1
|
Zanetti FA, Fernandez I, Baquero E, Guardado-Calvo P, Ferrino-Iriarte A, Dubois S, Morel E, Alfonso V, Aguilera MO, Celayes ME, Polo LM, Suhaiman L, Galassi VV, Chiarpotti MV, Allende-Ballestero C, Rodriguez JM, Castón JR, Lijavetzky D, Taboga O, Colombo MI, Del Pópolo M, Rey FA, Delgui LR. On the role of VP3-PI3P interaction in birnavirus endosomal membrane targeting. eLife 2025; 13:RP97261. [PMID: 40047543 PMCID: PMC11884790 DOI: 10.7554/elife.97261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2025] Open
Abstract
Birnaviruses are a group of double-stranded RNA (dsRNA) viruses infecting birds, fish, and insects. Early endosomes (EE) constitute the platform for viral replication. Here, we study the mechanism of birnaviral targeting of EE membranes. Using the Infectious Bursal Disease Virus (IBDV) as a model, we validate that the viral protein 3 (VP3) binds to phosphatidylinositol-3-phosphate (PI3P) present in EE membranes. We identify the domain of VP3 involved in PI3P-binding, named P2 and localized in the core of VP3, and establish the critical role of the arginine at position 200 (R200), conserved among all known birnaviruses. Mutating R200 abolishes viral replication. Moreover, we propose a two-stage modular mechanism for VP3 association with EE. Firstly, the carboxy-terminal region of VP3 adsorbs on the membrane, and then the VP3 core reinforces the membrane engagement by specifically binding PI3P through its P2 domain, additionally promoting PI3P accumulation.
Collapse
Affiliation(s)
- Flavia A Zanetti
- Instituto de Ciencia y Tecnología "Dr. Cesar Milstein", Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
| | - Ignacio Fernandez
- Institut Pasteur, Université Paris Cité, Structural Virology UnitParisFrance
| | - Eduard Baquero
- Institut Pasteur, Université Paris Cité, Structural Virology UnitParisFrance
| | | | | | - Sarah Dubois
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants MaladesParisFrance
| | - Etienne Morel
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants MaladesParisFrance
| | - Victoria Alfonso
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
| | - Milton Osmar Aguilera
- Instituto de Histología y Embriología de Mendoza, Universidad Nacional de Cuyo (UNCuyo), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro UniversitarioMendozaArgentina
| | - María E Celayes
- Instituto de Histología y Embriología de Mendoza, Universidad Nacional de Cuyo (UNCuyo), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro UniversitarioMendozaArgentina
| | - Luis Mariano Polo
- Instituto de Histología y Embriología de Mendoza, Universidad Nacional de Cuyo (UNCuyo), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro UniversitarioMendozaArgentina
| | - Laila Suhaiman
- Instituto Interdisciplinario de Ciencias Básicas (ICB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)MendozaArgentina
| | - Vanesa V Galassi
- Instituto Interdisciplinario de Ciencias Básicas (ICB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)MendozaArgentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo (UNCuyo)MendozaArgentina
| | - Maria V Chiarpotti
- Instituto Interdisciplinario de Ciencias Básicas (ICB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)MendozaArgentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo (UNCuyo)MendozaArgentina
| | | | - Javier M Rodriguez
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC)MadridSpain
| | - Jose R Castón
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC)MadridSpain
| | - Diego Lijavetzky
- Instituto de Biología Agrícola de Mendoza, Universidad Nacional de Cuyo (UNCuyo), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)MendozaArgentina
| | - Oscar Taboga
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
| | - María I Colombo
- Instituto de Histología y Embriología de Mendoza, Universidad Nacional de Cuyo (UNCuyo), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro UniversitarioMendozaArgentina
| | - Mario Del Pópolo
- Instituto Interdisciplinario de Ciencias Básicas (ICB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)MendozaArgentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo (UNCuyo)MendozaArgentina
| | - Félix A Rey
- Institut Pasteur, Université Paris Cité, Structural Virology UnitParisFrance
| | - Laura Ruth Delgui
- Instituto de Histología y Embriología de Mendoza, Universidad Nacional de Cuyo (UNCuyo), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro UniversitarioMendozaArgentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo (UNCuyo)MendozaArgentina
| |
Collapse
|
2
|
Gurjar BP, Rathore AS, Yadav R, Jain R, Gurjar AK, Srinivasan Bn G, Pakkiriswami S, Natarajan S, Nagarajan U. Mechanism to disrupt ESCRT-mediated intracellular trafficking through Vps28-small molecules interaction: an in silico approach. J Biomol Struct Dyn 2024:1-19. [PMID: 39668793 DOI: 10.1080/07391102.2024.2437518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/20/2024] [Indexed: 12/14/2024]
Abstract
The ESCRT (Endosomal Sorting Complex Required for Transport) machinery comprising protein complexes ESCRT-0 to ESCRT-III and Vps4 plays a pivotal role in intracellular trafficking, a process of endocytosing cell surface proteins into the cell for various biological activities. The ESCRT protein complexes are sequentially assembled which interact amongst each other to form a functional ESCRT machinery. Deregulation of these events are shown to be involved in various disease development including tumor formation and viral infections. Recently upregulation of a crucial ESCRT protein, Vps28 has been shown to be implicated in tumor formation. However, Vps28 in ESCRT-I interacts with Vps36 in ESCRT-II to function as a connecting protein during ESCRT machinery formation. Until now biomolecular approaches to inhibit the formation/assembly of ESCRT machinery have not been developed. Hence, we hypothesized that disrupting Vps28/Vps36 interaction would prevent assembly of ESCRT machinery and offer therapeutic potential to restrict disease development and progression. To address this, we utilized a virtual screening approach using a flavonoid-based library to identify potential small molecule inhibitors that can bind to Vps28 active site. Based on the binding affinity, top-hit compounds were identified. Molecular dynamics simulations set over a 500 ns timescale demonstrated the stability of the Vps28-small molecule complexes. Per-residue decomposition analysis using Molecular Mechanics/Poisson-Boltzmann surface area highlighted the significant contributions of active site residues Asn189, Arg190, Arg193 and Asn210 in Vps28 for interaction with small molecules. Absorption, Distribution, Metabolism, Excretion, and Toxicity analysis for toxicity evaluation indicates that molecules Z0131, H0194, Z0199 and DQ00112 exhibited physicochemical properties suitable for drug development.
Collapse
Affiliation(s)
- Bhanu Pratap Gurjar
- Department of Biochemistry, Central University of Haryana, Mahendergarh, Haryana, India
| | | | - Ritik Yadav
- Department of Biochemistry, Central University of Haryana, Mahendergarh, Haryana, India
| | - Richali Jain
- Department of Management Studies, Central University of Haryana, Mahendergarh, Haryana, India
| | - Ankit Kumar Gurjar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Gokul Srinivasan Bn
- School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, Tamilnadu, India
| | - Shanmugasundaram Pakkiriswami
- Department of Integrative Biology and Physiology, Medical School, Lillehei Heart Institute, University of Minnesota, MN, USA
| | - Sampath Natarajan
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamilnadu, India
| | - Usha Nagarajan
- Department of Biochemistry, Central University of Haryana, Mahendergarh, Haryana, India
- Department of Medicine (Cardiovascular Division), Medical School, Lillehei Heart Institute, University of Minnesota, MN, USA
| |
Collapse
|
3
|
Dai J, Feng Y, Liao Y, Tan L, Sun Y, Song C, Qiu X, Ding C. ESCRT machinery and virus infection. Antiviral Res 2024; 221:105786. [PMID: 38147902 DOI: 10.1016/j.antiviral.2023.105786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/28/2023]
Abstract
The endosomal sorting complex required for transport (ESCRT) machinery plays a significant role in the spread of human viruses. However, our understanding of how the host ESCRT machinery responds to viral infection remains limited. Emerging evidence suggests that the ESCRT machinery can be hijacked by viruses of different families to enhance their replication. Throughout their life cycle, these viruses can interfere with or exploit ESCRT-mediated physiological processes to increase their chances of infecting the host. In contrast, to counteract virus infection, the interferon-stimulated gene 15 (ISG15) or the E3 ISG15-protein ligase (HERC5) system within the infected cells is activated to degrade the ESCRT proteins. Many retroviral and RNA viral proteins have evolved "late (L) domain" motifs, which enable them to recruit host ESCRT subunit proteins to facilitate virus transport, replication, budding, mature, and even endocytosis, Therefore, the L domain motifs and ESCRT subunit proteins could serve as promising drug targets for antiviral therapy. This review investigated the composition and essential functions of the ESCRT, shedding light on the impact of ESCRT subunits and viral L domain motifs on the replication of viruses. Furthermore, the antiviral effects facilitated by the ESCRT machinery have been investigated, aiming to provide valuable insights to guide the development and utilization of antiviral drugs.
Collapse
Affiliation(s)
- Jun Dai
- Experimental Animal Center, Zunyi Medical University, Zunyi, 563099, China; Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Yiyi Feng
- Laboratory of Veterinary Microbiology and Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, 530004, Guangxi, China.
| | - Ying Liao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Lei Tan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Yingjie Sun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Cuiping Song
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Xusheng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
4
|
Wang X, Abdullah SW, Wu J, Tang J, Zhang Y, Dong H, Bai M, Wei S, Sun S, Guo H. Foot-and-mouth disease virus downregulates vacuolar protein sorting 28 to promote viral replication. J Virol 2023; 97:e0018123. [PMID: 37565750 PMCID: PMC10506468 DOI: 10.1128/jvi.00181-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/11/2023] [Indexed: 08/12/2023] Open
Abstract
Vacuolar protein sorting 28 (Vps28), a component of the ESCRT-I (endosomal sorting complex required for transport I), plays an important role in the pathogen life cycle. Here, we investigated the reciprocal regulation between Vps28 and the foot-and-mouth disease virus (FMDV). Overexpression of Vps28 decreased FMDV replication. On the contrary, the knockdown of Vps28 increased viral replication. Subsequently, the mechanistic study showed that Vps28 destabilized the replication complex (RC) by associating with 3A rather than 2C protein. In addition, Vps28 targeted FMDV VP0, VP1, and VP3 for degradation to inhibit viral replication. To counteract this, FMDV utilized tactics to restrict Vps28 to promote viral replication. FMDV degraded Vps28 mainly through the ubiquitin-proteasome pathway. Additional data demonstrated that 2B and 3A proteins recruited E3 ubiquitin ligase tripartite motif-containing protein 21 to degrade Vps28 at Lys58 and Lys25, respectively, and FMDV 3Cpro degraded Vps28 through autophagy and its protease activity. Meantime, the 3Cpro-mediated Vps28 degradation principally alleviated the ability to inhibit viral propagation. Intriguingly, we also demonstrated that the N-terminal and C-terminal domains of Vps28 were responsible for the suppression of FMDV replication, which suggested the elaborated counteraction between FMDV and Vps28. Collectively, our results first investigate the role of ESCRTs in host defense against picornavirus and unveil underlying strategies utilized by FMDV to evade degradation machinery for triumphant propagation. IMPORTANCE ESCRT machinery plays positive roles in virus entry, replication, and budding. However, little has been reported on its negative regulation effects during viral infection. Here, we uncovered the novel roles of ESCRT-I subunit Vps28 on FMDV replication. The data indicated that Vps28 destabilized the RC and impaired viral structural proteins VP0, VP1, and VP3 to inhibit viral replication. To counteract this, FMDV hijacked intracellular protein degradation pathways to downregulate Vps28 expression and thus promoted viral replication. Our findings provide insights into how ESCRT regulates pathogen life cycles and elucidate additional information regarding FMDV counteraction of host antiviral activity.
