1
|
Szewczyk-Roszczenko O, Roszczenko P, Vassetzky Y, Sjakste N. Genotoxic consequences of viral infections. NPJ VIRUSES 2025; 3:5. [PMID: 40295867 PMCID: PMC11772741 DOI: 10.1038/s44298-024-00087-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/24/2024] [Indexed: 04/30/2025]
Abstract
Viral diseases continually threaten human health as evolving pathogens introduce new risks. These infections can lead to complications across organ systems, with impacts varying by virus type, infection severity, and individual immune response. This review examines the genotoxic stress caused by viral infections and its pathological consequences in humans.
Collapse
Affiliation(s)
- Olga Szewczyk-Roszczenko
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Bialystok, Poland
| | - Piotr Roszczenko
- Department of Biotechnology, Medical University of Bialystok, Bialystok, Poland
| | - Yegor Vassetzky
- Chromatin Dynamics and Metabolism in Cancer, CNRS UMR9018 Institut Gustave Roussy, Univeristé Paris Saclay, 39, rue Camille-Desmoulins, 94805, Villejuif, France.
| | - Nikolajs Sjakste
- Department of Pharmacy, Faculty of Medicine and Life Sciences, University of Latvia, Jelgavas Street 1, LV1004, Riga, Latvia.
| |
Collapse
|
2
|
Han C, Niu D, Lan K. Rewriting Viral Fate: Epigenetic and Transcriptional Dynamics in KSHV Infection. Viruses 2024; 16:1870. [PMID: 39772181 PMCID: PMC11680275 DOI: 10.3390/v16121870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV), a γ-herpesvirus, is predominantly associated with Kaposi's sarcoma (KS) as well as two lymphoproliferative disorders: primary effusion lymphoma (PEL) and multicentric Castleman disease (MCD). Like other herpesviruses, KSHV employs two distinct life cycles: latency and lytic replication. To establish a lifelong persistent infection, KSHV has evolved various strategies to manipulate the epigenetic machinery of the host. In latently infected cells, most viral genes are epigenetically silenced by components of cellular chromatin, DNA methylation and histone post-translational modifications. However, some specific latent genes are preserved and actively expressed to maintain the virus's latent state within the host cell. Latency is not a dead end, but the virus has the ability to reactivate. This reactivation is a complex process that involves the removal of repressive chromatin modifications and increased accessibility for both viral and cellular factors, allowing the activation of the full transcriptional program necessary for the subsequent lytic replication. This review will introduce the roles of epigenetic modifications in KSHV latent and lytic life cycles, including DNA methylation, histone methylation and acetylation modifications, chromatin remodeling, genome conformation, and non-coding RNA expression. Additionally, we will also review the transcriptional regulation of viral genes and host factors in KSHV infection. This review aims to enhance our understanding of the molecular mechanisms of epigenetic modifications and transcriptional regulation in the KSHV life cycle, providing insights for future research.
Collapse
Affiliation(s)
- Chunyan Han
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (C.H.); (D.N.)
| | - Danping Niu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (C.H.); (D.N.)
| | - Ke Lan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (C.H.); (D.N.)
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
3
|
Ye X, Guerin LN, Chen Z, Rajendren S, Dunker W, Zhao Y, Zhang R, Hodges E, Karijolich J. Enhancer-promoter activation by the Kaposi sarcoma-associated herpesvirus episome maintenance protein LANA. Cell Rep 2024; 43:113888. [PMID: 38416644 PMCID: PMC11005752 DOI: 10.1016/j.celrep.2024.113888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 12/29/2023] [Accepted: 02/14/2024] [Indexed: 03/01/2024] Open
Abstract
Higher-order genome structure influences the transcriptional regulation of cellular genes through the juxtaposition of regulatory elements, such as enhancers, close to promoters of target genes. While enhancer activation has emerged as an important facet of Kaposi sarcoma-associated herpesvirus (KSHV) biology, the mechanisms controlling enhancer-target gene expression remain obscure. Here, we discover that the KSHV genome tethering protein latency-associated nuclear antigen (LANA) potentiates enhancer-target gene expression in primary effusion lymphoma (PEL), a highly aggressive B cell lymphoma causally associated with KSHV. Genome-wide analyses demonstrate increased levels of enhancer RNA transcription as well as activating chromatin marks at LANA-bound enhancers. 3D genome conformation analyses identified genes critical for latency and tumorigenesis as targets of LANA-occupied enhancers, and LANA depletion results in their downregulation. These findings reveal a mechanism in enhancer-gene coordination and describe a role through which the main KSHV tethering protein regulates essential gene expression in PEL.
Collapse
Affiliation(s)
- Xiang Ye
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Lindsey N Guerin
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Ziche Chen
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Suba Rajendren
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - William Dunker
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Yang Zhao
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Ruilin Zhang
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Emily Hodges
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt-Ingram Cancer Center, Nashville, TN 37232, USA; Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - John Karijolich
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt-Ingram Cancer Center, Nashville, TN 37232, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, TN 37232, USA; Vanderbilt Center for Immunobiology, Nashville, TN 37232, USA.
| |
Collapse
|
4
|
Li S, Wang M, Van Sciver N, Szymula A, Tumuluri VS, George A, Ramachandran A, Raina K, Costa CN, Zhao B, Kazemian M, Simas JP, Kaye KM. Kaposi's sarcoma herpesvirus latency-associated nuclear antigen broadly regulates viral gene expression and is essential for lytic infection. PLoS Pathog 2024; 20:e1011907. [PMID: 38232124 PMCID: PMC10793894 DOI: 10.1371/journal.ppat.1011907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/18/2023] [Indexed: 01/19/2024] Open
Abstract
Kaposi's sarcoma herpesvirus (KSHV) is a leading cause of malignancy in AIDS and current therapies are limited. Like all herpesviruses, KSHV infection can be latent or lytic. KSHV latency-associated nuclear antigen (LANA) is essential for viral genome persistence during latent infection. LANA also maintains latency by antagonizing expression and function of the KSHV lytic switch protein, RTA. Here, we find LANA null KSHV is not capable of lytic replication, indicating a requirement for LANA. While LANA promoted both lytic and latent gene expression in cells partially permissive for lytic infection, it repressed expression in non-permissive cells. Importantly, forced RTA expression in non-permissive cells led to induction of lytic infection and LANA switched to promote, rather than repress, most lytic viral gene expression. When basal viral gene expression levels were high, LANA promoted expression, but repressed expression at low basal levels unless RTA expression was forcibly induced. LANA's effects were broad, but virus gene specific, extending to an engineered, recombinant viral GFP under control of host EF1α promoter, but not to host EF1α. Together, these results demonstrate that, in addition to its essential role in genome maintenance, LANA broadly regulates viral gene expression, and is required for high levels of lytic gene expression during lytic infection. Strategies that target LANA are expected to abolish KSHV infection.
Collapse
Affiliation(s)
- Shijun Li
- Departments of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Virology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mengbo Wang
- Department of Computer Science, Purdue University, West Lafayette, Indiana
| | - Nicholas Van Sciver
- Departments of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Virology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Agnieszka Szymula
- Departments of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Virology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Vinayak Sadasivam Tumuluri
- Departments of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Virology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Athira George
- Departments of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Virology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Akshaya Ramachandran
- Departments of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Virology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Komal Raina
- Departments of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Virology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Catarina N. Costa
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
- Universidade Católica Portuguesa, Católica Medical School, Católica Biomedical Research, Palma de Cima, Portugal
| | - Bo Zhao
- Departments of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Majid Kazemian
- Department of Computer Science, Purdue University, West Lafayette, Indiana
- Department of Biochemistry, Purdue University, West Lafayette, Indiana
| | - J. Pedro Simas
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
- Universidade Católica Portuguesa, Católica Medical School, Católica Biomedical Research, Palma de Cima, Portugal
| | - Kenneth M. Kaye
- Departments of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Virology, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
5
|
Chen LY, Chen LW, Peng KT, Hung CH, Chang PJ, Wang SS. Sp3 Transcription Factor Cooperates with the Kaposi's Sarcoma-Associated Herpesvirus ORF50 Protein To Synergistically Activate Specific Viral and Cellular Gene Promoters. J Virol 2020; 94:e01143-20. [PMID: 32641483 PMCID: PMC7459565 DOI: 10.1128/jvi.01143-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 07/02/2020] [Indexed: 11/20/2022] Open
Abstract
The Kaposi's sarcoma-associated herpesvirus (KSHV)-encoded open reading frame 50 (ORF50) protein is the key transactivator responsible for the latent-to-lytic switch. Here, we investigated the transcriptional activation of the ORF56 gene (encoding a primase protein) by ORF50 and successfully identified an ORF50-responsive element located in the promoter region between positions -97 and -44 (designated 56p-RE). This 56p-RE element contains a noncanonical RBP-Jκ-binding sequence and a nonconsensus Sp1/Sp3-binding sequence. Electrophoretic mobility shift assays revealed that RBP-Jκ, Sp3, and ORF50 could form stable complexes on the 56p-RE element. Importantly, transient-reporter analysis showed that Sp3, but not RBP-Jκ or Sp1, acts in synergy with ORF50 to activate the 56p-RE-containing reporter construct, and the synergy mainly depends on the Sp1/Sp3-binding region of the 56p-RE element. Sequence similarity searches revealed that the promoters for ORF21 (thymidine kinase), ORF60 (ribonucleotide reductase, small subunit), and cellular interleukin-10 (IL-10) contain a sequence motif similar to the Sp1/Sp3-binding region of the 56p-RE element, and we found that these promoters could also be synergistically activated by ORF50 and Sp3 via the conserved motifs. Noteworthily, the conversion of the Sp1/Sp3-binding sequence of the 56p-RE element into a consensus high-affinity Sp-binding sequence completely lost the synergistic response to ORF50 and Sp3. Moreover, transcriptional synergy could not be detected through other ORF50-responsive elements from the viral PAN, K12, ORF57, and K6 promoters. Collectively, the results of our study demonstrate that ORF50 and Sp3 can act in synergy on the transcription of specific gene promoters, and we find a novel conserved cis-acting motif in these promoters essential for transcriptional synergy.IMPORTANCE Despite the critical role of ORF50 in the KSHV latent-to-lytic switch, the molecular mechanism by which ORF50 activates its downstream target genes, especially those that encode the viral DNA replication enzymes, is not yet fully understood. Here, we find that ORF50 can cooperate with Sp3 to synergistically activate promoters of the viral ORF56 (primase), ORF21 (thymidine kinase), and ORF60 (ribonucleotide reductase) genes via similar Sp1/Sp3-binding motifs. Additionally, the same synergistic effect can be seen on the promoter of the cellular IL-10 gene. Overall, our data reveal an important role for Sp3 in ORF50-mediated transactivation, and we propose a new subclass of ORF50-responsive elements in viral and cellular promoters.
