1
|
Nair N, Osterhaus ADME, Rimmelzwaan GF, Prajeeth CK. Rift Valley Fever Virus-Infection, Pathogenesis and Host Immune Responses. Pathogens 2023; 12:1174. [PMID: 37764982 PMCID: PMC10535968 DOI: 10.3390/pathogens12091174] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/09/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Rift Valley Fever Virus is a mosquito-borne phlebovirus causing febrile or haemorrhagic illness in ruminants and humans. The virus can prevent the induction of the antiviral interferon response through its NSs proteins. Mutations in the NSs gene may allow the induction of innate proinflammatory immune responses and lead to attenuation of the virus. Upon infection, virus-specific antibodies and T cells are induced that may afford protection against subsequent infections. Thus, all arms of the adaptive immune system contribute to prevention of disease progression. These findings will aid the design of vaccines using the currently available platforms. Vaccine candidates have shown promise in safety and efficacy trials in susceptible animal species and these may contribute to the control of RVFV infections and prevention of disease progression in humans and ruminants.
Collapse
|
2
|
Ford K, Munson BP, Fong SH, Panwala R, Chu WK, Rainaldi J, Plongthongkum N, Arunachalam V, Kostrowicki J, Meluzzi D, Kreisberg JF, Jensen-Pergakes K, VanArsdale T, Paul T, Tamayo P, Zhang K, Bienkowska J, Mali P, Ideker T. Multimodal perturbation analyses of cyclin-dependent kinases reveal a network of synthetic lethalities associated with cell-cycle regulation and transcriptional regulation. Sci Rep 2023; 13:7678. [PMID: 37169829 PMCID: PMC10175263 DOI: 10.1038/s41598-023-33329-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/11/2023] [Indexed: 05/13/2023] Open
Abstract
Cell-cycle control is accomplished by cyclin-dependent kinases (CDKs), motivating extensive research into CDK targeting small-molecule drugs as cancer therapeutics. Here we use combinatorial CRISPR/Cas9 perturbations to uncover an extensive network of functional interdependencies among CDKs and related factors, identifying 43 synthetic-lethal and 12 synergistic interactions. We dissect CDK perturbations using single-cell RNAseq, for which we develop a novel computational framework to precisely quantify cell-cycle effects and diverse cell states orchestrated by specific CDKs. While pairwise disruption of CDK4/6 is synthetic-lethal, only CDK6 is required for normal cell-cycle progression and transcriptional activation. Multiple CDKs (CDK1/7/9/12) are synthetic-lethal in combination with PRMT5, independent of cell-cycle control. In-depth analysis of mRNA expression and splicing patterns provides multiple lines of evidence that the CDK-PRMT5 dependency is due to aberrant transcriptional regulation resulting in premature termination. These inter-dependencies translate to drug-drug synergies, with therapeutic implications in cancer and other diseases.
Collapse
Affiliation(s)
- Kyle Ford
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Brenton P Munson
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Samson H Fong
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Rebecca Panwala
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Wai Keung Chu
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Joseph Rainaldi
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
- Biomedical Sciences Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Nongluk Plongthongkum
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | | | | | - Dario Meluzzi
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jason F Kreisberg
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | | | - Todd VanArsdale
- Pfizer Inc, 10555 Science Center Drive, San Diego, CA, 92121, USA
| | - Thomas Paul
- Pfizer Inc, 10555 Science Center Drive, San Diego, CA, 92121, USA
| | - Pablo Tamayo
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Kun Zhang
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | | | - Prashant Mali
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Trey Ideker
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA.
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
3
|
Zika Virus Induces Mitotic Catastrophe in Human Neural Progenitors by Triggering Unscheduled Mitotic Entry in the Presence of DNA Damage While Functionally Depleting Nuclear PNKP. J Virol 2022; 96:e0033322. [PMID: 35412344 PMCID: PMC9093132 DOI: 10.1128/jvi.00333-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Vertical transmission of Zika virus (ZIKV) leads with high frequency to congenital ZIKV syndrome (CZS), whose worst outcome is microcephaly. However, the mechanisms of congenital ZIKV neurodevelopmental pathologies, including direct cytotoxicity to neural progenitor cells (NPC), placental insufficiency, and immune responses, remain incompletely understood. At the cellular level, microcephaly typically results from death or insufficient proliferation of NPC or cortical neurons. NPC replicate fast, requiring efficient DNA damage responses to ensure genome stability. Like congenital ZIKV infection, mutations in the polynucleotide 5′-kinase 3′-phosphatase (PNKP) gene, which encodes a critical DNA damage repair enzyme, result in recessive syndromes often characterized by congenital microcephaly with seizures (MCSZ). We thus tested whether there were any links between ZIKV and PNKP. Here, we show that two PNKP phosphatase inhibitors or PNKP knockout inhibited ZIKV replication. PNKP relocalized from the nucleus to the cytoplasm in infected cells, colocalizing with the marker of ZIKV replication factories (RF) NS1 and resulting in functional nuclear PNKP depletion. Although infected NPC accumulated DNA damage, they failed to activate the DNA damage checkpoint kinases Chk1 and Chk2. ZIKV also induced activation of cytoplasmic CycA/CDK1 complexes, which trigger unscheduled mitotic entry. Inhibition of CDK1 activity inhibited ZIKV replication and the formation of RF, supporting a role of cytoplasmic CycA/CDK1 in RF morphogenesis. In brief, ZIKV infection induces mitotic catastrophe resulting from unscheduled mitotic entry in the presence of DNA damage. PNKP and CycA/CDK1 are thus host factors participating in ZIKV replication in NPC, and pathogenesis to neural progenitor cells. IMPORTANCE The 2015–2017 Zika virus (ZIKV) outbreak in Brazil and subsequent international epidemic revealed the strong association between ZIKV infection and congenital malformations, mostly neurodevelopmental defects up to microcephaly. The scale and global expansion of the epidemic, the new ZIKV outbreaks (Kerala state, India, 2021), and the potential burden of future ones pose a serious ongoing risk. However, the cellular and molecular mechanisms resulting in microcephaly remain incompletely understood. Here, we show that ZIKV infection of neuronal progenitor cells results in cytoplasmic sequestration of an essential DNA repair protein itself associated with microcephaly, with the consequent accumulation of DNA damage, together with an unscheduled activation of cytoplasmic CDK1/Cyclin A complexes in the presence of DNA damage. These alterations result in mitotic catastrophe of neuronal progenitors, which would lead to a depletion of cortical neurons during development.
Collapse
|
4
|
Asha K, Sharma-Walia N. Targeting Host Cellular Factors as a Strategy of Therapeutic Intervention for Herpesvirus Infections. Front Cell Infect Microbiol 2021; 11:603309. [PMID: 33816328 PMCID: PMC8017445 DOI: 10.3389/fcimb.2021.603309] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 01/12/2021] [Indexed: 12/13/2022] Open
Abstract
Herpesviruses utilize various host factors to establish latent infection, survival, and spread disease in the host. These factors include host cellular machinery, host proteins, gene expression, multiple transcription factors, cellular signal pathways, immune cell activation, transcription factors, cytokines, angiogenesis, invasion, and factors promoting metastasis. The knowledge and understanding of host genes, protein products, and biochemical pathways lead to discovering safe and effective antivirals to prevent viral reactivation and spread infection. Here, we focus on the contribution of pro-inflammatory, anti-inflammatory, and resolution lipid metabolites of the arachidonic acid (AA) pathway in the lifecycle of herpesvirus infections. We discuss how various herpesviruses utilize these lipid pathways to their advantage and how we target them to combat herpesvirus infection. We also summarize recent development in anti-herpesvirus therapeutics and new strategies proposed or under clinical trials. These anti-herpesvirus therapeutics include inhibitors blocking viral life cycle events, engineered anticancer agents, epigenome influencing factors, immunomodulators, and therapeutic compounds from natural extracts.