Collapse
Affiliation(s)
- Xuefei Wang
- State Key Laboratory for Animal Disease Control and Prevention, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Sahibzada Waheed Abdullah
- State Key Laboratory for Animal Disease Control and Prevention, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Jin'en Wu
- State Key Laboratory for Animal Disease Control and Prevention, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Jianli Tang
- State Key Laboratory for Animal Disease Control and Prevention, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Yun Zhang
- State Key Laboratory for Animal Disease Control and Prevention, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Hu Dong
- State Key Laboratory for Animal Disease Control and Prevention, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Manyuan Bai
- State Key Laboratory for Animal Disease Control and Prevention, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Sumin Wei
- State Key Laboratory for Animal Disease Control and Prevention, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Shiqi Sun
- State Key Laboratory for Animal Disease Control and Prevention, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Huichen Guo
- State Key Laboratory for Animal Disease Control and Prevention, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
5
|
Watanabe SM, Strickland M, Tjandra N, Carter CA. RNA Binding Suppresses Tsg101 Recognition of Ub-Modified Gag and Facilitates Recruitment to the Plasma Membrane. Viruses 2020; 12:v12040447. [PMID: 32326417 PMCID: PMC7232412 DOI: 10.3390/v12040447] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/07/2020] [Accepted: 04/10/2020] [Indexed: 01/09/2023] Open
Abstract
The ESCRT-I factor Tsg101 is essential for sorting endocytic cargo and is exploited by viral pathogens to facilitate egress from cells. Both the nucleocapsid (NC) domain and p6 domain in HIV-1 Gag contribute to recruitment of the protein. However, the role of NC is unclear when the P(S/T)AP motif in p6 is intact, as the motif recruits Tsg101 directly. The zinc fingers in NC bind RNA and membrane and are critical for budding. Tsg101 can substitute for the distal ZnF (ZnF2) and rescue budding of a mutant made defective by deletion of this element. Here, we report that the ubiquitin (Ub) E2 variant (UEV) domain in Tsg101 binds tRNA in vitro. We confirmed that Tsg101 can substitute for ZnF2 when provided at the viral assembly site as a chimeric Gag-Tsg101 protein (Gag-ΔZnF2-Tsg101) and rescue budding. The UEV was not required in this context; however, mutation of the RNA binding determinants in UEV prevented Tsg101 recruitment from the cell interior when Gag and Tsg101 were co-expressed. The same Tsg101 mutations increased recognition of Gag-Ub, suggesting that tRNA and Ub compete for binding sites. This study identifies a novel Tsg101 binding partner that may contribute to its function in recognition of Ub-modified cargo.
Collapse
Affiliation(s)
- Susan M. Watanabe
- Department of Microbiology & Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794-5222, USA;
| | - Madeleine Strickland
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Nico Tjandra
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA;
- Correspondence: (N.T.); (C.A.C.); Tel.: +1-631-632-8801 (C.A.C.)
| | - Carol A. Carter
- Department of Microbiology & Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794-5222, USA;
- Correspondence: (N.T.); (C.A.C.); Tel.: +1-631-632-8801 (C.A.C.)
| |
Collapse
|
6
|
Growing functions of the ESCRT machinery in cell biology and viral replication. Biochem Soc Trans 2017; 45:613-634. [PMID: 28620025 DOI: 10.1042/bst20160479] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/17/2017] [Accepted: 02/21/2017] [Indexed: 01/31/2023]
Abstract
The vast expansion in recent years of the cellular processes promoted by the endosomal sorting complex required for transport (ESCRT) machinery has reinforced its identity as a modular system that uses multiple adaptors to recruit the core membrane remodelling activity at different intracellular sites and facilitate membrane scission. Functional connections to processes such as the aurora B-dependent abscission checkpoint also highlight the importance of the spatiotemporal regulation of the ESCRT machinery. Here, we summarise the role of ESCRTs in viral budding, and what we have learned about the ESCRT pathway from studying this process. These advances are discussed in the context of areas of cell biology that have been transformed by research in the ESCRT field, including cytokinetic abscission, nuclear envelope resealing and plasma membrane repair.
Collapse
|
7
|
Nhi DM, Huy NT, Ohyama K, Kimura D, Lan NTP, Uchida L, Thuong NV, Nhon CTM, Phuc LH, Mai NT, Mizukami S, Bao LQ, Doan NN, Binh NVT, Quang LC, Karbwang J, Yui K, Morita K, Huong VTQ, Hirayama K. A Proteomic Approach Identifies Candidate Early Biomarkers to Predict Severe Dengue in Children. PLoS Negl Trop Dis 2016; 10:e0004435. [PMID: 26895439 PMCID: PMC4764501 DOI: 10.1371/journal.pntd.0004435] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 01/14/2016] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Severe dengue with severe plasma leakage (SD-SPL) is the most frequent of dengue severe form. Plasma biomarkers for early predictive diagnosis of SD-SPL are required in the primary clinics for the prevention of dengue death. METHODOLOGY Among 63 confirmed dengue pediatric patients recruited, hospital based longitudinal study detected six SD-SPL and ten dengue with warning sign (DWS). To identify the specific proteins increased or decreased in the SD-SPL plasma obtained 6-48 hours before the shock compared with the DWS, the isobaric tags for relative and absolute quantification (iTRAQ) technology was performed using four patients each group. Validation was undertaken in 6 SD-SPL and 10 DWS patients. PRINCIPAL FINDINGS Nineteen plasma proteins exhibited significantly different relative concentrations (p<0.05), with five over-expressed and fourteen under-expressed in SD-SPL compared with DWS. The individual protein was classified to either blood coagulation, vascular regulation, cellular transport-related processes or immune response. The immunoblot quantification showed angiotensinogen and antithrombin III significantly increased in SD-SPL whole plasma of early stage compared with DWS subjects. Even using this small number of samples, antithrombin III predicted SD-SPL before shock occurrence with accuracy. CONCLUSION Proteins identified here may serve as candidate predictive markers to diagnose SD-SPL for timely clinical management. Since the number of subjects are small, so further studies are needed to confirm all these biomarkers.
Collapse
Affiliation(s)
- Dang My Nhi
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), and Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Nguyen Tien Huy
- Department of Clinical Product Development, Institute of Tropical Medicine (NEKKEN), and Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- * E-mail: (NTH); (KH)
| | - Kaname Ohyama
- Department of Environmental and Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Nagasaki University Research Centre for Genomic Instability and Carcinogenesis (NRGIC), Nagasaki, Japan
| | - Daisuke Kimura
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Nguyen Thi Phuong Lan
- Department of Immunology and Microbiology, Pasteur Institute, Ho Chi Minh City, Vietnam
| | - Leo Uchida
- Department of Virology, Institute of Tropical Medicine (NEKKEN), and Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Nguyen Van Thuong
- Department of Immunology and Microbiology, Pasteur Institute, Ho Chi Minh City, Vietnam
| | | | - Le Hong Phuc
- Nguyen Dinh Chieu Hospital, Ben Tre Province, Vietnam
| | - Nguyen Thi Mai
- Department of Immunology and Microbiology, Pasteur Institute, Ho Chi Minh City, Vietnam
| | - Shusaku Mizukami
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), and Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Lam Quoc Bao
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), and Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | | | | | - Luong Chan Quang
- Department of Immunology and Microbiology, Pasteur Institute, Ho Chi Minh City, Vietnam
| | - Juntra Karbwang
- Department of Clinical Product Development, Institute of Tropical Medicine (NEKKEN), and Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Katsuyuki Yui
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Kouichi Morita
- Department of Virology, Institute of Tropical Medicine (NEKKEN), and Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Vu Thi Que Huong
- Department of Immunology and Microbiology, Pasteur Institute, Ho Chi Minh City, Vietnam
| | - Kenji Hirayama
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), and Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- * E-mail: (NTH); (KH)
| |
Collapse
|
8
|
Equine Infectious Anemia Virus Gag Assembly and Export Are Directed by Matrix Protein through trans-Golgi Networks and Cellular Vesicles. J Virol 2015; 90:1824-38. [PMID: 26637458 DOI: 10.1128/jvi.02814-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 11/30/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Gag intracellular assembly and export are very important processes for lentiviruses replication. Previous studies have demonstrated that equine infectious anemia virus (EIAV) matrix (MA) possesses distinct phosphoinositide affinity compared with HIV-1 MA and that phosphoinositide-mediated targeting to peripheral and internal membranes is a critical factor in EIAV assembly and release. In this study, we compared the cellular assembly sites of EIAV and HIV-1. We observed that the assembly of EIAV particles occurred on interior cellular membranes, while HIV-1 was targeted to the plasma membrane (PM) for assembly. Then, we determined that W7 and K9 in the EIAV MA N terminus were essential for Gag assembly and release but did not affect the cellular distribution of Gag. The replacement of EIAV MA with HIV-1 MA directed chimeric Gag to the PM but severely impaired Gag release. MA structural analysis indicated that the EIAV and HIV-1 MAs had similar spatial structures but that helix 1 of the EIAV MA was closer to loop 2. Further investigation indicated that EIAV Gag accumulated in the trans-Golgi network (TGN) but not the early and late endosomes. The 9 N-terminal amino acids of EIAV MA harbored the signal that directed Gag to the TGN membrane system. Additionally, we demonstrated that EIAV particles were transported to the extracellular space by the cellular vesicle system. This type of EIAV export was not associated with multivesicular bodies or microtubule depolymerization but could be inhibited by the actin-depolymerizing drug cytochalasin D, suggesting that dynamic actin depolymerization may be associated with EIAV production. IMPORTANCE In previous studies, EIAV Gag was reported to localize to both the cell interior and the plasma membrane. Here, we demonstrate that EIAV likely uses the TGN as the assembly site in contrast to HIV-1, which is targeted to the PM for assembly. These distinct assembly features are determined by the MA domain. We also identified two sites in the N terminus of EIAV MA that were important for Gag assembly and release. Furthermore, the observation of EIAV transport by cellular vesicles but not by multivesicular bodies sheds light on the mechanisms underlying EIAV cellular replication.
