results. Non-western HCV genotypes have been under-represented in evaluation studies. An alternative diagnostic target region within the HCV genome could facilitate a new generation of assays. METHODS AND FINDINGS In this study we determined by de novo sequencing that the 3'-X-tail element, characterized significantly later than the rest of the genome, is highly conserved across genotypes. To prove its clinical utility as a molecular diagnostic target, a prototype qualitative and quantitative test was developed and evaluated multicentrically on a large and complete panel of 725 clinical plasma samples, covering HCV genotypes 1-6, from four continents (Germany, UK, Brazil, South Africa, Singapore). To our knowledge, this is the most diversified and comprehensive panel of clinical and genotype specimens used in HCV nucleic acid testing (NAT) validation to date. The lower limit of detection (LOD) was 18.4 IU/ml (95% confidence interval, 15.3-24.1 IU/ml), suggesting applicability in donor blood screening. The upper LOD exceeded 10(-9) IU/ml, facilitating viral load monitoring within a wide dynamic range. In 598 genotyped samples, quantified by Bayer VERSANT 3.0 branched DNA (bDNA), X-tail-based viral loads were highly concordant with bDNA for all genotypes. Correlation coefficients between bDNA and X-tail NAT, for genotypes 1-6, were: 0.92, 0.85, 0.95, 0.91, 0.95, and 0.96, respectively; X-tail-based viral loads deviated by more than 0.5 log10 from 5'-NCR-based viral loads in only 12% of samples (maximum deviation, 0.85 log10). The successful introduction of X-tail NAT in a Brazilian laboratory confirmed the practical stability and robustness of the X-tail-based protocol. The assay was implemented at low reaction costs (US$8.70 per sample), short turnover times (2.5 h for up to 96 samples), and without technical difficulties. CONCLUSION This study indicates a way to fundamentally improve HCV viral load monitoring and infection screening. Our prototype assay can serve as a template for a new generation of viral load assays. Additionally, to our knowledge this study provides the first open protocol to permit industry-grade HCV detection and quantification in resource-limited settings.
Collapse
Affiliation(s)
- Jan Felix Drexler
- Clinical Virology Group, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Institute of Virology, University of Bonn, Bonn, Germany
- Infectious Diseases Research Laboratory, University Hospital Prof. Edgard Santos, Federal University of Bahia, Salvador, Brazil
| | - Bernd Kupfer
- Institute of Virology, University of Bonn, Bonn, Germany
| | - Nadine Petersen
- Clinical Virology Group, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Rejane Maria Tommasini Grotto
- University of São Paulo State (UNESP), Botucatu Medical School, Blood Transfusion Centre - Molecular Biology Laboratory and Internal Medicine Department, Botucatu, São Paulo, Brazil
| | - Silvia Maria Corvino Rodrigues
- University of São Paulo State (UNESP), Botucatu Medical School, Blood Transfusion Centre - Molecular Biology Laboratory and Internal Medicine Department, Botucatu, São Paulo, Brazil
| | - Klaus Grywna
- Clinical Virology Group, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Marcus Panning
- Clinical Virology Group, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Augustina Annan
- Clinical Virology Group, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Giovanni Faria Silva
- University of São Paulo State (UNESP), Botucatu Medical School, Blood Transfusion Centre - Molecular Biology Laboratory and Internal Medicine Department, Botucatu, São Paulo, Brazil
| | - Jill Douglas
- Virus Evolution Group, Centre for Infectious Diseases, University of Edinburgh, Edinburgh, United Kingdom
| | - Evelyn S. C Koay
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore
- Molecular Diagnosis Centre, National University Hospital, Singapore
| | - Heidi Smuts
- Division Medical Virology/National Health Laboratory Service, Department of Clinical Laboratory Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Eduardo M Netto
- Infectious Diseases Research Laboratory, University Hospital Prof. Edgard Santos, Federal University of Bahia, Salvador, Brazil
