1
|
Potential Associations of Mutations within the HIV-1 Env and Gag Genes Conferring Protease Inhibitor (PI) Drug Resistance. MICROBIOLOGY RESEARCH 2021. [DOI: 10.3390/microbiolres12040071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
An increasing number of patients in Africa are experiencing virological failure on a second-line antiretroviral protease inhibitor (PI)-containing regimen, even without resistance-associated mutations in the protease region, suggesting a potential role of other genes in PI resistance. Here, we investigated the prevalence of mutations associated with Lopinavir/Ritonavir (LPV/r) failure in the Envelope gene and the possible coevolution with mutations within the Gag-protease (gag-PR) region. Env and Gag-PR sequences generated from 24 HIV-1 subtype C infected patients failing an LPV/r inclusive treatment regimen and 344 subtype C drug-naïve isolates downloaded from the Los Alamos Database were analyzed. Fisher’s exact test was used to determine the differences in mutation frequency. Bayesian network probability was applied to determine the relationship between mutations occurring within the env and gag-PR regions and LPV/r treatment. Thirty-five mutations in the env region had significantly higher frequencies in LPV/r-treated patients. A combination of Env and Gag-PR mutations was associated with a potential pathway to LPV/r resistance. While Env mutations were not directly associated with LPV/r resistance, they may exert pressure through the Gag and minor PR mutation pathways. Further investigations using site-directed mutagenesis are needed to determine the impact of Env mutations alone and in combination with Gag-PR mutations on viral fitness and LPV/r efficacy.
Collapse
|
2
|
Wang H, Li Y, Li Y, Li B, Zhu X, Yan D, Li M, Wu W, Sun M, Yang R. Variations in Env at amino acids 328 and 330 affect HIV-1 replicative fitness and entry inhibitor sensitivity. Virus Res 2021; 299:198424. [PMID: 33862046 DOI: 10.1016/j.virusres.2021.198424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 11/26/2022]
Abstract
While the variations in the HIV-1 Env V3 loop have been the focus of much research to explore its functional effect, how specific mutations of certain amino acids in the V3 loop affect viral fitness remains unclear. In this study, we evaluated a series of natural polymorphisms at positions 328 and 330 with different combinations of adjacent glycosylation sites in the HIV-1 subtype B backbone to address their role in replicative fitness and sensitivity to entry inhibitors based on analysis of env sequence frequency at the population level. Pairwise growth competition experiment showed that wild-type virus with major consensus amino acids obviously had higher replicative fitness (P < 0.001). A change at position 328 to a less frequently occurring amino acid, K, together with a mutated N332 glycosylation site harbored lower fitness and became more sensitive to coreceptor antagonists (AMD3100), fusion inhibitors (T20) and sCD4. A change at position 330 to a less frequently occurring amino acid, Y, together with a mutated N332 glycosylation site resulted in higher fitness and less sensitivity to entry inhibitors (T20, AMD3100, and sCD4), and viruses containing both changes showed intermediate activity. It seems that the H330Y mutation compensated for the reduced replicative capacity caused by the Q328 K mutation. Moreover, viruses that showed lower replicative fitness also exhibited slower entry kinetics, lower levels of replication intermediates and protein packaging, and a lower ability to replicate in primary peripheral blood mononuclear cells (PBMCs). The findings highlight the functional effect of variations at 328 and 330 in the V3 loop on replicative fitness and may benefit HIV-1 treatment by helping predict the sensitivity to entry inhibitors.
Collapse
Affiliation(s)
- Hongye Wang
- Institute of Medical Biology, Pecking Union Medical College and Chinese Academy of Medical Sciences, Kunming, 650118, China
| | - Yang Li
- Unit of HIV Molecular Epidemiology and Virology, State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Ya Li
- Department of Clinical Laboratory, Yunnan Key Laboratory of Laboratory Medicine, Yunnan Innovation Team of Clinical Laboratory and Diagnosis, the First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Bingxiang Li
- Institute of Medical Biology, Pecking Union Medical College and Chinese Academy of Medical Sciences, Kunming, 650118, China
| | - Xiaoyong Zhu
- Institute of Medical Biology, Pecking Union Medical College and Chinese Academy of Medical Sciences, Kunming, 650118, China
| | - Dongshan Yan
- Institute of Medical Biology, Pecking Union Medical College and Chinese Academy of Medical Sciences, Kunming, 650118, China
| | - Mingyu Li
- Department of Clinical Laboratory, Yunnan Key Laboratory of Laboratory Medicine, Yunnan Innovation Team of Clinical Laboratory and Diagnosis, the First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Wenying Wu
- Unit of HIV Molecular Epidemiology and Virology, State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Ming Sun
- Institute of Medical Biology, Pecking Union Medical College and Chinese Academy of Medical Sciences, Kunming, 650118, China.
| | - Rongge Yang
- Unit of HIV Molecular Epidemiology and Virology, State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
3
|
Deep Gene Sequence Cluster Analyses of Multi-Virus-Infected Mucosal Tissue Reveal Enhanced Transmission of Acute HIV-1. J Virol 2021; 95:JVI.01737-20. [PMID: 33177204 PMCID: PMC7925087 DOI: 10.1128/jvi.01737-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/31/2020] [Indexed: 12/12/2022] Open
Abstract
During heterosexual HIV-1 transmission, a genetic bottleneck occurs in the newly infected individual as the virus passes from the mucosa, leading to systemic infection with a single transmitted HIV-1 clone in the recipient. This bottleneck in the recipient has just been described, and the mechanisms involved in this selection process have not been elucidated. Exposure of the genital mucosa to a genetically diverse viral swarm from the donor HIV-1 can result in breakthrough and systemic infection by a single transmitted/founder (TF) virus in the recipient. The highly diverse HIV-1 envelope (Env) in this inoculating viral swarm may have a critical role in transmission and subsequent immune response. Thus, chronic (Envchronic) and acute (Envacute) Env chimeric HIV-1 were tested using multivirus competition assays in human mucosal penile and cervical tissues. Viral competition analysis revealed that Envchronic viruses resided and replicated mainly in the tissue, while Envacute viruses penetrated the human tissue and established infection of CD4+ T cells more efficiently. Analysis of the replication fitness, as tested in peripheral blood mononuclear cells (PBMCs), showed similar replication fitness of Envacute and Envchronic viruses, which did not correlate with transmission fitness in penile tissue. Further, we observed that chimeric Env viruses with higher replication in genital mucosal tissue (chronic Env viruses) had higher binding affinity to C-type lectins. Data presented herein suggest that the inoculating HIV-1 may be sequestered in the genital mucosal tissue (represented by chronic Env HIV-1) but that a single HIV-1 clone (e.g., acute Env HIV-1) can escape this trapped replication for systemic infection. IMPORTANCE During heterosexual HIV-1 transmission, a genetic bottleneck occurs in the newly infected individual as the virus passes from the mucosa, leading to systemic infection with a single transmitted HIV-1 clone in the recipient. This bottleneck in the recipient has just been described (K. Klein et al., PLoS Pathog 14:e1006754, https://doi.org/10.1371/journal.ppat.1006754), and the mechanisms involved in this selection process have not been elucidated. However, understanding mucosal restriction is of the utmost importance for understanding dynamics of infections and for designing focused vaccines. Using our human penile and cervical mucosal tissue models for mixed HIV infections, we provide evidence that HIV-1 from acute/early infection, compared to that from chronic infection, can more efficiently traverse the mucosal epithelium and be transmitted to T cells, suggesting higher transmission fitness. This study focused on the role of the HIV-1 envelope in transmission and provides strong evidence that HIV transmission may involve breaking the mucosal lectin trap.
Collapse
|
4
|
Wei H, Yu D, Geng X, He Y. Defective HIV-1 envelope gene promotes the evolution of the infectious strain through recombination in vitro. BMC Infect Dis 2020; 20:569. [PMID: 32753067 PMCID: PMC7401196 DOI: 10.1186/s12879-020-05288-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/26/2020] [Indexed: 11/10/2022] Open
Abstract
Background HIV-1 produces defective mutants in the process of reproduction. The significance of the mutants has not been well investigated. Methods The plasmids of wild type (HIV-1NL4–3) and Env-defective (HIV-1SG3ΔEnv) HIV-1 were co-transfected into HEK293T cells. The progeny virus was collected to infect MT4 cells. The env gene and near-full-length genome (NFLG) of HIV-1 were amplified and sequenced. The phylogenetic diversity, recombinant patterns and hotspots, and the functionality of HIV-1 Env were determined. Results A total of 42 env genes and 8 NFLGs were successfully amplified and sequenced. Five types of recombinant patterns of env were identified and the same recombinant sites were detected in different patterns. The recombination hotspots were found distributing mainly in conservative regions of env. The recombination between genes of HIV-1NL4–3 and HIV-1SG3Δenv increased the variety of viral quasispecies and resulted in progeny viruses with relative lower infectious ability than that of HIVNL4–3. The defective env genes as well as NFLG could be detected after 20 passages. Conclusion The existence of the defective HIV-1 promotes the phylogenetic evolution of the virus, thus increasing the diversity of virus population. The role of defective genes may be converted from junk genes to useful materials and cannot be neglected in the study of HIV-1 reservoir.
Collapse
Affiliation(s)
- Huamian Wei
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China.,Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Danwei Yu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China.,Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Xiuzhu Geng
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China.,Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Yuxian He
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China. .,Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China.
| |
Collapse
|
5
|
Roy A, Basak S. HIV long-term non-progressors share similar features with simian immunodeficiency virus infection of chimpanzees. J Biomol Struct Dyn 2020; 39:2447-2454. [PMID: 32223527 DOI: 10.1080/07391102.2020.1749129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
HIV-1 infection in human beings has been an outcome of cross-species transmission event of simian immunodeficiency virus from chimpanzees (SIVcpz). Present study reveals differential features of envelope genes representing different categories of HIV-1 disease progression in human beings, namely, rapid progressors (RP), slow progressors (SP) and long-term non-progressors (LTNP) with respect to SIVcpz, based on their amino acid usage patterns. It was evident that SP, LTNP and SIVcpz envelope genes displayed similar patterns of amino acid usage which strongly contrasted with the features exhibited by the envelope genes representing RP category. Robust analysis revealed that selection constraint of human host on SP and LTNP associated envelope genes and chimpanzee host on SIVcpz envelope genes were more severe compared to selection pressure operational on RP associated envelope genes. Evolutionary forces of selection appeared to be comparatively more relaxed on the RP envelope genes in contrast to SP, LTNP and SIVcpz types. Better binding of RP envelope glycoprotein 120 (gp120) compared to envelope gp120 representing SP, LTNP and SIVcpz with host cellular receptor CD4, as inferred employing molecular docking approaches, promises to confer meaningful insights into the event of speedy progression of HIV in rapid progressors. It was interesting to note that envelope glycoprotein exhibited a tendency of hindering proper interaction of host (human/chimpanzee) CD4 and major histocompatibility complex II (MHC II), with a better efficacy in rapid progressors, thus, facilitating highest degrees of immune suppression. Proper identification of the contrasting features might confer a scope to modulate rapid progression of HIV to a long-term non-progressive controlled case, as observed in LTNP and SIVcpz infection, simultaneously aiding therapeutic research against AIDS targeted at drug and vaccine development.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ayan Roy
- Department of Bioinformatics, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | - Surajit Basak
- Division of Bioinformatics, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| |
Collapse
|
6
|
Broad-Spectrum Antiviral Activity of an Ankyrin Repeat Protein on Viral Assembly against Chimeric NL4-3 Viruses Carrying Gag/PR Derived from Circulating Strains among Northern Thai Patients. Viruses 2018; 10:v10110625. [PMID: 30428529 PMCID: PMC6265948 DOI: 10.3390/v10110625] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 01/06/2023] Open
Abstract
Certain proteins have demonstrated proficient human immunodeficiency virus (HIV-1) life cycle disturbance. Recently, the ankyrin repeat protein targeting the HIV-1 capsid, AnkGAG1D4, showed a negative effect on the viral assembly of the HIV-1NL4-3 laboratory strain. To extend its potential for future clinical application, the activity of AnkGAG1D4 in the inhibition of other HIV-1 circulating strains was evaluated. Chimeric NL4-3 viruses carrying patient-derived Gag/PR-coding regions were generated from 131 antiretroviral drug-naïve HIV-1 infected individuals in northern Thailand during 2001–2012. SupT1, a stable T-cell line expressing AnkGAG1D4 and ankyrin non-binding control (AnkA32D3), were challenged with these chimeric viruses. The p24CA sequences were analysed and classified using the K-means clustering method. Among all the classes of virus classified using the p24CA sequences, SupT1/AnkGAG1D4 demonstrated significantly lower levels of p24CA than SupT1/AnkA32D3, which was found to correlate with the syncytia formation. This result suggests that AnkGAG1D4 can significantly interfere with the chimeric viruses derived from patients with different sequences of the p24CA domain. It supports the possibility of ankyrin-based therapy as a broad alternative therapeutic molecule for HIV-1 gene therapy in the future.