Collapse
|
9
|
Abstract
BACKGROUND Retroviruses and many other enveloped viruses usurp the cellular ESCRT pathway to bud from cells. However, the stepwise process of ESCRT-mediated virus budding can be challenging to analyze in retroviruses like HIV-1 that recruit multiple different ESCRT factors to initiate budding. RESULTS In this study, we characterized the ESCRT factor requirements for budding of Equine Infectious Anemia Virus (EIAV), whose only known direct ESCRT protein interaction is with ALIX. siRNA depletion of endogenous ESCRT proteins and "rescue" experiments with exogenous siRNA-resistant wild type and mutant constructs revealed budding requirements for the following ESCRT proteins: ALIX, CHMP4B, CHMP2A and VPS4A or VPS4B. EIAV budding was inhibited by point mutations that abrogate the direct interactions between ALIX:CHMP4B, CHMP4B:CHMP2A, and CHMP2A:VPS4A/B, indicating that each of these interactions is required for EIAV budding. Unexpectedly, CHMP4B depletion led to formation of multi-lobed and long tubular EIAV virions. CONCLUSIONS We conclude that EIAV budding requires an ESCRT protein network that comprises EIAV Gag-ALIX-CHMP4B-CHMP2A-VPS4 interactions. Our experiments also suggest that CHMP4B recruitment/polymerization helps control Gag polymerization and/or processing to ensure that ESCRT factor assembly and membrane fission occur at the proper stage of virion assembly. These studies help establish EIAV as a streamlined model system for dissecting the stepwise processes of lentivirus assembly and ESCRT-mediated budding.
Collapse
Affiliation(s)
- Virginie Sandrin
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City 84112-5650, Utah, USA
| | - Wesley I Sundquist
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City 84112-5650, Utah, USA
| |
Collapse
|
10
|
Dores MR, Chen B, Lin H, Soh UJK, Paing MM, Montagne WA, Meerloo T, Trejo J. ALIX binds a YPX(3)L motif of the GPCR PAR1 and mediates ubiquitin-independent ESCRT-III/MVB sorting. ACTA ACUST UNITED AC 2012; 197:407-19. [PMID: 22547407 PMCID: PMC3341166 DOI: 10.1083/jcb.201110031] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The sorting of signaling receptors to lysosomes is an essential regulatory process in mammalian cells. During degradation, receptors are modified with ubiquitin and sorted by endosomal sorting complex required for transport (ESCRT)-0, -I, -II, and -III complexes into intraluminal vesicles (ILVs) of multivesicular bodies (MVBs). However, it remains unclear whether a single universal mechanism mediates MVB sorting of all receptors. We previously showed that protease-activated receptor 1 (PAR1), a G protein-coupled receptor (GPCR) for thrombin, is internalized after activation and sorted to lysosomes independent of ubiquitination and the ubiquitin-binding ESCRT components hepatocyte growth factor-regulated tyrosine kinase substrate and Tsg101. In this paper, we report that PAR1 sorted to ILVs of MVBs through an ESCRT-III-dependent pathway independent of ubiquitination. We further demonstrate that ALIX, a charged MVB protein 4-ESCRT-III interacting protein, bound to a YPX(3)L motif of PAR1 via its central V domain to mediate lysosomal degradation. This study reveals a novel MVB/lysosomal sorting pathway for signaling receptors that bypasses the requirement for ubiquitination and ubiquitin-binding ESCRTs and may be applicable to a subset of GPCRs containing YPX(n)L motifs.
Collapse
Affiliation(s)
- Michael R Dores
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Engeland CE, Oberwinkler H, Schümann M, Krause E, Müller GA, Kräusslich HG. The cellular protein lyric interacts with HIV-1 Gag. J Virol 2011; 85:13322-32. [PMID: 21957284 PMCID: PMC3233182 DOI: 10.1128/jvi.00174-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 09/19/2011] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) Gag is the main structural protein driving assembly and release of virions from infected cells. Gag alone is capable of self-assembly in vitro, but host factors have been shown to play a role in efficient viral replication and particle morphogenesis within the living cell. In a series of affinity purification experiments, we identified the cellular protein Lyric to be an HIV-1 Gag-interacting protein. Lyric was previously described to be an HIV-inducible gene and is involved in various signaling pathways. Gag interacts with endogenous Lyric via its matrix (MA) and nucleocapsid (NC) domains. This interaction requires Gag multimerization and Lyric amino acids 101 to 289. Endogenous Lyric is incorporated into HIV-1 virions and is cleaved by the viral protease. Gag-Lyric interaction was also observed for murine leukemia virus and equine infectious anemia virus, suggesting that it represents a conserved feature among retroviruses. Expression of the Gag binding domain of Lyric increased Gag expression levels and viral infectivity, whereas expression of a Lyric mutant lacking the Gag binding site resulted in lower Gag expression and decreased viral infectivity. The results of the current study identify Lyric to be a cellular interaction partner of HIV-1 Gag and hint at a potential role in regulating infectivity. Further experiments are needed to elucidate the precise role of this interaction.
Collapse
Affiliation(s)
- Christine E. Engeland
- Department of Infectious Diseases, Virology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany
| | - Heike Oberwinkler
- Department of Infectious Diseases, Virology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany
| | - Michael Schümann
- Leibniz Institute for Molecular Pharmacology (FMP), Robert-Rössle-Str. 10, D-13125 Berlin, Germany
| | - Eberhard Krause
- Leibniz Institute for Molecular Pharmacology (FMP), Robert-Rössle-Str. 10, D-13125 Berlin, Germany
| | - Gerd A. Müller
- Molecular Oncology, Department of Obstetrics and Gynecology, University of Leipzig, Semmelweisstrasse 14, D-04103 Leipzig, Germany
| | - Hans-Georg Kräusslich
- Department of Infectious Diseases, Virology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany
| |
Collapse
|
12
|
Nagashima S, Takahashi M, Jirintai S, Tanaka T, Nishizawa T, Yasuda J, Okamoto H. Tumour susceptibility gene 101 and the vacuolar protein sorting pathway are required for the release of hepatitis E virions. J Gen Virol 2011; 92:2838-2848. [PMID: 21880841 DOI: 10.1099/vir.0.035378-0] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We have previously demonstrated that an intact PSAP motif in the ORF3 protein is required for the formation and release of membrane-associated hepatitis E virus (HEV) particles with ORF3 proteins on their surface. In this study, we investigated the direct interaction between the ORF3 protein and tumour susceptibility gene 101 (Tsg101), a cellular factor involved in the budding of viruses containing the P(T/S)AP late-domain, in PLC/PRF/5 cells expressing the wild-type or PSAP-mutated ORF3 protein and Tsg101 by co-immunoprecipitation. Tsg101 bound to wild-type ORF3 protein, but not to the PSAP-inactive ORF3 protein. To examine whether HEV utilizes the multivesicular body (MVB) pathway to release the virus particles, we analysed the efficiency of virion release from cells upon introduction of small interfering RNA (siRNA) against Tsg101 or dominant-negative (DN) mutants of Vps4 (Vps4A and Vps4B). The relative levels of virus particles released from cells depleted of Tsg101 decreased to 6.4 % of those transfected with negative control siRNA. Similarly, virion egress was significantly reduced by the overexpression of DN forms (Vps4AEQ or Vps4BEQ). The relative levels of virus particles released from cells expressing Vps4AEQ and Vps4BEQ were 19.2 and 15.6 %, respectively, while the overexpression of wild-type Vps4A and Vps4B did not alter the levels of virus release. These results indicate that the ORF3 protein interacts with Tsg101 through the PSAP motifs in infected cells, and that Tsg101 and the enzymic activities of Vps4A and Vps4B are involved in HEV release, thus suggesting that HEV requires the MVB pathway for egress of virus particles.
Collapse
Affiliation(s)
- Shigeo Nagashima
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Tochigi-Ken 329-0498, Japan
| | - Masaharu Takahashi
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Tochigi-Ken 329-0498, Japan
| | - Suljid Jirintai
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Tochigi-Ken 329-0498, Japan
| | - Toshinori Tanaka
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Tochigi-Ken 329-0498, Japan
| | - Tsutomu Nishizawa
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Tochigi-Ken 329-0498, Japan
| | - Jiro Yasuda
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki-Ken 852-8523, Japan
| | - Hiroaki Okamoto
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Tochigi-Ken 329-0498, Japan
| |
Collapse
|
13
|
Fernandes F, Chen K, Ehrlich LS, Jin J, Chen MH, Medina GN, Symons M, Montelaro R, Donaldson J, Tjandra N, Carter CA. Phosphoinositides direct equine infectious anemia virus gag trafficking and release. Traffic 2011; 12:438-51. [PMID: 21176037 PMCID: PMC3064743 DOI: 10.1111/j.1600-0854.2010.01153.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phosphatidylinositol 4,5-biphosphate [PI(4,5)P(2) ], the predominant phosphoinositide (PI) on the plasma membrane, binds the matrix (MA) protein of human immunodeficiency virus type 1 (HIV-1) and equine infectious anemia virus (EIAV) with similar affinities in vitro. Interaction with PI(4,5)P(2) is critical for HIV-1 assembly on the plasma membrane. EIAV has been shown to localize in internal compartments; hence, the significance of its interaction with PI(4,5)P(2) is unclear. We therefore investigated the binding in vitro of other PIs to EIAV MA and whether intracellular association with compartments bearing these PIs was important for assembly and release of virus-like particles (VLPs) formed by Gag. In vitro, EIAV MA bound phosphatidylinositol 3-phosphate [PI(3)P] with higher affinity than PI(4,5)P(2) as revealed by nuclear magnetic resonance (NMR) spectra upon lipid titration. Gag was detected on the plasma membrane and in compartments enriched in phosphatidylinositol 3,5-biphosphate [PI(3,5)P(2) ]. Treatment of cells with YM201636, a kinase inhibitor that blocks production of PI(3,5)P(2) from PI(3)P, caused Gag to colocalize with aberrant compartments and inhibited VLP release. In contrast to HIV-1, release of EIAV VLPs was not significantly diminished by coexpression with 5-phosphatase IV, an enzyme that specifically depletes PI(4,5)P(2) from the plasma membrane. However, coexpression with synaptojanin 2, a phosphatase with broader specificity, diminished VLP production. PI-binding pocket mutations caused striking budding defects, as revealed by electron microscopy. One of the mutations also modified Gag-Gag interaction, as suggested by altered bimolecular fluorescence complementation. We conclude that PI-mediated targeting to peripheral and internal membranes is a critical factor in EIAV assembly and release.