Collapse
Affiliation(s)
- Li-Yu Chen
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Lee-Wen Chen
- Department of Respiratory Care, Chang-Gung University of Science and Technology, Chiayi, Taiwan
- Department of Pediatric Surgery, Chang-Gung Memorial Hospital, Chiayi, Taiwan
| | - Kuo-Ti Peng
- Department of Orthopedic Surgery, Chang-Gung Memorial Hospital, Chiayi, Taiwan
| | - Chien-Hui Hung
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Pey-Jium Chang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang-Gung University, Taoyuan, Taiwan
- Department of Nephrology, Chang-Gung Memorial Hospital, Chiayi, Taiwan
| | - Shie-Shan Wang
- Department of Pediatric Surgery, Chang-Gung Memorial Hospital, Chiayi, Taiwan
- School of Medicine, Chang-Gung University, Taoyuan, Taiwan
| |
Collapse
|
6
|
Hartenian E, Gilbertson S, Federspiel JD, Cristea IM, Glaunsinger BA. RNA decay during gammaherpesvirus infection reduces RNA polymerase II occupancy of host promoters but spares viral promoters. PLoS Pathog 2020; 16:e1008269. [PMID: 32032393 PMCID: PMC7032723 DOI: 10.1371/journal.ppat.1008269] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 02/20/2020] [Accepted: 12/09/2019] [Indexed: 12/11/2022] Open
Abstract
In mammalian cells, widespread acceleration of cytoplasmic mRNA degradation is linked to impaired RNA polymerase II (Pol II) transcription. This mRNA decay-induced transcriptional repression occurs during infection with gammaherpesviruses including Kaposi’s sarcoma-associated herpesvirus (KSHV) and murine gammaherpesvirus 68 (MHV68), which encode an mRNA endonuclease that initiates widespread RNA decay. Here, we show that MHV68-induced mRNA decay leads to a genome-wide reduction of Pol II occupancy at mammalian promoters. This reduced Pol II occupancy is accompanied by down-regulation of multiple Pol II subunits and TFIIB in the nucleus of infected cells, as revealed by mass spectrometry-based global measurements of protein abundance. Viral genes, despite the fact that they require Pol II for transcription, escape transcriptional repression. Protection is not governed by viral promoter sequences; instead, location on the viral genome is both necessary and sufficient to escape the transcriptional repression effects of mRNA decay. We propose a model in which the ability to escape from transcriptional repression is linked to the localization of viral DNA within replication compartments, providing a means for these viruses to counteract decay-induced transcript loss. While transcription and messenger RNA (mRNA) decay are often considered to be the unlinked beginning and end of gene expression, recent data indicate that alterations to either stage can impact the other. Here we study this connection in the context of lytic gammaherpesvirus infection, which accelerates mRNA degradation through the expression of the viral endonuclease muSOX. We show that RNA polymerase II promoter occupancy is broadly reduced across mammalian promoters in response to infection-induced mRNA decay, and that this phenotype correlates with a reduction in the abundance of several proteins involved in transcription. Notably, gammaherpesviral promoters are resistant to the ensuing transcriptional repression. We show that viral transcriptional escape is conferred by localization of the viral DNA within the protective environment of replication compartments, which are sites of viral genome replication and transcription during infection. Collectively, these findings clarify how mRNA degradation by gammaherpesviruses reshapes the cellular environment and selectively dampens host gene transcription.
Collapse
Affiliation(s)
- Ella Hartenian
- Department of Molecular and Cell Biology, University of California Berkeley, CA, United States of America
| | - Sarah Gilbertson
- Department of Molecular and Cell Biology, University of California Berkeley, CA, United States of America
| | - Joel D. Federspiel
- Department of Molecular Biology, Princeton University, Princeton, United States of America
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Princeton, United States of America
| | - Britt A. Glaunsinger
- Department of Molecular and Cell Biology, University of California Berkeley, CA, United States of America
- Department of Plant and Microbial Biology, University of California Berkeley, CA, United States of America
- Howard Hughes Medical Institute, University of California Berkeley, CA, United States of America
- * E-mail:
| |
Collapse
|
7
|
Tso FY, West JT, Wood C. Reduction of Kaposi's Sarcoma-Associated Herpesvirus Latency Using CRISPR-Cas9 To Edit the Latency-Associated Nuclear Antigen Gene. J Virol 2019; 93:e02183-18. [PMID: 30651362 PMCID: PMC6430552 DOI: 10.1128/jvi.02183-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/03/2019] [Indexed: 12/18/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent of Kaposi's sarcoma (KS), an AIDS-defining cancer in HIV-1-infected individuals or immune-suppressed transplant patients. The prevalence for both KSHV and KS are highest in sub-Saharan Africa where HIV-1 infection is also epidemic. There is no effective treatment for advanced KS; therefore, the survival rate is low. Similar to other herpesviruses, KSHV's ability to establish latent infection in the host presents a major challenge to KS treatment or prevention. Strategies to reduce KSHV episomal persistence in latently infected cells might lead to approaches to prevent KS development. The CRISPR-Cas9 system is a gene editing technique that has been used to specifically manipulate the HIV-1 genome but also Epstein-Barr virus (EBV) which, similar to KSHV, belongs to the Gammaherpesvirus family. Among KSHV gene products, the latency-associated nuclear antigen (LANA) is absolutely required in the maintenance, replication, and segregation of KSHV episomes during mitosis, which makes LANA an ideal target for CRISPR-Cas9 editing. In this study, we designed a replication-incompetent adenovirus type 5 to deliver a LANA-specific Cas9 system (Ad-CC9-LANA) into various KSHV latent target cells. We showed that KSHV latently infected epithelial and endothelial cells transduced with Ad-CC9-LANA underwent significant reductions in the KSHV episome burden, LANA RNA and protein expression over time, but this effect is less profound in BC3 cells due to the low infection efficiency of adenovirus type 5 for B cells. The use of an adenovirus vector might confer potential in vivo applications of LANA-specific Cas9 against KSHV infection and KS.IMPORTANCE The ability for Kaposi's sarcoma-associated herpesvirus (KSHV), the causative agent of Kaposi's sarcoma (KS), to establish and maintain latency has been a major challenge to clearing infection and preventing KS development. This is the first study to demonstrate the feasibility of using a KSHV LANA-targeted CRISPR-Cas9 and adenoviral delivery system to disrupt KSHV latency in infected epithelial and endothelial cell lines. Our system significantly reduced the KSHV episomal burden over time. Given the safety record of adenovirus as vaccine or delivery vectors, this approach to limit KSHV latency may also represent a viable strategy against other tumorigenic viruses and may have potential benefits in developing countries where the viral cancer burden is high.
Collapse
Affiliation(s)
- For Yue Tso
- Nebraska Center for Virology and the School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - John T West
- Nebraska Center for Virology and the School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Charles Wood
- Nebraska Center for Virology and the School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
8
|
Kaposi's Sarcoma-Associated Herpesvirus Latency-Associated Nuclear Antigen: Replicating and Shielding Viral DNA during Viral Persistence. J Virol 2017; 91:JVI.01083-16. [PMID: 28446671 DOI: 10.1128/jvi.01083-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Kaposi's sarcoma herpesvirus (KSHV) establishes lifelong latency. The viral latency-associated nuclear antigen (LANA) promotes viral persistence by tethering the viral genome to cellular chromosomes and by participating in latent DNA replication. Recently, the structure of the LANA C-terminal DNA binding domain was solved and new cytoplasmic variants of LANA were discovered. We discuss how these findings contribute to our current view of LANA structure and assembly and of its role during viral persistence.
Collapse
|
9
|
Expression of the Antisense-to-Latency Transcript Long Noncoding RNA in Kaposi's Sarcoma-Associated Herpesvirus. J Virol 2017; 91:JVI.01698-16. [PMID: 27928018 DOI: 10.1128/jvi.01698-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/30/2016] [Indexed: 01/08/2023] Open
Abstract
The regulation of latency is central to herpesvirus biology. Recent transcriptome-wide surveys have uncovered evidence for promiscuous transcription across the entirety of the Kaposi's sarcoma-associated herpesvirus (KSHV) genome and postulated the existence of multiple viral long noncoding RNAs (lncRNAs). Next-generation sequencing studies are highly dependent on the specific experimental approach and particular algorithms of analysis and therefore benefit from independent confirmation of the results. The antisense-to-latency transcript (ALT) lncRNA was discovered by genome-tiling microarray (Chandriani et al., J Virol 86:7934-7942, 2010, https://doi.org/10.1128/JVI.00645-10). To characterize ALT in detail, we physically isolated this lncRNA by a strand-specific hybrid capture assay and then employed transcriptome sequencing and novel reverse transcription-PCR (RT-PCR) assays to distinguish all RNA species in the KSHV latency region. These methods confirm that ALT initiates at positions 120739/121012 and encodes a single splice site, which is shared with the 3'-coterminal K14-vGPCR/ORF74 mRNA, terminating at 130873 (GenBank accession number GQ994935), resulting in an ∼10,000-nucleotide transcript. No shorter ALT isoforms were identified. This study also identified a novel intron within the LANA 5' untranslated region using a splice acceptor at 127888. In summary, ALT joins PAN/nut1/T1.1 as a bona fide lncRNA of KSHV with potentially important roles in viral gene regulation and pathogenesis. IMPORTANCE Increasing data support the importance of noncoding RNAs (ncRNAs), including microRNAs (miRNAs) and lncRNAs, which have been shown to exert critical regulatory functions without coding for recognizable proteins. Defining the sequences of these ncRNAs is essential for future studies aiming to functionally characterize a specific ncRNA. Most lncRNA studies are highly dependent on high-throughput sequencing and bioinformatic analyses, few studies follow up on the initial predictions, and analyses are at times discordant. The manuscript characterizes one key viral lncRNA, ALT, by physically isolating ALT and by a sequencing-independent assay. It provides for a simple assay to monitor lncRNA expression in experimental and clinical samples. ALT is expressed antisense to the major viral latency transcripts encoding LANA as well as the viral miRNAs and thus has the potential to regulate this key part of the viral life cycle.
Collapse
|
10
|
Nuclear Innate Immune DNA Sensor IFI16 Is Degraded during Lytic Reactivation of Kaposi's Sarcoma-Associated Herpesvirus (KSHV): Role of IFI16 in Maintenance of KSHV Latency. J Virol 2016; 90:8822-41. [PMID: 27466416 PMCID: PMC5021400 DOI: 10.1128/jvi.01003-16] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/13/2016] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED IFI16 (interferon gamma-inducible protein 16) recognizes nuclear episomal herpesvirus (Kaposi's sarcoma-associated herpesvirus [KSHV], Epstein-Barr virus [EBV], and herpes simplex virus 1 [HSV-1]) genomes and induces the inflammasome and interferon beta responses. It also acts as a lytic replication restriction factor and inhibits viral DNA replication (human cytomegalovirus [HCMV] and human papillomavirus [HPV]) and transcription (HSV-1, HCMV, and HPV) through epigenetic modifications of the viral genomes. To date, the role of IFI16 in the biology of latent viruses is not known. Here, we demonstrate that knockdown of IFI16 in the latently KSHV-infected B-lymphoma BCBL-1 and BC-3 cell lines results in lytic reactivation and increases in levels of KSHV lytic transcripts, proteins, and viral genome replication. Similar results were also observed during KSHV lytic cycle induction in TREX-BCBL-1 cells with the doxycycline-inducible lytic cycle switch replication and transcription activator (RTA) gene. Overexpression of IFI16 reduced lytic gene induction by the chemical agent 12-O-tetradecoylphorbol-13-acetate (TPA). IFI16 protein levels were significantly reduced or absent in TPA- or doxycycline-induced cells expressing lytic KSHV proteins. IFI16 is polyubiquitinated and degraded via the proteasomal pathway. The degradation of IFI16 was absent in phosphonoacetic acid-treated cells, which blocks KSHV DNA replication and, consequently, late lytic gene expression. Chromatin immunoprecipitation assays of BCBL-1 and BC-3 cells demonstrated that IFI16 binds to KSHV gene promoters. Uninfected epithelial SLK and osteosarcoma U2OS cells transfected with KSHV luciferase promoter constructs confirmed that IFI16 functions as a transcriptional repressor. These results reveal that KSHV utilizes the innate immune nuclear DNA sensor IFI16 to maintain its latency and repression of lytic transcripts, and a late lytic KSHV gene product(s) targets IFI16 for degradation during lytic reactivation. IMPORTANCE Like all herpesviruses, latency is an integral part of the life cycle of Kaposi's sarcoma-associated herpesvirus (KSHV), an etiological agent for many human cancers. Herpesviruses utilize viral and host factors to successfully evade the host immune system to maintain latency. Reactivation is a complex event where the latent episomal viral genome springs back to active transcription of lytic cycle genes. Our studies reveal that KSHV has evolved to utilize the innate immune sensor IFI16 to keep lytic cycle transcription in dormancy. We demonstrate that IFI16 binds to the lytic gene promoter, acts as a transcriptional repressor, and thereby helps to maintain latency. We also discovered that during the late stage of lytic replication, KSHV selectively degrades IFI16, thus relieving transcriptional repression. This is the first report to demonstrate the role of IFI16 in latency maintenance of a herpesvirus, and further understanding will lead to the development of strategies to eliminate latent infection.