Collapse
|
7
|
Casado C, Marrero-Hernández S, Márquez-Arce D, Pernas M, Marfil S, Borràs-Grañana F, Olivares I, Cabrera-Rodríguez R, Valera MS, de Armas-Rillo L, Lemey P, Blanco J, Valenzuela-Fernández A, Lopez-Galíndez C. Viral Characteristics Associated with the Clinical Nonprogressor Phenotype Are Inherited by Viruses from a Cluster of HIV-1 Elite Controllers. mBio 2018; 9:e02338-17. [PMID: 29636433 PMCID: PMC5893881 DOI: 10.1128/mbio.02338-17] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/09/2018] [Indexed: 11/20/2022] Open
Abstract
A small group of HIV-1-infected individuals, called long-term nonprogressors (LTNPs), and in particular a subgroup of LTNPs, elite controllers (LTNP-ECs), display permanent control of viral replication and lack of clinical progression. This control is the result of a complex interaction of host, immune, and viral factors. We identified, by phylogenetic analysis, a cluster of LTNP-ECs infected with very similar low-replication HIV-1 viruses, suggesting the contribution of common viral features to the clinical LTNP-EC phenotype. HIV-1 envelope (Env) glycoprotein mediates signaling and promotes HIV-1 fusion, entry, and infection, being a key factor of viral fitness in vitro, cytopathicity, and infection progression in vivo Therefore, we isolated full-length env genes from viruses of these patients and from chronically infected control individuals. Functional characterization of the initial events of the viral infection showed that Envs from the LTNP-ECs were ineffective in the binding to CD4 and in the key triggering of actin/tubulin-cytoskeleton modifications compared to Envs from chronic patients. The viral properties of the cluster viruses result in a defective viral fusion, entry, and infection, and these properties were inherited by every virus of the cluster. Therefore, inefficient HIV-1 Env functions and signaling defects may contribute to the low viral replication capacity and transmissibility of the cluster viruses, suggesting a direct role in the LTNP-EC phenotype of these individuals. These results highlight the important role of viral characteristics in the LTNP-EC clinical phenotype. These Env viral properties were common to all the cluster viruses and thus support the heritability of the viral characteristics.IMPORTANCE HIV-1 long-term nonprogressor elite controller patients, due to their permanent control of viral replication, have been the object of numerous studies to identify the factors responsible for this clinical phenotype. In this work, we analyzed the viral characteristics of the envelopes of viruses from a phylogenetic cluster of LTNP-EC patients. These envelopes showed ineffective binding to CD4 and the subsequent signaling activity to modify actin/tubulin cytoskeletons, which result in low fusion and deficient entry and infection capacities. These Env viral characteristics could explain the nonprogressor clinical phenotype of these patients. In addition, these inefficient env viral properties were present in all viruses of the cluster, supporting the heritability of the viral phenotype.
Collapse
Affiliation(s)
- Concepción Casado
- Unidad de Virologia Molecular, Laboratorio de Referencia e Investigación en Retrovirus, Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos IIII, Majadahonda, Madrid, Spain
| | - Sara Marrero-Hernández
- Laboratorio de Inmunología Celular y Viral, Unidad de Virología IUETSPC, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), Tenerife, Spain
| | - Daniel Márquez-Arce
- Laboratorio de Inmunología Celular y Viral, Unidad de Virología IUETSPC, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), Tenerife, Spain
| | - María Pernas
- Unidad de Virologia Molecular, Laboratorio de Referencia e Investigación en Retrovirus, Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos IIII, Majadahonda, Madrid, Spain
| | - Sílvia Marfil
- Institut de Recerca de la Sida IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Ferran Borràs-Grañana
- Institut de Recerca de la Sida IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Isabel Olivares
- Unidad de Virologia Molecular, Laboratorio de Referencia e Investigación en Retrovirus, Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos IIII, Majadahonda, Madrid, Spain
| | - Romina Cabrera-Rodríguez
- Laboratorio de Inmunología Celular y Viral, Unidad de Virología IUETSPC, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), Tenerife, Spain
| | - María-Soledad Valera
- Laboratorio de Inmunología Celular y Viral, Unidad de Virología IUETSPC, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), Tenerife, Spain
| | - Laura de Armas-Rillo
- Laboratorio de Inmunología Celular y Viral, Unidad de Virología IUETSPC, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), Tenerife, Spain
| | - Philippe Lemey
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, University of Leuven, Leuven, Belgium
| | - Julià Blanco
- Institut de Recerca de la Sida IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Badalona, Spain
- Universitat de Vic, Universitat Central de Catalunya, UVIC, Vic, Spain
| | - Agustín Valenzuela-Fernández
- Laboratorio de Inmunología Celular y Viral, Unidad de Virología IUETSPC, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), Tenerife, Spain
| | - Cecilio Lopez-Galíndez
- Unidad de Virologia Molecular, Laboratorio de Referencia e Investigación en Retrovirus, Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos IIII, Majadahonda, Madrid, Spain
| |
Collapse
|
8
|
Beraud C, Lemaire M, Perez Bercoff D. Reassessment of the capacity of the HIV-1 Env cytoplasmic domain to trigger NF-κB activation. Virol J 2018; 15:35. [PMID: 29454367 PMCID: PMC5816530 DOI: 10.1186/s12985-018-0941-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/31/2018] [Indexed: 02/07/2023] Open
Abstract
The cytoplasmic domain of lentiviral Envelopes (EnvCD) ensures Env incorporation into nascent virions and regulates Env trafficking to and from the plasma membrane. It has also been reported to promote transcription from the viral LTR both directly and indirectly. Noticeably, the HIV-1 and SIVmac239 EnvCDs were described to trigger nuclear translocation of NF-κB (Postler, Cell Host Microbes 2012). Given the paramount importance of identifying viral and host factors regulating HIV transcription, cellular signaling pathways and latency, and given that viral replication capacity is dependent on Env, we asked whether HIV EnvCDs from different HIV-1 subtypes differently modulated NF-κB. To that aim, we evaluated the ability of primary HIV-1 Envs from subtypes B and C to activate the NF-κB pathway. Primary subtype B and C Envs all failed to activate the NF-κB pathway. In contrast, when the EnvCD of HIV-1 Envs was fused to the the CD8-α chain, it induced ~ 10-fold increase in NF-κB induction, and this increase was much stronger with a truncated form of the HIV EnvCD lacking the 76 C-terminal residues and containing the proposed TAK-1 binding domain. Our results indicate that the HIV-1 EnvCD is unlikely to trigger the NF-κB pathway in its native trimeric form.
Collapse
Affiliation(s)
- Cyprien Beraud
- Department of Infection and Immunity, Molecular Signaling and Virus-Host Interactions group, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg
| | - Morgane Lemaire
- Department of Infection and Immunity, Molecular Signaling and Virus-Host Interactions group, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg
| | - Danielle Perez Bercoff
- Department of Infection and Immunity, Molecular Signaling and Virus-Host Interactions group, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
9
|
Mother-to-Child HIV Transmission Bottleneck Selects for Consensus Virus with Lower Gag-Protease-Driven Replication Capacity. J Virol 2017. [PMID: 28637761 DOI: 10.1128/jvi.00518-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
In the large majority of cases, HIV infection is established by a single variant, and understanding the characteristics of successfully transmitted variants is relevant to prevention strategies. Few studies have investigated the viral determinants of mother-to-child transmission. To determine the impact of Gag-protease-driven viral replication capacity on mother-to-child transmission, the replication capacities of 148 recombinant viruses encoding plasma-derived Gag-protease from 53 nontransmitter mothers, 48 transmitter mothers, and 47 infected infants were assayed in an HIV-1-inducible green fluorescent protein reporter cell line. All study participants were infected with HIV-1 subtype C. There was no significant difference in replication capacities between the nontransmitter (n = 53) and transmitter (n = 44) mothers (P = 0.48). Infant-derived Gag-protease NL4-3 recombinant viruses (n = 41) were found to have a significantly lower Gag-protease-driven replication capacity than that of viruses derived from the mothers (P < 0.0001 by a paired t test). High percent similarities to consensus subtype C Gag, p17, p24, and protease sequences were also found in the infants (n = 28) in comparison to their mothers (P = 0.07, P = 0.002, P = 0.03, and P = 0.02, respectively, as determined by a paired t test). These data suggest that of the viral quasispecies found in mothers, the HIV mother-to-child transmission bottleneck favors the transmission of consensus-like viruses with lower viral replication capacities.IMPORTANCE Understanding the characteristics of successfully transmitted HIV variants has important implications for preventative interventions. Little is known about the viral determinants of HIV mother-to-child transmission (MTCT). We addressed the role of viral replication capacity driven by Gag, a major structural protein that is a significant determinant of overall viral replicative ability and an important target of the host immune response, in the MTCT bottleneck. This study advances our understanding of the genetic bottleneck in MTCT by revealing that viruses transmitted to infants have a lower replicative ability as well as a higher similarity to the population consensus (in this case HIV subtype C) than those of their mothers. Furthermore, the observation that "consensus-like" virus sequences correspond to lower in vitro replication abilities yet appear to be preferentially transmitted suggests that viral characteristics favoring transmission are decoupled from those that enhance replicative capacity.
Collapse
|
10
|
Roy A, Banerjee R, Basak S. HIV Progression Depends on Codon and Amino Acid Usage Profile of Envelope Protein and Associated Host-Genetic Influence. Front Microbiol 2017; 8:1083. [PMID: 28663742 PMCID: PMC5471322 DOI: 10.3389/fmicb.2017.01083] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/29/2017] [Indexed: 11/30/2022] Open
Abstract
Acquired immune deficiency syndrome (AIDS) is a spectrum of conditions caused by infection with the human immunodeficiency virus (HIV). Two types of HIV have been characterized: HIV-1 and HIV-2. The present study investigated whether evolutionary selection pressure differs between rapid progressor (RP), slow progressor (SP), and long-term non-progressor (LTNP) of HIV-I infected individuals. An unexpected association between the evolutionary rate of substitution in envelope (env) gene and disease progression is observed. Our present study suggests that env genes of LTNP are subject to unusually strong functional constraint with respect to RP. We also observed that the three categories of env genes i.e., RP, SP, and LTNP, had their own characteristic pattern of amino acid usage and SP and LTNP sequences shared similar patterns of amino acid usage different from RP sequences and evolutionary rate significantly influenced the amino acid usage pattern of the three different types of env gene sequences. It was also noted that the evolutionary rate for the glycosylation sites of LTNP and SP sequences were even significantly less than the RP sequences. Comparative analysis on the influence of human host on the three categories of env genes are well correlated with the rates of disease progression suggesting the adaptive strategies of the viruses for successful residence and infection. Host associated selective constraints appeared most relaxed on the RP sequences and strongest in LTNP sequences. The present study clearly portrays how evolutionary selection pressure differs between three categories of env genes i.e., RP, SP, and LTNP. The env genes, coding for the env glycoproteins, experience severe selection constraints from the host due to their constant exposure to the host immune system. In this perspective it might be suggested that env gene evolution occurs mainly by negative selection with the occurrence of mutation that might not reach fixation in the viral population. This work also confers a deeper insight into the crucial effects of host factors that govern the overall progression of HIV infection.