Collapse
Affiliation(s)
- Fiona Fernandes
- Dept. of Molecular Genetics & Microbiology, S.U.N.Y, Stony Brook, NY 11727, USA
| | - Kang Chen
- Laboratory of Molecular Biophysics, NHLBI-NIH, Bethesda, MD 20892, USA
| | - Lorna S. Ehrlich
- Dept. of Molecular Genetics & Microbiology, S.U.N.Y, Stony Brook, NY 11727, USA
| | - Jing Jin
- Section of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Min H. Chen
- Dept. of Molecular Genetics & Microbiology, S.U.N.Y, Stony Brook, NY 11727, USA
| | - Gisselle N. Medina
- Dept. of Molecular Genetics & Microbiology, S.U.N.Y, Stony Brook, NY 11727, USA
| | - Marc Symons
- Feinstein Institute, Manhasset, NY 11030, USA
| | - Ronald Montelaro
- Dept. of Microbiology and Molecular Genetics, Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261
| | - Julie Donaldson
- Laboratory of Cell Biology, NHLBI-NIH, Bethesda, MD 20892, USA
| | - Nico Tjandra
- Laboratory of Molecular Biophysics, NHLBI-NIH, Bethesda, MD 20892, USA
| | - Carol A. Carter
- Dept. of Molecular Genetics & Microbiology, S.U.N.Y, Stony Brook, NY 11727, USA
| |
Collapse
|
14
|
Weiss ER, Popova E, Yamanaka H, Kim HC, Huibregtse JM, Göttlinger H. Rescue of HIV-1 release by targeting widely divergent NEDD4-type ubiquitin ligases and isolated catalytic HECT domains to Gag. PLoS Pathog 2010; 6:e1001107. [PMID: 20862313 PMCID: PMC2940739 DOI: 10.1371/journal.ppat.1001107] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 08/16/2010] [Indexed: 11/24/2022] Open
Abstract
Retroviruses engage the ESCRT pathway through late assembly (L) domains in Gag to promote virus release. HIV-1 uses a PTAP motif as its primary L domain, which interacts with the ESCRT-I component Tsg101. In contrast, certain other retroviruses primarily use PPxY-type L domains, which constitute ligands for NEDD4-type ubiquitin ligases. Surprisingly, although HIV-1 Gag lacks PPxY motifs, the release of HIV-1 L domain mutants is potently enhanced by ectopic NEDD4-2s, a native isoform with a naturally truncated C2 domain that appears to account for the residual titer of L domain-defective HIV-1. The reason for the unique potency of the NEDD4-2s isoform has remained unclear. We now show that the naturally truncated C2 domain of NEDD4-2s functions as an autonomous Gag-targeting module that can be functionally replaced by the unrelated Gag-binding protein cyclophilin A (CypA). The residual C2 domain of NEDD4-2s was sufficient to transfer the ability to stimulate HIV-1 budding to other NEDD4 family members, including the yeast homologue Rsp5, and even to isolated catalytic HECT domains. The isolated catalytic domain of NEDD4-2s also efficiently promoted HIV-1 budding when targeted to Gag via CypA. We conclude that the regions typically required for substrate recognition by HECT ubiquitin ligases are all dispensable to stimulate HIV-1 release, implying that the relevant target for ubiquitination is Gag itself or can be recognized by divergent isolated HECT domains. However, the mere ability to ubiquitinate Gag was not sufficient to stimulate HIV-1 budding. Rather, our results indicate that the synthesis of K63-linked ubiquitin chains is critical for ubiquitin ligase-mediated virus release.
Collapse
Affiliation(s)
- Eric R. Weiss
- Program in Gene Function and Expression, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Elena Popova
- Program in Gene Function and Expression, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Hikaru Yamanaka
- Program in Gene Function and Expression, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Hyung Cheol Kim
- Institute for Cellular and Molecular Biology, Section of Molecular Genetics and Microbiology, University of Texas at Austin, Austin, Texas, United States of America
| | - Jon M. Huibregtse
- Institute for Cellular and Molecular Biology, Section of Molecular Genetics and Microbiology, University of Texas at Austin, Austin, Texas, United States of America
| | - Heinrich Göttlinger
- Program in Gene Function and Expression, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
15
|
Popova E, Popov S, Göttlinger HG. Human immunodeficiency virus type 1 nucleocapsid p1 confers ESCRT pathway dependence. J Virol 2010; 84:6590-7. [PMID: 20427536 PMCID: PMC2903293 DOI: 10.1128/jvi.00035-10] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 04/18/2010] [Indexed: 11/20/2022] Open
Abstract
To facilitate the release of infectious progeny virions, human immunodeficiency virus type 1 (HIV-1) exploits the Endosomal Sorting Complex Required for Transport (ESCRT) pathway by engaging Tsg101 and ALIX through late assembly (L) domains in the C-terminal p6 domain of Gag. However, the L domains in p6 are known to be dispensable for efficient particle production by certain HIV-1 Gag constructs that have the nucleocapsid (NC) domain replaced by a foreign dimerization domain to substitute for the assembly function of NC. We now show that one such L domain-independent HIV-1 Gag construct (termed Z(WT)) that has NC-p1-p6 replaced by a leucine zipper domain is resistant to dominant-negative inhibitors of the ESCRT pathway that block HIV-1 particle production. However, Z(WT) became dependent on the presence of an L domain when NC-p1-p6 was restored to its C terminus. Furthermore, when the NC domain was replaced by a leucine zipper, the p1-p6 region, but not p6 alone, conferred sensitivity to inhibition of the ESCRT pathway. In an authentic HIV-1 Gag context, the effect of an inhibitor of the ESCRT pathway on particle production could be alleviated by deleting a portion of the NC domain together with p1. Together, these results indicate that the ESCRT pathway dependence of HIV-1 budding is determined, at least in part, by the NC-p1 region of Gag.
Collapse
Affiliation(s)
- Elena Popova
- Program in Gene Function and Expression, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Sergei Popov
- Program in Gene Function and Expression, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Heinrich G. Göttlinger
- Program in Gene Function and Expression, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| |
Collapse
|
16
|
Joshi A, Nagashima K, Freed EO. Defects in cellular sorting and retroviral assembly induced by GGA overexpression. BMC Cell Biol 2009; 10:72. [PMID: 19788741 PMCID: PMC2760529 DOI: 10.1186/1471-2121-10-72] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 09/29/2009] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND We previously demonstrated that overexpression of Golgi-localized, gamma-ear containing, Arf-binding (GGA) proteins inhibits retrovirus assembly and release by disrupting the function of endogenous ADP ribosylation factors (Arfs). GGA overexpression led to the formation of large, swollen vacuolar compartments, which in the case of GGA1 sequestered HIV-1 Gag. RESULTS In the current study, we extend our previous findings to characterize in depth the GGA-induced compartments and the determinants for retroviral Gag sequestration in these structures. We find that GGA-induced structures are derived from the Golgi and contain aggresome markers. GGA overexpression leads to defects in trafficking of transferrin receptor and recycling of cation-dependent mannose 6-phosphate receptor. Additionally, we find that compartments induced by GGA overexpression sequester Tsg101, poly-ubiquitin, and, in the case of GGA3, Hrs. Interestingly, brefeldin A treatment, which leads to the dissociation of endogenous GGAs from membranes, does not dissociate the GGA-induced compartments. GGA mutants that are defective in Arf binding and hence association with membranes also induce the formation of GGA-induced structures. Overexpression of ubiquitin reverses the formation of GGA-induced structures and partially rescues HIV-1 particle production. We found that in addition to HIV-1 Gag, equine infectious anemia virus Gag is also sequestered in GGA1-induced structures. The determinants in Gag responsible for sequestration map to the matrix domain, and recruitment to these structures is dependent on Gag membrane binding. CONCLUSION These data provide insights into the composition of structures induced by GGA overexpression and their ability to disrupt endosomal sorting and retroviral particle production.
Collapse
Affiliation(s)
- Anjali Joshi
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Maryland, USA
- Department of Biomedical Sciences, Center of Excellence for Infectious Diseases, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA
| | - Kunio Nagashima
- Image Analysis Laboratory, Advanced Technology Program, SAIC-Frederick, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | - Eric O Freed
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Maryland, USA
| |
Collapse
|
17
|
Abstract
Since the initial discovery of the endosomal sorting complex required for transport (ESCRT) pathway, research in this field has exploded. ESCRT proteins are part of the endosomal trafficking system and play a crucial role in the biogenesis of multivesicular bodies by functioning in the formation of vesicles that bud away from the cytoplasm. Subsequently, a surprising role for ESCRT proteins was defined in the budding step of some enveloped retroviruses, including HIV-1. ESCRT proteins are also employed in this outward budding process, which results in the resolution of a membranous tether between the host cell and the budding virus particle. Remarkably, it has recently been described that ESCRT proteins also have a role in the topologically equivalent process of cell division. In the same way that viral particles recruit the ESCRT proteins to the site of viral budding, ESCRT proteins are also recruited to the midbody - the site of release of daughter cell from mother cell during cytokinesis. In this Commentary, we describe recent advances in the understanding of ESCRT proteins and how they act to mediate these diverse processes.
Collapse
Affiliation(s)
| | - Juan Martin-Serrano
- Department of Infectious Diseases, King's College London School of
Medicine, Guy's Hospital, London, SE1 9RT, UK
| |
Collapse
|
18
|
Pires R, Hartlieb B, Signor L, Schoehn G, Lata S, Roessle M, Moriscot C, Popov S, Hinz A, Jamin M, Boyer V, Sadoul R, Forest E, Svergun DI, Göttlinger HG, Weissenhorn W. A crescent-shaped ALIX dimer targets ESCRT-III CHMP4 filaments. Structure 2009; 17:843-56. [PMID: 19523902 PMCID: PMC2699623 DOI: 10.1016/j.str.2009.04.007] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 03/27/2009] [Accepted: 04/15/2009] [Indexed: 12/20/2022]
Abstract
ALIX recruits ESCRT-III CHMP4 and is involved in membrane remodeling during endosomal receptor sorting, budding of some enveloped viruses, and cytokinesis. We show that ALIX dimerizes via the middle domain (ALIX(-V)) in solution. Structural modeling based on small angle X-ray scattering (SAXS) data reveals an elongated crescent-shaped conformation for dimeric ALIX lacking the proline-rich domain (ALIX(BRO1-V)). Mutations at the dimerization interface prevent dimerization and induce an open elongated monomeric conformation of ALIX(-V) as determined by SAXS modeling. ALIX dimerizes in vivo and dimeric ALIX colocalizes with CHMP4B upon coexpression. We show further that ALIX dimerization affects HIV-1 budding. C-terminally truncated activated CHMP4B retaining the ALIX binding site forms linear, circular, and helical filaments in vitro, which can be bridged by ALIX. Our data suggest that dimeric ALIX represents the active form that interacts with ESCRT-III CHMP4 polymers and functions as a scaffolding protein during membrane remodeling processes.