Collapse
|
11
|
Di Domenico EG, Toma L, Bordignon V, Trento E, D'Agosto G, Cordiali-Fei P, Ensoli F. Activation of DNA Damage Response Induced by the Kaposi's Sarcoma-Associated Herpes Virus. Int J Mol Sci 2016; 17:ijms17060854. [PMID: 27258263 PMCID: PMC4926388 DOI: 10.3390/ijms17060854] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 05/23/2016] [Accepted: 05/27/2016] [Indexed: 01/24/2023] Open
Abstract
The human herpes virus 8 (HHV-8), also known as Kaposi sarcoma-associated herpes virus (KSHV), can infect endothelial cells often leading to cell transformation and to the development of tumors, namely Kaposi’s sarcoma (KS), primary effusion lymphoma (PEL), and the plasmablastic variant of multicentric Castleman’s disease. KSHV is prevalent in areas such as sub-Saharan Africa and the Mediterranean region presenting distinct genotypes, which appear to be associated with differences in disease manifestation, according to geographical areas. In infected cells, KSHV persists in a latent episomal form. However, in a limited number of cells, it undergoes spontaneous lytic reactivation to ensure the production of new virions. During both the latent and the lytic cycle, KSHV is programmed to express genes which selectively modulate the DNA damage response (DDR) through the activation of the ataxia telangiectasia mutated (ATM) pathway and by phosphorylating factors associated with the DDR, including the major tumor suppressor protein p53 tumor suppressor p53. This review will focus on the interplay between the KSHV and the DDR response pathway throughout the viral lifecycle, exploring the putative molecular mechanism/s that may contribute to malignant transformation of host cells.
Collapse
Affiliation(s)
- Enea Gino Di Domenico
- Clinical Pathology and Microbiology Department, San Gallicano Institute, IRCCS, Rome 00144, Italy.
| | - Luigi Toma
- Infectious Disease Consultant, San Gallicano Institute, IRCCS, Rome 00144, Italy.
| | - Valentina Bordignon
- Clinical Pathology and Microbiology Department, San Gallicano Institute, IRCCS, Rome 00144, Italy.
| | - Elisabetta Trento
- Clinical Pathology and Microbiology Department, San Gallicano Institute, IRCCS, Rome 00144, Italy.
| | - Giovanna D'Agosto
- Clinical Pathology and Microbiology Department, San Gallicano Institute, IRCCS, Rome 00144, Italy.
| | - Paola Cordiali-Fei
- Clinical Pathology and Microbiology Department, San Gallicano Institute, IRCCS, Rome 00144, Italy.
| | - Fabrizio Ensoli
- Clinical Pathology and Microbiology Department, San Gallicano Institute, IRCCS, Rome 00144, Italy.
| |
Collapse
|
12
|
Strahan R, Uppal T, Verma SC. Next-Generation Sequencing in the Understanding of Kaposi's Sarcoma-Associated Herpesvirus (KSHV) Biology. Viruses 2016; 8:92. [PMID: 27043613 PMCID: PMC4848587 DOI: 10.3390/v8040092] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/21/2016] [Accepted: 03/23/2016] [Indexed: 12/16/2022] Open
Abstract
Non-Sanger-based novel nucleic acid sequencing techniques, referred to as Next-Generation Sequencing (NGS), provide a rapid, reliable, high-throughput, and massively parallel sequencing methodology that has improved our understanding of human cancers and cancer-related viruses. NGS has become a quintessential research tool for more effective characterization of complex viral and host genomes through its ever-expanding repertoire, which consists of whole-genome sequencing, whole-transcriptome sequencing, and whole-epigenome sequencing. These new NGS platforms provide a comprehensive and systematic genome-wide analysis of genomic sequences and a full transcriptional profile at a single nucleotide resolution. When combined, these techniques help unlock the function of novel genes and the related pathways that contribute to the overall viral pathogenesis. Ongoing research in the field of virology endeavors to identify the role of various underlying mechanisms that control the regulation of the herpesvirus biphasic lifecycle in order to discover potential therapeutic targets and treatment strategies. In this review, we have complied the most recent findings about the application of NGS in Kaposi’s sarcoma-associated herpesvirus (KSHV) biology, including identification of novel genomic features and whole-genome KSHV diversities, global gene regulatory network profiling for intricate transcriptome analyses, and surveying of epigenetic marks (DNA methylation, modified histones, and chromatin remodelers) during de novo, latent, and productive KSHV infections.
Collapse
Affiliation(s)
- Roxanne Strahan
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, 1664 N, Virginia Street, MS 320, Reno, NV 89557, USA.
| | - Timsy Uppal
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, 1664 N, Virginia Street, MS 320, Reno, NV 89557, USA.
| | - Subhash C Verma
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, 1664 N, Virginia Street, MS 320, Reno, NV 89557, USA.
| |
Collapse
|
13
|
Fan W, Tang Q, Shen C, Qin D, Lu C, Yan Q. Preparation and characterization of polyclonal antibody against Kaposi's sarcoma-associated herpesvirus lytic gene encoding RTA. Folia Microbiol (Praha) 2015; 60:473-81. [PMID: 25832009 DOI: 10.1007/s12223-015-0387-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 03/15/2015] [Indexed: 12/30/2022]
Abstract
Replication and transcription activator (RTA) is a critical lytic protein encoded by Kaposi's sarcoma-associated herpesvirus (KSHV). To prepare rabbit polyclonal antibody against RTA, three antigenic polypeptides of KSHV RTA were initially synthesized. The fragment of RTA was cloned into p3FlagBsd to construct the recombinant plasmid, pRTA-Flag. 293 T and EA.hy926 cells were transfected with pRTA-Flag to obtain RTA-Flag fusion protein, which was detected using anti-Flag antibody. Next, New Zealand white rabbits were immunized with keyhole limpet hemocyanin-conjugated peptides to generate polyclonal antibodies against RTA. Enzyme-linked immunosorbent assays were performed to characterize the polyclonal antibodies, and the titers of the polyclonal antibodies against RTA were greater than 1:11,000. Western blotting and immunofluorescence assay revealed that the prepared antibody reacted specifically with the RTA-Flag fusion protein as well as the native viral protein in KSHV-infected primary effusion lymphoma cells. Collectively, our work successfully constructed the recombinant expression vector, pRTA-Flag, and prepared the polyclonal antibody against RTA, which was valuable for investigating the biochemical and biological functions of the critical KSHV lytic gene.
Collapse
Affiliation(s)
- Weifei Fan
- Department of Oncology, Jiangsu Province Official Hospital, 65 Jiangsu Road, Nanjing, 210024, People's Republic of China
| | - Qiao Tang
- Department of Clinical Laboratory, The Affiliated Nanjing First Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Chenyou Shen
- Department of Microbiology, Nanjing Medical University, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Di Qin
- Department of Microbiology, Nanjing Medical University, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Chun Lu
- Department of Microbiology, Nanjing Medical University, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Qin Yan
- Department of Microbiology, Nanjing Medical University, Nanjing, Jiangsu, 210029, People's Republic of China.
| |
Collapse
|
14
|
Murine Gammaherpesvirus 68 ORF48 Is an RTA-Responsive Gene Product and Functions in both Viral Lytic Replication and Latency during In Vivo Infection. J Virol 2015; 89:5788-800. [PMID: 25762743 DOI: 10.1128/jvi.00406-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 03/08/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Replication and transcription activator (RTA) of gammaherpesvirus is an immediate early gene product and regulates the expression of many downstream viral lytic genes. ORF48 is also conserved among gammaherpesviruses; however, its expression regulation and function remained largely unknown. In this study, we characterized the transcription unit of ORF48 from murine gammaherpesvirus 68 (MHV-68) and analyzed its transcriptional regulation. We showed that RTA activates the ORF48 promoter via an RTA-responsive element (48pRRE). RTA binds to 48pRRE directly in vitro and also associates with ORF48 promoter in vivo. Mutagenesis of 48pRRE in the context of the viral genome demonstrated that the expression of ORF48 is activated by RTA through 48pRRE during de novo infection. Through site-specific mutagenesis, we generated an ORF48-null virus and examined the function of ORF48 in vitro and in vivo. The ORF48-null mutation remarkably reduced the viral replication efficiency in cell culture. Moreover, through intranasal or intraperitoneal infection of laboratory mice, we showed that ORF48 is important for viral lytic replication in the lung and establishment of latency in the spleen, as well as viral reactivation from latency. Collectively, our study identified ORF48 as an RTA-responsive gene and showed that ORF48 is important for MHV-68 replication both in vitro and in vivo. IMPORTANCE The replication and transcription activator (RTA), conserved among gammaherpesviruses, serves as a molecular switch for the virus life cycle. It works as a transcriptional regulator to activate the expression of many viral lytic genes. However, only a limited number of such downstream genes have been uncovered for MHV-68. In this study, we identified ORF48 as an RTA-responsive gene of MHV-68 and mapped the cis element involved. By constructing a mutant virus that is deficient in ORF48 expression and through infection of laboratory mice, we showed that ORF48 plays important roles in different stages of viral infection in vivo. Our study provides insights into the transcriptional regulation and protein function of MHV-68, a desired model for studying gammaherpesviruses.
Collapse
|
15
|
Hu J, Yang Y, Turner PC, Jain V, McIntyre LM, Renne R. LANA binds to multiple active viral and cellular promoters and associates with the H3K4methyltransferase hSET1 complex. PLoS Pathog 2014; 10:e1004240. [PMID: 25033463 PMCID: PMC4102568 DOI: 10.1371/journal.ppat.1004240] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 05/27/2014] [Indexed: 02/07/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a γ-herpesvirus associated with KS and two lymphoproliferative diseases. Recent studies characterized epigenetic modification of KSHV episomes during latency and determined that latency-associated genes are associated with H3K4me3 while most lytic genes are associated with the silencing mark H3K27me3. Since the latency-associated nuclear antigen (LANA) (i) is expressed very early after de novo infection, (ii) interacts with transcriptional regulators and chromatin remodelers, and (iii) regulates the LANA and RTA promoters, we hypothesized that LANA may contribute to the establishment of latency through epigenetic control. We performed a detailed ChIP-seq analysis in cells of lymphoid and endothelial origin and compared H3K4me3, H3K27me3, polII, and LANA occupancy. On viral episomes LANA binding was detected at numerous lytic and latent promoters, which were transactivated by LANA using reporter assays. LANA binding was highly enriched at H3K4me3 peaks and this co-occupancy was also detected on many host gene promoters. Bioinformatic analysis of enriched LANA binding sites in combination with biochemical binding studies revealed three distinct binding patterns. A small subset of LANA binding sites showed sequence homology to the characterized LBS1/2 sequence in the viral terminal repeat. A large number of sites contained a novel LANA binding motif (TCCAT)3 which was confirmed by gel shift analysis. Third, some viral and cellular promoters did not contain LANA binding sites and are likely enriched through protein/protein interaction. LANA was associated with H3K4me3 marks and in PEL cells 86% of all LANA bound promoters were transcriptionally active, leading to the hypothesis that LANA interacts with the machinery that methylates H3K4. Co-immunoprecipitation demonstrated LANA association with endogenous hSET1 complexes in both lymphoid and endothelial cells suggesting that LANA may contribute to the epigenetic profile of KSHV episomes. KSHV is a DNA tumor virus which is associated with Kaposi's sarcoma and some lymphoproliferative diseases. During latent infection, the viral genome persists as circular extrachromosomal DNA in the nucleus and expresses a very limited number of viral proteins, including LANA, a multi-functional protein. KSHV viral episomes, like host genomic DNA, are subject to chromatin formation and histone modifications which contribute to tightly controlled gene expression during latency. We determined where LANA binds on the KSHV and human genomes, and mapped activating and repressing histone marks and RNA polymerase II binding. We found that LANA bound near transcription start sites, and binding correlated with the transcription active mark H3K4me3, but not silencing mark H3K27me3. Binding sites for transcription factors including znf143, CTCF, and Stat1 are enriched at regions where LANA is bound. We identified some LANA binding sites near human gene promoters that resembled KSHV sequences known to bind LANA. We also found a novel motif that occurs frequently in the human genome and that binds LANA directly despite being different from known LANA-binding sequences. Furthermore, we demonstrate that LANA associates with the H3K4 methyltransferase hSET1 which creates activating histone marks.