Collapse
Affiliation(s)
- Ayan Roy
- Department of Botany, Bioinformatics Facility, University of North BengalSiliguri, India
| | - Rachana Banerjee
- Structural Biology and Bio-Informatics Division, CSIR-Indian Institute of Chemical BiologyKolkata, India
| | - Surajit Basak
- Department of Molecular Biology and Bioinformatics, Tripura UniversityAgartala, India.,Bioinformatics Centre, Tripura UniversityAgartala, India
| |
Collapse
|
11
|
Replication Capacity of Viruses from Acute Infection Drives HIV-1 Disease Progression. J Virol 2017; 91:JVI.01806-16. [PMID: 28148791 DOI: 10.1128/jvi.01806-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/19/2017] [Indexed: 01/09/2023] Open
Abstract
The viral genotype has been shown to play an important role in HIV pathogenesis following transmission. However, the viral phenotypic properties that contribute to disease progression remain unclear. Most studies have been limited to the evaluation of Gag function in the context of a recombinant virus backbone. Using this approach, important biological information may be lost, making the evaluation of viruses obtained during acute infection, representing the transmitted virus, a more biologically relevant model. Here, we evaluate the roles of viral infectivity and the replication capacity of viruses from acute infection in disease progression in women who seroconverted in the CAPRISA 004 tenofovir microbicide trial. We show that viral replication capacity, but not viral infectivity, correlates with the set point viral load (Spearman r = 0.346; P = 0.045) and that replication capacity (hazard ratio [HR] = 4.52; P = 0.01) can predict CD4 decline independently of the viral load (HR = 2.9; P = 0.004) or protective HLA alleles (HR = 0.61; P = 0.36). We further demonstrate that Gag-Pro is not the main driver of this association, suggesting that additional properties of the transmitted virus play a role in disease progression. Finally, we find that although viruses from the tenofovir arm were 2-fold less infectious, they replicated at rates similar to those of viruses from the placebo arm. This indicates that the use of tenofovir gel did not select for viral variants with higher replication capacity. Overall, this study supports a strong influence of the replication capacity in acute infection on disease progression, potentially driven by interaction of multiple genes rather than a dominant role of the major structural gene gagIMPORTANCE HIV disease progression is known to differ between individuals, and defining which fraction of this variation can be attributed to the virus is important both clinically and epidemiologically. In this study, we show that the replication capacity of viruses isolated during acute infection predicts subsequent disease progression and drives CD4 decline independently of the viral load. This provides further support for the hypothesis that the replication capacity of the transmitted virus determines the initial damage to the immune system, setting the pace for later disease progression. However, we did not find evidence that the major structural gene gag drives this correlation, highlighting the importance of other genes in determining disease progression.
Collapse
|
12
|
Weber J, Gibson RM, Sácká L, Strunin D, Hodek J, Weberová J, Pávová M, Alouani DJ, Asaad R, Rodriguez B, Lederman MM, Quiñones-Mateu ME. Impaired human immunodeficiency virus type 1 replicative fitness in atypical viremic non-progressor individuals. AIDS Res Ther 2017; 14:15. [PMID: 28331526 PMCID: PMC5359922 DOI: 10.1186/s12981-017-0144-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/15/2017] [Indexed: 01/15/2023] Open
Abstract
Background Progression rates from initial HIV-1 infection to advanced AIDS vary significantly among infected individuals. A distinct subgroup of HIV-1-infected individuals—termed viremic non-progressors (VNP) or controllers—do not seem to progress to AIDS, maintaining high CD4+ T cell counts despite high levels of viremia for many years. Several studies have evaluated multiple host factors, including immune activation, trying to elucidate the atypical HIV-1 disease progression in these patients; however, limited work has been done to characterize viral factors in viremic controllers. Methods We analyzed HIV-1 isolates from three VNP individuals and compared the replicative fitness, near full-length HIV-1 genomes and intra-patient HIV-1 genetic diversity with viruses from three typical (TP) and one rapid (RP) progressor individuals. Results Viremic non-progressors and typical patients were infected for >10 years (range 10–17 years), with a mean CD4+ T-cell count of 472 cells/mm3 (442–529) and 400 cells/mm3 (126–789), respectively. VNP individuals had a less marked decline in CD4+ cells (mean −0.56, range −0.4 to −0.7 CD4+/month) than TP patients (mean −10.3, −8.2 to −13.1 CD4+/month). Interestingly, VNP individuals carried viruses with impaired replicative fitness, compared to HIV-1 isolates from the TP and RP patients (p < 0.05, 95% CI). Although analyses of the near full-length HIV-1 genomes showed no clear patterns of single-nucleotide polymorphisms (SNP) that could explain the decrease in replicative fitness, both the number of SNPs and HIV-1 population diversity correlated inversely with the replication capacity of the viruses (r = −0.956 and r = −0.878, p < 0.01, respectively). Conclusion It is likely that complex multifactorial parameters govern HIV-1 disease progression in each individual, starting with the infecting virus (phenotype, load, and quasispecies diversity) and the intrinsic ability of the host to respond to the infection. Here we analyzed a subset of viremic controller patients and demonstrated that similar to the phenomenon observed in patients with a discordant response to antiretroviral therapy (i.e., high CD4+ cell counts with detectable plasma HIV-1 RNA load), reduced viral replicative fitness seems to be linked to slow disease progression in these antiretroviral-naïve individuals. Electronic supplementary material The online version of this article (doi:10.1186/s12981-017-0144-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jan Weber
- 0000 0001 1015 3316grid.418095.1Institute of Organic Chemistry and Biochemistry v.v.i., Academy of Sciences of the Czech Republic, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Richard M Gibson
- 0000 0000 9149 4843grid.443867.aUniversity Hospital Translational Laboratory, University Hospitals Cleveland Medical Center, Cleveland, OH USA
| | - Lenka Sácká
- 0000 0001 1015 3316grid.418095.1Institute of Organic Chemistry and Biochemistry v.v.i., Academy of Sciences of the Czech Republic, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Dmytro Strunin
- 0000 0001 1015 3316grid.418095.1Institute of Organic Chemistry and Biochemistry v.v.i., Academy of Sciences of the Czech Republic, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Jan Hodek
- 0000 0001 1015 3316grid.418095.1Institute of Organic Chemistry and Biochemistry v.v.i., Academy of Sciences of the Czech Republic, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Jitka Weberová
- 0000 0001 1015 3316grid.418095.1Institute of Organic Chemistry and Biochemistry v.v.i., Academy of Sciences of the Czech Republic, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Marcela Pávová
- 0000 0001 1015 3316grid.418095.1Institute of Organic Chemistry and Biochemistry v.v.i., Academy of Sciences of the Czech Republic, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - David J Alouani
- 0000 0000 9149 4843grid.443867.aUniversity Hospital Translational Laboratory, University Hospitals Cleveland Medical Center, Cleveland, OH USA
| | - Robert Asaad
- 0000 0001 2164 3847grid.67105.35Department of Medicine, Case Western Reserve University/University Hospitals Cleveland Medical Center, 10900 Euclid Avenue, Cleveland, OH 44106-7288 USA
| | - Benigno Rodriguez
- 0000 0001 2164 3847grid.67105.35Department of Medicine, Case Western Reserve University/University Hospitals Cleveland Medical Center, 10900 Euclid Avenue, Cleveland, OH 44106-7288 USA
| | - Michael M Lederman
- 0000 0001 2164 3847grid.67105.35Department of Medicine, Case Western Reserve University/University Hospitals Cleveland Medical Center, 10900 Euclid Avenue, Cleveland, OH 44106-7288 USA
| | - Miguel E Quiñones-Mateu
- 0000 0000 9149 4843grid.443867.aUniversity Hospital Translational Laboratory, University Hospitals Cleveland Medical Center, Cleveland, OH USA ; 0000 0001 2164 3847grid.67105.35Department of Medicine, Case Western Reserve University/University Hospitals Cleveland Medical Center, 10900 Euclid Avenue, Cleveland, OH 44106-7288 USA ; 0000 0001 2164 3847grid.67105.35Department of Pathology, Case Western Reserve University, Cleveland, OH USA
| |
Collapse
|
13
|
Harada S, Yoshimura K. Driving HIV-1 into a Vulnerable Corner by Taking Advantage of Viral Adaptation and Evolution. Front Microbiol 2017; 8:390. [PMID: 28360890 PMCID: PMC5352695 DOI: 10.3389/fmicb.2017.00390] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 02/24/2017] [Indexed: 12/12/2022] Open
Abstract
Anti-retroviral therapy (ART) is crucial for controlling human immunodeficiency virus type-1 (HIV-1) infection. Recently, progress in identifying and characterizing highly potent broadly neutralizing antibodies has provided valuable templates for HIV-1 therapy and vaccine design. Nevertheless, HIV-1, like many RNA viruses, exhibits genetically diverse populations known as quasispecies. Evolution of quasispecies can occur rapidly in response to selective pressures, such as that exerted by ART and the immune system. Hence, rapid viral evolution leading to drug resistance and/or immune evasion is a significant barrier to the development of effective HIV-1 treatments and vaccines. Here, we describe our recent investigations into evolutionary pressure exerted by anti-retroviral drugs and monoclonal neutralizing antibodies (NAbs) on HIV-1 envelope sequences. We also discuss sensitivities of HIV-1 escape mutants to maraviroc, a CCR5 inhibitor, and HIV-1 sensitized to NAbs by small-molecule CD4-mimetic compounds. These studies help to develop an understanding of viral evolution and escape from both anti-retroviral drugs and the immune system, and also provide fundamental insights into the combined use of NAbs and entry inhibitors. These findings of the adaptation and evolution of HIV in response to drug and immune pressure will inform the development of more effective antiviral therapeutic strategies.
Collapse
Affiliation(s)
- Shigeyoshi Harada
- AIDS Research Center, National Institute of Infectious Diseases Tokyo, Japan
| | - Kazuhisa Yoshimura
- AIDS Research Center, National Institute of Infectious Diseases Tokyo, Japan
| |
Collapse
|
14
|
Infection of rhesus macaques with a pool of simian immunodeficiency virus with the envelope genes from acute HIV-1 infections. AIDS Res Ther 2016; 13:41. [PMID: 27906032 PMCID: PMC5124249 DOI: 10.1186/s12981-016-0125-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/16/2016] [Indexed: 01/29/2023] Open
Abstract
Background New simian–human immunodeficiency chimeric viruses with an HIV-1 env (SHIVenv) are critical for studies on HIV pathogenesis, vaccine development, and microbicide testing. Macaques are typically exposed to single CCR5-using SHIVenv which in most instances does not reflect the conditions during acute/early HIV infection (AHI) in humans. Instead of individual and serial testing new SHIV constructs, a pool of SHIVenv_B derived from 16 acute HIV-1 infections were constructed using a novel yeast-based SHIV cloning approach and then used to infect macaques. Results Even though none of the 16 SHIVenvs contained the recently reported mutations in env genes that could significantly enhance their binding affinity to RhCD4, one SHIVenv (i.e. SHIVenv_B3-PRB926) established infection in macaques exposed to this pool. AHI SHIVenv_B viruses as well as their HIVenv_B counterparts were analyzed for viral protein content, function, and fitness to identify possible difference between SHIVenv_B3-PRB926 and the other 15 SHIVenvs in the pool. All of the constructs produced SHIV or HIV chimeric with wild type levels of capsid (p27 and p24) content, reverse transcriptase (RT) activity, and expressed envelope glycoproteins that could bind to cell receptors CD4/CCR5 and mediate virus entry. HIV-1env_B chimeric viruses were propagated in susceptible cell lines but the 16 SHIVenv_B variants showed only limited replication in macaque peripheral blood mononuclear cells (PBMCs) and 174×CEM.CCR5 cell line. AHI chimeric viruses including HIVenv_B3 showed only minor variations in cell entry efficiency and kinetics as well as replicative fitness in human PBMCs. Reduced number of N-link glycosylation sites and slightly greater CCR5 affinity/avidity was the only distinguishing feature of env_B3 versus other AHI env’s in the pool, a feature also observed in the HIV establishing new infections in humans. Conclusion Despite the inability to propagate in primary cells and cell lines, a pool of 16 SHIVenv viruses could establish infection but only one virus, SHIVenv_B3 was isolated in the macaque and then shown to repeatedly infected macaques. This SHIVenv_B3 virus did not show any distinct phenotypic property from the other 15 SHIVenv viruses but did have the fewest N-linked glycosylation sites. Electronic supplementary material The online version of this article (doi:10.1186/s12981-016-0125-8) contains supplementary material, which is available to authorized users.