Collapse
Affiliation(s)
| | - Neelam Sharma-Walia
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| |
Collapse
|
5
|
Rai KR, Chen B, Zhao Z, Chen Y, Hu J, Liu S, Maarouf M, Li Y, Xiao M, Liao Y, Chen JL. Robust expression of p27Kip1 induced by viral infection is critical for antiviral innate immunity. Cell Microbiol 2020; 22:e13242. [PMID: 32596986 DOI: 10.1111/cmi.13242] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 06/13/2020] [Accepted: 06/24/2020] [Indexed: 12/27/2022]
Abstract
Influenza A virus (IAV) infection regulates the expression of numerous host genes. However, the precise mechanism underlying implication of these genes in IAV pathogenesis remains largely unknown. Here, we employed isobaric tags for relative and absolute quantification (iTRAQ) to identify host proteins regulated by IAV infection. iTRAQ analysis of mouse lungs infected or uninfected with IAV showed a total of 167 differentially upregulated proteins in response to the viral infection. Interestingly, we observed that p27Kip1, a potent cyclin-dependent kinase inhibitor, was markedly induced by IAV both at mRNA and protein levels through in vitro and in vivo studies. Furthermore, it was shown that innate immune signalling positively regulated p27Kip1 expression in response to IAV infection. Ectopic expression of p27Kip1 in A549 cells dramatically inhibited IAV replication, whereas, p27Kip1 knockdown significantly enhanced the virus replication. in vivo experiments demonstrated that p27Kip1 knockout (KO) mice were more susceptible to IAV than wild-type (WT) mice: exhibiting higher viral load in lung tissue, faster body-weight loss, reduced survival rate and more severe organ damage. Moreover, we found that p27Kip1 overexpression facilitated the degradation of viral NS1 protein, caused a dramatic STAT1 activation and promoted the expression of IFN-β and several critical antiviral interferon-stimulated genes (ISGs). Increased p27Kip1 expression also restricted infections of several other viruses. Conversely, IAV-infected p27Kip1 KO mice exhibited a sharp increase in NS1 protein accumulation, reduced level of STAT1 activation and decreased expression of IFN-β and the ISGs in the lung compared to WT animals. These findings reveal a key role of p27Kip1 in enhancing antiviral innate immunity.
Collapse
Affiliation(s)
- Kul Raj Rai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Biao Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhonghui Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuhai Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jiayue Hu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shasha Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Mohamed Maarouf
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Yingying Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Meng Xiao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Liao
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ji-Long Chen
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
6
|
Watanabe T, Sato Y, Masud HMAA, Takayama M, Matsuda H, Hara Y, Yanagi Y, Yoshida M, Goshima F, Murata T, Kimura H. Antitumor activity of cyclin-dependent kinase inhibitor alsterpaullone in Epstein-Barr virus-associated lymphoproliferative disorders. Cancer Sci 2019; 111:279-287. [PMID: 31743514 PMCID: PMC6942432 DOI: 10.1111/cas.14241] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/15/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022] Open
Abstract
Epstein‐Barr virus (EBV) is a well‐established tumor virus that has been implicated in a wide range of immunodeficiency‐associated lymphoproliferative disorders (LPDs). Although rituximab, a CD20 mAb, has proven effective against EBV‐associated LPDs, prolonged use of this drug could lead to resistance due to the selective expansion of CD20− cells. We have previously shown that cyclin‐dependent kinase (CDK) inhibitors are able to specifically suppress the expression of viral late genes, particularly those encoding structural proteins; however, the therapeutic effect of CDK inhibitors against EBV‐associated LPDs is not clear. In this study, we examined whether CDK inhibitors confer a therapeutic effect against LPDs in vivo. Treatment with alsterpaullone, an inhibitor of the CDK2 complex, resulted in a survival benefit and suppressed tumor invasion in a mouse model of LPDs. Inhibition of CDK efficiently induced G1 cell cycle arrest and apoptosis in EBV‐positive B cells. These results suggest that alsterpaullone suppresses cell cycle progression, resulting in the antitumor effect observed in vivo.
Collapse
Affiliation(s)
- Takahiro Watanabe
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshitaka Sato
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - H M Abdullah Al Masud
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahiro Takayama
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroki Matsuda
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuya Hara
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yusuke Yanagi
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahiro Yoshida
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Fumi Goshima
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takayuki Murata
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Hiroshi Kimura
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
7
|
Thomé MP, Borde C, Larsen AK, Henriques JAP, Lenz G, Escargueil AE, Maréchal V. Dipyridamole as a new drug to prevent Epstein-Barr virus reactivation. Antiviral Res 2019; 172:104615. [PMID: 31580916 DOI: 10.1016/j.antiviral.2019.104615] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/03/2019] [Accepted: 09/26/2019] [Indexed: 12/29/2022]
Abstract
Epstein-Barr virus (EBV) is a widely distributed gamma-herpesvirus that has been associated with various cancers mainly from lymphocytic and epithelial origin. Although EBV-mediated oncogenesis has been associated with viral oncogenes expressed during latency, a growing set of evidence suggested that antiviral treatments directed against EBV lytic phase may contribute to prevent some forms of cancers, including EBV-positive Post-Transplant Lymphoproliferative Diseases. It is shown here that dipyridamole (DIP), a safe drug with favorable and broad pharmacological properties, inhibits EBV reactivation from B-cell lines. DIP repressed immediate early and early genes expression mostly through its ability to inhibit nucleoside uptake. Considering its wide clinical use, DIP repurposing could shortly be evaluated, alone or in combination with other antivirals, to treat EBV-related diseases where lytic replication plays a deleterious role.
Collapse
Affiliation(s)
- Marcos P Thomé
- Departamento de Biofísica/Centro de Biotecnologia, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil; Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, F-75012, Paris, France.
| | - Chloé Borde
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, F-75012, Paris, France
| | - Annette K Larsen
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, F-75012, Paris, France
| | - Joao A P Henriques
- Departamento de Biofísica/Centro de Biotecnologia, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil; Instituto de Biotecnologia, Universidade de Caxias Do Sul (UCS), Caxias Do Sul, RS, Brazil
| | - Guido Lenz
- Departamento de Biofísica/Centro de Biotecnologia, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | | | - Vincent Maréchal
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, F-75012, Paris, France.
| |
Collapse
|
8
|
Eichelberg MR, Welch R, Guidry JT, Ali A, Ohashi M, Makielski KR, McChesney K, Van Sciver N, Lambert PF, Keleș S, Kenney SC, Scott RS, Johannsen E. Epstein-Barr Virus Infection Promotes Epithelial Cell Growth by Attenuating Differentiation-Dependent Exit from the Cell Cycle. mBio 2019; 10:e01332-19. [PMID: 31431547 PMCID: PMC6703421 DOI: 10.1128/mbio.01332-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022] Open
Abstract
Epstein-Barr virus (EBV) is a human herpesvirus that is associated with lymphomas as well as nasopharyngeal and gastric carcinomas. Although carcinomas account for almost 90% of EBV-associated cancers, progress in examining EBV's role in their pathogenesis has been limited by difficulty in establishing latent infection in nontransformed epithelial cells. Recently, EBV infection of human telomerase reverse transcriptase (hTERT)-immortalized normal oral keratinocytes (NOKs) has emerged as a model that recapitulates aspects of EBV infection in vivo, such as differentiation-associated viral replication. Using uninfected NOKs and NOKs infected with the Akata strain of EBV (NOKs-Akata), we examined changes in gene expression due to EBV infection and differentiation. Latent EBV infection produced very few significant gene expression changes in undifferentiated NOKs but significantly reduced the extent of differentiation-induced gene expression changes. Gene set enrichment analysis revealed that differentiation-induced downregulation of the cell cycle and metabolism pathways was markedly attenuated in NOKs-Akata relative to that in uninfected NOKs. We also observed that pathways induced by differentiation were less upregulated in NOKs-Akata. We observed decreased differentiation markers and increased suprabasal MCM7 expression in NOKs-Akata versus NOKs when both were grown in raft cultures, consistent with our transcriptome sequencing (RNA-seq) results. These effects were also observed in NOKs infected with a replication-defective EBV mutant (AkataΔRZ), implicating mechanisms other than lytic-gene-induced host shutoff. Our results help to define the mechanisms by which EBV infection alters keratinocyte differentiation and provide a basis for understanding the role of EBV in epithelial cancers.IMPORTANCE Latent infection by Epstein-Barr virus (EBV) is an early event in the development of EBV-associated carcinomas. In oral epithelial tissues, EBV establishes a lytic infection of differentiated epithelial cells to facilitate the spread of the virus to new hosts. Because of limitations in existing model systems, the effects of latent EBV infection on undifferentiated and differentiating epithelial cells are poorly understood. Here, we characterize latent infection of an hTERT-immortalized oral epithelial cell line (NOKs). We find that although EBV expresses a latency pattern similar to that seen in EBV-associated carcinomas, infection of undifferentiated NOKs results in differential expression of a small number of host genes. In differentiating NOKs, however, EBV has a more substantial effect, reducing the extent of differentiation and delaying the exit from the cell cycle. This effect may synergize with preexisting cellular abnormalities to prevent exit from the cell cycle, representing a critical step in the development of cancer.