Collapse
Affiliation(s)
- Jianhong Hu
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Yajie Yang
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Peter C. Turner
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Vaibhav Jain
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Lauren M. McIntyre
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
- UF Genetics Institute, University of Florida, Gainesville, Florida, United States of America
| | - Rolf Renne
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
- UF Genetics Institute, University of Florida, Gainesville, Florida, United States of America
- UF Health Cancer Center, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
16
|
Site-specific association with host and viral chromatin by Kaposi's sarcoma-associated herpesvirus LANA and its reversal during lytic reactivation. J Virol 2014; 88:6762-77. [PMID: 24696474 DOI: 10.1128/jvi.00268-14] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
UNLABELLED Latency-associated nuclear antigen (LANA), a multifunctional protein expressed by the Kaposi sarcoma-associated herpesvirus (KSHV) in latently infected cells, is required for stable maintenance of the viral episome. This is mediated by two interactions: LANA binds to specific sequences (LBS1 and LBS2) on viral DNA and also engages host histones, tethering the viral genome to host chromosomes in mitosis. LANA has also been suggested to affect host gene expression, but both the mechanism(s) and role of this dysregulation in KSHV biology remain unclear. Here, we have examined LANA interactions with host chromatin on a genome-wide scale using chromatin immunoprecipitation with high-throughput sequencing (ChIP-seq) and show that LANA predominantly targets human genes near their transcriptional start sites (TSSs). These host LANA-binding sites are generally found within transcriptionally active promoters and display striking overrepresentation of a consensus DNA sequence virtually identical to the LANA-binding site 1 (LBS1) motif in KSHV DNA. Comparison of the ChIP-seq profile with whole-transcriptome (high-throughput sequencing of RNA transcripts [RNA-seq]) data reveals that few of the genes that are differentially regulated in latent infection are occupied by LANA at their promoters. This suggests that direct LANA binding to promoters is not the prime determinant of altered host transcription in KSHV-infected cells. Most surprisingly, the association of LANA to both host and viral DNA is strongly disrupted during the lytic cycle of KSHV. This disruption can be prevented by the inhibition of viral DNA synthesis, suggesting the existence of novel and potent regulatory mechanisms linked to either viral DNA replication or late gene expression. IMPORTANCE Here, we employ complementary genome-wide analyses to evaluate the distribution of the highly abundant latency-associated nuclear antigen, LANA, on the host genome and its impact on host gene expression during KSHV latent infection. Combined, ChIP-seq and RNA-seq reveal that LANA accumulates at active gene promoters that harbor specific short DNA sequences that are highly reminiscent of its cognate binding sites in the virus genome. Unexpectedly, we found that such association does not lead to remodeling of global host transcription during latency. We also report for the first time that LANA's ability to bind host and viral chromatin is highly dynamic and is disrupted in cells undergoing an extensive lytic reactivation. This therefore suggests that the association of LANA to chromatin during a productive infection cycle is controlled by a new regulatory mechanism.
Collapse
|
17
|
Abstract
The human gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) establish long-term latent infections associated with diverse human cancers. Viral oncogenesis depends on the ability of the latent viral genome to persist in host nuclei as episomes that express a restricted yet dynamic pattern of viral genes. Multiple epigenetic events control viral episome generation and maintenance. This Review highlights some of the recent findings on the role of chromatin assembly, histone and DNA modifications, and higher-order chromosome structures that enable gammaherpesviruses to establish stable latent infections that mediate viral pathogenesis.
Collapse
|
18
|
CTCF regulates Kaposi's sarcoma-associated herpesvirus latency transcription by nucleosome displacement and RNA polymerase programming. J Virol 2012. [PMID: 23192870 DOI: 10.1128/jvi.02283-12] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
CCCTC-binding factor (CTCF) has been implicated in various aspects of viral and host chromatin organization and transcriptional control. We showed previously that CTCF binds to a cluster of three sites in the first intron of the Kaposi's sarcoma-associated herpesvirus (KSHV) multicistronic latency-associated transcript that encodes latency-associated nuclear antigen (LANA), viral cyclin (vCyclin), vFLIP, viral microRNAs, and kaposin. We show here that these CTCF binding sites regulate mRNA production, RNA polymerase II (RNAPII) programming, and nucleosome organization of the KSHV latency transcript control region. We also show that KSHV bacmids lacking these CTCF binding sites have elevated and altered ratios of spliced latency transcripts. CTCF binding site mutations altered RNAPII and RNAPII-accessory factor interactions with the latency control region. CTCF binding sites were required for the in vitro recruitment of RNAPII to the latency control region, suggesting that direct interactions between CTCF and RNAPII contribute to transcription regulation. Histone modifications in the latency control region were also altered by mutations in the CTCF binding sites. Finally, we show that CTCF binding alters the regular phasing of nucleosomes in the latency gene transcript and intron, suggesting that nucleosome positioning can be an underlying biochemical mechanism of CTCF function. We propose that RNAPII interactions and nucleosome displacement serve as a biochemical basis for programming RNAPII in the KSHV transcriptional control region.
Collapse
|
19
|
Chen HS, Wikramasinghe P, Showe L, Lieberman PM. Cohesins repress Kaposi's sarcoma-associated herpesvirus immediate early gene transcription during latency. J Virol 2012; 86:9454-64. [PMID: 22740398 PMCID: PMC3416178 DOI: 10.1128/jvi.00787-12] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 06/14/2012] [Indexed: 12/14/2022] Open
Abstract
Chromatin-organizing factors such as CTCF and cohesins have been implicated in the control of complex viral regulatory programs. We investigated the role of CTCF and cohesins in the control of the switch from latency to the lytic cycle for Kaposi's sarcoma-associated herpesvirus (KSHV). We found that cohesin subunits but not CTCF are required for the repression of KSHV immediate early gene transcription. Depletion of the cohesin subunits Rad21, SMC1, and SMC3 resulted in lytic cycle gene transcription and viral DNA replication. In contrast, depletion of CTCF failed to induce lytic transcription or DNA replication. Chromatin immunoprecipitation with high-throughput sequencing (ChIP-Seq) revealed that cohesins and CTCF bound to several sites within the immediate early control region for ORF50 and to more distal 5' sites that also regulate the divergently transcribed ORF45-ORF46-ORF47 gene cluster. Rad21 depletion led to a robust increase in ORF45, ORF46, ORF47, and ORF50 transcripts, with similar kinetics to that observed with chemical induction by sodium butyrate. During latency, the chromatin between the ORF45 and ORF50 transcription start sites was enriched in histone H3K4me3, with elevated H3K9ac at the ORF45 promoter and elevated H3K27me3 at the ORF50 promoter. A paused form of RNA polymerase II (Pol II) was loosely associated with the ORF45 promoter region during latency but was converted to an active elongating form upon reactivation induced by Rad21 depletion. Butyrate treatment caused a rapid dissociation of cohesins and loss of CTCF binding at the immediate early gene locus, suggesting that cohesins may be a direct target of butyrate-mediated lytic induction. Our findings implicate cohesins as a major repressor of KSHV lytic gene activation and show that they function coordinately with CTCF to regulate the switch between latent and lytic gene activity.
Collapse
|
20
|
Binding of cellular export factor REF/Aly by Kaposi's sarcoma-associated herpesvirus (KSHV) ORF57 protein is not required for efficient KSHV lytic replication. J Virol 2012; 86:9866-74. [PMID: 22761374 DOI: 10.1128/jvi.01190-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) ORF57 protein is expressed early during lytic KSHV replication, enhances expression of many KSHV genes, and is essential for virus production. ORF57 is a member of a family of proteins conserved among all human and many animal herpesviruses that are multifunctional regulators of gene expression and act posttranscriptionally to increase accumulation of their target mRNAs. The mechanism of ORF57 action is complex and may involve effects on mRNA transcription, stability, and export. ORF57 directly binds to REF/Aly, a cellular RNA-binding protein component of the TREX complex that mediates RNA transcription and export. We analyzed the effects of an ORF57 mutation known to abrogate REF/Aly binding and demonstrate that the REF-binding mutant is impaired in activation of viral mRNAs and noncoding RNAs confined to the nucleus. Although the inability to bind REF leads to decreased ORF57 activity in enhancing gene expression, there is no demonstrable effect on nuclear export of viral mRNA or the ability of ORF57 to support KSHV replication and virus production. These data indicate that REF/Aly-ORF57 interaction is not essential for KSHV lytic replication but may contribute to target RNA stability independent of effects on RNA export, suggesting a novel role for REF/Aly in viral RNA metabolism.
Collapse
|
21
|
Quantitative analysis of the bidirectional viral G-protein-coupled receptor and lytic latency-associated nuclear antigen promoter of Kaposi's sarcoma-associated herpesvirus. J Virol 2012; 86:9683-95. [PMID: 22740392 DOI: 10.1128/jvi.00881-12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) establishes sustained latent persistence in susceptible cells. This is dependent on the latency-associated nuclear antigen (LANA). Understanding how LANA transcription is regulated thus aids our fundamental understanding of KSHV biology. Two hundred ninety-four base pairs are sufficient to regulate LANA transcription in response to the viral RTA protein and RBPjκ. The same region controls K14/viral G-protein-coupled receptor (vGPCR) transcription in the opposite direction. We used a quantitative analysis in conjunction with specific nucleotide substitutions and defined gain-of-function and loss-of-function RTA mutants to dissect this region. We used a bidirectional reporter driving red and green luciferase to study the LANApi and K14p promoters simultaneously. This established that LANApi/K14p functions as a canonical bidirectional promoter. Both were TATA dependent. K14p was favored by ∼50-fold in this context. Eliminating the distal LANApi TATA box increased maximal output and lowered the induction threshold (T) of K14p even further. Two RBPjκ binding sites were independently required; however, at high concentrations of RTA, direct interactions with an RTA-responsive element (RRE) could complement the loss of one RBPjκ binding site. Intracellular Notch (ICN) was no longer able to activate RBPjκ in the viral context. This suggests a model whereby KSHV alters ICN-RBPjκ gene regulation. When the architecture of this pair of head-to-head RBPjκ binding sites is changed, the sites now respond exclusively to the viral transactivator RTA and no longer to the host mediator ICN.
Collapse
|
22
|
Wang SS, Chang PJ, Chen LW, Chen LY, Hung CH, Liou JY, Yen JB. Positive and negative regulation in the promoter of the ORF46 gene of Kaposi's sarcoma-associated herpesvirus. Virus Res 2012; 165:157-69. [PMID: 22366521 DOI: 10.1016/j.virusres.2012.02.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 02/11/2012] [Accepted: 02/12/2012] [Indexed: 12/24/2022]
Abstract
The ORF46 gene of Kaposi's sarcoma-associated herpesvirus (KSHV) encodes uracil DNA glycosylase, an enzyme involved in DNA repair. In this study, we show that the transcriptional start site of the ORF46 gene is located at nucleotide 69,425 of the viral genome and ORF50 protein, a latent-lytic switch transactivator, activates the ORF46 promoter via RBP-Jκ protein. Three consensus RBP-Jκ-binding sites found in the ORF46 promoter are critical for the binding of RBP-Jκ protein and conferring the ORF50 responsiveness. In addition, a negative regulatory region has been determined in the ORF46 promoter, which mediates the suppression of the ORF50 responsiveness. The functional negative region of the ORF46 promoter is mainly composed of the Sp1-binding sites. Like the negative region of the ORF46 promoter, addition of Sp1-binding sequences alone in an ORF50-responsive promoter efficiently confers the suppression of the ORF50 responsiveness. Furthermore, sodium butyrate, a pleiotropic inducing agent for the KSHV lytic cycle, is able to relieve the negative regulation of the ORF46 promoter in the latently KSHV-infected cells. The identification of multiple positive and negative cis-acting regulatory elements in the viral promoters emphasizes the elaborate controls in the KSHV lytic cycle, which ensure the adequate expression of each viral lytic gene.