Collapse
|
15
|
The Envelope Cytoplasmic Tail of HIV-1 Subtype C Contributes to Poor Replication Capacity through Low Viral Infectivity and Cell-to-Cell Transmission. PLoS One 2016; 11:e0161596. [PMID: 27598717 PMCID: PMC5012655 DOI: 10.1371/journal.pone.0161596] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/08/2016] [Indexed: 12/15/2022] Open
Abstract
The cytoplasmic tail (gp41CT) of the HIV-1 envelope (Env) mediates Env incorporation into virions and regulates Env intracellular trafficking. Little is known about the functional impact of variability in this domain. To address this issue, we compared the replication of recombinant virus pairs carrying the full Env (Env viruses) or the Env ectodomain fused to the gp41CT of NL4.3 (EnvEC viruses) (12 subtype C and 10 subtype B pairs) in primary CD4+ T-cells and monocyte-derived-macrophages (MDMs). In CD4+ T-cells, replication was as follows: B-EnvEC = B-Env>C-EnvEC>C-Env, indicating that the gp41CT of subtype C contributes to the low replicative capacity of this subtype. In MDMs, in contrast, replication capacity was comparable for all viruses regardless of subtype and of gp41CT. In CD4+ T-cells, viral entry, viral release and viral gene expression were similar. However, infectivity of free virions and cell-to-cell transmission of C-Env viruses released by CD4+ T-cells was lower, suggestive of lower Env incorporation into virions. Subtype C matrix only minimally rescued viral replication and failed to restore infectivity of free viruses and cell-to-cell transmission. Taken together, these results show that polymorphisms in the gp41CT contribute to viral replication capacity and suggest that the number of Env spikes per virion may vary across subtypes. These findings should be taken into consideration in the design of vaccines.
Collapse
|
16
|
Gordon K, Omar S, Nofemela A, Bandawe G, Williamson C, Woodman Z. Short Communication: A Recombinant Variant with Increased Envelope Entry Efficiency Emerged During Early Infection of an HIV-1 Subtype C Dual Infected Rapid Progressor. AIDS Res Hum Retroviruses 2016; 32:303-10. [PMID: 25905681 DOI: 10.1089/aid.2014.0100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mutations in functionally constrained sites of the HIV envelope (Env) can affect entry efficiency and are potential targets for vaccine and drug design. We investigated Du151, a dual-infected individual with rapid disease progression. At her death 19 months postinfection (mpi), she was infected with a recombinant variant, which outgrew both parental viruses. We aimed to determine whether the recombinant virus had enhanced Env entry efficiency compared to the parental viruses and to identify the functional determinant. We generated 15 env clones at 1, 2, 8, and 19 mpi. Pseudovirus carrying a recombinant Env clone (PSV clone), C18 (19 mpi), had significantly higher entry efficiency compared to the parents, suggesting that the recombinant virus had enhanced fitness. To identify the functional determinant, we compared two recombinant PSV clones (C18 and C63)-differing in entry efficiency (2-fold) and by four and three amino acids in gp120 and gp41, respectively. The increased entry efficiency of a C18-gp41 PSV chimera indicated that the three amino acids in the C18 gp41 region were involved (K658, G671, and F717). Site-directed mutagenesis of the three amino acids of C63 showed that a single amino acid mutation, R658K, increased pseudovirion entry efficiency. The introduction of R658 into two PSV clones (C1 and C18) decreased their entry efficiency, suggesting that R658 carries a fitness cost. Thus, our data suggest that a recombinant virus emerged at 19 mpi with enhanced Env entry efficiency. Therefore, K658 in gp41 could in part be a contributing factor to the increased viral load and rapid disease progression of Du151.
Collapse
Affiliation(s)
- Kerry Gordon
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Shatha Omar
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Andile Nofemela
- Division of Medical Virology and the Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Gama Bandawe
- Division of Medical Virology and the Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Carolyn Williamson
- Division of Medical Virology and the Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- National Health Laboratory Services, Groote Schuur Hospital, Cape Town, South Africa
| | - Zenda Woodman
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
17
|
Heterogeneous Evolution of HIV-1 CRF01_AE in Men Who Have Sex with Men (MSM) and Other Populations in China. PLoS One 2015; 10:e0143699. [PMID: 26623642 PMCID: PMC4666620 DOI: 10.1371/journal.pone.0143699] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 11/08/2015] [Indexed: 11/30/2022] Open
Abstract
Introduction The HIV epidemic in men who have sex with men (MSM) continues to grow in most countries. However, the phylodynamic and virological differences among HIV-1 strains circulating in MSM and other populations are not well characterized. Methods Nearly full-length genomes (NFLGs) of the HIV-1 CRF01_AE were obtained from the Los Alamos HIV database. Phylogenetic analyses were conducted using the NFLG, gag, pol and env genes, using the maximum likelihood method. Selection pressure analyses at the codon level were performed for each gene in the phylogenetic clusters using PAML. Results Sequences isolated from MSM in China clustered in Clusters 1 (92.5%) and 2 (85.71%). The major risk factor for Cluster 3 was heterosexual transmission (62.16%). The ratio of non-synonymous to synonymous substitutions in the env gene (0.7–0.75) was higher than the gag (0.26–0.34) or pol (0.21–0.26) genes. In env gene, Cluster 1 (4.56×10-3subs/site/year) and 2 (6.01×10-3subs/site/year) had higher evolutionary rates than Cluster 3 (1.14×10-3subs/site/year). Positive selection affected 4.2–6.58% of the amino acid sites in the env gene. Two sites (HXB2:136 and 316) evolved similarly in Clusters 1 and 2, but not Cluster 3. Conclusion The HIV-1 CRF01_AE in MSM is evolving differently than in other populations.
Collapse
|
18
|
Sciaranghella G, Wang C, Hu H, Anastos K, Merhi Z, Nowicki M, Stanczyk FZ, Greenblatt RM, Cohen M, Golub ET, Watts DH, Alter G, Young MA, Tsibris AMN. CCR5 Expression Levels in HIV-Uninfected Women Receiving Hormonal Contraception. J Infect Dis 2015; 212:1397-401. [PMID: 25895986 DOI: 10.1093/infdis/jiv233] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 03/19/2015] [Indexed: 11/12/2022] Open
Abstract
Human immunodeficiency virus (HIV) infectivity increases as receptor/coreceptor expression levels increase. We determined peripheral CD4, CCR5, and CXCR4 expression levels in HIV-uninfected women who used depot medroxyprogesterone acetate (DMPA; n = 32), the levonorgestrel-releasing intrauterine device (LNG-IUD; n = 27), oral contraceptive pills (n = 32), or no hormonal contraception (n = 33). The use of LNG-IUD increased the proportion of CD4(+) and CD8(+) T cells that expressed CCR5; increases in the magnitude of T-cell subset CCR5 expression were observed with DMPA and LNG-IUD use (P < .01 for all comparisons). LNG-IUD and, to a lesser extent, DMPA use were associated with increased peripheral T-cell CCR5 expression.
Collapse
Affiliation(s)
| | - Cuiwei Wang
- Georgetown University Medical Center, Washington D.C
| | - Haihong Hu
- Georgetown University Medical Center, Washington D.C
| | - Kathryn Anastos
- Department of Medicine, Albert Einstein College of Medicine, Bronx Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx
| | - Zaher Merhi
- Department of Obstetrics and Gynecology, Division of Reproductive Biology, New York University School of Medicine, New York
| | - Marek Nowicki
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles
| | - Frank Z Stanczyk
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles
| | - Ruth M Greenblatt
- Department of Clinical Pharmacy, University of California, San Francisco Department of Medicine, University of California, San Francisco Department of Biostatistics, University of California, San Francisco Department of Epidemiology, University of California, San Francisco
| | - Mardge Cohen
- Department of Medicine, Stroger Hospital Department of Medicine, Rush University CORE Center, Chicago, Illinois
| | - Elizabeth T Golub
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore
| | - D Heather Watts
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Boston, Massachusetts
| | - Mary A Young
- Georgetown University Medical Center, Washington D.C
| | - Athe M N Tsibris
- Brigham and Women's Hospital, Boston, Massachusetts Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
19
|
Willett BJ, Hosie MJ. The virus-receptor interaction in the replication of feline immunodeficiency virus (FIV). Curr Opin Virol 2013; 3:670-5. [PMID: 23992667 PMCID: PMC3857596 DOI: 10.1016/j.coviro.2013.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 08/05/2013] [Accepted: 08/06/2013] [Indexed: 01/21/2023]
Abstract
The feline and human immunodeficiency viruses (FIV and HIV) target helper T cells selectively, and in doing so they induce a profound immune dysfunction. The primary determinant of HIV cell tropism is the expression pattern of the primary viral receptor CD4 and co-receptor(s), such as CXCR4 and CCR5. FIV employs a distinct strategy to target helper T cells; a high affinity interaction with CD134 (OX40) is followed by binding of the virus to its sole co-receptor, CXCR4. Recent studies have demonstrated that the way in which FIV interacts with its primary receptor, CD134, alters as infection progresses, changing the cell tropism of the virus. This review examines the contribution of the virus-receptor interaction to replication in vivo as well as the significance of these findings to the development of vaccines and therapeutics.
Collapse
Affiliation(s)
- Brian J Willett
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom.
| | | |
Collapse
|
20
|
Smith SA, Wood C, West JT. HIV-1 Env C2-V4 diversification in a slow-progressor infant reveals a flat but rugged fitness landscape. PLoS One 2013; 8:e63094. [PMID: 23638182 PMCID: PMC3639246 DOI: 10.1371/journal.pone.0063094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 03/28/2013] [Indexed: 11/19/2022] Open
Abstract
Human immunodeficiency virus type-1 (HIV-1) fitness has been associated with virus entry, a process mediated by the envelope glycoprotein (Env). We previously described Env genetic diversification in a Zambian, subtype C infected, slow-progressor child (1157i) in parallel with an evolving neutralizing antibody response. Because of the role the Variable-3 loop (V3) plays in transmission, cell tropism, neutralization sensitivity, and fitness, longitudinally isolated 1157i C2-V4 alleles were cloned into HIV-1NL4-3-eGFP and -DsRed2 infectious molecular clones. The fluorescent reporters allowed for dual-infection competitions between all patient-derived C2-V4 chimeras to quantify the effect of V3 diversification and selection on fitness. 'Winners' and 'losers' were readily discriminated among the C2-V4 alleles. Exceptional sensitivity for detection of subtle fitness differences was revealed through analysis of two alleles differing in a single synonymous amino acid. However, when the outcomes of N = 33 competitions were averaged for each chimera, the aggregate analysis showed that despite increasing diversification and divergence with time, natural selection of C2-V4 sequences in this individual did not appear to be producing a 'survival of the fittest' evolutionary pattern. Rather, we detected a relatively flat fitness landscape consistent with mutational robustness. Fitness outcomes were then correlated with individual components of the entry process. Env incorporation into particles correlated best with fitness, suggesting a role for Env avidity, as opposed to receptor/coreceptor affinity, in defining fitness. Nevertheless, biochemical analyses did not identify any step in HIV-1 entry as a dominant determinant of fitness. Our results lead us to conclude that multiple aspects of entry contribute to maintaining adequate HIV-1 fitness, and there is no surrogate analysis for determining fitness. The capacity for subtle polymorphisms in Env to nevertheless significantly impact viral fitness suggests fitness is best defined by head-to-head competition.