Collapse
Affiliation(s)
- Mark R Eichelberg
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin, Madison, Wisconsin, USA
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, Wisconsin, USA
| | - Rene Welch
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin, USA
| | - J Tod Guidry
- Department of Microbiology and Immunology, LSUHSC-S, Shreveport, Louisiana, USA
| | - Ahmed Ali
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin, Madison, Wisconsin, USA
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, Wisconsin, USA
| | - Makoto Ohashi
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin, Madison, Wisconsin, USA
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, Wisconsin, USA
| | - Kathleen R Makielski
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin, Madison, Wisconsin, USA
| | - Kyle McChesney
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin, Madison, Wisconsin, USA
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, Wisconsin, USA
| | - Nicholas Van Sciver
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin, Madison, Wisconsin, USA
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, Wisconsin, USA
| | - Paul F Lambert
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin, Madison, Wisconsin, USA
| | - Sündüz Keleș
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin, USA
- Department of Statistics, University of Wisconsin, Madison, Wisconsin, USA
| | - Shannon C Kenney
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin, Madison, Wisconsin, USA
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, Wisconsin, USA
| | - Rona S Scott
- Department of Microbiology and Immunology, LSUHSC-S, Shreveport, Louisiana, USA
| | - Eric Johannsen
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin, Madison, Wisconsin, USA
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
9
|
S-Like-Phase Cyclin-Dependent Kinases Stabilize the Epstein-Barr Virus BDLF4 Protein To Temporally Control Late Gene Transcription. J Virol 2019; 93:JVI.01707-18. [PMID: 30700607 DOI: 10.1128/jvi.01707-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/23/2019] [Indexed: 12/27/2022] Open
Abstract
Temporally controlled gene expression is necessary for the propagation of herpesviruses. To achieve this, herpesviruses encode several transcriptional regulators. In Epstein-Barr virus, BcRF1 associates with five viral proteins (BDLF4, BGLF3, BFRF2, BVLF1, and BDLF3.5) to form the viral late (L) gene regulatory complex, which is called the viral preinitiation complex (vPIC), on TATT-containing promoters. However, regulation of the vPIC has been largely unexplored. In this study, we performed two screens using a kinase inhibitor library and identified a series of cyclin-dependent kinase (CDK) inhibitors that downregulated the expression of L genes without any impact on viral DNA replication through destabilization of the BDLF4 protein. Knockdown of CDK2 by short hairpin RNA (shRNA) and proteasome inhibitor treatment showed that phosphorylation of the BDLF4 protein prevented ubiquitin-mediated degradation. Moreover, we demonstrated that cyclin A- and E-associated CDK2 complexes phosphorylated BDLF4 in vitro, and we identified several serine/threonine phosphorylation sites in BDLF4. Phosphoinactive and phosphomimic mutants revealed that phosphorylation at threonine 91 plays a role in stabilizing BDLF4. Therefore, our findings indicate that S-like-phase CDKs mediate the regulation of L gene expression through stabilization of the BDLF4 protein, which makes the temporal L gene expression system more robust.IMPORTANCE Late (L) genes represent more than one-third of the herpesvirus genome, suggesting that many of these genes are indispensable for the life cycle of the virus. With the exception of BCRF1, BDLF2, and BDLF3, Epstein-Barr virus L genes are transcribed by viral regulators, which are known as the viral preinitiation complex (vPIC) and the host RNA polymerase II complex. Because the vPIC is conserved in beta- and gammaherpesviruses, studying the control of viral L gene expression by the vPIC contributes to the development of drugs that specifically inhibit these processes in beta- and gammaherpesvirus infections/diseases. In this study, we demonstrated that CDK inhibitors induced destabilization of the vPIC component BDLF4, leading to a reduction in L gene expression and subsequent progeny production. Our findings suggest that CDK inhibitors may be a therapeutic option against beta- and gammaherpesviruses in combination with existing inhibitors of herpesvirus lytic replication, such as ganciclovir.
Collapse
|
10
|
Hui KF, Yiu SPT, Tam KP, Chiang AKS. Viral-Targeted Strategies Against EBV-Associated Lymphoproliferative Diseases. Front Oncol 2019; 9:81. [PMID: 30873380 PMCID: PMC6400835 DOI: 10.3389/fonc.2019.00081] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/29/2019] [Indexed: 12/14/2022] Open
Abstract
Epstein-Barr virus (EBV) is strongly associated with a spectrum of EBV-associated lymphoproliferative diseases (EBV-LPDs) ranging from post-transplant lymphoproliferative disorder, B cell lymphomas (e.g., endemic Burkitt lymphoma, Hodgkin lymphoma, and diffuse large B cell lymphoma) to NK or T cell lymphoma (e.g., nasal NK/T-cell lymphoma). The virus expresses a number of latent viral proteins which are able to manipulate cell cycle and cell death processes to promote survival of the tumor cells. Several FDA-approved drugs or novel compounds have been shown to induce killing of some of the EBV-LPDs by inhibiting the function of latent viral proteins or activating the viral lytic cycle from latency. Here, we aim to provide an overview on the mechanisms by which EBV employs to drive the pathogenesis of various EBV-LPDs and to maintain the survival of the tumor cells followed by a discussion on the development of viral-targeted strategies based on the understanding of the patho-mechanisms.
Collapse
Affiliation(s)
- Kwai Fung Hui
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong
| | - Stephanie Pei Tung Yiu
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong
| | - Kam Pui Tam
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong
| | - Alan Kwok Shing Chiang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong.,Center for Nasopharyngeal Carcinoma Research, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
11
|
Poorebrahim M, Salarian A, Najafi S, Abazari MF, Aleagha MN, Dadras MN, Jazayeri SM, Ataei A, Poortahmasebi V. Regulatory network analysis of Epstein-Barr virus identifies functional modules and hub genes involved in infectious mononucleosis. Arch Virol 2017; 162:1299-1309. [PMID: 28155194 DOI: 10.1007/s00705-017-3242-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 01/24/2017] [Indexed: 12/14/2022]
Abstract
Epstein-Barr virus (EBV) is the most common cause of infectious mononucleosis (IM) and establishes lifetime infection associated with a variety of cancers and autoimmune diseases. The aim of this study was to develop an integrative gene regulatory network (GRN) approach and overlying gene expression data to identify the representative subnetworks for IM and EBV latent infection (LI). After identifying differentially expressed genes (DEGs) in both IM and LI gene expression profiles, functional annotations were applied using gene ontology (GO) and BiNGO tools, and construction of GRNs, topological analysis and identification of modules were carried out using several plugins of Cytoscape. In parallel, a human-EBV GRN was generated using the Hu-Vir database for further analyses. Our analysis revealed that the majority of DEGs in both IM and LI were involved in cell-cycle and DNA repair processes. However, these genes showed a significant negative correlation in the IM and LI states. Furthermore, cyclin-dependent kinase 2 (CDK2) - a hub gene with the highest centrality score - appeared to be the key player in cell cycle regulation in IM disease. The most significant functional modules in the IM and LI states were involved in the regulation of the cell cycle and apoptosis, respectively. Human-EBV network analysis revealed several direct targets of EBV proteins during IM disease. Our study provides an important first report on the response to IM/LI EBV infection in humans. An important aspect of our data was the upregulation of genes associated with cell cycle progression and proliferation.
Collapse
Affiliation(s)
- Mansour Poorebrahim
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Salarian
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeideh Najafi
- Department of Microbiology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Foad Abazari
- Department of Genetics, Islamic Azad University, Tehran Medical Branch, Tehran, Iran
| | - Maryam Nouri Aleagha
- Department of Genetics, Islamic Azad University, Tehran Medical Branch, Tehran, Iran
| | - Mohammad Nasr Dadras
- Center for Disease Control, Ministry of Health and Medical Education (MOHME), Tehran, Iran
| | - Seyed Mohammad Jazayeri
- Hepatitis B Molecular Laboratory, Department of Virology, School of Public Health, Tehran University of Medical Sciences, PO Box 15155-6446, Tehran, Iran
| | - Atousa Ataei
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Vahdat Poortahmasebi
- Hepatitis B Molecular Laboratory, Department of Virology, School of Public Health, Tehran University of Medical Sciences, PO Box 15155-6446, Tehran, Iran.
| |
Collapse
|
12
|
Wu CC, Fang CY, Cheng YJ, Hsu HY, Chou SP, Huang SY, Tsai CH, Chen JY. Inhibition of Epstein-Barr virus reactivation by the flavonoid apigenin. J Biomed Sci 2017; 24:2. [PMID: 28056971 PMCID: PMC5217310 DOI: 10.1186/s12929-016-0313-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 12/18/2016] [Indexed: 12/03/2022] Open
Abstract
Background Lytic reactivation of EBV has been reported to play an important role in human diseases, including NPC carcinogenesis. Inhibition of EBV reactivation is considered to be of great benefit in the treatment of virus-associated diseases. For this purpose, we screened for inhibitory compounds and found that apigenin, a flavonoid, seemed to have the ability to inhibit EBV reactivation. Methods We performed western blotting, immunofluorescence and luciferase analyses to determine whether apigenin has anti-EBV activity. Results Apigenin inhibited expression of the EBV lytic proteins, Zta, Rta, EAD and DNase in epithelial and B cells. It also reduced the number of EBV-reactivating cells detectable by immunofluorescence analysis. In addition, apigenin has been found to reduce dramatically the production of EBV virions. Luciferase reporter analysis was performed to determine the mechanism by which apigenin inhibits EBV reactivation: apigenin suppressed the activity of the immediate-early (IE) gene Zta and Rta promoters, suggesting it can block initiation of the EBV lytic cycle. Conclusion Taken together, apigenin inhibits EBV reactivation by suppressing the promoter activities of two viral IE genes, suggesting apigenin is a potential dietary compound for prevention of EBV reactivation. Electronic supplementary material The online version of this article (doi:10.1186/s12929-016-0313-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chung-Chun Wu
- National Institute of Cancer Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Miaoli, Miaoli County, Taiwan.