| | - Peter Simmonds
- Virus Evolution Group, Centre for Infectious Diseases, University of Edinburgh, Edinburgh, United Kingdom
| | - Maria Inês de Moura Campos Pardini
- University of São Paulo State (UNESP), Botucatu Medical School, Blood Transfusion Centre - Molecular Biology Laboratory and Internal Medicine Department, Botucatu, São Paulo, Brazil
| | | | - Christian Drosten
- Institute of Virology, University of Bonn, Bonn, Germany
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
35
|
Matsuoka MP, Infante C, Reith M, Cañavate JP, Douglas SE, Manchado M. Translational machinery of senegalese sole (Solea senegalensis Kaup) and Atlantic halibut (Hippoglossus hippoglossus L.): comparative sequence analysis of the complete set of 60s ribosomal proteins and their expression. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2008; 10:676-691. [PMID: 18478294 DOI: 10.1007/s10126-008-9104-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 03/26/2008] [Accepted: 04/04/2008] [Indexed: 05/26/2023]
Abstract
Ribosomal proteins (RPs) comprise a large set of highly evolutionarily conserved proteins that are often over-represented in complementary DNA libraries. They have become very useful markers in comparative genomics, genome evolution, and phylogenetic studies across taxa. In this study, we report the sequences of the complete set of 60S RPs in Senegalese sole (Solea senegalensis) and Atlantic halibut (Hippoglossus hippoglossus), two commercially important flatfish species. Amino-acid sequence comparisons of the encoded proteins showed a high similarity both between these two flatfish species and with respect to other fish and human counterparts. Expressed sequence tag analysis revealed the existence of paralogous genes for RPL3, RPL7, RPL41, and RPLP2 in Atlantic halibut and RPL13a in Senegalese sole as well as RPL19 and RPL22 in both species. Phylogenetic analysis of paralogs revealed distinct evolutionary histories for each RP in agreement with three rounds of genome duplications and lineage-specific duplications during flatfish evolution. Steady-state transcript levels for RPL19 and RPL22 RPs were quantitated during larval development and in different tissues of sole and halibut using a real-time polymerase chain reaction approach. All paralogs were expressed ubiquitously although at different levels in different tissues. Most RP transcripts increased coordinately after larval first-feeding in both species but decreased progressively during the metamorphic process. In all cases, expression profiles and transcript levels of orthologous genes in Senegalese sole and Atlantic halibut were highly congruent. The genomic resources and knowledge developed in this survey will be useful for the study of Pleuronectiformes evolution.
Collapse
Affiliation(s)
- Makoto P Matsuoka
- Institute for Marine Biosciences, National Research Council, 1411 Oxford Street, Halifax, Nova Scotia, B3H 3Z1, Canada
| | | | | | | | | | | |
Collapse
|
36
|
Murakami K, Kimura T, Osaki M, Ishii K, Miyamura T, Suzuki T, Wakita T, Shoji I. Virological characterization of the hepatitis C virus JFH-1 strain in lymphocytic cell lines. J Gen Virol 2008; 89:1587-1592. [PMID: 18559928 DOI: 10.1099/vir.0.83618-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
While hepatocytes are the major site of hepatitis C virus (HCV) infection, a number of studies have suggested that HCV can replicate in lymphocytes. However, in vitro culture systems to investigate replication of HCV in lymphocytic cells are severely limited. Robust HCV culture systems have been established using the HCV JFH-1 strain and Huh-7 cells. To gain more insights into the tissue tropism of HCV, we investigated the infection, replication, internal ribosome entry site (IRES)-dependent translation and polyprotein processing of the HCV JFH-1 strain in nine lymphocytic cell lines. HCV JFH-1 failed to infect lymphocytes and replicate, but exhibited efficient polyprotein processing and IRES-dependent translation in lymphocytes as well as in Huh-7 cells. Our results suggest that lymphocytic cells can support HCV JFH-1 translation and polyprotein processing, but may lack some host factors essential for HCV JFH-1 infection and replication.