Collapse
Affiliation(s)
- R. Pires
- Unit of Virus Host Cell Interactions (UVHCI) UMI 3265 Université Joseph Fourier-EMBL-CNRS, 6 rue Jules Horowitz 38042 Grenoble Cedex 9, France
| | - B. Hartlieb
- Unit of Virus Host Cell Interactions (UVHCI) UMI 3265 Université Joseph Fourier-EMBL-CNRS, 6 rue Jules Horowitz 38042 Grenoble Cedex 9, France
| | - L. Signor
- Institut de Biologie Structurale Jean-Pierre Ebel, UMR 5075 CEA-CNRS-UJF, 41, rue Jules Horowitz, 38027 Grenoble cedex 01, France
| | - G. Schoehn
- Unit of Virus Host Cell Interactions (UVHCI) UMI 3265 Université Joseph Fourier-EMBL-CNRS, 6 rue Jules Horowitz 38042 Grenoble Cedex 9, France
- Institut de Biologie Structurale Jean-Pierre Ebel, UMR 5075 CEA-CNRS-UJF, 41, rue Jules Horowitz, 38027 Grenoble cedex 01, France
| | - S. Lata
- Unit of Virus Host Cell Interactions (UVHCI) UMI 3265 Université Joseph Fourier-EMBL-CNRS, 6 rue Jules Horowitz 38042 Grenoble Cedex 9, France
| | - M. Roessle
- European Molecular Biology Laboratory (EMBL), Notkestrasse 85, 22603 Hamburg Germany
| | - C. Moriscot
- Unit of Virus Host Cell Interactions (UVHCI) UMI 3265 Université Joseph Fourier-EMBL-CNRS, 6 rue Jules Horowitz 38042 Grenoble Cedex 9, France
- Institut de Biologie Structurale Jean-Pierre Ebel, UMR 5075 CEA-CNRS-UJF, 41, rue Jules Horowitz, 38027 Grenoble cedex 01, France
| | - S. Popov
- Program in Gene Function and Expression, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - A. Hinz
- Unit of Virus Host Cell Interactions (UVHCI) UMI 3265 Université Joseph Fourier-EMBL-CNRS, 6 rue Jules Horowitz 38042 Grenoble Cedex 9, France
| | - M. Jamin
- Unit of Virus Host Cell Interactions (UVHCI) UMI 3265 Université Joseph Fourier-EMBL-CNRS, 6 rue Jules Horowitz 38042 Grenoble Cedex 9, France
| | - V. Boyer
- Unit of Virus Host Cell Interactions (UVHCI) UMI 3265 Université Joseph Fourier-EMBL-CNRS, 6 rue Jules Horowitz 38042 Grenoble Cedex 9, France
| | - R. Sadoul
- Grenoble Institute of Neurosciences, INSERM Unit 387 and Université Joseph Fourier, Grenoble I, F-38043 Grenoble, France
| | - E. Forest
- Institut de Biologie Structurale Jean-Pierre Ebel, UMR 5075 CEA-CNRS-UJF, 41, rue Jules Horowitz, 38027 Grenoble cedex 01, France
| | - D. I. Svergun
- European Molecular Biology Laboratory (EMBL), Notkestrasse 85, 22603 Hamburg Germany
| | - H. G. Göttlinger
- Program in Gene Function and Expression, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - W. Weissenhorn
- Unit of Virus Host Cell Interactions (UVHCI) UMI 3265 Université Joseph Fourier-EMBL-CNRS, 6 rue Jules Horowitz 38042 Grenoble Cedex 9, France
| |
Collapse
|
19
|
Abstract
ESCRT-III (endosomal sorting complex required for transport III) is required for the formation and abscission of intraluminal endosomal vesicles, which gives rise to multivesicular bodies, budding of some enveloped viruses and cytokinesis. ESCRT-III is composed of 11 members in humans, which, except for one, correspond to the six ESCRT-III-like proteins in yeast. At least CHMP (charged multivesicular body protein) 2A and CHMP3 assemble into helical tubular structures that provide a platform for membrane interaction and VPS (vacuolar protein sorting) 4-catalysed effects leading to disassembly of ESCRT-III CHMP2A-CHMP3 polymers in vitro. Progress towards the understanding of the structures and function of ESCRT-III, its activation, its regulation by accessory factors and its role in abscission of membrane enveloped structures in concert with VPS4 are discussed.
Collapse
|
20
|
Varthakavi V, Heimann-Nichols E, Smith RM, Sun Y, Bram RJ, Ali S, Rose J, Ding L, Spearman P. Identification of calcium-modulating cyclophilin ligand as a human host restriction to HIV-1 release overcome by Vpu. Nat Med 2008; 14:641-7. [PMID: 18500349 PMCID: PMC2652483 DOI: 10.1038/nm1778] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Accepted: 04/28/2008] [Indexed: 01/10/2023]
Abstract
The HIV-1 Vpu protein is required for efficient viral release from human cells. For HIV-2, the envelope (Env) protein replaces the role of Vpu. Both Vpu and HIV-2 Env enhance virus release by counteracting an innate host-cell block within human cells that is absent in African green monkey (AGM) cells. Here we identify calcium-modulating cyclophilin ligand (CAML) as a Vpu-interacting host factor that restricts HIV-1 release. Expression of human CAML (encoded by CAMLG) in AGM cells conferred a strong restriction of virus release that was reversed by Vpu and HIV-2 Env, suggesting that CAML is the mechanistic link between these two viral regulators. Depletion of CAML in human cells eliminated the need for Vpu in enhancing HIV-1 and murine leukemia virus release. These results point to CAML as a Vpu-sensitive host restriction factor that inhibits HIV release from human cells. The ability of CAML to inhibit virus release should illuminate new therapeutic strategies against HIV.
Collapse
Affiliation(s)
- Vasundhara Varthakavi
- Department of Pediatrics, Division of Infectious Diseases, Vanderbilt University School of Medicine, 1161 21st Avenue South, D-7235 MCN, Nashville, Tennessee 37232-2581, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
HIV and many other enveloped viruses encode a late budding domain (L-domain) that recruits the cellular machinery that mediates the separation of the nascent virion from the infected cell. The ubiquitin-proteasome system has been implicated in the L-domain activity, but the exact role of ubiquitin transfer and ubiquitin-binding proteins in the last step of viral replication remains elusive. It is now widely accepted that the class E vacuolar protein sorting pathway mediates both viral budding and vesicle budding into the multivesicular bodies and, remarkably, both budding events share the same topology and similar requirements for ubiquitin. In this review, the role of ubiquitin in viral budding is discussed in the light of recent advances in the understanding of the cellular mechanisms that assist the last step of HIV-1 release.
Collapse
Affiliation(s)
- Juan Martin-Serrano
- Department of Infectious Diseases, 2nd Floor New Guy's House, Guy's Hospital, King's College London School of Medicine at Guy's, King's College and St Thomas' Hospitals, London, SE1 9RT, UK.
| |
Collapse
|
22
|
Jin J, Sturgeon T, Chen C, Watkins SC, Weisz OA, Montelaro RC. Distinct intracellular trafficking of equine infectious anemia virus and human immunodeficiency virus type 1 Gag during viral assembly and budding revealed by bimolecular fluorescence complementation assays. J Virol 2007; 81:11226-35. [PMID: 17686839 PMCID: PMC2045577 DOI: 10.1128/jvi.00431-07] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Retroviral Gag polyproteins are necessary and sufficient for virus budding. Numerous studies of human immunodeficiency virus type 1 (HIV-1) Gag assembly and budding mechanisms have been reported, but relatively little is known about these fundamental pathways among animal lentiviruses. While there may be a general assumption that lentiviruses share common assembly mechanisms, studies of equine infectious anemia virus (EIAV) have indicated alternative cellular pathways and cofactors employed among lentiviruses for assembly and budding. In the current study, we used bimolecular fluorescence complementation to characterize and compare assembly sites and budding efficiencies of EIAV and HIV-1 Gag in both human and rodent cells. The results of these studies demonstrated that replacing the natural RNA nuclear export element (Rev-response element [RRE]) used by HIV-1 and EIAV with the hepatitis B virus posttranscriptional regulatory element (PRE) altered HIV-1, but not EIAV, Gag assembly sites and budding efficiency in human cells. Consistent with this novel observation, different assembly sites were revealed in human cells for Rev-dependent EIAV and HIV-1 Gag polyproteins. In rodent cells, Rev-dependent HIV-1 Gag assembly and budding were blocked, but changing RRE to PRE rescued HIV-1 Gag assembly and budding. In contrast, EIAV Gag polyproteins synthesized from mRNA exported via either Rev-dependent or PRE-dependent mechanisms were able to assemble and bud efficiently in rodent cells. Taken together, our results suggest that lentivirus assembly and budding are regulated by the RNA nuclear export pathway and that alternative cellular pathways can be adapted for lentiviral Gag assembly and budding.
Collapse
Affiliation(s)
- Jing Jin
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, W1144 Biomedical Science Tower, Pittsburgh, PA 15261, USA
| | | | | | | | | | | |
Collapse
|
23
|
Adamson CS, Freed EO. Human Immunodeficiency Virus Type 1 Assembly, Release, and Maturation. ADVANCES IN PHARMACOLOGY 2007; 55:347-87. [PMID: 17586320 DOI: 10.1016/s1054-3589(07)55010-6] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Affiliation(s)
- Catherine S Adamson
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, MD 21702, USA
| | | |
Collapse
|
24
|
Bouamr F, Houck-Loomis BR, De Los Santos M, Casaday RJ, Johnson MC, Goff SP. The C-terminal portion of the Hrs protein interacts with Tsg101 and interferes with human immunodeficiency virus type 1 Gag particle production. J Virol 2006; 81:2909-22. [PMID: 17182674 PMCID: PMC1865988 DOI: 10.1128/jvi.01413-06] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) Gag protein recruits Tsg101 to facilitate HIV-1 particle budding and release. In uninfected cells, the Hrs protein recruits the ESCRT-I complex to the endosome, also through an interaction with Tsg101, to promote the sorting of host proteins into endosomal vesicles and multivesicular bodies. Here, we show that the overexpression of the C-terminal fragment of Hrs (residues 391 to 777) or Hrs mutants lacking either the N-terminal FYVE domain (mutant dFYVE) or the PSAP (residues 348 to 351) motif (mutant ASAA) all efficiently inhibit HIV-1 Gag particle production. Expression of the dFYVE or ASAA mutants of Hrs had no effect on the release of Moloney murine leukemia virus. Coimmunoprecipitation analysis showed that the expression of Hrs mutant dFYVE or ASAA significantly reduced or abolished the HIV-1 Gag-Tsg101 interaction. Yeast-two hybrid assays were used to identify two new and independent Tsg101 binding sites, one in the Hrs coiled-coil domain and one in the proline/glutamic acid-rich domain. Scanning electron microscopy of HeLa cells expressing HIV-1 Gag and the Hrs ASAA mutant showed viral particles arrested in "lump-like" structures that remained attached to the cell surface. Together, these data indicate that fragments of Hrs containing the C-terminal portion of the protein can potently inhibit HIV-1 particle release by efficiently sequestering Tsg101 away from the Gag polyprotein.
Collapse
Affiliation(s)
- Fadila Bouamr
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
25
|
Langelier C, von Schwedler UK, Fisher RD, De Domenico I, White PL, Hill CP, Kaplan J, Ward D, Sundquist WI. Human ESCRT-II complex and its role in human immunodeficiency virus type 1 release. J Virol 2006; 80:9465-80. [PMID: 16973552 PMCID: PMC1617254 DOI: 10.1128/jvi.01049-06] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The budding of many enveloped RNA viruses, including human immunodeficiency virus type 1 (HIV-1), requires some of the same cellular machinery as vesicle formation at the multivesicular body (MVB). In Saccharomyces cerevisiae, the ESCRT-II complex performs a central role in MVB protein sorting and vesicle formation, as it is recruited by the upstream ESCRT-I complex and nucleates assembly of the downstream ESCRT-III complex. Here, we report that the three subunits of human ESCRT-II, EAP20, EAP30, and EAP45, have a number of properties in common with their yeast orthologs. Specifically, EAP45 bound ubiquitin via its N-terminal GRAM-like ubiquitin-binding in EAP45 (GLUE) domain, both EAP45 and EAP30 bound the C-terminal domain of TSG101/ESCRT-I, and EAP20 bound the N-terminal half of CHMP6/ESCRT-III. Consistent with its expected role in MVB vesicle formation, (i) human ESCRT-II localized to endosomal membranes in a VPS4-dependent fashion and (ii) depletion of EAP20/ESCRT-II and CHMP6/ESCRT-III inhibited lysosomal targeting and downregulation of the epidermal growth factor receptor, albeit to a lesser extent than depletion of TSG101/ESCRT-I. Nevertheless, HIV-1 release and infectivity were not reduced by efficient small interfering RNA depletion of EAP20/ESCRT-II or CHMP6/ESCRT-III. These observations indicate that there are probably multiple pathways for protein sorting/MVB vesicle formation in human cells and that HIV-1 does not utilize an ESCRT-II-dependent pathway to leave the cell.