| | - Chih-Yeu Fang
- National Institute of Cancer Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Miaoli, Miaoli County, Taiwan.,Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei, 116, Taiwan
| | - Yu-Jhen Cheng
- National Institute of Cancer Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Miaoli, Miaoli County, Taiwan
| | - Hui-Yu Hsu
- National Institute of Cancer Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Miaoli, Miaoli County, Taiwan
| | - Sheng-Ping Chou
- National Institute of Cancer Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Miaoli, Miaoli County, Taiwan
| | - Sheng-Yen Huang
- National Institute of Cancer Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Miaoli, Miaoli County, Taiwan
| | - Ching-Hwa Tsai
- Department of Microbiology, College of Medicine National Health Research Institutes, National Taiwan University, No.35, Keyan Road, Zhunan Town, Miaoli County, Taipei, Taiwan
| | - Jen-Yang Chen
- National Institute of Cancer Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Miaoli, Miaoli County, Taiwan. .,Department of Microbiology, College of Medicine National Health Research Institutes, National Taiwan University, No.35, Keyan Road, Zhunan Town, Miaoli County, Taipei, Taiwan.
| |
Collapse
|
13
|
Söderholm S, Kainov DE, Öhman T, Denisova OV, Schepens B, Kulesskiy E, Imanishi SY, Corthals G, Hintsanen P, Aittokallio T, Saelens X, Matikainen S, Nyman TA. Phosphoproteomics to Characterize Host Response During Influenza A Virus Infection of Human Macrophages. Mol Cell Proteomics 2016; 15:3203-3219. [PMID: 27486199 DOI: 10.1074/mcp.m116.057984] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Indexed: 12/18/2022] Open
Abstract
Influenza A viruses cause infections in the human respiratory tract and give rise to annual seasonal outbreaks, as well as more rarely dreaded pandemics. Influenza A viruses become quickly resistant to the virus-directed antiviral treatments, which are the current main treatment options. A promising alternative approach is to target host cell factors that are exploited by influenza viruses. To this end, we characterized the phosphoproteome of influenza A virus infected primary human macrophages to elucidate the intracellular signaling pathways and critical host factors activated upon influenza infection. We identified 1675 phosphoproteins, 4004 phosphopeptides and 4146 nonredundant phosphosites. The phosphorylation of 1113 proteins (66%) was regulated upon infection, highlighting the importance of such global phosphoproteomic profiling in primary cells. Notably, 285 of the identified phosphorylation sites have not been previously described in publicly available phosphorylation databases, despite many published large-scale phosphoproteome studies using human and mouse cell lines. Systematic bioinformatics analysis of the phosphoproteome data indicated that the phosphorylation of proteins involved in the ubiquitin/proteasome pathway (such as TRIM22 and TRIM25) and antiviral responses (such as MAVS) changed in infected macrophages. Proteins known to play roles in small GTPase-, mitogen-activated protein kinase-, and cyclin-dependent kinase- signaling were also regulated by phosphorylation upon infection. In particular, the influenza infection had a major influence on the phosphorylation profiles of a large number of cyclin-dependent kinase substrates. Functional studies using cyclin-dependent kinase inhibitors showed that the cyclin-dependent kinase activity is required for efficient viral replication and for activation of the host antiviral responses. In addition, we show that cyclin-dependent kinase inhibitors protect IAV-infected mice from death. In conclusion, we provide the first comprehensive phosphoproteome characterization of influenza A virus infection in primary human macrophages, and provide evidence that cyclin-dependent kinases represent potential therapeutic targets for more effective treatment of influenza infections.
Collapse
Affiliation(s)
- Sandra Söderholm
- From the ‡Institute of Biotechnology, FI-00014 University of Helsinki, Helsinki, Finland; §Unit of Systems Toxicology, Finnish Institute of Occupational Health, FI-00250 Helsinki, Finland
| | - Denis E Kainov
- ¶Institute for Molecular Medicine Finland (FIMM), FI-00014 University of Helsinki, Helsinki, Finland
| | - Tiina Öhman
- From the ‡Institute of Biotechnology, FI-00014 University of Helsinki, Helsinki, Finland
| | - Oxana V Denisova
- ¶Institute for Molecular Medicine Finland (FIMM), FI-00014 University of Helsinki, Helsinki, Finland
| | - Bert Schepens
- ‖Medical Biotechnology Center, VIB, B-9052 Ghent (Zwijnaarde), Belgium; **Department of Biomedical Molecular Biology, B-9052 Ghent University, Ghent, Belgium
| | - Evgeny Kulesskiy
- ¶Institute for Molecular Medicine Finland (FIMM), FI-00014 University of Helsinki, Helsinki, Finland
| | - Susumu Y Imanishi
- ‡‡Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
| | - Garry Corthals
- ‡‡Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
| | - Petteri Hintsanen
- ¶Institute for Molecular Medicine Finland (FIMM), FI-00014 University of Helsinki, Helsinki, Finland
| | - Tero Aittokallio
- ¶Institute for Molecular Medicine Finland (FIMM), FI-00014 University of Helsinki, Helsinki, Finland
| | - Xavier Saelens
- ‖Medical Biotechnology Center, VIB, B-9052 Ghent (Zwijnaarde), Belgium; **Department of Biomedical Molecular Biology, B-9052 Ghent University, Ghent, Belgium
| | - Sampsa Matikainen
- §§Department of Rheumatology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Tuula A Nyman
- From the ‡Institute of Biotechnology, FI-00014 University of Helsinki, Helsinki, Finland; ¶¶Institute of Clinical Medicine, University of Oslo, Norway
| |
Collapse
|
14
|
Sakurikar N, Eastman A. Critical reanalysis of the methods that discriminate the activity of CDK2 from CDK1. Cell Cycle 2016; 15:1184-8. [PMID: 26986210 DOI: 10.1080/15384101.2016.1160983] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Cyclin dependent kinases 1 and 2 (CDK1 and CDK2) play crucial roles in regulating cell cycle progression from G1 to S, through S, and G2 to M phase. Both inhibition and aberrant activation of CDK1/2 can be detrimental to cancer cell growth. However, the tools routinely employed to discriminate between the activities of these 2 kinases do not have the selectivity commonly attributed to them. Activation of these kinases is often assayed as a decrease of the inhibitory tyrosine-15 phosphorylation, yet the antibodies used cannot discriminate between phosphorylated CDK1 and CDK2. Inhibitors of these kinases, while partially selective against purified kinases, may lack selectivity when applied to intact cells. High levels of cyclin E are often considered a marker of increased CDK2 activity, yet active CDK2 targets cyclin E for degradation, hence high levels usually reflect inactive CDK2. Finally, inhibition of CDK2 does not arrest cells in S phase suggesting CDK2 is not required for S phase progression. Furthermore, activation of CDK2 in S phase can rapidly induce DNA double-strand breaks in some cell lines. The misunderstandings associated with the use of these tools has led to misinterpretation of results. In this review, we highlight these challenges in the field.
Collapse
Affiliation(s)
- Nandini Sakurikar
- a Department of Pharmacology and Toxicology, and Norris Cotton Cancer Center , Geisel School of Medicine at Dartmouth , Lebanon , NH , USA
| | - Alan Eastman
- a Department of Pharmacology and Toxicology, and Norris Cotton Cancer Center , Geisel School of Medicine at Dartmouth , Lebanon , NH , USA
| |
Collapse
|
15
|
Zhao C, Wang L, Ma X, Zhu W, Yao L, Cui Y, Liu Y, Li J, Liang X, Sun Y, Li L, Chen YH. Cardiac Nav 1.5 is modulated by ubiquitin protein ligase E3 component n-recognin UBR3 and 6. J Cell Mol Med 2015; 19:2143-2152. [PMID: 26059563 PMCID: PMC4568919 DOI: 10.1111/jcmm.12588] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 03/03/2015] [Indexed: 11/29/2022] Open
Abstract
The voltage-gated Na(+) channel Nav 1.5 is essential for action potential (AP) formation and electrophysiological homoeostasis in the heart. The ubiquitin-proteasome system (UPS) is a major degradative system for intracellular proteins including ion channels. The ubiquitin protein ligase E3 component N-recognin (UBR) family is a part of the UPS; however, their roles in regulating cardiac Nav 1.5 channels remain elusive. Here, we found that all of the UBR members were expressed in cardiomyocytes. Individual knockdown of UBR3 or UBR6, but not of other UBR members, significantly increased Nav 1.5 protein levels in neonatal rat ventricular myocytes, and this effect was verified in HEK293T cells expressing Nav 1.5 channels. The UBR3/6-dependent regulation of Nav 1.5 channels was not transcriptionally mediated, and pharmacological inhibition of protein biosynthesis failed to counteract the increase in Nav 1.5 protein caused by UBR3/6 reduction, suggesting a degradative modulation of UBR3/6 on Nav 1.5. Furthermore, the effects of UBR3/6 knockdown on Nav 1.5 proteins were abolished under the inhibition of proteasome activity, and UBR3/6 knockdown reduced Nav 1.5 ubiquitylation. The double UBR3-UBR6 knockdown resulted in comparable increases in Nav 1.5 proteins to that observed for single knockdown of either UBR3 or UBR6. Electrophysiological recordings showed that UBR3/6 reduction-mediated increase in Nav 1.5 protein enhanced the opening of Nav 1.5 channels and thereby the amplitude of the AP. Thus, our findings indicate that UBR3/6 regulate cardiomyocyte Nav 1.5 channel protein levels via the ubiquitin-proteasome pathway. It is likely that UBR3/6 have the potential to be a therapeutic target for cardiac arrhythmias.