Collapse
Affiliation(s)
- Kyoko Murakami
- Department of Virology II, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Toshiro Kimura
- Department of Virology II, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Motonao Osaki
- Department of Virology II, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Koji Ishii
- Department of Virology II, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Tatsuo Miyamura
- Department of Virology II, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Tetsuro Suzuki
- Department of Virology II, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Ikuo Shoji
- Division of Microbiology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
- Department of Virology II, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| |
Collapse
|
37
|
Lourenço S, Costa F, Débarges B, Andrieu T, Cahour A. Hepatitis C virus internal ribosome entry site-mediated translation is stimulated by cis-acting RNA elements and trans-acting viral factors. FEBS J 2008; 275:4179-97. [DOI: 10.1111/j.1742-4658.2008.06566.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
38
|
Anderson SJ, Lauritsen JPH, Hartman MG, Foushee AMD, Lefebvre JM, Shinton SA, Gerhardt B, Hardy RR, Oravecz T, Wiest DL. Ablation of ribosomal protein L22 selectively impairs alphabeta T cell development by activation of a p53-dependent checkpoint. Immunity 2007; 26:759-72. [PMID: 17555992 DOI: 10.1016/j.immuni.2007.04.012] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Revised: 02/27/2007] [Accepted: 04/10/2007] [Indexed: 10/23/2022]
Abstract
The alphabeta and gammadelta T lineages are thought to arise from a common precursor; however, the regulation of separation and development of these lineages is not fully understood. We report here that development of alphabeta and gammadelta precursors was differentially affected by elimination of ribosomal protein L22 (Rpl22), which is ubiquitously expressed but not essential for translation. Rpl22 deficiency selectively arrested development of alphabeta-lineage T cells at the beta-selection checkpoint by inducing their death. The death was caused by induction of p53 expression, because p53 deficiency blocked death and restored development of Rpl22-deficient thymocytes. Importantly, Rpl22 deficiency led to selective upregulation of p53 in alphabeta-lineage thymocytes, at least in part by increasing p53 synthesis. Taken together, these data indicate that Rpl22 deficiency activated a p53-dependent checkpoint that produced a remarkably selective block in alphabeta T cell development but spared gammadelta-lineage cells, suggesting that some ribosomal proteins may perform cell-type-specific or stage-specific functions.
Collapse
Affiliation(s)
- Stephen J Anderson
- Division of Immunology and Hematology, Lexicon Genetics, Inc., 8800 Technology Forest Place, The Woodlands, TX 77381, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Song Y, Friebe P, Tzima E, Jünemann C, Bartenschlager R, Niepmann M. The hepatitis C virus RNA 3'-untranslated region strongly enhances translation directed by the internal ribosome entry site. J Virol 2006; 80:11579-88. [PMID: 16971433 PMCID: PMC1642618 DOI: 10.1128/jvi.00675-06] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The positive-strand RNA genome of the hepatitis C virus (HCV) is flanked by 5'- and 3'-untranslated regions (UTRs). Translation of the viral RNA is directed by the internal ribosome entry site (IRES) in the 5'-UTR, and subsequent viral RNA replication requires sequences in the 3'-UTR and in the 5'-UTR. Addressing previous conflicting reports on a possible function of the 3'-UTR for RNA translation in this study, we found that reporter construct design is an important parameter in experiments testing 3'-UTR function. A translation enhancer function of the HCV 3'-UTR was detected only after transfection of monocistronic reporter RNAs or complete RNA genomes having a 3'-UTR with a precise 3' terminus. The 3'-UTR strongly stimulates HCV IRES-dependent translation in human hepatoma cell lines but only weakly in nonliver cell lines. The variable region, the poly(U . C) tract, and the most 3' terminal stem-loop 1 of the highly conserved 3' X region contribute significantly to translation enhancement, whereas stem-loops 2 and 3 of the 3' X region are involved only to a minor extent. Thus, the signals for translation enhancement and for the initiation of RNA minus-strand synthesis in the HCV 3'-UTR partially overlap, supporting the idea that these sequences along with viral and possibly also cellular factors may be involved in an RNA 3'-5' end interaction and a switch between translation and RNA replication.