Collapse
Affiliation(s)
- Shie-Shan Wang
- Graduate Institute of Clinical Medical Sciences, Chang-Gung University, Taoyuan, Taiwan; Departments of Pediatric Surgery, Chang-Gung Memorial Hospital, Chiayi, Taiwan
| | | | | | | | | | | | | |
Collapse
|
23
|
Lu J, Verma SC, Cai Q, Saha A, Dzeng RK, Robertson ES. The RBP-Jκ binding sites within the RTA promoter regulate KSHV latent infection and cell proliferation. PLoS Pathog 2012; 8:e1002479. [PMID: 22253595 PMCID: PMC3257303 DOI: 10.1371/journal.ppat.1002479] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 11/27/2011] [Indexed: 01/10/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is tightly linked to at least two lymphoproliferative disorders, primary effusion lymphoma (PEL) and multicentric Castleman's disease (MCD). However, the development of KSHV-mediated lymphoproliferative disease is not fully understood. Here, we generated two recombinant KSHV viruses deleted for the first RBP-Jκ binding site (RTA1st) and all three RBP-Jκ binding sites (RTAall) within the RTA promoter. Our results showed that RTA1st and RTAall recombinant viruses possess increased viral latency and a decreased capability for lytic replication in HEK 293 cells, enhancing colony formation and proliferation of infected cells. Furthermore, recombinant RTA1st and RTAall viruses showed greater infectivity in human peripheral blood mononuclear cells (PBMCs) relative to wt KSHV. Interestingly, KSHV BAC36 wt, RTA1st and RTAall recombinant viruses infected both T and B cells and all three viruses efficiently infected T and B cells in a time-dependent manner early after infection. Also, the capability of both RTA1st and RTAall recombinant viruses to infect CD19+ B cells was significantly enhanced. Surprisingly, RTA1st and RTAall recombinant viruses showed greater infectivity for CD3+ T cells up to 7 days. Furthermore, studies in Telomerase-immortalized human umbilical vein endothelial (TIVE) cells infected with KSHV corroborated our data that RTA1st and RTAall recombinant viruses have enhanced ability to persist in latently infected cells with increased proliferation. These recombinant viruses now provide a model to explore early stages of primary infection in human PBMCs and development of KSHV-associated lymphoproliferative diseases. Kaposi's sarcoma-associated herpesvirus (KSHV) is tightly linked to at least two lymphoproliferative disorders, primary effusion lymphoma (PEL) and multicentric Castleman's disease (MCD). The life cycle of KSHV consists of latent and lytic phase. RTA is the master switch for viral lytic replication. In this study, we first show that recombinant viruses deleted for the RBP-Jκ sites within the RTA promoter have a decreased capability for lytic replication, and thus enhanced colony formation and proliferation of infected cells. Interestingly, the recombinant viruses show greater infectivity in human peripheral blood mononuclear cells (PBMCs). The recombinant viruses also infected CD19+ B cells and CD3+ T cells with increased efficiency in a time-dependent manner and now provide a model which can be used to explore the early stages of primary infection in human PBMCs, as well as the development of KSHV-associated lymphoproliferative diseases.
Collapse
Affiliation(s)
- Jie Lu
- Department of Microbiology and Tumor Virology Program of the Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Subhash C. Verma
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, Reno, Nevada, United States of America
| | - Qiliang Cai
- Department of Microbiology and Tumor Virology Program of the Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Abhik Saha
- Department of Microbiology and Tumor Virology Program of the Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Richard Kuo Dzeng
- Department of Microbiology and Tumor Virology Program of the Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Erle S. Robertson
- Department of Microbiology and Tumor Virology Program of the Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
24
|
Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen induction by hypoxia and hypoxia-inducible factors. J Virol 2011; 86:1097-108. [PMID: 22090111 DOI: 10.1128/jvi.05167-11] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hypoxia and hypoxia-inducible factors (HIFs) play an important role in the Kaposi's sarcoma-associated herpesvirus (KSHV) life cycle. In particular, hypoxia can activate lytic replication of KSHV and specific lytic genes, including the replication and transcription activator (RTA), while KSHV infection in turn can increase the levels and activity of HIFs. In the present study, we show that hypoxia increases the levels of mRNAs encoding KSHV latency-associated nuclear antigen (LANA) in primary effusion lymphoma (PEL) cell lines and also increases the levels of LANA protein. Luciferase reporter assays in Hep3B cells revealed a moderate activation of the LANA promoter region by hypoxia as well as by cotransfection with degradation-resistant HIF-1α or HIF-2α expression plasmids. Computer analysis of a 1.2-kb sequence upstream of the LANA translational start site identified six potential hypoxia-responsive elements (HRE). Sequential deletion studies revealed that much of this activity was mediated by one of these HREs (HRE 4R) oriented in the 3' to 5' direction and located between the constitutive (LTc) and RTA-inducible (LTi) mRNA start sites. Site-directed mutation of this HRE substantially reduced the response to both HIF-1α and HIF-2α in a luciferase reporter assay. Electrophoretic mobility shift assays (EMSA) and chromatin immunoprecipitation (ChIP) assays demonstrated binding of both HIF-1α and HIF-2α to this region. Also, HIF-1α was found to associate with RTA, and HIFs enhanced the activation of LTi by RTA. These results provide evidence that hypoxia and HIFs upregulate both latent and lytic KSHV replication and play a central role in the life cycle of this virus.
Collapse
|
25
|
Kang H, Lieberman PM. Mechanism of glycyrrhizic acid inhibition of Kaposi's sarcoma-associated herpesvirus: disruption of CTCF-cohesin-mediated RNA polymerase II pausing and sister chromatid cohesion. J Virol 2011; 85:11159-69. [PMID: 21880767 PMCID: PMC3194953 DOI: 10.1128/jvi.00720-11] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 08/22/2011] [Indexed: 12/24/2022] Open
Abstract
Glycyrrhizic acid (GA), a derivative of licorice, selectively inhibits the growth of lymphocytes latently infected with Kaposi's sarcoma-associated herpesvirus. The mechanism involves the deregulation of the multicistronic latency transcript, including the failure to generate the mature forms of viral mRNA encoding LANA. We show here that GA disrupts an RNA polymerase II (RNAPII) complex that accumulates at the CTCF-cohesin binding site within the first intron of the latency transcript. GA altered the enrichment of the RNAPII pausing complex, along with pausing factors SPT5 and NELF-A, at the intragenic CTCF-cohesin binding sites. GA blocked the interaction of cohesin subunit SMC3 with another cohesin subunit, RAD21, and reduced SPT5 interaction with RNAPII. Covalent coupling of GA to a solid support revealed that GA interacts with several cellular proteins, including SMC3 and SPT5, but not their respective interaction partners RAD21 and RNAPII. GA treatment also inhibited the transcription of some cellular genes, like c-myc, which contain a similar CTCF-cohesin binding site within the first intron. We also found that GA leads to a more general loss of sister chromatid cohesion for cellular chromosomes. These findings suggest that RNAPII pauses at intragenic CTCF-cohesin binding sites and that abrogation of this pausing by GA leads to loss of proper mRNA production and defects in sister chromatid cohesion, a process important for both viral and cellular chromosome stability.
Collapse
Affiliation(s)
- Hyojeung Kang
- The Wistar Institute, Philadelphia, Pennsylvania 19104
- Kyungpook National University, Daegu, South Korea
| | | |
Collapse
|
26
|
Restricted Kaposi's sarcoma (KS) herpesvirus transcription in KS lesions from patients on successful antiretroviral therapy. mBio 2011; 2:e00138-11. [PMID: 22045987 PMCID: PMC3202757 DOI: 10.1128/mbio.00138-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Kaposi’s sarcoma (KS) is caused by Kaposi’s sarcoma-associated herpesvirus (KSHV; human herpesvirus 8). KS is an AIDS-defining cancer, and it is changing in the post-antiretroviral therapy (post-ART) era. In countries with ready access to ART, approximately one-third of KS cases present in patients with undetectable HIV loads and CD4 counts of ≥200 cells/µl. This is in contrast to pre-ART era KS, which was associated with systemic HIV replication and CD4 counts of ≤200 cells/µl. Using primary patient biopsy specimens, we identified a novel molecular signature that characterizes AIDS KS lesions that develop in HIV-suppressed patients on ART: KSHV transcription is limited in HIV-suppressed patients. With one exception, only the canonical viral latency mRNAs were detectable. In contrast, early AIDS KS lesions expressed many more viral mRNAs, including, for instance, the viral G protein-coupled receptor (vGPCR). This is the first genomewide study of Kaposi’s sarcoma-associated herpesvirus (KSHV) transcription in KS lesions in the post-antiretroviral (post-ART) era. It shows that the gene expression of KSHV is altered in patients on ART, and it provides clinical evidence for active AIDS (as characterized by high HIV load and low CD4 counts) being a potential modulator of KSHV transcription. This implies a novel mode of pathogenesis (tightly latent KS), which may inform KS cancer treatment options in the post-ART era.
Collapse
|
27
|
Replication and transcription activator (RTA) of murine gammaherpesvirus 68 binds to an RTA-responsive element and activates the expression of ORF18. J Virol 2011; 85:11338-50. [PMID: 21849436 DOI: 10.1128/jvi.00561-11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The replication and transcription activator (RTA), mainly encoded by open reading frame 50, is an immediate-early gene product that is conserved among all characterized gammaherpesviruses. Previous studies have demonstrated that RTA proteins of Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) can activate the promoter of many viral early lytic genes through direct or indirect mechanisms. Murine gammaherpesvirus 68 (MHV-68) is genetically related to KSHV and EBV, and the RTA homologue from MHV-68 also initiates the lytic cycle of gene expression. Although two RTA-dependent promoters had been identified in MHV-68, the mechanism of the interaction between RTA and the promoters was not characterized. In this study, we first identified an RTA-responsive promoter in the left origin of lytic replication region of MHV-68 through a reporter assay and mapped a 27-bp RTA-responsive element (RRE) through systematic deletions. Interestingly, sequence analysis identified a second RRE in this region. An electrophoretic mobility shift assay (EMSA) and a chromatin immunoprecipitation (ChIP) assay showed that RTA can bind directly to these two RREs in vitro or in vivo. Mutagenesis studies have further characterized the nucleotides important for mediating RTA binding by an EMSA. Moreover, we engineered RRE-deleted viruses and demonstrated in the context of the viral genome that one of the RREs mediates the RTA-dependent activation of an essential lytic gene, ORF18, during de novo infection. To our knowledge, this is the first time that RTA binding sites in MHV-68 have been identified. Since ORF18 regulates viral late gene expression, our study has also contributed to the delineation of the expression cascade of gammaherpesvirus lytic genes.
Collapse
|
28
|
Ribosomal protein S6 interacts with the latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus. J Virol 2011; 85:9495-505. [PMID: 21734034 DOI: 10.1128/jvi.02620-10] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The latency-associated nuclear antigen (LANA) is central to the maintenance of Kaposi's sarcoma-associated herpesvirus (KSHV) and to the survival of KSHV-carrying tumor cells. In an effort to identify interaction partners of LANA, we purified authentic high-molecular-weight complexes of LANA by conventional chromatography followed by immunoprecipitation from the BC-3 cell line. This is the first analysis of LANA-interacting partners that is not based on forced ectopic expression of LANA. Subsequent tandem mass spectrometry (MS/MS) analysis identified many of the known LANA-interacting proteins. We confirmed LANA's interactions with histones. Three classes of proteins survived our stringent four-step purification procedure (size, heparin, anion, and immunoaffinity chromatography): two heat shock proteins (Hsp70 and Hsp96 precursor), signal recognition particle 72 (SRP72), and 10 different ribosomal proteins. These proteins are likely involved in structural interactions within LANA high-molecular-weight complexes. Here, we show that ribosomal protein S6 (RPS6) interacts with LANA. This interaction is mediated by the N-terminal domain of LANA and does not require DNA or RNA. Depletion of RPS6 from primary effusion lymphoma (PEL) cells dramatically decreases the half-life of full-length LANA. The fact that RPS6 has a well-established nuclear function beyond its role in ribosome assembly suggests that RPS6 (and by extension other ribosomal proteins) contributes to the extraordinary stability of LANA.