Collapse
Affiliation(s)
- Chunxia Zhao
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of MedicineShanghai, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of MedicineShanghai, China
| | - Lijie Wang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of MedicineShanghai, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of MedicineShanghai, China
| | - Xiue Ma
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of MedicineShanghai, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of MedicineShanghai, China
| | - Weidong Zhu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of MedicineShanghai, China
- Research Center for Translational Medicine, Tongji University School of MedicineShanghai, China
- Department of Pathology and Pathophysiology, Tongji University School of MedicineShanghai, China
| | - Lei Yao
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of MedicineShanghai, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of MedicineShanghai, China
- Research Center for Translational Medicine, Tongji University School of MedicineShanghai, China
| | - Yingyu Cui
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of MedicineShanghai, China
- Department of Pathology and Pathophysiology, Tongji University School of MedicineShanghai, China
- Institute of Medical Genetics, Tongji UniversityShanghai, China
| | - Yi Liu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of MedicineShanghai, China
- Research Center for Translational Medicine, Tongji University School of MedicineShanghai, China
- Institute of Medical Genetics, Tongji UniversityShanghai, China
| | - Jun Li
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of MedicineShanghai, China
- Research Center for Translational Medicine, Tongji University School of MedicineShanghai, China
- Institute of Medical Genetics, Tongji UniversityShanghai, China
| | - Xingqun Liang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of MedicineShanghai, China
- Research Center for Translational Medicine, Tongji University School of MedicineShanghai, China
- Department of Pathology and Pathophysiology, Tongji University School of MedicineShanghai, China
| | - Yunfu Sun
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of MedicineShanghai, China
- Research Center for Translational Medicine, Tongji University School of MedicineShanghai, China
- Department of Pathology and Pathophysiology, Tongji University School of MedicineShanghai, China
| | - Li Li
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of MedicineShanghai, China
- Department of Pathology and Pathophysiology, Tongji University School of MedicineShanghai, China
- Institute of Medical Genetics, Tongji UniversityShanghai, China
| | - Yi-Han Chen
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of MedicineShanghai, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of MedicineShanghai, China
- Research Center for Translational Medicine, Tongji University School of MedicineShanghai, China
- Department of Pathology and Pathophysiology, Tongji University School of MedicineShanghai, China
- Institute of Medical Genetics, Tongji UniversityShanghai, China
| |
Collapse
|
16
|
Characterization of histone post-translational modifications during virus infection using mass spectrometry-based proteomics. Methods 2015; 90:8-20. [PMID: 26093074 DOI: 10.1016/j.ymeth.2015.06.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/05/2015] [Accepted: 06/07/2015] [Indexed: 11/21/2022] Open
Abstract
Viruses are obligate intracellular parasites that necessarily rely on hijacking cellular resources to produce viral progeny. The success of viral infection requires manipulation of host chromatin in order to activate genes useful for production of viral proteins as well as to suppress antiviral responses. Host chromatin manipulation on a global level is likely reliant on modulation of post-translational modifications (PTMs) on histone proteins. Mass spectrometry (MS) is a powerful tool to quantify and identify novel histone PTMs, beyond the limitations of site-specific antibodies. Here, we employ MS to investigate global changes in histone PTM relative abundance in human cells during infection with adenovirus. Our method reveals several changes in histone PTM patterns during infection. We propose that this method can be used to uncover global changes in histone PTM patterns that are universally modulated by viruses to take over the cell.
Collapse
|
17
|
Trapp-Fragnet L, Bencherit D, Chabanne-Vautherot D, Le Vern Y, Remy S, Boutet-Robinet E, Mirey G, Vautherot JF, Denesvre C. Cell cycle modulation by Marek's disease virus: the tegument protein VP22 triggers S-phase arrest and DNA damage in proliferating cells. PLoS One 2014; 9:e100004. [PMID: 24945933 PMCID: PMC4063868 DOI: 10.1371/journal.pone.0100004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 05/21/2014] [Indexed: 01/22/2023] Open
Abstract
Marek's disease is one of the most common viral diseases of poultry affecting chicken flocks worldwide. The disease is caused by an alphaherpesvirus, the Marek's disease virus (MDV), and is characterized by the rapid onset of multifocal aggressive T-cell lymphoma in the chicken host. Although several viral oncogenes have been identified, the detailed mechanisms underlying MDV-induced lymphomagenesis are still poorly understood. Many viruses modulate cell cycle progression to enhance their replication and persistence in the host cell, in the case of some oncogenic viruses ultimately leading to cellular transformation and oncogenesis. In the present study, we found that MDV, like other viruses, is able to subvert the cell cycle progression by triggering the proliferation of low proliferating chicken cells and a subsequent delay of the cell cycle progression into S-phase. We further identified the tegument protein VP22 (pUL49) as a major MDV-encoded cell cycle regulator, as its vector-driven overexpression in cells lead to a dramatic cell cycle arrest in S-phase. This striking functional feature of VP22 appears to depend on its ability to associate with histones in the nucleus. Finally, we established that VP22 expression triggers the induction of massive and severe DNA damages in cells, which might cause the observed intra S-phase arrest. Taken together, our results provide the first evidence for a hitherto unknown function of the VP22 tegument protein in herpesviral reprogramming of the cell cycle of the host cell and its potential implication in the generation of DNA damages.
Collapse
Affiliation(s)
- Laëtitia Trapp-Fragnet
- INRA, UMR1282 Infectiologie et Santé Publique, Equipe Biologie des Virus Aviaires, Nouzilly, France
- * E-mail:
| | - Djihad Bencherit
- INRA, UMR1282 Infectiologie et Santé Publique, Equipe Biologie des Virus Aviaires, Nouzilly, France
| | | | - Yves Le Vern
- INRA, UMR1282 Infectiologie et Santé Publique, Laboratoire de Cytométrie, Nouzilly, France
| | - Sylvie Remy
- INRA, UMR1282 Infectiologie et Santé Publique, Equipe Biologie des Virus Aviaires, Nouzilly, France
| | - Elisa Boutet-Robinet
- INRA, UMR 1331, Toxalim, Research Centre in Food Toxicology, Toulouse, France
- University of Toulouse, UPS, UMR1331, Toxalim, Toulouse, France
| | - Gladys Mirey
- INRA, UMR 1331, Toxalim, Research Centre in Food Toxicology, Toulouse, France
- University of Toulouse, UPS, UMR1331, Toxalim, Toulouse, France
| | - Jean-François Vautherot
- INRA, UMR1282 Infectiologie et Santé Publique, Equipe Biologie des Virus Aviaires, Nouzilly, France
| | - Caroline Denesvre
- INRA, UMR1282 Infectiologie et Santé Publique, Equipe Biologie des Virus Aviaires, Nouzilly, France
| |
Collapse
|
18
|
Stahl JA, Chavan SS, Sifford JM, MacLeod V, Voth DE, Edmondson RD, Forrest JC. Phosphoproteomic analyses reveal signaling pathways that facilitate lytic gammaherpesvirus replication. PLoS Pathog 2013; 9:e1003583. [PMID: 24068923 PMCID: PMC3777873 DOI: 10.1371/journal.ppat.1003583] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 07/15/2013] [Indexed: 12/27/2022] Open
Abstract
Lytic gammaherpesvirus (GHV) replication facilitates the establishment of lifelong latent infection, which places the infected host at risk for numerous cancers. As obligate intracellular parasites, GHVs must control and usurp cellular signaling pathways in order to successfully replicate, disseminate to stable latency reservoirs in the host, and prevent immune-mediated clearance. To facilitate a systems-level understanding of phosphorylation-dependent signaling events directed by GHVs during lytic replication, we utilized label-free quantitative mass spectrometry to interrogate the lytic replication cycle of murine gammaherpesvirus-68 (MHV68). Compared to controls, MHV68 infection regulated by 2-fold or greater ca. 86% of identified phosphopeptides - a regulatory scale not previously observed in phosphoproteomic evaluations of discrete signal-inducing stimuli. Network analyses demonstrated that the infection-associated induction or repression of specific cellular proteins globally altered the flow of information through the host phosphoprotein network, yielding major changes to functional protein clusters and ontologically associated proteins. A series of orthogonal bioinformatics analyses revealed that MAPK and CDK-related signaling events were overrepresented in the infection-associated phosphoproteome and identified 155 host proteins, such as the transcription factor c-Jun, as putative downstream targets. Importantly, functional tests of bioinformatics-based predictions confirmed ERK1/2 and CDK1/2 as kinases that facilitate MHV68 replication and also demonstrated the importance of c-Jun. Finally, a transposon-mutant virus screen identified the MHV68 cyclin D ortholog as a viral protein that contributes to the prominent MAPK/CDK signature of the infection-associated phosphoproteome. Together, these analyses enhance an understanding of how GHVs reorganize and usurp intracellular signaling networks to facilitate infection and replication.