Collapse
Affiliation(s)
- S. Abigail Smith
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Charles Wood
- Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska, United States of America
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
| | - John T. West
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| |
Collapse
|
21
|
Chikere K, Chou T, Gorry PR, Lee B. Affinofile profiling: how efficiency of CD4/CCR5 usage impacts the biological and pathogenic phenotype of HIV. Virology 2013; 435:81-91. [PMID: 23217618 DOI: 10.1016/j.virol.2012.09.043] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 09/28/2012] [Indexed: 11/25/2022]
Abstract
HIV-1 envelope (Env) uses CD4 and a coreceptor (CCR5 and/or CXCR4) for viral entry. The efficiency of receptor/coreceptor mediated entry has important implications for HIV pathogenesis and transmission. The advent of CCR5 inhibitors in clinical use also underscores the need for quantitative and predictive tools that can guide therapeutic management. Historically, measuring the efficiency of CD4/CCR5 mediated HIV entry has relied on surrogate and relatively slow throughput assays that cannot adequately capture the full spectrum of Env phenotypes. In this review, we discuss the details of the Affinofile receptor affinity profiling system that has provided a quantitative and higher throughput method to characterize viral entry efficiency as a function of CD4 and CCR5 expression levels. We will then review how the Affinofile system has been used to reveal the distinct pathophysiological properties associated with Env entry phenotypes and discuss potential shortcomings of the current system.
Collapse
Affiliation(s)
- Kelechi Chikere
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, United States
| | | | | | | |
Collapse
|
22
|
Willett BJ, Kraase M, Logan N, McMonagle E, Varela M, Hosie MJ. Selective expansion of viral variants following experimental transmission of a reconstituted feline immunodeficiency virus quasispecies. PLoS One 2013; 8:e54871. [PMID: 23372784 PMCID: PMC3553009 DOI: 10.1371/journal.pone.0054871] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 12/17/2012] [Indexed: 11/29/2022] Open
Abstract
Following long-term infection with virus derived from the pathogenic GL8 molecular clone of feline immunodeficiency virus (FIV), a range of viral variants emerged with distinct modes of interaction with the viral receptors CD134 and CXCR4, and sensitivities to neutralizing antibodies. In order to assess whether this viral diversity would be maintained following subsequent transmission, a synthetic quasispecies was reconstituted comprising molecular clones bearing envs from six viral variants and its replicative capacity compared in vivo with a clonal preparation of the parent virus. Infection with either clonal (Group 1) or diverse (Group 2) challenge viruses, resulted in a reduction in CD4+ lymphocytes and an increase in CD8+ lymphocytes. Proviral loads were similar in both study groups, peaking by 10 weeks post-infection, a higher plateau (set-point) being achieved and maintained in study Group 1. Marked differences in the ability of individual viral variants to replicate were noted in Group 2; those most similar to GL8 achieved higher viral loads while variants such as the chimaeras bearing the B14 and B28 Envs grew less well. The defective replication of these variants was not due to suppression by the humoral immune response as virus neutralising antibodies were not elicited within the study period. Similarly, although potent cellular immune responses were detected against determinants in Env, no qualitative differences were revealed between animals infected with either the clonal or the diverse inocula. However, in vitro studies indicated that the reduced replicative capacity of variants B14 and B28 in vivo was associated with altered interactions between the viruses and the viral receptor and co-receptor. The data suggest that viral variants with GL8-like characteristics have an early, replicative advantage and should provide the focus for future vaccine development.
Collapse
Affiliation(s)
- Brian J Willett
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom.
| | | | | | | | | | | |
Collapse
|
23
|
Vicriviroc resistance decay and relative replicative fitness in HIV-1 clinical isolates under sequential drug selection pressures. J Virol 2012; 86:6416-26. [PMID: 22491471 DOI: 10.1128/jvi.00286-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We previously described an HIV-1-infected individual who developed resistance to vicriviroc (VCV), an investigational CCR5 antagonist, during 28 weeks of therapy (Tsibris AM et al., J. Virol. 82:8210-8214, 2008). To investigate the decay of VCV resistance mutations, a standard clonal analysis of full-length env (gp160) was performed on plasma HIV-1 samples obtained at week 28 (the time of VCV discontinuation) and at three subsequent time points (weeks 30, 42, and 48). During 132 days, VCV-resistant HIV-1 was replaced by VCV-sensitive viruses whose V3 loop sequences differed from the dominant pretreatment forms. A deep-sequencing analysis showed that the week 48 VCV-sensitive V3 loop form emerged from a preexisting viral variant. Enfuvirtide was added to the antiretroviral regimen at week 30; by week 48, enfuvirtide treatment selected for either the G36D or N43D HR-1 mutation. Growth competition experiments demonstrated that viruses incorporating the dominant week 28 VCV-resistant env were less fit than week 0 viruses in the absence of VCV but more fit than week 48 viruses. This week 48 fitness deficit persisted when G36D was corrected by either site-directed mutagenesis or week 48 gp41 domain swapping. The correction of N43D, in contrast, restored fitness relative to that of week 28, but not week 0, viruses. Virus entry kinetics correlated with observed fitness differences; the slower entry of enfuvirtide-resistant viruses corrected to wild-type rates in the presence of enfuvirtide. These findings suggest that while VCV and enfuvirtide select for resistance mutations in only one env subunit, gp120 and gp41 coevolve to maximize viral fitness under sequential drug selection pressures.
Collapse
|
24
|
Naturally occurring resistance mutations to HIV-1 entry inhibitors in subtypes B, C, and CRF31_BC. J Clin Virol 2012; 54:6-10. [PMID: 22336085 DOI: 10.1016/j.jcv.2012.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 12/30/2011] [Accepted: 01/09/2012] [Indexed: 11/20/2022]
Abstract
BACKGROUND Entry inhibitors are a class of antiretroviral (ARV) drugs that prevent HIV replication by blocking viral entry into the host cell. The investigation of naturally occurring mutations associated with entry inhibitors across subtypes is required because genetic differences between HIV-1 variants may influence the emergence of drug resistance. Despite the importance of subtype C, which predominates globally, the majority of studies include only subtype B strains. OBJECTIVES To investigate the presence of natural resistance mutations to entry inhibitors in HIV-1 subtypes B, C, and CRF31_BC strains. STUDY DESIGN Eighty samples were collected from antiretroviral-naïve patients. The gp41 gene from 67 patients and the gp120 gene from 65 patients were partially sequenced. Resistance mutations to entry inhibitors Enfuvirtide, Maraviroc, and Vicriviroc were screened. RESULTS ENF resistance-associated mutations of HR1 and HR2 on gp41 were not associated with any subtype. However, the major polymorphisms detected in HR1: N42S, L54M, and A67T were most prevalent in subtype C (p<0.001). Mutations A316T and R315Q in gp120, which are related to MVC and VCV reduced susceptibility respectively, were predominant in subtype C (p<0.05). CONCLUSIONS This study shows that many more resistance-associated mutations to entry inhibitors in ARV-naïve patients occur in subtype C compared with subtype B strains. However, further studies will be necessary to elucidate if the differential genetic background of HIV subtypes can affect the efficacy of treatment with entry inhibitors.
Collapse
|
25
|
HIV-1 clinical isolates resistant to CCR5 antagonists exhibit delayed entry kinetics that are corrected in the presence of drug. J Virol 2011; 86:1119-28. [PMID: 22090117 DOI: 10.1128/jvi.06421-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HIV CCR5 antagonists select for env gene mutations that enable virus entry via drug-bound coreceptor. To investigate the mechanisms responsible for viral adaptation to drug-bound coreceptor-mediated entry, we studied viral isolates from three participants who developed CCR5 antagonist resistance during treatment with vicriviroc (VCV), an investigational small-molecule CCR5 antagonist. VCV-sensitive and -resistant viruses were isolated from one HIV subtype C- and two subtype B-infected participants; VCV-resistant isolates had mutations in the V3 loop of gp120 and were cross-resistant to TAK-779, an investigational antagonist, and maraviroc (MVC). All three resistant isolates contained a 306P mutation but had variable mutations elsewhere in the V3 stem. We used a virus-cell β-lactamase (BlaM) fusion assay to determine the entry kinetics of recombinant viruses that incorporated full-length VCV-sensitive and -resistant envelopes. VCV-resistant isolates exhibited delayed entry rates in the absence of drug, relative to pretherapy VCV-sensitive isolates. The addition of drug corrected these delays. These findings were generalizable across target cell types with a range of CD4 and CCR5 surface densities and were observed when either population-derived or clonal envelopes were used to construct recombinant viruses. V3 loop mutations alone were sufficient to restore virus entry in the presence of drug, and the accumulation of V3 mutations during VCV therapy led to progressively higher rates of viral entry. We propose that the restoration of pre-CCR5 antagonist therapy HIV entry kinetics drives the selection of V3 loop mutations and may represent a common mechanism that underlies the emergence of CCR5 antagonist resistance.
Collapse
|
26
|
Decreased infectivity of a neutralization-resistant equine infectious anemia virus variant can be overcome by efficient cell-to-cell spread. J Virol 2011; 85:10421-4. [PMID: 21752904 DOI: 10.1128/jvi.05349-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two variants of equine infectious anemia virus (EIAV) that differed in sensitivity to broadly neutralizing antibody were tested in direct competition assays. No differences were observed in the growth curves and relative fitness scores of EIAVs of principal neutralizing domain variants of groups 1 (EIAV(PND-1)) and 5 (EIAV(PND-5)), respectively; however, the neutralization-resistant EIAV(PND-5) variant was less infectious in single-round replication assays. Infectious center assays indicated similar rates of cell-to-cell spread, which was approximately 1,000-fold more efficient than cell-free infectivity. These data indicate that efficient cell-to-cell spread can overcome the decreased infectivity that may accompany immune escape and should be considered in studies assessing the relative levels of fitness among lentivirus variants, including HIV-1.
Collapse
|
27
|
Arnott A, Jardine D, Wilson K, Gorry PR, Merlin K, Grey P, Law MG, Dax EM, Kelleher AD, Smith DE, McPhee DA. High viral fitness during acute HIV-1 infection. PLoS One 2010; 5. [PMID: 20844589 PMCID: PMC2936565 DOI: 10.1371/journal.pone.0012631] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 08/07/2010] [Indexed: 11/26/2022] Open
Abstract
Several clinical studies have shown that, relative to disease progression, HIV-1 isolates that are less fit are also less pathogenic. The aim of the present study was to investigate the relationship between viral fitness and control of viral load (VL) in acute and early HIV-1 infection. Samples were obtained from subjects participating in two clinical studies. In the PULSE study, antiretroviral therapy (ART) was initiated before, or no later than six months following seroconversion. Subjects then underwent multiple structured treatment interruptions (STIs). The PHAEDRA study enrolled and monitored a cohort of individuals with documented evidence of primary infection. The subset chosen were individuals identified no later than 12 months following seroconversion to HIV-1, who were not receiving ART. The relative fitness of primary isolates obtained from study participants was investigated ex vivo. Viral DNA production was quantified using a novel real time PCR assay. Following intermittent ART, the fitness of isolates obtained from 5 of 6 PULSE subjects decreased over time. In contrast, in the absence of ART the fitness of paired isolates obtained from 7 of 9 PHAEDRA subjects increased over time. However, viral fitness did not correlate with plasma VL. Most unexpected was the high relative fitness of isolates obtained at Baseline from PULSE subjects, before initiating ART. It is widely thought that the fitness of strains present during the acute phase is low relative to strains present during chronic HIV-1 infection, due to the bottleneck imposed upon transmission. The results of this study provide evidence that the relative fitness of strains present during acute HIV-1 infection may be higher than previously thought. Furthermore, that viral fitness may represent an important clinical parameter to be considered when deciding whether to initiate ART during early HIV-1 infection.