Collapse
Affiliation(s)
- Yutong Song
- Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
| | | | | | | | | | | |
Collapse
|
40
|
Ivanyi-Nagy R, Kanevsky I, Gabus C, Lavergne JP, Ficheux D, Penin F, Fossé P, Darlix JL. Analysis of hepatitis C virus RNA dimerization and core-RNA interactions. Nucleic Acids Res 2006; 34:2618-33. [PMID: 16707664 PMCID: PMC1463901 DOI: 10.1093/nar/gkl240] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The core protein of hepatitis C virus (HCV) has been shown previously to act as a potent nucleic acid chaperone in vitro, promoting the dimerization of the 3′-untranslated region (3′-UTR) of the HCV genomic RNA, a process probably mediated by a small, highly conserved palindromic RNA motif, named DLS (dimer linkage sequence) [G. Cristofari, R. Ivanyi-Nagy, C. Gabus, S. Boulant, J. P. Lavergne, F. Penin and J. L. Darlix (2004) Nucleic Acids Res., 32, 2623–2631]. To investigate in depth HCV RNA dimerization, we generated a series of point mutations in the DLS region. We find that both the plus-strand 3′-UTR and the complementary minus-strand RNA can dimerize in the presence of core protein, while mutations in the DLS (among them a single point mutation that abolished RNA replication in a HCV subgenomic replicon system) completely abrogate dimerization. Structural probing of plus- and minus-strand RNAs, in their monomeric and dimeric forms, indicate that the DLS is the major if not the sole determinant of UTR RNA dimerization. Furthermore, the N-terminal basic amino acid clusters of core protein were found to be sufficient to induce dimerization, suggesting that they retain full RNA chaperone activity. These findings may have important consequences for understanding the HCV replicative cycle and the genetic variability of the virus.
Collapse
Affiliation(s)
| | - Igor Kanevsky
- CNRS-UMR 8113, LBPA-Alembert, Ecole Normale Supérieure de Cachan94235 Cachan Cedex, France
| | | | - Jean-Pierre Lavergne
- Institut de Biologie et Chimie des Protéines, CNRS-UMR 5086, Université Claude Bernard Lyon IIFR 128 Biosciences Lyon-Gerland, 69367 Lyon Cedex 07, France
| | - Damien Ficheux
- Institut de Biologie et Chimie des Protéines, CNRS-UMR 5086, Université Claude Bernard Lyon IIFR 128 Biosciences Lyon-Gerland, 69367 Lyon Cedex 07, France
| | - François Penin
- Institut de Biologie et Chimie des Protéines, CNRS-UMR 5086, Université Claude Bernard Lyon IIFR 128 Biosciences Lyon-Gerland, 69367 Lyon Cedex 07, France
| | - Philippe Fossé
- CNRS-UMR 8113, LBPA-Alembert, Ecole Normale Supérieure de Cachan94235 Cachan Cedex, France
| | - Jean-Luc Darlix
- To whom correspondence should be addressed. Tel: +33 4 72 72 81 69; Fax: +33 4 72 72 87 77;
| |
Collapse
|
41
|
Fok V, Mitton-Fry RM, Grech A, Steitz JA. Multiple domains of EBER 1, an Epstein-Barr virus noncoding RNA, recruit human ribosomal protein L22. RNA (NEW YORK, N.Y.) 2006; 12:872-82. [PMID: 16556938 PMCID: PMC1440895 DOI: 10.1261/rna.2339606] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
EBER 1, a small noncoding viral RNA abundantly expressed in all cells transformed by Epstein-Barr virus (EBV), has been shown to associate with the human ribosomal protein L22. Here we present in vitro binding studies using purified RNAs and recombinant proteins. Electrophoretic mobility-shift assays (EMSAs) show that recombinant L22 (rL22) and maltose-binding protein (MBP)-tagged L22 protein bind EBER 1 in vitro, both forming three specific protein-dependent mobility shifts. Use of a mixture of rL22 and MBP-L22 indicates that these three shifts contain one, two, or three L22 proteins per EBER 1 molecule. EMSAs performed with EBER 1 deletion constructs and EBER 1 stem-loops inserted into a nonbinding RNA, HSUR 3, identify stem-loops I, III, and IV as L22 binding sites. The existence of multiple L22 binding sites on EBER 1 inside cells is demonstrated by in vivo UV cross-linking. Our results are discussed with respect to the function of EBER 1 in EBV-infected human B cells.