Collapse
Affiliation(s)
- James A. Stahl
- Dept. of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Shweta S. Chavan
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- UALR/UAMS Joint Program in Bioinformatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Jeffrey M. Sifford
- Dept. of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Veronica MacLeod
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Daniel E. Voth
- Dept. of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Ricky D. Edmondson
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - J. Craig Forrest
- Dept. of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- * E-mail:
| |
Collapse
|
19
|
Li R, Hayward SD. Potential of protein kinase inhibitors for treating herpesvirus-associated disease. Trends Microbiol 2013; 21:286-95. [PMID: 23608036 DOI: 10.1016/j.tim.2013.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 03/24/2013] [Accepted: 03/26/2013] [Indexed: 11/29/2022]
Abstract
Herpesviruses are ubiquitous human pathogens that establish lifelong persistent infections. Clinical manifestations range from mild self-limiting outbreaks such as childhood rashes and cold sores to the more severe and life-threatening outcomes of disseminated infection, encephalitis, and cancer. Nucleoside analog drugs that target viral DNA replication provide the primary means of treatment. However, extended use of these drugs can result in selection for drug-resistant strains, particularly in immunocompromised patients. In this review we will present recent observations about the participation of cellular protein kinases in herpesvirus biology and discuss the potential for targeting these protein kinases as well as the herpesvirus-encoded protein kinases as an anti-herpesvirus therapeutic strategy.
Collapse
Affiliation(s)
- Renfeng Li
- Viral Oncology Program, Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA.
| | | |
Collapse
|
20
|
Nuclear transport of Epstein-Barr virus DNA polymerase is dependent on the BMRF1 polymerase processivity factor and molecular chaperone Hsp90. J Virol 2013; 87:6482-91. [PMID: 23552409 DOI: 10.1128/jvi.03428-12] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Epstein-Barr virus (EBV) replication proteins are transported into the nucleus to synthesize viral genomes. We here report molecular mechanisms for nuclear transport of EBV DNA polymerase. The EBV DNA polymerase catalytic subunit BALF5 was found to accumulate in the cytoplasm when expressed alone, while the EBV DNA polymerase processivity factor BMRF1 moved into the nucleus by itself. Coexpression of both proteins, however, resulted in efficient nuclear transport of BALF5. Deletion of the nuclear localization signal of BMRF1 diminished the proteins' nuclear transport, although both proteins can still interact. These results suggest that BALF5 interacts with BMRF1 to effect transport into the nucleus. Interestingly, we found that Hsp90 inhibitors or knockdown of Hsp90β with short hairpin RNA prevented the BALF5 nuclear transport, even in the presence of BMRF1, both in transfection assays and in the context of lytic replication. Immunoprecipitation analyses suggested that the molecular chaperone Hsp90 interacts with BALF5. Treatment with Hsp90 inhibitors blocked viral DNA replication almost completely during lytic infection, and knockdown of Hsp90β reduced viral genome synthesis. Collectively, we speculate that Hsp90 interacts with BALF5 in the cytoplasm to assist complex formation with BMRF1, leading to nuclear transport. Hsp90 inhibitors may be useful for therapy for EBV-associated diseases in the future.
Collapse
|
21
|
Chang YH, Lee CP, Su MT, Wang JT, Chen JY, Lin SF, Tsai CH, Hsieh MJ, Takada K, Chen MR. Epstein-Barr virus BGLF4 kinase retards cellular S-phase progression and induces chromosomal abnormality. PLoS One 2012; 7:e39217. [PMID: 22768064 PMCID: PMC3387188 DOI: 10.1371/journal.pone.0039217] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 05/17/2012] [Indexed: 11/26/2022] Open
Abstract
Epstein-Barr virus (EBV) induces an uncoordinated S-phase-like cellular environment coupled with multiple prophase-like events in cells replicating the virus. The EBV encoded Ser/Thr kinase BGLF4 has been shown to induce premature chromosome condensation through activation of condensin and topoisomerase II and reorganization of the nuclear lamina to facilitate the nuclear egress of nucleocapsids in a pathway mimicking Cdk1. However, the observation that RB is hyperphosphorylated in the presence of BGLF4 raised the possibility that BGLF4 may have a Cdk2-like activity to promote S-phase progression. Here, we investigated the regulatory effects of BGLF4 on cell cycle progression and found that S-phase progression and DNA synthesis were interrupted by BGLF4 in mammalian cells. Expression of BGLF4 did not compensate Cdk1 defects for DNA replication in S. cerevisiae. Using time-lapse microscopy, we found the fate of individual HeLa cells was determined by the expression level of BGLF4. In addition to slight cell growth retardation, BGLF4 elicits abnormal chromosomal structure and micronucleus formation in 293 and NCP-TW01 cells. In Saos-2 cells, BGLF4 induced the hyperphosphorylation of co-transfected RB, while E2F1 was not released from RB-E2F1 complexes. The E2F1 regulated activities of the cyclin D1 and ZBRK1 promoters were suppressed by BGLF4 in a dose dependent manner. Detection with phosphoamino acid specific antibodies revealed that, in addition to Ser780, phosphorylation of the DNA damage-responsive Ser612 on RB was enhanced by BGLF4. Taken together, our study indicates that BGLF4 may directly or indirectly induce a DNA damage signal that eventually interferes with host DNA synthesis and delays S-phase progression.
Collapse
Affiliation(s)
- Yu-Hsin Chang
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chung-Pei Lee
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
- General Education Center, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Mei-Tzu Su
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jiin-Tarng Wang
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jen-Yang Chen
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Su-Fang Lin
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Ching-Hwa Tsai
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Min-Jei Hsieh
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Kenzo Takada
- Department of Tumor Virology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Mei-Ru Chen
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
22
|
Schang LM, Coccaro E, Lacasse JJ. CDK INHIBITORY NUCLEOSIDE ANALOGS PREVENT TRANSCRIPTION FROM VIRAL GENOMES. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2011; 24:829-37. [PMID: 16248044 DOI: 10.1081/ncn-200060314] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Targeting viral proteins has lead to many successful antivirals. Yet, such antivirals rapidly select for resistance, tend to be active against only a few related viruses, and require previous characterization of the target proteins. Alternatively, antivirals may be targeted to cellular proteins. Replication of many viruses requires cellular CDKs and pharmacological CDK inhibitors (PCIs), such as the purine-based roscovitine (Rosco), are proving safe in clinical trials against cancer. Rosco inhibits replication of wild-type or (multi-)drug resistant HIV, HCMV, EBV, VZV, and HSV-1 and 2. However, the antiviral mechanisms of purine PCIs remain unknown. Our objective is to characterize these mechanisms using HSV as a model We have shown that Rosco prevents initiation of transcription from viral, but not cellular, genomes. This inhibition is promoter independent, but genome dependent, and requires no viral proteins. This is a novel antiviral mechanism and a previously unknown activity for purine PCIs.
Collapse
Affiliation(s)
- L M Schang
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada.
| | | | | |
Collapse
|
23
|
Feichtinger S, Stamminger T, Müller R, Graf L, Klebl B, Eickhoff J, Marschall M. Recruitment of cyclin-dependent kinase 9 to nuclear compartments during cytomegalovirus late replication: importance of an interaction between viral pUL69 and cyclin T1. J Gen Virol 2011; 92:1519-1531. [PMID: 21450947 DOI: 10.1099/vir.0.030494-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cyclin-dependent protein kinases (CDKs) are important regulators of cellular processes and are functionally integrated into the replication of human cytomegalovirus (HCMV). Recently, a regulatory impact of CDK activity on the viral mRNA export factor pUL69 was shown. Here, specific aspects of the mode of interaction between CDK9/cyclin T1 and pUL69 are described. Intracellular localization was studied in the presence of a novel selective CDK9 inhibitor, R22, which exerts anti-cytomegaloviral activity in vitro. A pronounced R22-induced formation of nuclear speckled aggregation of pUL69 was demonstrated. Multi-labelling confocal laser-scanning microscopy revealed that CDK9 and cyclin T1 co-localized perfectly with pUL69 in individual speckles. The effects were similar to those described recently for the broad CDK inhibitor roscovitine. Co-immunoprecipitation and yeast two-hybrid analyses showed that cyclin T1 interacted with both CDK9 and pUL69. The interaction region of pUL69 for cyclin T1 could be attributed to aa 269-487. Moreover, another component of CDK inhibitor-induced speckled aggregates was identified with RNA polymerase II, supporting earlier reports that strongly suggested an association of pUL69 with transcription complexes. Interestingly, when using a UL69-deleted recombinant HCMV, no speckled aggregates were formed by CDK inhibitor treatment. This indicated that pUL69 is the defining component of aggregates and generally may represent a crucial viral interactor of cyclin T1. In conclusion, these data emphasize that HCMV inter-regulation with CDK9/cyclin T1 is at least partly based on a pUL69-cylin T1 interaction, thus contributing to the importance of CDK9 for HCMV replication.