Collapse
Affiliation(s)
- Alicia Arnott
- National Serology Reference Laboratory, St Vincent’s Institute, Melbourne, Victoria, Australia
- Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - Darren Jardine
- National Serology Reference Laboratory, St Vincent’s Institute, Melbourne, Victoria, Australia
| | - Kim Wilson
- National Serology Reference Laboratory, St Vincent’s Institute, Melbourne, Victoria, Australia
| | - Paul R. Gorry
- Burnet Institute, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
- Department of Medicine, Monash University, Melbourne, Victoria, Australia
| | - Kate Merlin
- National Centre in HIV Epidemiology and Clinical Research, University of New South Wales, Sydney, New South Wales, Australia
| | - Patricia Grey
- National Centre in HIV Epidemiology and Clinical Research, University of New South Wales, Sydney, New South Wales, Australia
| | - Matthew G. Law
- National Centre in HIV Epidemiology and Clinical Research, University of New South Wales, Sydney, New South Wales, Australia
| | - Elizabeth M. Dax
- National Serology Reference Laboratory, St Vincent’s Institute, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
| | - Anthony D. Kelleher
- National Centre in HIV Epidemiology and Clinical Research, University of New South Wales, Sydney, New South Wales, Australia
- St. Vincent’s Centre for Applied Medical Research, Sydney, New South Wales, Australia
| | - Don E. Smith
- National Centre in HIV Epidemiology and Clinical Research, University of New South Wales, Sydney, New South Wales, Australia
| | - Dale A. McPhee
- National Serology Reference Laboratory, St Vincent’s Institute, Melbourne, Victoria, Australia
- Department of Microbiology, Monash University, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| | | |
Collapse
|
28
|
HIV-1 Entry, Inhibitors, and Resistance. Viruses 2010; 2:1069-1105. [PMID: 21994672 PMCID: PMC3187606 DOI: 10.3390/v2051069] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 04/16/2010] [Accepted: 04/18/2010] [Indexed: 02/07/2023] Open
Abstract
Entry inhibitors represent a new class of antiretroviral agents for the treatment of infection with HIV-1. While resistance to other HIV drug classes has been well described, resistance to this new class is still ill defined despite considerable clinical use. Several potential mechanisms have been proposed: tropism switching (utilization of CXCR4 instead of CCR5 for entry), increased affinity for the coreceptor, increased rate of virus entry into host cells, and utilization of inhibitor-bound receptor for entry. In this review we will address the development of attachment, fusion, and coreceptor entry inhibitors and explore recent studies describing potential mechanisms of resistance.
Collapse
|
29
|
HIV replication capacity is an independent predictor of disease progression in persons with untreated chronic HIV infection. J Acquir Immune Defic Syndr 2010; 53:472-9. [PMID: 20032783 DOI: 10.1097/qai.0b013e3181cae480] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE To assess the effect of pol replication capacity (RC) on the hazard ratio of progression to a composite endpoint of time to progression to <350 CD4+ cells per microliter, initiation of therapy, or death. METHODS pol RC assays were performed after study closure in baseline samples obtained from 316 enrollees in a prospectively monitored cohort of treatment-naive adults with >or=450 CD4+ cells per microliter and >or=1000 HIV-1 RNA copies per milliliter. RESULTS The median RC was 79%. Patients with a lower RC had a lower median viral load (4.0 vs 4.2 Log HIV-1 RNA copies/mL, P = 0.026) and a lower rate of protease inhibitor resistance 2% vs 8%, P = 0.03). Otherwise, baseline demographic and laboratory characteristics were similar. The hazard ratio of progression to the composite endpoint was 0.73 (P = 0.041) for persons with lower RC, 2.07 per 1.0 log10 higher viral load (P < 0.001), and 0.86 per 50 cells per microliter higher CD4+ cell count (P < 0.001). The effect of lower RC was also significant in a separate analysis of time to initiation of therapy (P = 0.04). CONCLUSIONS These results show that untreated patients with lower vs higher RC had a slower rate of progression as assessed by a composite outcome of time to CD4+ count <or=350 cells per microliter, treatment initiation, or death.
Collapse
|
30
|
Bosch KA, Rainwater S, Jaoko W, Overbaugh J. Temporal analysis of HIV envelope sequence evolution and antibody escape in a subtype A-infected individual with a broad neutralizing antibody response. Virology 2010; 398:115-24. [PMID: 20034648 DOI: 10.1016/j.virol.2009.11.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 10/28/2009] [Accepted: 11/18/2009] [Indexed: 11/29/2022]
Abstract
The origin of broadly neutralizing HIV-specific antibodies and their relation to HIV evolution are not well defined. Here we examined virus evolution and neutralizing antibody escape in a subtype A infected individual with a broad, cross subtype, antibody response. The majority of envelope variants isolated over the first approximately 5 years after infection were poorly neutralized by contemporaneous plasma that neutralized variants from earlier in infection, consistent with a dynamic process of escape. The majority of variants could be neutralized by later plasma, suggesting these evolving variants may have contributed to the elicitation of new antibody responses. However, some variants from later in infection were recognized by plasma from earlier in infection, including one notably neutralization-sensitive variant that was sensitive due to a proline at position 199 in V2. These studies suggest a complex pattern of virus evolution in this individual with a broad NAb response, including persistence of neutralization-sensitive viruses.
Collapse
Affiliation(s)
- Katherine A Bosch
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | |
Collapse
|
31
|
The HIV-1 integrase genotype strongly predicts raltegravir susceptibility but not viral fitness of primary virus isolates. AIDS 2010; 24:17-25. [PMID: 19770695 DOI: 10.1097/qad.0b013e328331c81e] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE : Resistance to raltegravir is associated with three genetic pathways defined by the mutations Y143R/C, Q148H/R/K or N155H in integrase, which also infer a viral fitness cost. Additionally, the three major HIV-1 drug-targeted enzymes protease, reverse transcriptase and integrase mature from the same polyprotein, suggesting the potential for interaction between them. This study aims to elucidate the relative contribution of protease-reverse transcriptase, integrase and the rest of the HIV-1 genome to viral fitness and susceptibility to raltegravir. METHODS : Recombinant viruses included integrase, protease-reverse transcriptase or the complete pol-coding region from three patients whose raltegravir-containing regimen had failed. The first had the mutations G140S+Q148H+S230N, the second had Y143R+G163R and the third had no evidence of genotypic resistance in integrase. Primary virus isolates were obtained from peripheral blood mononuclear cells. In-vitro phenotypic resistance and changes in replication capacity were assessed. RESULTS : Virus isolates, and integrase-recombinant and pol-recombinant viruses from the patients harboring integrase resistance mutations showed a decrease in raltegravir susceptibility, with no differences between them. Defects in viral fitness were modulated by resistance mutations within protease, reverse transcriptase and integrase, which were further compensated by regions outside pol. Moreover, protease-reverse transcriptase rescued replication capacity of viruses containing integrase resistance mutations, although integrase was unable to compensate defects in replication capacity caused by protease-reverse transcriptase resistance mutations. CONCLUSION : Susceptibility to raltegravir is driven by resistance mutations in integrase, whereas other viral genes are involved in restoring defects in viral fitness in patients whose raltegravir-containing regimen fails, suggesting the existence of epistatic effects on replication capacity.
Collapse
|
32
|
A quantitative affinity-profiling system that reveals distinct CD4/CCR5 usage patterns among human immunodeficiency virus type 1 and simian immunodeficiency virus strains. J Virol 2009; 83:11016-26. [PMID: 19692480 DOI: 10.1128/jvi.01242-09] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The affinity of human immunodeficiency virus (HIV) envelope for CD4 and CCR5 appears to be associated with aspects of R5 virus (virus using the CCR5 coreceptor) pathogenicity. However, entry efficiency results from complex interactions between the viral envelope glycoprotein and both CD4 and CCR5, which limits attempts to correlate viral pathogenicity with surrogate measures of envelope CD4 and CCR5 affinities. Here, we present a system that provides a quantitative and comprehensive characterization of viral entry efficiency as a direct interdependent function of both CD4 and CCR5 levels. This receptor affinity profiling system also revealed heretofore unappreciated complexities underlying CD4/CCR5 usage. We first developed a dually inducible cell line in which CD4 and CCR5 could be simultaneously and independently regulated within a physiologic range of surface expression. Infection by multiple HIV type 1 (HIV-1) and simian immunodeficiency virus isolates could be examined simultaneously for up to 48 different combinations of CD4/CCR5 expression levels, resulting in a distinct usage pattern for each virus. Thus, each virus generated a unique three-dimensional surface plot in which viral infectivity varied as a function of both CD4 and CCR5 expression. From this functional form, we obtained a sensitivity vector along with corresponding metrics that quantified an isolate's overall efficiency of CD4/CCR5 usage. When applied to viral isolates with well-characterized sensitivities to entry/fusion inhibitors, the vector metrics were able to encapsulate their known biological phenotypes. The application of the vector metrics also indicated that envelopes derived from elite suppressors had overall-reduced entry efficiencies compared to those of envelopes derived from chronically infected viremic progressors. Our affinity-profiling system may help to refine studies of R5 virus tropism and pathogenesis.
Collapse
|
33
|
Human immunodeficiency virus type 1 V1-to-V5 envelope variants from the chronic phase of infection use CCR5 and fuse more efficiently than those from early after infection. J Virol 2009; 83:9694-708. [PMID: 19625411 DOI: 10.1128/jvi.00925-09] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein modifications over the course of infection have been associated with coreceptor switching and antibody neutralization resistance, but the effect of the changes on replication and host cell receptor usage remains unclear. To examine this question, unique early- and chronic-stage infection envelope V1-to V5 (V1-V5) segments from eight HIV-1 subtype A-infected subjects were incorporated into an isogenic background to construct replication-competent recombinant viruses. In all subjects, viruses with chronic-infection V1-V5 segments showed greater replication capacity than those with early-infection V1-V5 domains in cell lines with high levels of both the CD4 and the CCR5 receptors. Viruses with chronic-infection V1-V5s demonstrated a significantly increased ability to replicate in cells with low CCR5 receptor levels and greater resistance to CCR5 receptor and fusion inhibitors compared to those with early-infection V1-V5 segments. These properties were associated with sequence changes in the envelope V1-V3 segments. Viruses with the envelope segments from the two infection time points showed no significant difference in their ability to infect cells with low CD4 receptor densities, in their sensitivity to soluble CD4, or in their replication capacity in monocyte-derived macrophages. Our results suggest that envelope changes, primarily in the V1-V3 domains, increase both the ability to use the CCR5 receptor and fusion kinetics. Thus, envelope modifications over time within a host potentially enhance replication capacity.
Collapse
|
34
|
CCR5- and CXCR4-tropic subtype C human immunodeficiency virus type 1 isolates have a lower level of pathogenic fitness than other dominant group M subtypes: implications for the epidemic. J Virol 2009; 83:5592-605. [PMID: 19297481 DOI: 10.1128/jvi.02051-08] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) subtype C is the dominant subtype globally, due largely to the incidence of subtype C infections in sub-Saharan Africa and east Asia. We compared the relative replicative fitness (ex vivo) of the major (M) group of HIV-1 subtypes A, B, C, D, and CRF01_AE and group O isolates. To estimate pathogenic fitness, pairwise competitions were performed between CCR5-tropic (R5) or CXCR4-tropic (X4) virus isolates in peripheral blood mononuclear cells (PBMC). A general fitness order was observed among 33 HIV-1 isolates; subtype B and D HIV-1 isolates were slightly more fit than the subtype A and dramatically more fit than the 12 subtype C isolates. All group M isolates were more fit (ex vivo) than the group O isolates. To estimate ex vivo transmission fitness, a subset of primary HIV-1 isolates were examined in primary human explants from penile, cervical, and rectal tissues. Only R5 isolates and no X4 HIV-1 isolates could replicate in these tissues, whereas the spread to PM1 cells was dependent on active replication and passive virus transfer. In tissue competition experiments, subtype C isolates could compete with and, in some cases, even win over subtype A and D isolates. However, when the migratory cells from infected tissues were mixed with a susceptible cell line, the subtype C isolates were outcompeted by other subtypes, as observed in experiments with PBMC. These findings suggest that subtype C HIV-1 isolates might have equal transmission fitness but reduced pathogenic fitness relative to other group M HIV-1 isolates.