Collapse
Affiliation(s)
- Charles Langelier
- Department of Biochemistry, 15 N. Medical Drive East, Room 4100, University of Utah School of Medicine, Salt Lake City, UT 84112-5650, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Pineda-Molina E, Belrhali H, Piefer AJ, Akula I, Bates P, Weissenhorn W. The crystal structure of the C-terminal domain of Vps28 reveals a conserved surface required for Vps20 recruitment. Traffic 2006; 7:1007-16. [PMID: 16749904 DOI: 10.1111/j.1600-0854.2006.00440.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The endosomal sorting complex I required for transport (ESCRT-I) is composed of the three subunits Vps23/Tsg101, Vps28 and Vps37. ESCRT-I is recruited to cellular membranes during multivesicular endosome biogenesis and by enveloped viruses such as HIV-1 to mediate budding from the cell. Here, we describe the crystal structure of a conserved C-terminal domain from Sacharomyces cerevisiae Vps28 (Vps28-CTD) at 3.05 A resolution which folds independently into a four-helical bundle structure. Co-expression experiments of Vps28-CTD, Vps23 and Vps37 suggest that Vps28-CTD does not directly participate in ESCRT-I assembly and may thus act as an adaptor module for downstream interaction partners. We show through mutagenesis studies that Vps28-CTD employs its strictly conserved surface in the interaction with the ESCRT-III factor Vps20. Furthermore, we present evidence that Vps28-CTD is sufficient to rescue an equine infectious anaemia virus (EIAV) Gag late domain deletion. Vps28-CTD mutations abolishing Vps20 interaction in vitro also prevent the rescue of the EIAV Gag late domain mutant consistent with a potential direct Vps28-ESCRT-III Vps20 recruitment. Therefore, the physiological relevant EIAV Gag-Alix interaction can be functionally replaced by a Gag-Vps28-CTD fusion. Because both Alix and Vps28-CTD can directly recruit ESCRT-III proteins, ESCRT-III assembly coupled to Vps4 action may therefore constitute the minimal budding machinery for EIAV release.
Collapse
Affiliation(s)
- Estela Pineda-Molina
- European Molecular Biology Laboratory (EMBL), 6 rue Jules Horowitz, 38042 Grenoble, France
| | | | | | | | | | | |
Collapse
|
27
|
Hui EKW, Barman S, Tang DHP, France B, Nayak DP. YRKL sequence of influenza virus M1 functions as the L domain motif and interacts with VPS28 and Cdc42. J Virol 2006; 80:2291-308. [PMID: 16474136 PMCID: PMC1395382 DOI: 10.1128/jvi.80.5.2291-2308.2006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Earlier studies have shown that the C-terminal half of helix 6 (H6) of the influenza A virus matrix protein (M1) containing the YRKL sequence is involved in virus budding (E. K.-W. Hui, S. Barman, T. Y. Yang, and D. P. Nayak, J. Virol. 77:7078-7092, 2003). In this report, we show that the YRKL sequence is the L domain motif of influenza virus. Like other L domains, YRKL can be inserted at different locations on the mutant M1 protein and can restore virus budding in a position-independent manner. Although YRKL is a part of the nuclear localization signal (NLS), the function of YRKL was independent of the NLS activity and the NLS function of M1 was not required for influenza virus replication. Some mutations in YRKL and the adjacent region caused a reduction in the virus titer by blocking virus release, and some affected virus morphology, producing elongated particles. Coimmunoprecipitation and Western blotting analyses showed that VPS28, a component of the ESCRT-I complex, and Cdc42, a member of the Rho family GTP-binding proteins, interacted with the M1 protein via the YRKL motif. In addition, depletion of VPS28 and Cdc42 by small interfering RNA resulted in reduction of influenza virus production. Moreover, overexpression of dominant-negative Cdc42 inhibited influenza virus replication, whereas a constitutively active Cdc42 mutant enhanced virus production in infected cells. These results indicated that VPS28, a component of ESCRT-I, and Cdc42, a small G protein, are associated with the M1 protein and involved in the influenza virus life cycle.
Collapse
Affiliation(s)
- Eric Ka-Wai Hui
- Department of Microbiology, Immunology and Molecular Genetics, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, David Geffen School of Medicine, UCLA, Los Angeles, 90095, USA
| | | | | | | | | |
Collapse
|
28
|
Hartlieb B, Weissenhorn W. Filovirus assembly and budding. Virology 2006; 344:64-70. [PMID: 16364737 DOI: 10.1016/j.virol.2005.09.018] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Accepted: 09/10/2005] [Indexed: 10/25/2022]
Abstract
Filoviruses belong to the order of negative-stranded non-segmented RNA viruses and are classified into two genera, Ebola and Marburg viruses. They have a characteristic filamentous shape, which is largely determined by the matrix protein VP40. Although VP40 is the main driving force for assembly and budding from the host cell, the production of infectious virus involves an intricate interplay between all viral structural proteins in addition to cellular factors, e.g., those that normally function in multi-vesicular body biogenesis. As a consequence, assembly and budding steps are defined to specific cellular compartments, and the recent progress in understanding how the different components are assembled into stable enveloped virus particles is reviewed.
Collapse
Affiliation(s)
- Bettina Hartlieb
- Institut für Virologie, Robert-Koch-Str. 17, 35037 Marburg, Germany
| | | |
Collapse
|
29
|
Bieniasz PD. Late budding domains and host proteins in enveloped virus release. Virology 2006; 344:55-63. [PMID: 16364736 DOI: 10.1016/j.virol.2005.09.044] [Citation(s) in RCA: 293] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Accepted: 09/14/2005] [Indexed: 12/17/2022]
Affiliation(s)
- Paul D Bieniasz
- Aaron Diamond AIDS Research Center and Laboratory of Retrovirology, The Rockefeller University, 455 First Avenue, New York, NY 10016, USA.
| |
Collapse
|
30
|
Huang C, Narayanan K, Ito N, Peters CJ, Makino S. Severe acute respiratory syndrome coronavirus 3a protein is released in membranous structures from 3a protein-expressing cells and infected cells. J Virol 2006; 80:210-7. [PMID: 16352545 PMCID: PMC1317539 DOI: 10.1128/jvi.80.1.210-217.2006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Accepted: 10/03/2005] [Indexed: 12/30/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus (SCoV) accessory protein 3a is a virus structural protein. We demonstrate here that 3a protein was released efficiently in membranous structures from various cell lines expressing 3a protein. A subpopulation of the released 3a protein is associated with detergent-resistant membranes. The presence of the YxxPhi and diacidic motifs, located within the cytoplasmic tail of the 3a protein, was not required for its efficient release. Analysis of supernatant from SCoV-infected cells with sucrose gradient sedimentation and virus capture assay indicated that the 3a protein was released from infected cells in two distinct populations, as a component of SCoV particles, and in membrane structures with a lower buoyant density. These data provide new insights into the biological properties of SCoV 3a protein.
Collapse
Affiliation(s)
- Cheng Huang
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555-1019, USA
| | | | | | | | | |
Collapse
|
31
|
Medina G, Zhang Y, Tang Y, Gottwein E, Vana ML, Bouamr F, Leis J, Carter CA. The functionally exchangeable L domains in RSV and HIV-1 Gag direct particle release through pathways linked by Tsg101. Traffic 2005; 6:880-94. [PMID: 16138902 PMCID: PMC2692930 DOI: 10.1111/j.1600-0854.2005.00323.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The functionally exchangeable L domains of HIV-1 and Rous sarcoma virus (RSV) Gag bind Tsg101 and Nedd4, respectively. Tsg101 and Nedd4 function in endocytic trafficking, and studies show that expression of Tsg101 or Nedd4 fragments interfere with release of HIV-1 or RSV Gag, respectively, as virus-like particles (VLPs). To determine whether functional exchangeability reflects use of the same trafficking pathway, we tested the effect on RSV Gag release of co-expression with mutated forms of Vps4, Nedd4 and Tsg101. A dominant-negative mutant of Vps4A, an AAA ATPase required for utilization of endosomal sorting proteins that was shown previously to interfere with HIV-1 budding, also inhibited RSV Gag release, indicating that RSV uses the endocytic trafficking machinery, as does HIV. Nedd4 and Tsg101 interacted in the presence or absence of Gag and, through its binding of Nedd4, RSV Gag interacted with Tsg101. Deletion of the N-terminal region of Tsg101 or the HECT domain of Nedd4 did not prevent interaction; however, three-dimensional spatial imaging suggested that the interaction of RSV Gag with full-length Tsg101 and N-terminally truncated Tsg101 was not the same. Co-expression of RSV Gag with the Tsg101 C-terminal fragment interfered with VLP release minimally; however, a significant fraction of the released VLPs was tethered to each other. The results suggest that, while Tsg101 is not required for RSV VLP release, alterations in the protein interfere with VLP budding/fission events. We conclude that RSV and HIV-1 Gag direct particle release through independent ESCRT-mediated pathways that are linked through Tsg101-Nedd4 interaction.
Collapse
Affiliation(s)
- Gisselle Medina
- Departments of Molecular Genetics & Microbiology, State University of New York at Stony Brook, Stony Brook, NY 11794-5222, USA
| | - Yongjun Zhang
- Microbiology & Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yi Tang
- Children’s Memorial Hospital, Chicago, IL 60614, USA
| | - Eva Gottwein
- Departments of Molecular Genetics & Microbiology, State University of New York at Stony Brook, Stony Brook, NY 11794-5222, USA
| | - Marcy L. Vana
- Microbiology & Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Fadila Bouamr
- Departments of Molecular Genetics & Microbiology, State University of New York at Stony Brook, Stony Brook, NY 11794-5222, USA
| | - Jonathan Leis
- Microbiology & Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Carol A. Carter
- Departments of Molecular Genetics & Microbiology, State University of New York at Stony Brook, Stony Brook, NY 11794-5222, USA
| |
Collapse
|
32
|
Ott DE, Coren LV, Gagliardi TD, Nagashima K. Heterologous late-domain sequences have various abilities to promote budding of human immunodeficiency virus type 1. J Virol 2005; 79:9038-45. [PMID: 15994797 PMCID: PMC1168796 DOI: 10.1128/jvi.79.14.9038-9045.2005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Retroviral late (L) domains present within Gag act in conjunction with cellular proteins to efficiently release virions from the surface of the cell. Three different critical core sequences have been identified as required elements for L-domain function: PPPY, PTAP (also PSAP), and YPDL, with different retroviruses utilizing one or two of these core sequences. The human immunodeficiency virus type 1 (HIV-1) L domain is centered around a PTAP sequence in the p6 region of Gag. To assess the ability of heterologous L-domain sequences to be functionally interchanged for those in full-length HIV-1, we produced a series of constructs that replaced PTAP-containing p6(Gag) sequences with those of PPPY- or YPDL-based L domains. While previous studies had found that L domains are interchangeable in other retroviruses, most of the sequences introduced into p6(Gag) failed to substitute for PTAP-mediated L-domain function. One exception was the 11-amino-acid p2b sequence of Rous sarcoma virus (RSV) Gag, which could fully restore HIV-1 budding, while a PPPPY sequence exchange alone did not. This suggests that the RSV L domain consists of more than simply its core L-domain sequence. The HIV-p2b chimera was as infectious as the wild type, produced normal virions, and was sensitive to proteasome inhibitors. These results show that L-domain sequences are not necessarily interchangeable. Thus, HIV-1 Gag might have a more stringent requirement for L-domain function than the other retroviruses previously studied.