Collapse
|
29
|
Murine gammaherpesvirus 68 LANA is essential for virus reactivation from splenocytes but not long-term carriage of viral genome. J Virol 2010; 84:7214-24. [PMID: 20444892 DOI: 10.1128/jvi.00133-10] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ORF73, which encodes the latency-associated nuclear antigen (LANA), is a conserved gamma-2-herpesvirus gene. The murine gammaherpesvirus 68 (MHV68) LANA (mLANA) is critical for efficient virus replication and the establishment of latent infection following intranasal inoculation. To test whether the initial host immune response limits the capacity of mLANA-null virus to traffic to and establish latency in the spleen, we infected type I interferon receptor knockout (IFN-alpha/betaR(-/-)) mice via intranasal inoculation and observed the presence of viral genome-positive splenocytes at day 18 postinfection at approximately 10-fold-lower levels than in the genetically repaired marker rescue-infected mice. However, no mLANA-null virus reactivation from infected IFN-alpha/betaR(-/-) splenocytes was observed. To more thoroughly define a role of mLANA in MHV68 infection, we evaluated the capacity of an mLANA-null virus to establish and maintain infection apart from restriction in the lungs of immunocompetent mice. At day 18 following intraperitoneal infection of C57BL/6 mice, the mLANA-null virus was able to establish a chronic infection in the spleen albeit at a 5-fold-reduced level. However, as in IFN-alpha/betaR(-/-) mice, little or no virus reactivation could be detected from mLANA-null virus-infected splenocytes upon explant. An examination of peritoneal exudate cells (PECs) following intraperitoneal inoculation revealed nearly equivalent frequencies of PECs harboring the mLANA-null virus relative to the marker rescue virus. Furthermore, although significantly compromised, mLANA-null virus reactivation from PECs was detected upon explant. Notably, at later times postinfection, the frequency of mLANA-null genome-positive splenocytes was indistinguishable from that of marker rescue virus-infected animals. Analyses of viral genome-positive splenocytes revealed the absence of viral episomes in mLANA-null infected mice, suggesting that the viral genome is integrated or maintained in a linear state. Thus, these data provide the first evidence that a LANA homolog is directly involved in the formation and/or maintenance of an extrachromosomal viral episome in vivo, which is likely required for the reactivation of MHV68.
Collapse
|
30
|
Choi YB, Nicholas J. Induction of angiogenic chemokine CCL2 by human herpesvirus 8 chemokine receptor. Virology 2010; 397:369-78. [PMID: 20004457 PMCID: PMC3024549 DOI: 10.1016/j.virol.2009.11.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 08/21/2009] [Accepted: 11/14/2009] [Indexed: 12/16/2022]
Abstract
Human herpesvirus 8 (HHV-8) is associated with Kaposi's sarcoma (KS), an endothelial cell lesion believed to be initiated and driven primarily by cytokine dysregulation. Among the viral proteins suspected as contributing to viral pathogenesis is the lytically expressed viral G protein-coupled receptor (vGPCR), which can induce various cellular cytokines. CC ligand-2 (CCL2/MCP-1) is a vGPCR-regulated angiogenic chemokine found at elevated levels in KS lesions and induced by HHV-8 infection of endothelial cells. Here we show that vGPCR induces CCL2 in endothelial cells via activation of C/EBPbeta and that vGPCR and C/EBPbeta are critical components of CCL2 induction by HHV-8 infection of endothelial cultures. To our knowledge, this is the first report of vGPCR-mediated cytokine induction, and its characterization, in the context of virus infection. Our results identify a mechanism by which vGPCR can contribute, in a host cell shutoff-independent manner, to viral pathogenesis.
Collapse
Affiliation(s)
| | - John Nicholas
- Corresponding author. Phone: 410 502 6801; Fax: 410 502 6802;
| |
Collapse
|
31
|
Distinct p53, p53:LANA, and LANA complexes in Kaposi's Sarcoma--associated Herpesvirus Lymphomas. J Virol 2010; 84:3898-908. [PMID: 20130056 DOI: 10.1128/jvi.01321-09] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The role of p53 in primary effusion lymphoma (PEL) is complicated. The latency-associated nuclear antigen (LANA) of Kaposi's sarcoma-associated herpesvirus (KSHV) binds p53. Despite this interaction, we had found that p53 was functional in PEL, i.e., able to induce apoptosis in response to DNA damage (C. E. Petre, S. H. Sin, and D. P. Dittmer, J. Virol. 81:1912-1922, 2007), and that hdm2 was overexpressed. To further elucidate the relationship between LANA, p53, and hdm2, we purified LANA complexes from PEL by column chromatography. This confirmed that LANA bound p53. However, the LANA:p53 complexes were a minority compared to hdm2:p53 and p53:p53 complexes. The half-life of p53 was not extended, which is in contrast to the half-life of simian virus 40 T antigen-transformed cells. p53:p53, LANA:p53, and LANA:LANA complexes coexisted in PEL, and each protein was able to bind to its cognate DNA element. These data suggest that under normal conditions, p53 is inactive in PEL, thus allowing for exponential growth, but that this inactivation is driven by the relative stoichiometries of LANA, hdm2, and p53. If p53 is activated by DNA damage or nutlin-3a, the complex falls apart easily, and p53 exercises its role as guardian of the genome.
Collapse
|
32
|
Wang SS, Chen LW, Chen LY, Tsai HH, Shih YC, Yang CT, Chang PJ. Transcriptional regulation of the ORF61 and ORF60 genes of Kaposi's sarcoma-associated herpesvirus. Virology 2010; 397:311-21. [DOI: 10.1016/j.virol.2009.11.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 10/16/2009] [Accepted: 11/18/2009] [Indexed: 10/20/2022]
|
33
|
Cai Q, Verma SC, Lu J, Robertson ES. Molecular biology of Kaposi's sarcoma-associated herpesvirus and related oncogenesis. Adv Virus Res 2010; 78:87-142. [PMID: 21040832 PMCID: PMC3142360 DOI: 10.1016/b978-0-12-385032-4.00003-3] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Kaposi's Sarcoma-associated Herpesvirus (KSHV), also known as human herpesvirus 8 (HHV-8), is the most recently identified human tumor virus,and is associated with the pathogenesis of Kaposi's sarcoma and two lymphoproliferative disorders known to occur frequently in AIDS patients-primary effusion lymphoma and multicentric Castleman disease. In the 15 years since its discovery, intense studies have demonstrated an etiologic role for KSHV in the development of these malignancies. Here, we review the recent advances linked to understanding KSHV latent and lytic life cycle and the molecular mechanisms of KSHV-mediated oncogenesis in terms of transformation, cell signaling, cell growth and survival, angiogenesis, immune invasion and response to microenvironmental stress, and highlight the potential therapeutic targets for blocking KSHV tumorigenesis.
Collapse
Affiliation(s)
- Qiliang Cai
- Department of Microbiology, Abramson, Comprehensive Cancer Center, University of Pennsylvania Medical School, Philadelphia, Pennsylvania, USA
| | | | | | | |
Collapse
|
34
|
Chang PJ, Boonsiri J, Wang SS, Chen LY, Miller G. Binding of RBP-Jkappa (CSL) protein to the promoter of the Kaposi's sarcoma-associated herpesvirus ORF47 (gL) gene is a critical but not sufficient determinant of transactivation by ORF50 protein. Virology 2009; 398:38-48. [PMID: 20006367 DOI: 10.1016/j.virol.2009.11.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 09/24/2009] [Accepted: 11/10/2009] [Indexed: 12/21/2022]
Abstract
ORF50 protein activates the KSHV lytic cycle. The promoter of an early lytic-cycle gene ORF47, encoding envelope protein gL, is activated by an interaction between ORF50 protein and RBP-Jkappa. In ORF47p only one of two sequences fitting the consensus RBP-Jkappa recognition site strongly binds RBP-Jkappa and confers a response to ORF50 protein. Flanking sequences 5' to the RBP-Jkappa binding site are required to confer a maximal response to ORF50 protein. Not all mutant ORF50 response elements in the ORF47p that are bound by RBP-Jkappa are sufficient to confer maximal ORF50 responsiveness. Four sequences containing an RBP-Jkappa site and flanking sequences characteristic of the ORF50 response element in ORF47p were identified in human DNA. All bound RBP-Jkappa, but only one responded robustly to ORF50 protein. We propose models for the possible function of ancillary sequences flanking the RBP-Jkappa-binding element which are crucial for mediating ORF50 transactivation.
Collapse
Affiliation(s)
- Pey-Jium Chang
- Graduate Institute of Clinical Medical Sciences, Chang-Gung University, Taoyuan, Taiwan
| | | | | | | | | |
Collapse
|
35
|
Tempera I, Lieberman PM. Chromatin organization of gammaherpesvirus latent genomes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2009; 1799:236-45. [PMID: 19853673 DOI: 10.1016/j.bbagrm.2009.10.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 10/02/2009] [Accepted: 10/11/2009] [Indexed: 12/12/2022]
Abstract
The gammaherpesviruses are a subclass of the herpesvirus family that establish stable latent infections in proliferating lymphoid and epithelial cells. The latent genomes are maintained as multicopy chromatinized episomes that replicate in synchrony with the cellular genome. Importantly, most of the episomes do not integrate into the host chromosome. Therefore, it is essential that the viral "minichromosome" establish a chromatin structure that is suitable for gene expression, DNA replication, and chromosome segregation. Evidence suggests that chromatin organization is important for each of these functions and plays a regulatory role in the establishment and maintenance of latent infection. Here, we review recent studies on the chromatin organization of the human gammaherpesviruses, Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV). We discuss the potential role of viral origins of DNA replication and viral encoded origin-binding proteins like EBNA1 and LANA in establishment of viral chromosome organization during latent infection. We also discuss the roles of host cell factors, like CTCF and cohesins, that contribute to higher-order chromosome structures that may be important for stable gene expression programs during latent infection in proliferating cells.
Collapse
|
36
|
Kaposi sarcoma-associated herpes virus (KSHV) G protein-coupled receptor (vGPCR) activates the ORF50 lytic switch promoter: a potential positive feedback loop for sustained ORF50 gene expression. Virology 2009; 392:34-51. [PMID: 19640558 DOI: 10.1016/j.virol.2009.07.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 04/15/2009] [Accepted: 07/03/2009] [Indexed: 11/23/2022]
Abstract
KSHV vGPCR, a lytic cycle associated protein, induces several signaling pathways leading to the activation of various transcription factors and consequently the expression of cellular and viral genes. Though the role of vGPCR in KSHV tumorigenicity has been well studied, its function related to the viral life cycle is poorly understood. Reduction in vGPCR by RNA interference also resulted in the reduction in KSHV lytic switch ORF50 gene and protein expression. Induction of vGPCR by doxycycline in BC3.14 cells also resulted in more KSHV production. When this was explored, induction of the ORF50 promoter by vGPCR expression was observed. Further examination of the molecular mechanisms by which vGPCR regulates the ORF50 promoter, using various ORF50 promoter constructs, revealed that induction of ORF50 promoter by vGPCR did not involve AP1 but was dependent on Sp1 and Sp3 transcription factors. vGPCR signaling led to an increase in Sp1 and Sp3 DNA binding activity and a decrease in histone deacetylase (HDAC) activity. These activities were pertussis toxin independent, did not involve Rho and Rac-GTPases and involved the heterotrimeric G protein subunits Galpha12 and Galphaq. Studies using pharmacologic inhibitors and dominant-negative proteins identified phospholipase C, the novel protein kinase C (novel PKC) family and protein kinase D (PKD) as part of the signaling initiated by vGPCR leading to ORF50 promoter activation. Taken together, this study suggests a role for vGPCR in the sustained expression of ORF50 which could lead to a continued activation of lytic cycle genes and ultimately to successful viral progeny formation.