Collapse
|
35
|
Rodriguez MA, Ding M, Ratner D, Chen Y, Tripathy SP, Kulkarni SS, Chatterjee R, Tarwater PM, Gupta P. High replication fitness and transmission efficiency of HIV-1 subtype C from India: Implications for subtype C predominance. Virology 2009; 385:416-24. [PMID: 19157481 DOI: 10.1016/j.virol.2008.12.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 10/30/2008] [Accepted: 12/17/2008] [Indexed: 10/21/2022]
Abstract
HIV-1 subtype C has been the predominant subtype throughout the course of the HIV-1 epidemic in India regardless of the geographic region of the country. In an effort to understand the mechanism of subtype C predominance in this country, we have investigated the in vitro replication fitness and transmission efficiency of HIV-1 subtypes A and C from India. Using a dual infection growth competition assay, we found that primary HIV-1 subtype C isolates had higher overall relative fitness in PBMC than subtype A primary isolates. Moreover, in an ex vivo cervical tissue derived organ culture, subtype C isolates displayed higher transmission efficiency across cervical mucosa than subtype A isolates. We found that higher fitness of subtype C was not due to a trans effect exerted by subtype C infected PBMC. A half genome A/C recombinant clone in which the 3' half of the viral genome of subtype A was replaced with the corresponding subtype C3' half, had similar replicative fitness as the parental subtype A. These results suggest that the higher replication fitness and transmission efficiency of subtype C virus compared to subtype A virus from India is most probably not due to the envelope gene alone and may be due to genes present within the 5' half of the viral genome or to a more complex interaction between the genes located within the two halves of the viral genome. These data provide a model to explain the asymmetric distribution of subtype C over other subtypes in India.
Collapse
Affiliation(s)
- Milka A Rodriguez
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, 426 Parran Hall, GSPH, 130 DeSoto Street, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Canducci F, Marinozzi MC, Sampaolo M, Berrè S, Bagnarelli P, Degano M, Gallotta G, Mazzi B, Lemey P, Burioni R, Clementi M. Dynamic features of the selective pressure on the human immunodeficiency virus type 1 (HIV-1) gp120 CD4-binding site in a group of long term non progressor (LTNP) subjects. Retrovirology 2009; 6:4. [PMID: 19146663 PMCID: PMC2639529 DOI: 10.1186/1742-4690-6-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 01/15/2009] [Indexed: 12/14/2022] Open
Abstract
The characteristics of intra-host human immunodeficiency virus type 1 (HIV-1) env evolution were evaluated in untreated HIV-1-infected subjects with different patterns of disease progression, including 2 normal progressor [NP], and 5 Long term non-progressor [LTNP] patients. High-resolution phylogenetic analysis of the C2-C5 env gene sequences of the replicating HIV-1 was performed in sequential samples collected over a 3–5 year period; overall, 301 HIV-1 genomic RNA sequences were amplified from plasma samples, cloned, sequenced and analyzed. Firstly, the evolutionary rate was calculated separately in the 3 codon positions. In all LTNPs, the 3rd codon mutation rate was equal or even lower than that observed at the 1st and 2nd positions (p = 0.016), thus suggesting strong ongoing positive selection. A Bayesian approach and a maximum-likelihood (ML) method were used to estimate the rate of virus evolution within each subject and to detect positively selected sites respectively. A great number of N-linked glycosylation sites under positive selection were identified in both NP and LTNP subjects. Viral sequences from 4 of the 5 LTNPs showed extensive positive selective pressure on the CD4-binding site (CD4bs). In addition, localized pressure in the area of the IgG-b12 epitope, a broad neutralizing human monoclonal antibody targeting the CD4bs, was documented in one LTNP subject, using a graphic colour grade 3-dimensional visualization. Overall, the data shown here documenting high selective pressure on the HIV-1 CD4bs of a group of LTNP subjects offers important insights for planning novel strategies for the immune control of HIV-1 infection.
Collapse
Affiliation(s)
- Filippo Canducci
- Laboratorio di Microbiologia e Virologa, Università Vita-Salute San Raffaele, Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Miura T, Brockman MA, Brumme ZL, Brumme CJ, Pereyra F, Trocha A, Block BL, Schneidewind A, Allen TM, Heckerman D, Walker BD. HLA-associated alterations in replication capacity of chimeric NL4-3 viruses carrying gag-protease from elite controllers of human immunodeficiency virus type 1. J Virol 2009; 83:140-9. [PMID: 18971283 PMCID: PMC2612337 DOI: 10.1128/jvi.01471-08] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Accepted: 10/16/2008] [Indexed: 12/31/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1)-infected persons who maintain plasma viral loads of <50 copies RNA/ml without treatment have been termed elite controllers (EC). Factors contributing to durable control of HIV in EC are unknown, but an HLA-dependent mechanism is suggested by overrepresentation of "protective" class I alleles, such as B*27, B*51, and B*57. Here we investigated the relative replication capacity of viruses (VRC) obtained from EC (n = 54) compared to those from chronic progressors (CP; n = 41) by constructing chimeric viruses using patient-derived gag-protease sequences amplified from plasma HIV RNA and inserted into an NL4-3 backbone. The chimeric viruses generated from EC displayed lower VRC than did viruses from CP (P < 0.0001). HLA-B*57 was associated with lower VRC (P = 0.0002) than were other alleles in both EC and CP groups. Chimeric viruses from B*57(+) EC (n = 18) demonstrated lower VRC than did viruses from B*57(+) CP (n = 8, P = 0.0245). Differences in VRC between EC and CP were also observed for viruses obtained from individuals expressing no described "protective" alleles (P = 0.0065). Intriguingly, two common HLA alleles, A*02 and B*07, were associated with higher VRC (P = 0.0140 and 0.0097, respectively), and there was no difference in VRC between EC and CP sharing these common HLA alleles. These findings indicate that cytotoxic T-lymphocyte (CTL) selection pressure on gag-protease alters VRC, and HIV-specific CTLs inducing escape mutations with fitness costs in this region may be important for strict viremia control in EC of HIV.
Collapse
Affiliation(s)
- Toshiyuki Miura
- Partners AIDS Research Center, Massachusetts General Hospital, 149 13th St., Room 5212, Charlestown, MA 02129, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Identification of gammaretroviruses constitutively released from cell lines used for human immunodeficiency virus research. J Virol 2008; 82:12585-8. [PMID: 18842727 DOI: 10.1128/jvi.01726-08] [Citation(s) in RCA: 219] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Three human cell lines used in human immunodeficiency virus research were found to be contaminated with previously undetected retroviruses. On the bases of partial nucleotide sequence, capsid protein antigenicity, vector mobilization, and receptor usage studies, these contaminants were shown to be replication competent and to belong to the Gammaretrovirus genus. While the TZM-bl cells harbor ecotropic murine leukemia virus (MLV), Jurkat J6 cells were found to release xenotropic MLV and the A3.01/F7 cells to produce gibbon ape leukemia virus. These findings highlight the importance of routine testing of cell lines for retrovirus contamination to prevent potential experimental artifacts and allow correct biohazard assessment.
Collapse
|
39
|
The human immunodeficiency virus type 1 envelope confers higher rates of replicative fitness to perinatally transmitted viruses than to nontransmitted viruses. J Virol 2008; 82:11609-18. [PMID: 18786994 DOI: 10.1128/jvi.00952-08] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Selection of a minor viral genotype during perinatal transmission of human Immunodeficiency virus type 1 (HIV-1) has been observed, but there is a lack of information on the correlation of the restrictive transmission with biological properties of the virus, such as replicative fitness. Recombinant viruses expressing the enhanced green fluorescent protein or the Discosoma sp. red fluorescent (DsRed2) protein carrying the V1 to V5 regions of env from seven mother-infant pairs (MIPs) infected by subtype C HIV-1 were constructed, and competition assays were carried out to compare the fitness between the transmitted and nontransmitted viruses. Flow cytometry was used to quantify the frequency of infected cells, and the replicative fitness was determined based on a calculation that takes into account replication of competing viruses in a single infection versus dual infections. Transmitted viruses from five MIPs with the mothers chronically infected showed a restrictive env genotype, and all the recombinant viruses carrying the infants' Env had higher replicative fitness than those carrying the Env from the mothers. This growth fitness is lineage specific and can be observed only within the same MIP. In contrast, in two MIPs where the mothers had undergone recent acute infection, the viral Env sequences were similar between the mothers and infants and showed no further restriction in quasispecies during perinatal transmission. The recombinant viruses carrying the Env from the infants' viruses also showed replication fitness similar to those carrying the mothers' Env proteins. Our results suggest that newly transmitted viruses from chronically infected mothers have been selected to have higher replicative fitness to favor transmission, and this advantage is conferred by the V1 to V5 region of Env of the transmitted viruses. This finding has important implications for vaccine design or development of strategies to prevent HIV-1 transmission.
Collapse
|
40
|
Chalmet K, Van Wanzeele F, Demecheleer E, Dauwe K, Pelgrom J, Van Der Gucht B, Vogelaers D, Plum J, Stuyver L, Vandekerckhove L, Verhofstede C. Impact of Delta 32-CCR5 heterozygosity on HIV-1 genetic evolution and variability--a study of 4 individuals infected with closely related HIV-1 strains. Virology 2008; 379:213-22. [PMID: 18692212 DOI: 10.1016/j.virol.2008.06.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2008] [Revised: 04/08/2008] [Accepted: 06/30/2008] [Indexed: 11/29/2022]
Abstract
A cluster of four patients acutely infected with a genetically almost identical virus, allowed us to investigate genetic variability and disease progression in early HIV-1 infection with minimal interference of virus specific factors. Two of the patients were heterozygous for the 32-bp deletion in the CCR5 coreceptor gene. Both showed a slower disease progression with lower viral load levels and a reduced rate of genetic evolution compared to the patients with normal CCR5 alleles. During 3 years of treatment-free follow-up, the mean pairwise genetic distance increased with 1.45% and 1.58% in the two patients with a 32-bp deletion allele compared to 3.05% and 3.57% in the two patients with normal CCR5 alleles. The observed relation between slower disease progression and a reduced evolutionary rate illustrates the influence of the virus replicative capacity, here most possibly hampered by the CCR5 heterozygosity in two of the four individuals, on the genetic evolution of the virus in the host.
Collapse
Affiliation(s)
- Kristen Chalmet
- AIDS Reference Laboratory, Ghent University and Ghent University Hospital, De Pintelaan, 185-Block A, B-9000 Gent, Belgium.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Biesinger T, Kimata JT. HIV-1 Transmission, Replication Fitness and Disease Progression. Virology (Auckl) 2008; 2008:49-63. [PMID: 20354593 PMCID: PMC2846839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023] Open
Abstract
Upon transmission, human immunodeficiency virus type 1 (HIV-1) establishes infection of the lymphatic reservoir, leading to profound depletion of the memory CD4(+) T cell population, despite the induction of the adaptive immune response. The rapid evolution and association of viral variants having distinct characteristics with different stages of infection, the level of viral burden, and rate of disease progression suggest a role for viral variants in this process. Here, we review the literature on HIV-1 variants and disease and discuss the importance of viral fitness for transmission and disease.
Collapse
Affiliation(s)
| | - Jason T. Kimata
- Corresponding Author: Department of Molecular Virology and Microbiology, BCM385, Room 811D, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA, Tel: 713-798-4536, FAX: 713-798-4435,
| |
Collapse
|
42
|
Biesinger T, Kimata JT. HIV-1 Transmission, Replication Fitness and Disease Progression. Virology (Auckl) 2008. [DOI: 10.4137/vrt.s860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Upon transmission, human immunodeficiency virus type 1 (HIV-1) establishes infection of the lymphatic reservoir, leading to profound depletion of the memory CD4+ T cell population despite the induction of the adaptive immune response. The rapid evolution and association of viral variants having distinct characteristics during different stages of infection, the level of viral burden, and rate of disease progression suggest a role for viral variants in this process. Here, we review the literature on HIV-1 variants and disease and discuss the importance of viral fitness for transmission and disease.