Collapse
Affiliation(s)
- Victor Fok
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | | | | | | |
Collapse
|
42
|
Morikawa K, Ito T, Nozawa H, Inokuchi M, Uchikoshi M, Saito T, Mitamura K, Imawari M. Translational enhancement of HCV RNA genotype 1b by 3'-untranslated and envelope 2 protein-coding sequences. Virology 2005; 345:404-15. [PMID: 16289655 DOI: 10.1016/j.virol.2005.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Revised: 08/10/2005] [Accepted: 10/04/2005] [Indexed: 11/20/2022]
Abstract
HCV RNA has a unique regulatory mechanism for translation. The X region of 3'-UTR and core-coding sequence regulate HCV translation. In this study, we clarified that the entire 3'-UTR also enhances HCV translation, and the envelope-coding sequence of HCV genotype 1b increases degree of this enhancement. In the luciferase reporter assay using rabbit reticulocyte lysates, translational enhancement by 3'-UTR with core to E2 regions was 25-fold higher when compared with control RNA lacking the 3'-UTR. Presence of the entire E2 sequence was important for this enhancement. This phenomenon was not due to transcript stability, and envelope protein alone did not affect translation. E2-coding sequence of genotype 1a had no effect on translation. We observed the same results in animal cell culture systems using bicistronic RNA. Structural protein-coding sequences and 3'-UTR of HCV RNA regulate viral translation, and a target for antiviral agents may be present in these regions.
Collapse
Affiliation(s)
- Kenichi Morikawa
- The Second Department of Internal Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Dutkiewicz M, Ciesiołka J. Structural characterization of the highly conserved 98-base sequence at the 3' end of HCV RNA genome and the complementary sequence located at the 5' end of the replicative viral strand. Nucleic Acids Res 2005; 33:693-703. [PMID: 15681619 PMCID: PMC548360 DOI: 10.1093/nar/gki218] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Oligoribonucleotides that corresponded to the X regions of the (+) and (−) polarity strands of HCV RNA, as well as several shorter oligomers comprising defined stem-loop motifs of their predicted secondary structure models, were analyzed by Pb2+-induced cleavage, partial digestion with specific nucleases and chemical modification. Patterns characteristic of the motifs were compared with those obtained for the full-length molecules and on the basis of such ‘structural fingerprinting’ conclusions concerning folding of regions X were formulated. It turned out that the secondary structure model of X(+) RNA proposed earlier, the three-stem-loop model composed of hairpins SL1, SL2 and SL3, was only partially consistent with our experimental data. We confirmed the presence of SL1 and SL3 motifs and showed that the single-stranded stretch adjacent to the earlier proposed hairpin SL2 contributed to the folding of that region. It seemed to be arranged into two hairpins, which might form a hypothetical pseudoknot by changing their base-pairing systems. These data were discussed in terms of their possible biological significance. On the other hand, analysis of the X(−) RNA and its sub-fragments supported a three-stem-loop secondary structure model for this RNA.