Collapse
Affiliation(s)
- David E Ott
- Basic Research Program, SAIC-Frederick, Inc., National Cancer Institute at Frederick, Frederick, Maryland 21702-1201, USA.
| | | | | | | |
Collapse
|
33
|
Segura-Morales C, Pescia C, Chatellard-Causse C, Sadoul R, Bertrand E, Basyuk E. Tsg101 and Alix interact with murine leukemia virus Gag and cooperate with Nedd4 ubiquitin ligases during budding. J Biol Chem 2005; 280:27004-12. [PMID: 15908698 DOI: 10.1074/jbc.m413735200] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Retroviruses use endosomal machinery to bud out of infected cells, and various Gag proteins recruit this machinery by interacting with either of three cellular factors as follows: ubiquitin ligases of the Nedd4 family, Tsg101, or Alix/Aip1. Here we show that the murine leukemia virus Gag has the unique ability to interact with all three factors. Small interfering RNAs against Tsg101 or Alix and dominant-negative forms of Nedd4 can all reduce production of virus-like particles. However, inactivating the Nedd4-binding site abolishes budding, whereas disrupting Tsg101 or Alix binding has milder effects. Nedd4 ubiquitin ligases are therefore essential, and Tsg101 and Alix play auxiliary roles. Most interestingly, overexpression of Alix can stimulate the release of Gag, and this occurs independently of most Alix partners Tsg101, Cin85, Alg-2, and endophilins. In addition, Gag mutants that do not bind Tsg101 or Alix concentrate on late endosomes and become very sensitive to dominant-negative forms of Nedd4 that do not conjugate ubiquitin. This suggests that the direct interaction of Gag with Tsg101 and Alix favors budding from the plasma membrane and relieves a requirement for ubiquitination by Nedd4.1. Other Nedd4-dependent Gag proteins also contain binding sites for Tsg101 or Alix, suggesting that this could be a common feature of retroviruses.
Collapse
|
34
|
Abstract
The release of retrovirus particles from the infected cell is greatly stimulated by short motifs, known as "late" or "L" domains, present within the Gag precursor protein. Three distinct classes of L domains have been identified; these bear the core sequence: Pro-Thr/Ser-Ala-Pro [P(T/S)AP], Pro-Pro-x-Tyr (PPxY), or Tyr-Pro-x-Leu (YPxL). A number of recent studies have demonstrated that L domains function by interacting with components of the machinery responsible for sorting cellular proteins into the multivesicular body (MVB) pathway. This review traces the history of L domain discovery and characterization, and highlights the relationship between L domain activity, retrovirus release, and the host endosomal sorting machinery.
Collapse
Affiliation(s)
- Dimiter G Demirov
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Bldg. 535/Rm. 124, Frederick, MD 21702-1201, USA
| | | |
Collapse
|
35
|
Eastman SW, Martin-Serrano J, Chung W, Zang T, Bieniasz PD. Identification of Human VPS37C, a Component of Endosomal Sorting Complex Required for Transport-I Important for Viral Budding. J Biol Chem 2005; 280:628-36. [PMID: 15509564 DOI: 10.1074/jbc.m410384200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Endosomal sorting complex required for transport-I (ESCRT-I) is one of three defined protein complexes in the class E vacuolar protein sorting (VPS) pathway required for the sorting of ubiquitinated transmembrane proteins into internal vesicles of multivesicular bodies. In yeast, ESCRT-I is composed of three proteins, VSP23, VPS28, and VPS37, whereas in mammals only Tsg101(VPS23) and VPS28 were originally identified as ESCRT-I components. Using yeast two-hybrid screens, we identified one of a family of human proteins (VPS37C) as a Tsg101-binding protein. VPS37C can form a ternary complex with Tsg101 and VPS28 by binding to a domain situated toward the carboxyl terminus of Tsg101 and binds to another class E VPS factor, namely Hrs. In addition, VPS37C is recruited to aberrant endosomes induced by overexpression of Tsg101, Hrs, or dominant negative form of the class E VPS ATPase, VPS4. Enveloped viruses that encode PTAP motifs to facilitate budding exploit ESCRT-I as an interface with the class E VPS pathway, and accordingly, VPS37C is recruited to the plasma membrane along with Tsg101 by human immunodeficiency virus, type 1 (HIV-1) Gag. Moreover, direct fusion of VPS37C to HIV-1 Gag obviates the requirement for a PTAP motif to induce virion release. Depletion of VPS37C from cells does not inhibit murine leukemia virus budding, which is not mediated by ESCRT-I, however, if murine leukemia virus budding is engineered to be ESCRT-I-dependent, then it is inhibited by VPS37C depletion, and this inhibition is accentuated if VPS37B is simultaneously depleted. Thus, this study identifies VPS37C as a functional component of mammalian ESCRT-I.
Collapse
Affiliation(s)
- Scott W Eastman
- Aaron Diamond AIDS Research Center and the Rockefeller University, New York, New York 10016, USA
| | | | | | | | | |
Collapse
|
36
|
Martin-Serrano J, Eastman SW, Chung W, Bieniasz PD. HECT ubiquitin ligases link viral and cellular PPXY motifs to the vacuolar protein-sorting pathway. ACTA ACUST UNITED AC 2004; 168:89-101. [PMID: 15623582 PMCID: PMC2171676 DOI: 10.1083/jcb.200408155] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Many enveloped viruses exploit the class E vacuolar protein-sorting (VPS) pathway to bud from cells, and use peptide motifs to recruit specific class E VPS factors. Homologous to E6AP COOH terminus (HECT) ubiquitin ligases have been implicated as cofactors for PPXY motif–dependent budding, but precisely which members of this family are responsible, and how they access the VPS pathway is unclear. Here, we show that PPXY-dependent viral budding is unusually sensitive to inhibitory fragments derived from specific HECT ubiquitin ligases, namely WWP1 and WWP2. We also show that WWP1, WWP2, or Itch ubiquitin ligase recruitment promotes PPXY-dependent virion release, and that this function requires that the HECT ubiquitin ligase domain be catalytically active. Finally, we show that several mammalian HECT ubiquitin ligases, including WWP1, WWP2, and Itch are recruited to class E compartments induced by dominant negative forms of the class E VPS ATPase, VPS4. These data indicate that specific HECT ubiquitin ligases can link PPXY motifs to the VPS pathway to induce viral budding.
Collapse
Affiliation(s)
- Juan Martin-Serrano
- Aaron Diamond AIDS Research Center and The Rockefeller University, New York, NY 10021, USA
| | | | | | | |
Collapse
|
37
|
Stuchell MD, Garrus JE, Müller B, Stray KM, Ghaffarian S, McKinnon R, Kräusslich HG, Morham SG, Sundquist WI. The Human Endosomal Sorting Complex Required for Transport (ESCRT-I) and Its Role in HIV-1 Budding. J Biol Chem 2004; 279:36059-71. [PMID: 15218037 DOI: 10.1074/jbc.m405226200] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Efficient human immunodeficiency virus type 1 (HIV-1) budding requires an interaction between the PTAP late domain in the viral p6(Gag) protein and the cellular protein TSG101. In yeast, Vps23p/TSG101 binds both Vps28p and Vps37p to form the soluble ESCRT-I complex, which functions in sorting ubiquitylated protein cargoes into multivesicular bodies. Human cells also contain ESCRT-I, but the VPS37 component(s) have not been identified. Bioinformatics and yeast two-hybrid screening methods were therefore used to identify four novel human proteins (VPS37A-D) that share weak but significant sequence similarity with yeast Vps37p and to demonstrate that VPS37A and VPS37B bind TSG101. Detailed studies produced four lines of evidence that human VPS37B is a Vps37p ortholog. 1) TSG101 bound to several different sites on VPS37B, including a putative coiled-coil region and a PTAP motif. 2) TSG101 and VPS28 co-immunoprecipitated with VPS37B-FLAG, and the three proteins comigrated together in soluble complexes of the correct size for human ESCRT-I ( approximately 350 kDa). 3) Like TGS101, VPS37B became trapped on aberrant endosomal compartments in the presence of VPS4A proteins lacking ATPase activity. 4) Finally, VPS37B could recruit TSG101/ESCRT-I activity and thereby rescue the budding of both mutant Gag particles and HIV-1 viruses lacking native late domains. Further studies of ESCRT-I revealed that TSG101 mutations that inhibited PTAP or VPS28 binding blocked HIV-1 budding. Taken together, these experiments define new components of the human ESCRT-I complex and characterize several TSG101 protein/protein interactions required for HIV-1 budding and infectivity.
Collapse
Affiliation(s)
- Melissa D Stuchell
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84132-3201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Affiliation(s)
- Eric O Freed
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Bldg. 535 Rm. 124 Sultan Street, Frederick, MD 21702-1201, USA.
| |
Collapse
|
39
|
Martin-Serrano J, Perez-Caballero D, Bieniasz PD. Context-dependent effects of L domains and ubiquitination on viral budding. J Virol 2004; 78:5554-63. [PMID: 15140952 PMCID: PMC415830 DOI: 10.1128/jvi.78.11.5554-5563.2004] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Many enveloped viruses encode late assembly domains, or L domains, that facilitate virion egress. PTAP-type L domains act by recruiting the ESCRT-I (endosomal sorting complex required for transport I) component Tsg101, and YPXL/LXXLF-type L domains recruit AIP-1/ALIX, both of which are class E vacuolar protein sorting (VPS) factors, normally required for the generation of vesicles within endosomes. The binding cofactors for PPXY-type L domains have not been unambiguously resolved but may include Nedd4-like ubiquitin ligases. Largely because they act as autonomous binding sites for host factors, L domains are generally transferable and active in a context-independent manner. Ebola virus matrix protein (EbVP40) contains two overlapping L-domain motifs within the sequence ILPTAPPEYMEA. Here, we show that both motifs are required for efficient EbVP40 budding. However, upon transplantation into two different retroviral contexts, the relative contributions of the PTAP and PPEY motifs differ markedly. In a murine leukemia virus carrying the EbVP40 sequence, both motifs contributed to overall L domain activity, and budding proceeded in a partly Tsg101-independent manner. Conversely, when transplanted into the context of human immunodeficiency virus type 1 (HIV-1), EbVP40 L-domain activity was entirely due to a PTAP-Tsg101 interaction. In fact, a number of PPXY-type L domains were inactive in the context of HIV-1. Surprisingly, PTAP and YPXL-type L domains that simulated HIV-1 budding reduced the amount of ubiquitin conjugated to Gag, while inactive PPXY-type L domains increased Gag ubiquitination. These observations suggest that active L domains recruit deubiquitinating enzymes as a consequence of class E VPS factor recruitment. Moreover, context-dependent L-domain function may reflect distinct requirements for host functions during the morphogenesis of different viral particles or the underlying presence of additional, as yet undiscovered L domains.