Collapse
Affiliation(s)
- Sabine Feichtinger
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Thomas Stamminger
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Regina Müller
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Laura Graf
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | | | - Manfred Marschall
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
24
|
Kang MS, Lee EK, Soni V, Lewis TA, Koehler AN, Srinivasan V, Kieff E. Roscovitine inhibits EBNA1 serine 393 phosphorylation, nuclear localization, transcription, and episome maintenance. J Virol 2011; 85:2859-68. [PMID: 21209116 PMCID: PMC3067954 DOI: 10.1128/jvi.01628-10] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 12/24/2010] [Indexed: 02/07/2023] Open
Abstract
Latent Epstein-Barr virus (EBV) infection causes human lymphomas and carcinomas. EBV usually persists as an episome in malignant cells. EBV episome persistence, replication, and gene expression are dependent on EBNA1 binding to multiple cognate sites in oriP. To search for inhibitors of EBNA1- and oriP-dependent episome maintenance or transcription, a library of 40,550 small molecules was screened for compounds that inhibit EBNA1- and oriP-dependent transcription and do not inhibit EBNA1- and oriP-independent transcription. This screening identified roscovitine, a selective inhibitor of cyclin-dependent kinase 1 (CDK1), CDK2, CDK5, and CDK7. Based on motif predictions of EBNA1 serine 393 as a CDK phosphorylation site and (486)RALL(489) and (580)KDLVM(584) as potential cyclin binding domains, we hypothesized that cyclin binding to EBNA1 may enable CDK1, -2, -5, or -7 to phosphorylate serine 393. We found that Escherichia coli-expressed EBNA1 amino acids 387 to 641 were phosphorylated in vitro by CDK1-, -2-, -5-, and -7/cyclin complexes and serine 393 phosphorylation was roscovitine inhibited. Further, S393A mutation abrogated phosphorylation. S393A mutant EBNA1 was deficient in supporting EBNA1- and oriP-dependent transcription and episome persistence, and roscovitine had little further effect on the diminished S393A mutant EBNA1-mediated transcription or episome persistence. Immunoprecipitated FLAG-EBNA1 was phosphorylated in vitro, and roscovitine inhibited this phosphorylation. Moreover, roscovitine decreased nuclear EBNA1 and often increased cytoplasmic EBNA1, whereas S393A mutant EBNA1 was localized equally in the nucleus and cytoplasm and was unaffected by roscovitine treatment. These data indicate that roscovitine effects are serine 393 specific and that serine 393 is important in EBNA1- and oriPCp-dependent transcription and episome persistence.
Collapse
Affiliation(s)
- Myung-Soo Kang
- Channing Laboratory and Infectious Diseases Division, Brigham and Women's Hospital, Department of Medicine and Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, Samsung Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University, 50 Irwon-dong, Gangnam-gu, Seoul, South Korea 135-710, Virid Biosciences LLC, C8 East Garden Way, Dayton, New Jersey 08810, Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, Massachusetts 02142, Beckman Coulter Genomics, Danvers, Massachusetts 01913
| | - Eun Kyung Lee
- Channing Laboratory and Infectious Diseases Division, Brigham and Women's Hospital, Department of Medicine and Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, Samsung Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University, 50 Irwon-dong, Gangnam-gu, Seoul, South Korea 135-710, Virid Biosciences LLC, C8 East Garden Way, Dayton, New Jersey 08810, Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, Massachusetts 02142, Beckman Coulter Genomics, Danvers, Massachusetts 01913
| | - Vishal Soni
- Channing Laboratory and Infectious Diseases Division, Brigham and Women's Hospital, Department of Medicine and Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, Samsung Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University, 50 Irwon-dong, Gangnam-gu, Seoul, South Korea 135-710, Virid Biosciences LLC, C8 East Garden Way, Dayton, New Jersey 08810, Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, Massachusetts 02142, Beckman Coulter Genomics, Danvers, Massachusetts 01913
| | - Timothy A. Lewis
- Channing Laboratory and Infectious Diseases Division, Brigham and Women's Hospital, Department of Medicine and Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, Samsung Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University, 50 Irwon-dong, Gangnam-gu, Seoul, South Korea 135-710, Virid Biosciences LLC, C8 East Garden Way, Dayton, New Jersey 08810, Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, Massachusetts 02142, Beckman Coulter Genomics, Danvers, Massachusetts 01913
| | - Angela N. Koehler
- Channing Laboratory and Infectious Diseases Division, Brigham and Women's Hospital, Department of Medicine and Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, Samsung Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University, 50 Irwon-dong, Gangnam-gu, Seoul, South Korea 135-710, Virid Biosciences LLC, C8 East Garden Way, Dayton, New Jersey 08810, Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, Massachusetts 02142, Beckman Coulter Genomics, Danvers, Massachusetts 01913
| | - Viswanathan Srinivasan
- Channing Laboratory and Infectious Diseases Division, Brigham and Women's Hospital, Department of Medicine and Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, Samsung Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University, 50 Irwon-dong, Gangnam-gu, Seoul, South Korea 135-710, Virid Biosciences LLC, C8 East Garden Way, Dayton, New Jersey 08810, Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, Massachusetts 02142, Beckman Coulter Genomics, Danvers, Massachusetts 01913
| | - Elliott Kieff
- Channing Laboratory and Infectious Diseases Division, Brigham and Women's Hospital, Department of Medicine and Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, Samsung Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University, 50 Irwon-dong, Gangnam-gu, Seoul, South Korea 135-710, Virid Biosciences LLC, C8 East Garden Way, Dayton, New Jersey 08810, Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, Massachusetts 02142, Beckman Coulter Genomics, Danvers, Massachusetts 01913
| |
Collapse
|
25
|
Banerjee NS, Wang HK, Broker TR, Chow LT. Human papillomavirus (HPV) E7 induces prolonged G2 following S phase reentry in differentiated human keratinocytes. J Biol Chem 2011; 286:15473-82. [PMID: 21321122 DOI: 10.1074/jbc.m110.197574] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The productive program of human papillomaviruses occurs in differentiated squamous keratinocytes. We have previously shown that HPV-18 DNA amplification initiates in spinous cells in organotypic cultures of primary human keratinocytes during prolonged G(2) phase, as signified by abundant cytoplasmic cyclin B1 (Wang, H. K., Duffy, A. A., Broker, T. R., and Chow, L. T. (2009) Genes Dev. 23, 181-194). In this study, we demonstrated that the E7 protein, which induces S phase reentry in suprabasal cells by destabilizing the p130 pocket protein (Genovese, N. J., Banerjee, N. S., Broker, T. R., and Chow, L. T. (2008) J. Virol. 82, 4862-4873), also elicited extensive G(2) responses. Western blots and indirect immunofluorescence assays were used to probe for host proteins known to control G(2)/M progression. E7 expression induced cytoplasmic accumulation of cyclin B1 and cdc2 in the suprabasal cells. The elevated cdc2 had inactivating phosphorylation on Thr(14) or Tyr(15), and possibly both, due to an increase in the responsible Wee1 and Myt1 kinases. In cells that harbored cytoplasmic cyclin B1 or cdc2, there was also an accumulation of the phosphatase-inactive cdc25C phosphorylated on Ser(216), unable to activate cdc2. Moreover, E7 expression induced elevated expression of phosphorylated ATM (Ser(1981)) and the downstream phosphorylated Chk1, Chk2, and JNKs, kinases known to inactivate cdc25C. Similar results were observed in primary human keratinocyte raft cultures in which the productive program of HPV-18 took place. Collectively, this study has revealed the mechanisms by which E7 induces prolonged G(2) phase in the differentiated cells following S phase induction.