Collapse
Affiliation(s)
| | - Jerzy Ciesiołka
- To whom correspondence should be addressed. Tel: +48 61 8528503; Fax: +48 61 8520532;
| |
Collapse
|
44
|
Friebe P, Boudet J, Simorre JP, Bartenschlager R. Kissing-loop interaction in the 3' end of the hepatitis C virus genome essential for RNA replication. J Virol 2005; 79:380-92. [PMID: 15596831 PMCID: PMC538730 DOI: 10.1128/jvi.79.1.380-392.2005] [Citation(s) in RCA: 293] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The hepatitis C virus (HCV) is a positive-strand RNA virus belonging to the Flaviviridae. Its genome carries at either end highly conserved nontranslated regions (NTRs) containing cis-acting RNA elements that are crucial for replication. In this study, we identified a novel RNA element within the NS5B coding sequence that is indispensable for replication. By using secondary structure prediction and nuclear magnetic resonance spectroscopy, we found that this RNA element, designated 5BSL3.2 by analogy to a recent report (S. You, D. D. Stump, A. D. Branch, and C. M. Rice, J. Virol. 78:1352-1366, 2004), consists of an 8-bp lower and a 6-bp upper stem, an 8-nucleotide-long bulge, and a 12-nucleotide-long upper loop. Mutational disruption of 5BSL3.2 structure blocked RNA replication, which could be restored when an intact copy of this RNA element was inserted into the 3' NTR. By using this replicon design, we mapped the elements in 5BSL3.2 that are critical for RNA replication. Most importantly, we discovered a nucleotide sequence complementarity between the upper loop of this RNA element and the loop region of stem-loop 2 in the 3' NTR. Mismatches introduced into the loops inhibited RNA replication, which could be rescued when complementarity was restored. These data provide strong evidence for a pseudoknot structure at the 3' end of the HCV genome that is essential for replication.
Collapse
Affiliation(s)
- Peter Friebe
- Department of Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | | | | | | |
Collapse
|
45
|
Otto GA, Puglisi JD. The pathway of HCV IRES-mediated translation initiation. Cell 2004; 119:369-80. [PMID: 15507208 DOI: 10.1016/j.cell.2004.09.038] [Citation(s) in RCA: 204] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2004] [Revised: 09/02/2004] [Accepted: 09/10/2004] [Indexed: 01/11/2023]
Abstract
The HCV internal ribosome entry site (IRES) directly regulates the assembly of translation initiation complexes on viral mRNA by a sequential pathway that is distinct from canonical eukaryotic initiation. The HCV IRES can form a binary complex with an eIF-free 40S ribosomal subunit. Next, a 48S-like complex assembles at the AUG initiation codon upon association of eIF3 and ternary complex. 80S complex formation is rate limiting and follows the GTP-dependent association of the 60S subunit. Efficient assembly of the 48S-like and 80S complexes on the IRES mRNA is dependent upon maintenance of the highly conserved HCV IRES structure. This revised model of HCV IRES translation initiation provides a context to understand the function of different HCV IRES domains during translation initiation.
Collapse
Affiliation(s)
- Geoff A Otto
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
46
|
Xiao M, Gao J, Wang W, Wang Y, Chen J, Chen J, Li B. Specific interaction between the classical swine fever virus NS5B protein and the viral genome. ACTA ACUST UNITED AC 2004; 271:3888-96. [PMID: 15373834 DOI: 10.1111/j.1432-1033.2004.04325.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The NS5B protein of the classical swine fever virus (CSFV) is the RNA-dependent RNA polymerase of the virus and is able to catalyze the viral genome replication. The 3' untranslated region is most likely involved in regulation of the Pestivirus genome replication. However, little is known about the interaction between the CSFV NS5B protein and the viral genome. We used different RNA templates derived from the plus-strand viral genome, or the minus-strand viral genome and the CSFV NS5B protein obtained from the Escherichia coli expression system to address this problem. We first showed that the viral NS5B protein formed a complex with the plus-strand genome through the genomic 3' UTR and that the NS5B protein was also able to bind the minus-strand 3' UTR. Moreover, it was found that viral NS5B protein bound the minus-strand 3' UTR more efficiently than the plus-strand 3' UTR. Further, we observed that the plus-strand 3' UTR with deletion of CCCGG or 21 continuous nucleotides at its 3' terminal had no binding activity and also lost the activity for initiation of minus-strand RNA synthesis, which similarly occurred in the minus-strand 3' UTR with CATATGCTC or the 21 nucleotide fragment deleted from the 3' terminal. Therefore, it is indicated that the 3' CCCGG sequence of the plus-strand 3' UTR, and the 3' CATATGCTC fragment of the minus-strand are essential to in vitro synthesis of the minus-strand RNA and the plus-strand RNA, respectively. The same conclusion is also appropriate for the 3' 21 nucleotide terminal site of both the 3' UTRs.