Collapse
|
37
|
Disruption of LANA in rhesus rhadinovirus generates a highly lytic recombinant virus. J Virol 2009; 83:9786-802. [PMID: 19587030 DOI: 10.1128/jvi.00704-09] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Rhesus monkey rhadinovirus (RRV) is a gammaherpesvirus that is closely related to human Kaposi's sarcoma-associated herpesvirus (KSHV/HHV-8). RRV is the closest relative to KSHV that has a fully sequenced genome and serves as an in vitro and an in vivo model system for KSHV. The latency-associated nuclear antigen (LANA) protein of both KSHV and RRV plays key roles in the establishment and maintenance of these herpesviruses. We have constructed a RRV recombinant virus (RRVDeltaLANA/GFP) in which the RRV LANA open reading frame has been disrupted with a green fluorescent protein (GFP) expression cassette generated by homologous recombination. The integrity of the recombinant virus was confirmed by diagnostic PCR, restriction digestion, Southern blot analysis, and whole-genome sequencing. We compared the single-step and multistep replication kinetics of RRVDeltaLANA/GFP, RRV-GFP, wild-type (WT) RRV H26-95, and a revertant virus using traditional plaque assays, as well as real-time quantitative PCR-based genome quantification assays. The RRVDeltaLANA/GFP recombinant virus exhibited significantly higher lytic replicative properties compared to RRV-GFP, WT RRV, or the revertant virus. This was observed upon de novo infection and in the absence of chemical inducers such as phorbol esters. In addition, by using a quantitative real-time PCR-based viral array, we are the first to report differences in global viral gene expression between WT and recombinant viruses. The RRVDeltaLANA/GFP virus displayed increased lytic gene transcription at all time points postinfection compared to RRV-GFP. Moreover, we also examined several cellular genes that are known to be repressed by KSHV LANA and report that these genes are derepressed during de novo lytic infection with the RRVDeltaLANA/GFP virus compared to RRV-GFP. Finally, we also demonstrate that the RRVDeltaLANA/GFP virus fails to establish latency in B cells, as measured by the loss of GFP-positive cells and intracellular viral genomes.
Collapse
|
38
|
Qin Y, Liu Z, Zhang T, Wang Y, Li X, Wang J. Generation and application of polyclonal antibody against replication and transcription activator of Kaposi's sarcoma-associated herpesvirus. Appl Biochem Biotechnol 2009; 160:1217-26. [PMID: 19333559 DOI: 10.1007/s12010-009-8604-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 03/03/2009] [Indexed: 10/20/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent of Kaposi's sarcoma, the most common neoplasm in untreated HIV-1-infected individuals, and several B cell disorders. KSHV infection goes through lytic and latent phases, and the switch from latency to lytic replication is governed by viral replication and transcription activator (RTA). RTA consists of 691 amino acids, containing an N-terminal DNA-binding and a C-terminal activation domain. In the present study, polyclonal antibody against RTA was generated and evaluated. The C-terminal region of RTA (E482 approximately D691) was expressed in Escherichia coli, purified by affinity chromatography, and utilized to raise polyclonal antibody in BALB/c mice. High-affinity antisera were obtained, which successfully detected the antigen at a dilution of 1:13,500 for ELISA and 1:20,000 for Western blot analysis. The antibody can specifically recognize full-length RTA expressed in both E. coli and mammalian cells. Furthermore, endogenous RTA can be detected with the antibody in TPA-induced BCBL-1 cells under various conditions. These results suggested that the antibody is valuable for the investigation of biochemical properties and biological functions of RTA.
Collapse
Affiliation(s)
- Yu Qin
- College of Basic Medical Science, Tianjin Medical University, 22 Qixiangtai Road, Tianjin 300070, People's Republic of China
| | | | | | | | | | | |
Collapse
|
39
|
Identification of direct transcriptional targets of the Kaposi's sarcoma-associated herpesvirus Rta lytic switch protein by conditional nuclear localization. J Virol 2008; 82:10709-23. [PMID: 18715905 DOI: 10.1128/jvi.01012-08] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Lytic reactivation from latency is critical for the pathogenesis of Kaposi's sarcoma-associated herpesvirus (KSHV). We previously demonstrated that the 691-amino-acid (aa) KSHV Rta transcriptional transactivator is necessary and sufficient to reactivate the virus from latency. Viral lytic cycle genes, including those expressing additional transactivators and putative oncogenes, are induced in a cascade fashion following Rta expression. In this study, we sought to define Rta's direct targets during reactivation by generating a conditionally nuclear variant of Rta. Wild-type Rta protein is constitutively localized to cell nuclei and contains two putative nuclear localization signals (NLSs). Only one NLS (NLS2; aa 516 to 530) was required for the nuclear localization of Rta, and it relocalized enhanced green fluorescent protein exclusively to cell nuclei. The results of analyses of Rta NLS mutants demonstrated that proper nuclear localization of Rta was required for transactivation and the stimulation of viral reactivation. RTA with NLS1 and NLS2 deleted was fused to the hormone-binding domain of the murine estrogen receptor to generate an Rta variant whose nuclear localization and ability to transactivate and induce reactivation were tightly controlled posttranslationally by the synthetic hormone tamoxifen. We used this strategy in KSHV-infected cells treated with protein synthesis inhibitors to identify direct transcriptional targets of Rta. Rta activated only eight KSHV genes in the absence of de novo protein synthesis. These direct transcriptional targets of Rta were transactivated to different levels and included the genes nut-1/PAN, ORF57/Mta, ORF56/Primase, K2/viral interleukin-6 (vIL-6), ORF37/SOX, K14/vOX, K9/vIRF1, and ORF52. Our data suggest that the induction of most of the KSHV lytic cycle genes requires additional protein expression after the expression of Rta.
Collapse
|
40
|
A mobile functional region of Kaposi's sarcoma-associated herpesvirus ORF50 protein independently regulates DNA binding and protein abundance. J Virol 2008; 82:9700-16. [PMID: 18653447 DOI: 10.1128/jvi.00862-08] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The protein encoded by open reading frame 50 (ORF50) of Kaposi's sarcoma-associated herpesvirus (KSHV) functions as a transcriptional activator and in lytic viral DNA replication to mediate the switch from latent viral infection to the lytic phase. Here we identify regulatory regions of ORF50 protein that independently control DNA binding and abundance of the protein. One region contains a DNA-binding inhibitory sequence (DBIS) located between amino acids (aa) 490 and 535 of ORF50. A cluster of basic amino acids in this sequence is important in inhibiting DNA binding. The DBIS can function at the N or C terminus or internally in the ORF50 protein. Since the DBIS is functional in ORF50 protein purified from Escherichia coli, it is likely to work through an intramolecular mechanism. The second regulatory region, a protein abundance regulatory signal (PARS), consists of two components. Component I of the PARS overlaps the DBIS but can be differentiated from the DBIS by specific substitution of basic amino acid residues. Component II of PARS is located between aa 590 and 650. Mutation or deletion of either component results in abundant expression of ORF50 protein. When the two-component PARS was fused to a heterologous protein, Glutathione S-transferase, the fusion protein was unstable. Mutations in the DBIS or PARS impair the capacity of ORF50 to activate direct and indirect target viral promoters. Since these overlapping regulatory motifs are located in the C-terminal transactivation domain, they are likely to be important in controlling many actions of ORF50 protein.
Collapse
|
41
|
Stedman W, Kang H, Lin S, Kissil JL, Bartolomei MS, Lieberman PM. Cohesins localize with CTCF at the KSHV latency control region and at cellular c-myc and H19/Igf2 insulators. EMBO J 2008; 27:654-66. [PMID: 18219272 PMCID: PMC2262040 DOI: 10.1038/emboj.2008.1] [Citation(s) in RCA: 305] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Accepted: 01/03/2008] [Indexed: 01/26/2023] Open
Abstract
Cohesins, which mediate sister chromatin cohesion, and CTCF, which functions at chromatin boundaries, play key roles in the structural and functional organization of chromosomes. We examined the binding of these two factors on the Kaposi's sarcoma-associated herpesvirus (KSHV) episome during latent infection and found a striking colocalization within the control region of the major latency transcript responsible for expressing LANA (ORF73), vCyclin (ORF72), vFLIP (ORF71), and vmiRNAs. Deletion of the CTCF-binding site from the viral genome disrupted cohesin binding, and crippled colony formation in 293 cells. Clonal instability correlated with elevated expression of lytic cycle gene products, notably the neighbouring promoter for K14 and vGPCR (ORF74). siRNA depletion of RAD21 from latently infected cells caused an increase in K14 and ORF74, and lytic inducers caused a rapid dissociation of RAD21 from the viral genome. RAD21 and SMC1 also associate with the cellular CTCF sites at mammalian c-myc promoter and H19/Igf2 imprinting control region. We conclude that cohesin subunits associate with viral and cellular CTCF sites involved in complex gene regulation and chromatin organization.
Collapse
Affiliation(s)
- William Stedman
- Gene Regulation Program, The Wistar Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Hyojeung Kang
- Gene Regulation Program, The Wistar Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Shu Lin
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Joseph L Kissil
- Gene Regulation Program, The Wistar Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Marisa S Bartolomei
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Paul M Lieberman
- Gene Regulation Program, The Wistar Institute, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
42
|
Koehler-Hansner K, Flore O, Opalka B, Hengge UR. Interaction of Adenovirus E1A with the HHV8 Promoter of Latent Genes: E1A Proteins are Able to Activate the HHV-8 LANAp in MV3 Reporter Cells. Open Virol J 2008; 2:61-8. [PMID: 19440465 PMCID: PMC2678816 DOI: 10.2174/1874357900802010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 06/05/2008] [Accepted: 06/10/2008] [Indexed: 11/22/2022] Open
Abstract
Human herpesvirus 8 (HHV-8) is associated with Kaposi's sarcoma, body cavity-based lymphoma, and Castleman's disease. Adenoviral (Ad) E1A proteins regulate the activity of cellular and viral promoters/enhancers and transcription factors and can suppress tumorigenicity of human cancers. As (i) HHV-8 and Ad may co-exist in immunocompromised patients and (ii) E1A might be considered as therapeutic transgene for HHV-8-associated neoplasms we investigated whether the promoter of the latency-associated nuclear antigen (LANAp) controlling expression of vCyclin, vFLIP, and LANA proteins required for latent type infection is regulated by E1A. Transfection experiments in MV3 melanoma cells revealed activation of the LANAp by Ad5 E1A constructs containing an intact N terminus (aa 1-119). In particular, an Ad12 E1A mutant, Spm2, lacking six consecutive alanine residues in the "spacer" region activated the HHV-8 promoter about 15-fold compared to vector controls. In summary, we report the activation of the LANAp by E1A as a novel interaction of E1A with a viral promoter. These data may have relevance for the management of viral infections in immunocompromised patients. A role for E1A as a therapeutic in this context remains to be defined.
Collapse
Affiliation(s)
- Karin Koehler-Hansner
- Department of Internal Medicine (Cancer Research), University of Duisburg-Essen Medical School, Essen, Hufelandstrasse 55, D-45122 Essen, Germany
| | | | | | | |
Collapse
|
43
|
Masa SR, Lando R, Sarid R. Transcriptional regulation of the open reading frame 35 encoded by Kaposi's sarcoma-associated herpesvirus. Virology 2007; 371:14-31. [PMID: 17963810 DOI: 10.1016/j.virol.2007.08.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 07/16/2007] [Accepted: 08/17/2007] [Indexed: 11/26/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a member of the Gammaherpesvirinae and is causally associated with Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. The KSHV genome encodes over 85 genes; the function of some is entirely unknown. We have characterized the transcriptional regulation of a conserved and uncharacterized Gammaherpesvirinae open reading frame, orf35, which lies in a cluster of several overlapping genes, orf34 to orf38. We identified the transcription start site and analyzed upstream sequences. We found that expression of the KSHV lytic replication and transcription activator (RTA) strongly increased the orf35 promoter activity through a 46-nucleotide region which includes a conserved AP-1 binding site. Electrophoretic mobility shift assay demonstrated direct binding of cJUN and cFOS to the predicted AP-1 binding site. Finally, using a mutated promoter lacking the AP-1 site and dominant-negative cFOS, we established that the RTA-mediated orf35 transactivation is AP-1-dependent.