Collapse
|
40
|
Irie T, Licata JM, McGettigan JP, Schnell MJ, Harty RN. Budding of PPxY-containing rhabdoviruses is not dependent on host proteins TGS101 and VPS4A. J Virol 2004; 78:2657-65. [PMID: 14990685 PMCID: PMC353768 DOI: 10.1128/jvi.78.6.2657-2665.2004] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Viral matrix proteins of several enveloped RNA viruses play important roles in virus assembly and budding and are by themselves able to bud from the cell surface in the form of lipid-enveloped, virus-like particles (VLPs). Three motifs (PT/SAP, PPxY, and YxxL) have been identified as late budding domains (L-domains) responsible for efficient budding. L-domains can functionally interact with cellular proteins involved in vacuolar sorting (VPS4A and TSG101) and endocytic pathways (Nedd4), suggesting involvement of these pathways in virus budding. Ebola virus VP40 has overlapping PTAP and PPEY motifs, which can functionally interact with TSG101 and Nedd4, respectively. As for vesicular stomatitis virus (VSV), a PPPY motif within M protein can interact with Nedd4. In addition, M protein has a PSAP sequence downstream of the PPPY motif, but the function of PSAP in budding is not clear. In this study, we compared L-domain functions between Ebola virus and VSV by constructing a chimeric M protein (M40), in which the PPPY motif of VSV M is replaced by the L domains of VP40. The budding efficiency of M40 was 10-fold higher than that of wild-type (wt) M protein. Overexpression of a dominant negative mutant of VPS4A or depletion of cellular TSG101 reduced the budding of only M40-containing VLPs but not that of wt M VLPs or live VSV. These findings suggest that the PSAP motif of M protein is not critical for budding and that there are fundamental differences between PTAP-containing viruses (Ebola virus and human immunodeficiency virus type 1) and PPPY-containing viruses (VSV and rabies virus) regarding their dependence on specific host factors for efficient budding.
Collapse
Affiliation(s)
- Takashi Irie
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
41
|
Hislop JN, Marley A, Von Zastrow M. Role of mammalian vacuolar protein-sorting proteins in endocytic trafficking of a non-ubiquitinated G protein-coupled receptor to lysosomes. J Biol Chem 2004; 279:22522-31. [PMID: 15024011 DOI: 10.1074/jbc.m311062200] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many signaling receptors require covalent modification by ubiquitin for agonist-induced down-regulation via endocytic trafficking to lysosomes, a process that is mediated by a conserved set of endosome-associating proteins also required for vacuolar protein-sorting (VPS) in yeast. The delta opioid receptor (DOR) is a G protein-coupled receptor that can undergo agonist-induced proteolysis via endocytic trafficking to lysosomes but does not require covalent modification by ubiquitin to do so. This raises the question of whether lysosomal down-regulation of this "ubiquitination-independent" GPCR is mediated by a completely distinct biochemical mechanism or if similar VPS machinery is involved. Agonist-induced proteolysis of DOR was significantly inhibited by dominant negative mutant versions of Vps4/Skd1, an AAA-family ATPase required for a late step in lysosomal sorting of ubiquitinated membrane cargo. Furthermore, overexpression and interfering RNA-mediated knockdown indicated that lysosomal trafficking of opioid receptors is also dependent on Hrs, a VPS protein that mediates an early step in lysosomal sorting of ubiquitinated cargo. However, interfering RNA-mediated knockdown of Tsg101, a VPS protein that is essential for an intermediate step of the conserved lysosomal sorting mechanism, did not detectably affect agonist-induced proteolysis of DOR in the same cells in which (ubiquitination-dependent) lysosomal trafficking of epidermal growth factor receptors was clearly inhibited. These results indicate that opioid receptors, despite their ability to undergo efficient agonist-induced trafficking to lysosomes in the absence of covalent modification by ubiquitin, utilize some (Vps4 and Hrs) but perhaps not all (Tsg101) of the VPS machinery required for lysosomal sorting of ubiquitinated membrane cargo.
Collapse
Affiliation(s)
- James N Hislop
- Department of Psychiatry, University of California, San Francisco, California 94143-2140, USA.
| | | | | |
Collapse
|
42
|
Shehu-Xhilaga M, Ablan S, Demirov DG, Chen C, Montelaro RC, Freed EO. Late domain-dependent inhibition of equine infectious anemia virus budding. J Virol 2004; 78:724-32. [PMID: 14694104 PMCID: PMC368837 DOI: 10.1128/jvi.78.2.724-732.2004] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Gag proteins of a number of different retroviruses contain late or L domains that promote the release of virions from the plasma membrane. Three types of L domains have been identified to date: Pro-Thr-Ala-Pro (PTAP), Pro-Pro-X-Tyr, and Tyr-Pro-Asp-Leu. It has previously been demonstrated that overexpression of the N-terminal, E2-like domain of the endosomal sorting factor TSG101 (TSG-5') inhibits human immunodeficiency virus type 1 (HIV-1) release but does not affect the release of the PPPY-containing retrovirus murine leukemia virus (MLV), whereas overexpression of the C-terminal portion of TSG101 (TSG-3') potently disrupts both HIV-1 and MLV budding. In addition, it has been reported that, while the release of a number of retroviruses is disrupted by proteasome inhibitors, equine infectious anemia virus (EIAV) budding is not affected by these agents. In this study, we tested the ability of TSG-5', TSG-3', and full-length TSG101 (TSG-F) overexpression, a dominant negative form of the AAA ATPase Vps4, and proteasome inhibitors to disrupt the budding of EIAV particles bearing each of the three types of L domain. The results indicate that (i) inhibition by TSG-5' correlates with dependence on PTAP; (ii) the release of wild-type EIAV (EIAV/WT) is insensitive to TSG-3', whereas this C-terminal TSG101 fragment potently impairs the budding of EIAV when it is rendered PTAP or PPPY dependent; (iii) budding of all EIAV clones is blocked by dominant negative Vps4; and (iv) EIAV/WT release is not impaired by proteasome inhibitors, while EIAV/PTAP and EIAV/PPPY release is strongly disrupted by these compounds. These findings highlight intriguing similarities and differences in host factor utilization by retroviral L domains and suggest that the insensitivity of EIAV to proteasome inhibitors is conferred by the L domain itself and not by determinants in Gag outside the L domain.
Collapse
Affiliation(s)
- Miranda Shehu-Xhilaga
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-0460, USA
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
Budding through the host-cell membrane is a key step in the life cycle of many viruses. Recent studies of retrovirus replication implicate a large number of cellular proteins in this process.
Collapse
Affiliation(s)
- Melvyn W Yap
- Division of Virology, National Institute for Medical Research, The Ridgeway, London NW7 1AA, UK
| | - Jonathan P Stoye
- Division of Virology, National Institute for Medical Research, The Ridgeway, London NW7 1AA, UK
| |
Collapse
|
44
|
Khor R, McElroy LJ, Whittaker GR. The Ubiquitin-Vacuolar Protein Sorting System is Selectively Required During Entry of Influenza Virus into Host Cells. Traffic 2003; 4:857-68. [PMID: 14617349 DOI: 10.1046/j.1398-9219.2003.0140.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Influenza virus enters cells by endocytosis, and requires the low pH of the late endosome for successful infection. Here, we investigated the requirements for sorting into the multivesicular body pathway of endocytosis. We show that treatment of host cells with the proteasome inhibitors MG132 and lactacystin directly affects the early stages of virus replication. Unlike other viruses, such as retroviruses, influenza virus budding was not affected. The requirement for proteasome function was not shared by two other pH-dependent viruses: Semliki Forest virus and vesicular stomatitis virus. With MG132 treatment, incoming influenza viruses were retained in endosomes that partially colocalized with mannose 6-phosphate receptor, but not with classical markers of early or late endosomes. Colocalization was also observed with Rme-1, which is part of the recycling pathway of endocytosis. In addition, influenza virus entry was dependent on the vacuolar protein sorting pathway, as over-expression of dominant-negative hVPS4 caused arrest of viruses in endosome-like populations that partially colocalized with the hVPS4 protein. Overall, we conclude that influenza virus selectively requires the ubiquitin/vacuolar protein sorting pathway for entry into host cells, and that it must communicate with a specific cellular machinery for intracellular sorting during the initial phase of virus infection.
Collapse
Affiliation(s)
- Rebecca Khor
- Department of Microbiology & Immunology, Cornell University, Ithaca NY 14853, USA
| | | | | |
Collapse
|
45
|
Martin-Serrano J, Yarovoy A, Perez-Caballero D, Bieniasz PD, Yaravoy A. Divergent retroviral late-budding domains recruit vacuolar protein sorting factors by using alternative adaptor proteins. Proc Natl Acad Sci U S A 2003; 100:12414-9. [PMID: 14519844 PMCID: PMC218772 DOI: 10.1073/pnas.2133846100] [Citation(s) in RCA: 331] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2003] [Accepted: 08/20/2003] [Indexed: 01/20/2023] Open
Abstract
The release of enveloped viruses from infected cells often requires a virally encoded activity, termed a late-budding domain (L domain), encoded by essential PTAP, PPXY, or YPDL sequence motifs. PTAP-type L domains recruit one of three endosomal sorting complexes required for transport (ESCRT-I). However, subsequent events in viral budding are poorly defined, and neither YPDL nor PPXY-type L domains require ESCRT-I. Here, we show that ESCRT-I and other class E vacuolar protein sorting (VPS) factors are linked by a complex series of protein-protein interactions. In particular, interactions between ESCRT-I and ESCRT-III are bridged by AIP-1/ALIX, a mammalian orthologue of the yeast class E VPS factor, Bro1. Expression of certain ESCRT-III components as fusion proteins induces a late budding defect that afflicts all three L-domain types, suggesting that ESCRT-III integrity is required in a general manner. Notably, the prototype YPDL-type L domain encoded by equine infectious anemia virus (EIAV) acts by recruiting AIP-1/ALIX and expression of a truncated form of AIP-1/ALIX or small interfering RNA-induced AIP-1/ALIX depletion specifically inhibits EIAV YPDL-type L-domain function. Overall, these findings indicate that L domains subvert a subset of class E VPS factors to mediate viral budding, some of which are required for each of the L-domain types, whereas others apparently act as adaptors to physically link specific L-domain types to the class E VPS machinery.
Collapse
Affiliation(s)
- Juan Martin-Serrano
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|