Collapse
Affiliation(s)
- Ming Xiao
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, The Institute of Biodiversity Science, Fudan University, Shanghai 200433, China
| | | | | | | | | | | | | |
Collapse
|
47
|
Elia A, Vyas J, Laing KG, Clemens MJ. Ribosomal protein L22 inhibits regulation of cellular activities by the Epstein-Barr virus small RNA EBER-1. ACTA ACUST UNITED AC 2004; 271:1895-905. [PMID: 15128299 DOI: 10.1111/j.1432-1033.2004.04099.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Epstein-Barr virus (EBV) is a potent mitogenic and antiapoptotic agent for B lymphocytes and is associated with several different types of human tumour. The abundantly expressed small viral RNA, EBER-1, binds to the growth inhibitory and pro-apoptotic protein kinase R (PKR) and blocks activation of the latter by double-stranded RNA. Recent evidence has suggested that expression of EBER-1 alone in EBV-negative B cells promotes a tumorigenic phenotype and that this may be related to inhibition of the pro-apoptotic effects of PKR. The ribosomal protein L22 binds to EBER-1 in virus-infected cells, but the significance of this has not previously been established. We report here that L22 and PKR compete for a common binding site on EBER-1. As a result of this competition, L22 interferes with the ability of the small RNA to inhibit the activation of PKR by dsRNA. Transient expression of EBER-1 in murine embryonic fibroblasts stimulates reporter gene expression and partially reverses the inhibitory effect of PKR. However, EBER-1 is also stimulatory when transfected into PKR knockout cells, suggesting an additional, PKR-independent, mode of action of the small RNA. Expression of L22 prevents both the PKR-dependent and -independent effects of EBER-1 in vivo. These results suggest that the association of L22 with EBER-1 in EBV-infected cells can attenuate the biological effects of the viral RNA. Such effects include both the inhibition of PKR and additional mechanism(s) by which EBER-1 stimulates gene expression.
Collapse
Affiliation(s)
- Androulla Elia
- Translational Control Group, Department of Basic Medical Sciences, St George's Hospital Medical School, London, UK
| | | | | | | |
Collapse
|
48
|
Smith RM, Wu GY. Secondary structure and hybridization accessibility of the hepatitis C virus negative strand RNA 5'-terminus. J Viral Hepat 2004; 11:115-23. [PMID: 14996345 DOI: 10.1046/j.1365-2893.2003.00476.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
The positive strand RNA genome of hepatitis C virus (HCV) is transcribed exclusively from a full-length cytoplasmic replication intermediate, the negative strand RNA. Despite this essential role in hepatocellular infection, the negative strand has not yet been subjected to extensive molecular characterization, and in comparison with the HCV genome and proteome, remains relatively unexplored as a target for antiviral therapy. The highly conserved negative strand terminal sequences, complementary to the positive strand 5'- and 3'-untranslated regions, are believed to contribute structural features essential for the initiation of positive strand synthesis and the maintenance of template integrity. We investigated the solution structure of the HCV negative strand 5'-terminal region by endoribonuclease mapping and thermodynamic modelling of RNA secondary structure. The enzymatic probing data are consistent with structural models featuring a large terminal stem loop (SL), which constitutes a mirror image of the complementary 3'-X region SL I structure. Nucleotide positions within the negative strand accessible to hybridization were mapped by RNase H digestion in the presence of combinatorial oligonucleotide libraries. The hybridization data further support the existence of a terminal SL, and reveal target sites within the negative strand 5'-terminus which may be susceptible to antisense-mediated inhibition.