Collapse
Affiliation(s)
- Shiri-Rivka Masa
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, 52900, Israel
| | | | | |
Collapse
|
44
|
Lacoste V, Nicot C, Gessain A, Valensi F, Gabarre J, Matta H, Chaudhary PM, Mahieux R. In primary effusion lymphoma cells, MYB transcriptional repression is associated with v-FLIP expression during latent KSHV infection while both v-FLIP and v-GPCR become involved during the lytic cycle. Br J Haematol 2007; 138:487-501. [PMID: 17659053 DOI: 10.1111/j.1365-2141.2007.06697.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Primary effusion lymphoma (PEL) is a rare, distinct subtype of non-Hodgkin lymphoma, which is associated with Kaposi sarcoma-associated herpesvirus (KSHV) infection. Although MYB levels are high in most neoplastic B cells, we found that, unexpectedly, both PEL cells and uncultured PEL patients' samples contained very low levels of MYB mRNA when compared to B-cell leukaemia samples obtained from KSHV(-) patients. These results were further confirmed at the protein level. Both latent viral FLICE inhibitory protein (v-FLIP) and early lytic viral G protein coupled receptor (v-GPCR) KSHV proteins were found to activate nuclear factor (NF)-kappaB and transrepress a MYB promoter reporter construct. In contrast, a dominant negative inhibitor of NF-kappaB (IkappaB-alpha) mutant prevented v-FLIP and v-GPCR from inhibiting MYB functions while a v-GPCR mutant that was impaired for NF-kappaB activation could not repress the MYB construct. Transduction of a v-FLIP expressing vector or stable transfection of v-GPCR both resulted in a marked downregulation of the endogenous MYB protein expression. However, MYB expression transactivated the lytic switch Replication and Transcription Activator (RTA) promoter in transient transfection assays. Taken together, our results demonstrate that, contrary to a number of other haematological malignancies, MYB expression is not required for PEL cell proliferation. Repressing MYB expression also helps in maintaining the virus in latency.
Collapse
MESH Headings
- CASP8 and FADD-Like Apoptosis Regulating Protein/metabolism
- Cell Line, Tumor
- Cell Transformation, Viral
- Gene Expression
- Gene Expression Regulation, Viral
- Genes, myb
- Herpesvirus 8, Human/physiology
- Humans
- Immediate-Early Proteins/metabolism
- Lymphoma, AIDS-Related/metabolism
- Lymphoma, AIDS-Related/virology
- Lymphoma, Non-Hodgkin/metabolism
- Lymphoma, Non-Hodgkin/virology
- NF-kappa B/metabolism
- Proto-Oncogene Proteins c-myb/analysis
- Receptors, G-Protein-Coupled/metabolism
- Sarcoma, Kaposi/metabolism
- Sarcoma, Kaposi/virology
- Trans-Activators/metabolism
- Transcription, Genetic
- Transduction, Genetic
- Transfection
- Viral Proteins/metabolism
- Virus Activation
- Virus Latency
Collapse
Affiliation(s)
- Vincent Lacoste
- Unité d'Epidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Kaul R, Verma SC, Robertson ES. Protein complexes associated with the Kaposi's sarcoma-associated herpesvirus-encoded LANA. Virology 2007; 364:317-29. [PMID: 17434559 PMCID: PMC4067005 DOI: 10.1016/j.virol.2007.03.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Revised: 01/02/2007] [Accepted: 03/06/2007] [Indexed: 12/12/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the major biological cofactor contributing to development of Kaposi's sarcoma. KSHV establishes a latent infection in human B cells expressing the latency-associated nuclear antigen (LANA), a critical factor in the regulation of viral latency. LANA is known to modulate viral and cellular gene expression. We report here on some initial proteomic studies to identify cellular proteins associated with the amino and carboxy-terminal domains of LANA. The results of these studies show an association of known cellular proteins which support LANA functions and have identified additional LANA-associated proteins. These results provide new evidence for complexes involving LANA with a number of previously unreported functional classes of proteins including DNA polymerase, RNA helicase and cell cycle control proteins. The results also indicate that the amino terminus of LANA can interact with its carboxy-terminal domain. This interaction is potentially important for facilitating associations with other cell cycle regulatory proteins which include CENP-F identified in association with both the amino and carboxy-termini. These novel associations add to the diversity of LANA functions in relation to the maintenance of latency and subsequent transformation of KSHV infected cells.
Collapse
Affiliation(s)
| | | | - Erle S Robertson
- Address for Correspondence: 201E Johnson Pavilion, 3610 Hamilton Walk, Department of Microbiology and Tumor Virology Program of the Abramson Comprehensive Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, PA 19104 Phone: 215-746-0116 Fax: 215-898-9557 E-mail:
| |
Collapse
|
46
|
Abstract
Rhesus monkey rhadinovirus (RRV) is one of the closest phylogenetic relatives to the human pathogen Kaposi sarcoma-associated herpesvirus (KSHV)-a gamma-2 herpesvirus and the etiologic agent of three malignancies associated with immunosuppression. In contrast to KSHV, RRV displays robust lytic-phase growth in culture, replicating to high titer, and therefore holds promise as an effective model for studying primate gammaherpesvirus lytic gene transcription as well as virion structure, assembly, and proteomics. More recently, investigators have devised complementary latent systems of RRV infection, thereby also enabling the characterization of the more restricted latent transcriptional program. Another benefit of working with RRV as a primate gammaherpesvirus model is that its efficient lytic growth makes genetic manipulation easier than that in its human counterpart. Exploiting this quality, laboratories have already begun to generate mutant RRV, setting the stage for future work investigating the function of individual viral genes. Finally, rhesus macaques support experimental infection with RRV, providing a natural in vivo model of infection, while similar nonhuman systems have remained resistant to prolonged KSHV infection. Recently, dual infection with RRV and a strain of simian immunodeficiency virus (SIV) has led to a lymphoproliferative disorder (LPD) reminiscent of multicentric Castleman disease (MCD)--a clinical manifestation of KSHV infection in a subset of immunosuppressed patients. RRV, in short, shows a high degree of homology with KSHV yet is more amenable to experimental manipulation both in vitro and in vivo. Taken together, these qualities ensure its current position as one of the most relevant viral models of KSHV biology and infection.
Collapse
Affiliation(s)
- C M O'Connor
- Department of Microbiology, Division of Infectious Diseases and Myles H. Thaler Center for AIDS and Human Retrovirus Research, University of Virginia, Charlottesville, VA 22901, USA
| | | |
Collapse
|
47
|
Petre CE, Sin SH, Dittmer DP. Functional p53 signaling in Kaposi's sarcoma-associated herpesvirus lymphomas: implications for therapy. J Virol 2006; 81:1912-22. [PMID: 17121789 PMCID: PMC1797584 DOI: 10.1128/jvi.01757-06] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The Kaposi's sarcoma-associated herpesvirus (KSHV/HHV8) is associated with Kaposi's sarcoma (KS) as well as primary effusion lymphomas (PEL). The expression of viral proteins capable of inactivating the p53 tumor suppressor protein has been implicated in KSHV oncogenesis. However, DNA-damaging drugs such as doxorubicin are clinically efficacious against PEL and KS, suggesting that p53 signaling remains intact despite the presence of KSHV. To investigate the functionality of p53 in PEL, we examined the response of a large number of PEL cell lines to doxorubicin. Two out of seven (29%) PEL cell lines harbored a mutant p53 allele (BCBL-1 and BCP-1) which led to doxorubicin resistance. In contrast, all other PEL containing wild-type p53 showed DNA damage-induced cell cycle arrest, p53 phosphorylation, and p53 target gene activation. These data imply that p53-mediated DNA damage signaling was intact. Supporting this finding, chemical inhibition of p53 signaling in PEL led to doxorubicin resistance, and chemical activation of p53 by the Hdm2 antagonist Nutlin-3 led to unimpaired induction of p53 target genes as well as growth inhibition and apoptosis.
Collapse
Affiliation(s)
- Christin E Petre
- Lineberger Comprehensive Cancer Center, Center for AIDS Research and Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
48
|
Staudt MR, Dittmer DP. The Rta/Orf50 transactivator proteins of the gamma-herpesviridae. Curr Top Microbiol Immunol 2006; 312:71-100. [PMID: 17089794 DOI: 10.1007/978-3-540-34344-8_3] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The replication and transcription activator protein, Rta, is encoded by Orf50 in Kaposi's sarcoma-associated herpesvirus (KSHV) and other known gammaherpesviruses including Epstein-Barr virus (EBV), rhesus rhadinovirus (RRV), herpesvirus saimiri (HVS), and murine herpesvirus 68 (MHV-68). Each Rta/Orf50 homologue of each gammaherpesvirus plays a pivotal role in the initiation of viral lytic gene expression and lytic reactivation from latency. Here we discuss the Rta/Orf50 of KSHV in comparison to the Rta/Orf50s of other gammaherpesviruses in an effort to identify structural motifs, mechanisms of action, and modulating host factors.
Collapse
Affiliation(s)
- M R Staudt
- Department of Microbiology and Immunology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 804 Mary Ellen Jones Bldg, CB 7290, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
49
|
Abstract
The life cycle of KSHV, latency versus lytic replication, is mainly determined at the transcriptional regulation level. A viral immediate-early gene product, replication and transcription activator (RTA), has been identified as the molecular switch for initiation of the lytic gene expression program from latency. Here we review progress on two key questions: how RTA gene expression is controlled by viral proteins and cellular signals and how RTA regulates the expression of downstream viral genes. We summarize the interactions of RTA with cellular and other viral proteins. We also discuss critical issues that must be addressed in the near future.
Collapse
Affiliation(s)
- H Deng
- Center for Infection and Immunity, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, PR China
| | | | | |
Collapse
|
50
|
Verma SC, Lan K, Robertson E. Structure and function of latency-associated nuclear antigen. Curr Top Microbiol Immunol 2006; 312:101-36. [PMID: 17089795 PMCID: PMC3142369 DOI: 10.1007/978-3-540-34344-8_4] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Latency-associated nuclear antigen (LANA) encoded by open reading frame 73 (ORF73) is the major latent protein expressed in all forms of KSHV-associated malignancies. LANA is a large (222-234 kDa) nuclear protein that interacts with various cellular as well as viral proteins. LANA has been classified as an oncogenic protein as it dysregulates various cellular pathways including tumor suppressor pathways associated with pRb and p53 and can transform primary rat embryo fibroblasts in cooperation with the cellular oncogene Hras. It associates with GSK-3beta, an important modulator of Wnt signaling pathway leading to the accumulation of cytoplasmic beta-catenin, which upregulates Tcf/Lef regulated genes after entering into the nucleus. LANA also blocks the expression of RTA, the reactivation transcriptional activator, which is critical for the latency to lytic switch, and thus helps in maintaining viral latency. LANA tethers the viral episomal DNA to the host chromosomes by directly binding to its cognate binding sequence within the TR region of the genome through its C terminus and to the nucleosomes through the N terminus of the molecule. Tethering to the host chromosomes helps in efficient partitioning of the viral episomes in the dividing cells. Disruptions of LANA expression led to reduction in the episomal copies of the viral DNA, supporting its role in persistence of the viral DNA. The functions known so far suggest that LANA is a key player in KSHV-mediated pathogenesis.
Collapse
Affiliation(s)
- S C Verma
- Department of Microbiology and Tumor Virology Program of the Abramson Comprehensive Cancer Center, University of Pennsylvania School of Medicine, 201E Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA.
| | | | | |
Collapse
|