Collapse
Affiliation(s)
- Tasha Biesinger
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030. U.S.A
| | - Jason T. Kimata
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030. U.S.A
| |
Collapse
|
43
|
HIV-1 reverse transcriptase inhibitor resistance mutations and fitness: a view from the clinic and ex vivo. Virus Res 2008; 134:104-23. [PMID: 18289713 DOI: 10.1016/j.virusres.2007.12.021] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Revised: 12/27/2007] [Accepted: 12/28/2007] [Indexed: 01/04/2023]
Abstract
Genetic diversity plays a key role in human immunodeficiency virus (HIV) adaptation, providing a mechanism to escape host immune responses and develop resistance to antiretroviral drugs. This process is driven by the high-mutation rate during DNA synthesis by reverse transcriptase (RT), by the large viral populations, by rapid viral turnover, and by the high-recombination rate. Drugs targeting HIV RT are included in all regimens of highly active antiretroviral therapy (HAART), which helps to reduce the morbidity and mortality of HIV-infected patients. However, the emergence of resistant viruses is a significant obstacle to effective long-term management of HIV infection and AIDS. The increasing complexity of antiretroviral regimens has favored selection of HIV variants harboring multiple drug resistance mutations. Evolution of drug resistance is characterized by severe fitness losses when the drug is not present, which can be partially overcome by compensatory mutations or other adaptive changes that restore replication capacity. Here, we review the impact of mutations conferring resistance to nucleoside and nonnucleoside RT inhibitors on in vitro and in vivo fitness, their involvement in pathogenesis, persistence upon withdrawal of treatment, and transmission. We describe the techniques used to estimate viral fitness, the molecular mechanisms that help to improve the viral fitness of drug-resistant variants, and the clinical implications of viral fitness data, by exploring the potential relationship between plasma viral load, drug resistance, and disease progression.
Collapse
|
44
|
Quiñones-Mateu ME, Moore-Dudley DM, Jegede O, Weber J, J Arts E. Viral drug resistance and fitness. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2008; 56:257-96. [PMID: 18086415 DOI: 10.1016/s1054-3589(07)56009-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
45
|
Senserrich J, Pauls E, Armand-Ugón M, Clotet-Codina I, Moncunill G, Clotet B, Esté JA. HIV-1 resistance to the anti-HIV activity of a shRNA targeting a dual-coding region. Virology 2007; 372:421-9. [PMID: 18068205 DOI: 10.1016/j.virol.2007.10.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 10/08/2007] [Accepted: 10/31/2007] [Indexed: 11/16/2022]
Abstract
We generated a lymphoid cell line (Sup-T1-Rev/Env) that stably expresses a 19-bp short hairpin RNA (shRNA) targeting a conserved region of HIV-1 encoding for the Envelope and Rev proteins, which potently inhibited viral replication. However, continuous passage of HIV-1 in Sup-T1-Rev/Env generated virus mutants able to overcome the RNAi restriction. Sequence analysis of the emerging viruses showed that mutations were located at positions 5 and 17 of the target sequence. Both mutations are silent in the Env frame, but the mutation 5 generated an amino acid change (V47M) in the Rev reading frame. We have analyzed the impact of these two mutations on the RNAi mechanism, showing a more crucial role of the mutation 17 in the resistance to RNAi. We show that even targeting a conserved region of the HIV-1 genome involved in the biosynthesis of two essential genes, env and rev, the virus could evolve to escape by single point mutations in the target sequence, without a significant fitness cost.
Collapse
Affiliation(s)
- Jordi Senserrich
- Retrovirology Laboratory irsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | | | | | | | | | | | | |
Collapse
|
46
|
Dykes C, Demeter LM. Clinical significance of human immunodeficiency virus type 1 replication fitness. Clin Microbiol Rev 2007; 20:550-78. [PMID: 17934074 PMCID: PMC2176046 DOI: 10.1128/cmr.00017-07] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The relative fitness of a variant, according to population genetics theory, is that variant's relative contribution to successive generations. Most drug-resistant human immunodeficiency virus type 1 (HIV-1) variants have reduced replication fitness, but at least some of these deficits can be compensated for by the accumulation of second-site mutations. HIV-1 replication fitness also appears to influence the likelihood of a drug-resistant mutant emerging during treatment failure and is postulated to influence clinical outcomes. A variety of assays are available to measure HIV-1 replication fitness in cell culture; however, there is no agreement regarding which assays best correlate with clinical outcomes. A major limitation is that there is no high-throughput assay that incorporates an internal reference strain as a control and utilizes intact virus isolates. Some retrospective studies have demonstrated statistically significant correlations between HIV-1 replication fitness and clinical outcomes in some patient populations. However, different studies disagree as to which clinical outcomes are most closely associated with fitness. This may be in part due to assay design, sample size limitations, and differences in patient populations. In addition, the strength of the correlations between fitness and clinical outcomes is modest, suggesting that, at present, it would be difficult to utilize these assays for clinical management.
Collapse
Affiliation(s)
- Carrie Dykes
- Infectious Diseases Division, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | |
Collapse
|
47
|
De Luca A, Weidler J, Di Giambenedetto S, Coakley E, Cingolani A, Bates M, Lie Y, Pesano R, Cauda R, Schapiro J. Association of HIV-1 Replication Capacity With Treatment Outcomes in Patients With Virologic Treatment Failure. J Acquir Immune Defic Syndr 2007; 45:411-7. [PMID: 17554216 DOI: 10.1097/qai.0b013e318074f008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND The extent to which HIV-1 replication capacity (RC) influences the response to therapy remains to be established. METHODS Phenotypic susceptibility and RC of baseline isolates (n = 139) from patients enrolled in the ARGENTA trial were measured and correlated to treatment outcomes over 36 months. RESULTS RC in baseline isolates correlated with the number of phenotypically active drugs (R = 0.34, P < 0.001). Crude viral RC did not predict treatment outcomes. When viral RC was adjusted by baseline CD4 cell counts, HIV-1 RNA levels, and phenotypic susceptibility to the rescue regimen, it showed significant association with the immunologic outcome (per log10 RC higher, mean difference in 36 months' time-averaged change from baseline CD4 count = -68 cells/microL; P = 0.020). In the subgroup of patients with 3 or more phenotypically active drugs in the salvage regimen (n = 35, median RC = 65%), subjects carrying isolates with RC < or =65% as compared to those with RC >65% had better time-averaged HIV-1 RNA responses (mean: -1.04 vs. -0.32 log10 copies/mL; P = 0.012) and CD4 cell responses (mean: 132 vs. -7 cells/microL; P = 0.006). Among patients with HIV-1 RNA levels persistently >500 copies/mL (n = 61), RC, on a log10 basis, was inversely associated with time-averaged 36-month CD4 cell responses (beta = -0.26; P = 0.046). CONCLUSION After normalizing for viral susceptibility to the employed regimen or in patient subsets with suboptimal virologic response, higher viral RC may predict worse subsequent treatment outcomes.
Collapse
Affiliation(s)
- Andrea De Luca
- Institute of Clinical Infectious Diseases, Policlinoco Universitario Agostino Gemelli, Catholic University of the Sacred Heart, Largo F. Vito 1, 00168 Rome, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Lobritz MA, Marozsan AJ, Troyer RM, Arts EJ. Natural variation in the V3 crown of human immunodeficiency virus type 1 affects replicative fitness and entry inhibitor sensitivity. J Virol 2007; 81:8258-69. [PMID: 17522224 PMCID: PMC1951322 DOI: 10.1128/jvi.02739-06] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Natural polymorphisms in the heterogeneous human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein may have an impact on both sensitivity to entry inhibitors and viral replicative fitness. Of significant interest is variation in the V3 crown due to its involvement in direct engagement with the coreceptor. Two positions in the crown (318 and 319) appear to be important in determining intrinsic susceptibility to multiple entry inhibitors. Thus, we evaluated a series of natural polymorphisms at positions 318 and 319 in three distinct CCR5-tropic envelope genetic backgrounds to address their role in replicative fitness and sensitivity to entry inhibitors. Change at position 319 to each of the three major consensus amino acids (A, T, and R) resulted in variation in sensitivity to entry inhibitors and altered replicative fitness, but the effects of any one amino acid depended on the envelope context. Change of the nearly invariant tyrosine at position 318 to a rare arginine resulted in increased sensitivity to entry inhibitors and decreased replicative fitness independent of envelope context. Polymorphisms in the V3 crown that showed increased susceptibility to entry inhibitors also exhibited decreased entry efficiency, replicative fitness in primary peripheral blood mononuclear cells, and ability to replicate in primary macrophages. These findings suggest that differences in coreceptor affinity and/or avidity may underlie these phenotypic characteristics.
Collapse
Affiliation(s)
- Michael A Lobritz
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA
| | | | | | | |
Collapse
|
49
|
Henry KR, Weber J, Quiñones-Mateu ME, Arts EJ. The impact of viral and host elements on HIV fitness and disease progression. Curr HIV/AIDS Rep 2007; 4:36-41. [PMID: 17338859 DOI: 10.1007/s11904-007-0006-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Twenty-five years after the emergence of HIV onto the global scene, multiple advancements have been made in the understanding of HIV pathology. Thanks to the development of antiretroviral therapies, growing numbers of individuals with HIV infection experience slowed or halted acceleration to AIDS. Despite this, new HIV infections and AIDS-related morbidity and mortality are still common in the highly active antiretroviral therapy era. Recently, we and others have identified viral replicative fitness as a major determinant of HIV disease progression, which could have a major impact in the clinical setting. Therefore, in this review, we will discuss host and viral factors that affect viral fitness and its relationship on HIV pathogenesis.
Collapse
Affiliation(s)
- Kenneth R Henry
- Division of Infectious Diseases, BRB 1029, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | | | | | | |
Collapse
|
50
|
Weber J, Weberova J, Carobene M, Mirza M, Martinez-Picado J, Kazanjian P, Quiñones-Mateu ME. Use of a novel assay based on intact recombinant viruses expressing green (EGFP) or red (DsRed2) fluorescent proteins to examine the contribution of pol and env genes to overall HIV-1 replicative fitness. J Virol Methods 2006; 136:102-17. [PMID: 16690137 DOI: 10.1016/j.jviromet.2006.04.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Revised: 03/31/2006] [Accepted: 04/04/2006] [Indexed: 12/21/2022]
Abstract
Multiple studies have described a reduction in the replicative fitness of HIV-1 isolates harboring mutations that confer resistance to antiretroviral drugs. Contradictory results, however, have been obtained depending on the methodology used in each study (Quinones-Mateu, M.E., Arts, E.J., 2002. Fitness of drug resistant HIV-I: methodology and clinical implications. Drug Resist. Update 5, 224-233), affecting our understanding of the potential relationship of viral replicative fitness with HIV-1 disease. It has been demonstrated previously that both pol and env genes play a major role in HIV-1 replicative fitness of clinical isolates. Therefore, measuring clinically relevant replicative fitness using recombinant viruses where a single mutation and/or viral gene have been introduced does not seem like a reasonable approach in this era of multi-target antiretroviral therapy. A novel method was developed to measure HIV-1 replicative fitness based on recombinant viruses expressing the enhanced green fluorescent (EGFP) or the Discosoma sp. red fluorescent (DsRed2) proteins in a HIV-1NL4-3 backbone. Contrary to previous designs to analyze HIV-1 fitness, these replication competent viruses were created in an intact viral genetic background (without deleting or affecting the expression of any viral gene). This new system was used to evaluate the contribution of drug-resistance mutations in the pol and env genes to overall viral replicative fitness (in the presence and absence of drug pressure) using direct growth competition experiments. Mutations in pol showed a stronger effect on HIV-1 replicative fitness than mutations in the env gene associated with resistance to enfuvirtide, corroborating the plasticity of the later gene to accept mutations and the sensibility of the protease and reverse transcriptase enzymes to drug-associated primary mutations. In conclusion, a new protocol was used to measure HIV-1 replicative fitness in either the presence or absence of antiretroviral drugs, which may be used as a high-throughput assay to help us understand the clinical significance of viral fitness.
Collapse
Affiliation(s)
- Jan Weber
- Department of Molecular Genetics, Section of Virology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | | | | | | | | | |
Collapse
|