Collapse
Affiliation(s)
- R M Smith
- Division of Gastroenterology-Hepatology, Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030-1845, USA
| | | |
Collapse
|
49
|
You S, Stump DD, Branch AD, Rice CM. A cis-acting replication element in the sequence encoding the NS5B RNA-dependent RNA polymerase is required for hepatitis C virus RNA replication. J Virol 2004; 78:1352-66. [PMID: 14722290 PMCID: PMC321395 DOI: 10.1128/jvi.78.3.1352-1366.2004] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
RNA structures play key roles in the replication of RNA viruses. Sequence alignment software, thermodynamic RNA folding programs, and classical comparative phylogenetic analysis were used to build models of six RNA elements in the coding region of the hepatitis C virus (HCV) RNA-dependent RNA polymerase, NS5B. The importance of five of these elements was evaluated by site-directed mutagenesis of a subgenomic HCV replicon. Mutations disrupting one of the predicted stem-loop structures, designated 5BSL3.2, blocked RNA replication, implicating it as an essential cis-acting replication element (CRE). 5BSL3.2 is about 50 bases in length and is part of a larger predicted cruciform structure (5BSL3). As confirmed by RNA structure probing, 5BSL3.2 consists of an 8-bp lower helix, a 6-bp upper helix, a 12-base terminal loop, and an 8-base internal loop. Mutational analysis and structure probing were used to explore the importance of these features. Primary sequences in the loops were shown to be important for HCV RNA replication, and the upper helix appears to serve as an essential scaffold that helps maintain the overall RNA structure. Unlike certain picornavirus CREs, whose function is position independent, 5BSL3.2 function appears to be context dependent. Understanding the role of 5BSL3.2 and determining how this new CRE functions in the context of previously identified elements at the 5' and 3' ends of the RNA genome should provide new insights into HCV RNA replication.
Collapse
Affiliation(s)
- Shihyun You
- Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York 10021, USA
| | | | | | | |
Collapse
|
50
|
Kozak M. Alternative ways to think about mRNA sequences and proteins that appear to promote internal initiation of translation. Gene 2004; 318:1-23. [PMID: 14585494 DOI: 10.1016/s0378-1119(03)00774-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Translation of some mRNAs is postulated to occur via an internal initiation mechanism which is said to be augmented by a variety of RNA-binding proteins. A pervasive problem is that the RNA sequences to which the proteins bind were not rigorously proven to function as internal ribosome entry sites (IRESs). Critical examination of the evidence reveals flaws that leave room for alternative interpretations, such as the possibility that IRES elements might function as cryptic promoters, splice sites, or sequences that modulate cleavage by RNases. The growing emphasis on IRES-binding proteins diverts attention from these fundamental unresolved issues. Many of the putative IRES-binding proteins are heterogeneous nuclear ribonucleoproteins that have recognized roles in RNA processing or stability and no recognized role in translation. Thus the mechanism whereby they promote internal initiation, if indeed they do, is not obvious. Some recent experiments were said to support the idea that IRES-binding proteins cause functionally important changes in folding of the RNA, but the evidence is not convincing when examined closely. The proteins that bind to some (not all) viral IRES elements include a subset of authentic initiation factors. This has not been demonstrated with any candidate IRES of cellular origin, however; and even with viral RNAs, the required chase experiment has not been done to prove that a pre-bound initiation factor actually mediates subsequent entry of ribosomes. In short, the focus on IRES-binding proteins has gotten us no closer to understanding the mechanism of internal initiation. Given the aforementioned uncertainty about whether other mechanisms (splicing, cryptic promoters) might underlie what-appears-to-be internal initiation, a temporary solution might be to redefine IRES to mean "internal regulatory expression sequence." This compromise would allow the sequences to be used for gene expression studies, for which they sometimes work, without asserting more than has been proven about the mechanism.
Collapse
Affiliation(s)
- Marilyn Kozak
- Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA.
| |
Collapse
|