Collapse
Affiliation(s)
- N Sanjib Banerjee
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35294-0005, USA
| | | | | | | |
Collapse
|
26
|
Clyde K, Glaunsinger BA. Getting the message direct manipulation of host mRNA accumulation during gammaherpesvirus lytic infection. Adv Virus Res 2011; 78:1-42. [PMID: 21040830 DOI: 10.1016/b978-0-12-385032-4.00001-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Gammaherpesvirinae subfamily of herpesviruses comprises lymphotropic viruses, including the oncogenic human pathogens Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus. During lytic infection, gammaherpesviruses manipulate host gene expression to optimize the cellular environment for viral replication and to evade the immune response. Additionally, although a lytically infected cell will itself be killed in the process of viral replication, lytic infection can contribute to pathogenesis by inducing the secretion of paracrine factors with functions in cell survival and proliferation, and angiogenesis. The mechanisms by which these viruses manipulate host gene expression are varied and target the accumulation of cellular mRNAs and their translation, signaling pathways, and protein stability. Here, we discuss how gammaherpesviral proteins directly influence host mRNA biogenesis and stability, either selectively or globally, in order to fine-tune the cellular environment to the advantage of the virus. Appreciation of the mechanisms by which these viruses interface with and adapt normal cellular processes continues to inform our understanding of gammaherpesviral biology and the regulation of mRNA accumulation and turnover in our own cells.
Collapse
Affiliation(s)
- Karen Clyde
- Department of Plant and Microbial Biology, University of California, Berkeley, USA
| | | |
Collapse
|
27
|
Sato Y, Tsurumi T. Noise cancellation: viral fine tuning of the cellular environment for its own genome replication. PLoS Pathog 2010; 6:e1001158. [PMID: 21187893 PMCID: PMC3002979 DOI: 10.1371/journal.ppat.1001158] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Productive replication of DNA viruses elicits host cell DNA damage responses, which cause both beneficial and detrimental effects on viral replication. In response to the viral productive replication, host cells attempt to attenuate the S-phase cyclin-dependent kinase (CDK) activities to inhibit viral replication. However, accumulating evidence regarding interactions between viral factors and cellular signaling molecules indicate that viruses utilize them and selectively block the downstream signaling pathways that lead to attenuation of the high S-phase CDK activities required for viral replication. In this review, we describe the sophisticated strategy of Epstein-Barr virus to cancel such “noisy” host defense signals in order to hijack the cellular environment.
Collapse
Affiliation(s)
- Yoshitaka Sato
- Division of Virology, Aichi Cancer Center Research Institute, Nagoya, Japan
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Cell Biology, G-COE, Kobe University School of Medicine, Kobe, Japan
| | - Tatsuya Tsurumi
- Division of Virology, Aichi Cancer Center Research Institute, Nagoya, Japan
- Department of Oncology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
- * E-mail:
| |
Collapse
|
28
|
Rowe J, Greenblatt RJ, Liu D, Moffat JF. Compounds that target host cell proteins prevent varicella-zoster virus replication in culture, ex vivo, and in SCID-Hu mice. Antiviral Res 2010; 86:276-85. [PMID: 20307580 PMCID: PMC2866756 DOI: 10.1016/j.antiviral.2010.03.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 02/12/2010] [Accepted: 03/12/2010] [Indexed: 01/09/2023]
Abstract
Varicella-zoster virus (VZV) replicates in quiescent T cells, neurons, and skin cells. In cultured fibroblasts (HFFs), VZV induces host cyclin expression and cyclin-dependent kinase (CDK) activity without causing cell cycle progression. CDK1/cyclin B1 phosphorylates the major viral transactivator, and the CDK inhibitor roscovitine prevents VZV mRNA transcription. We investigated the antiviral effects of additional compounds that target CDKs or other cell cycle enzymes in culture, ex vivo, and in vivo. Cytotoxicity and cell growth arrest doses were determined by Neutral Red assay. Antiviral effects were evaluated in HFFs by plaque assay, genome copy number, and bioluminescence. Positive controls were acyclovir (400 microM) and phosphonoacetic acid (PAA, 1 mM). Test compounds were roscovitine, aloisine A, and purvalanol A (CDK inhibitors), aphidicolin (inhibits human and herpesvirus DNA polymerase), l-mimosine (indirectly inhibits human DNA polymerase), and DRB (inhibits casein kinase 2). All had antiviral effects below the concentrations required for cell growth arrest. Compounds were tested in skin organ culture at EC(99) doses; all prevented VZV replication in skin, except for aloisine A and purvalanol A. In SCID mice with skin xenografts, roscovitine (0.7 mg/kg/day) was as effective as PAA (36 mg/kg/day). The screening systems described here are useful models for evaluating novel antiviral drugs for VZV.
Collapse
Affiliation(s)
- Jenny Rowe
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse NY, USA
| | - Rebecca J. Greenblatt
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse NY, USA
| | - Dongmei Liu
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse NY, USA
| | - Jennifer F. Moffat
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse NY, USA
| |
Collapse
|
29
|
Holcakova J, Tomasec P, Bugert JJ, Wang ECY, Wilkinson GWG, Hrstka R, Krystof V, Strnad M, Vojtesek B. The inhibitor of cyclin-dependent kinases, olomoucine II, exhibits potent antiviral properties. Antivir Chem Chemother 2010; 20:133-42. [PMID: 20054100 PMCID: PMC2948526 DOI: 10.3851/imp1460] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Olomoucine II, the most recent derivative of roscovitine, is an exceptionally potent pharmacological inhibitor of cyclin-dependent kinase activities. Here, we report that olomoucine II is also an effective antiviral agent. METHODS Antiviral activities of olomoucine II were tested on a range of human viruses in in vitro assays that evaluated viral growth and replication. RESULTS Olomoucine II inhibited replication of a broad range of wild-type human viruses, including herpes simplex virus, human adenovirus type-4 and human cytomegalovirus. Olomoucine II also inhibited replication of vaccinia virus and herpes simplex virus mutants resistant to conventional acyclovir treatment. This report is the first demonstration of a poxvirus being sensitive to a cyclin-dependent kinase inhibitor. The antiviral effects of olomoucine II could be observed at lower concentrations than with roscovitine, although both were short-term. A remarkable observation was that olomoucine II, when used in combination with the DNA polymerase inhibitor cidofovir, was able to almost completely eliminate the spread of infectious adenovirus type-4 progeny from infected cells. CONCLUSIONS Our results show that when targeting two complementary antiviral mechanisms, strongly additive effects could be observed.
Collapse
Affiliation(s)
- Jitka Holcakova
- Department of Oncological and Experimental Pathology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Peter Tomasec
- Department of Infection Immunity and Biochemistry, School of Medicine, Cardiff University, Heath Park, Cardiff, UK
| | - Joachim J Bugert
- Department of Infection Immunity and Biochemistry, School of Medicine, Cardiff University, Heath Park, Cardiff, UK
| | - Eddie CY Wang
- Department of Infection Immunity and Biochemistry, School of Medicine, Cardiff University, Heath Park, Cardiff, UK
| | - Gavin WG Wilkinson
- Department of Infection Immunity and Biochemistry, School of Medicine, Cardiff University, Heath Park, Cardiff, UK
| | - Roman Hrstka
- Department of Oncological and Experimental Pathology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Vladimir Krystof
- Laboratory of Growth Regulators, Faculty of Science, Palacky University & Institute of Experimental Botany ASCR, Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Faculty of Science, Palacky University & Institute of Experimental Botany ASCR, Olomouc, Czech Republic
| | - Borivoj Vojtesek
- Department of Oncological and Experimental Pathology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| |
Collapse
|
30
|
Iwahori S, Murata T, Kudoh A, Sato Y, Nakayama S, Isomura H, Kanda T, Tsurumi T. Phosphorylation of p27Kip1 by Epstein-Barr virus protein kinase induces its degradation through SCFSkp2 ubiquitin ligase actions during viral lytic replication. J Biol Chem 2009; 284:18923-31. [PMID: 19451650 DOI: 10.1074/jbc.m109.015123] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Epstein-Barr virus (EBV) productive replication occurs in an S-phase-like cellular environment with high cyclin-dependent kinase (CDK) activity. The EBV protein kinase (PK), encoded by the viral BGLF4 gene, is a Ser/Thr protein kinase, which phosphorylates both viral and cellular proteins, modifying the cellular environment for efficient viral productive replication. We here provide evidence that the EBV PK phosphorylates the CDK inhibitor p27(Kip1), resulting in ubiquitination and degradation in a proteasome-dependent manner during EBV productive replication. Experiments with BGLF4 knockdown by small interfering RNA and BGLF4 knock-out viruses clarified that EBV PK is involved in p27(Kip1) degradation upon lytic replication. Transfection of the BGLF4 expression vector revealed that EBV PK alone could phosphorylate the Thr-187 residue of p27(Kip1) and that the ubiquitination and degradation of p27(Kip1) occurred in an SCF(Skp2) ubiquitin ligase-dependent manner. In vitro, EBV PK proved capable of phosphorylating p27(Kip1) at Thr-187. Unlike cyclin E-CDK2 activity, the EBV PK activity was not inhibited by p27(Kip1). Overall, EBV PK enhances p27(Kip1) degradation effectively upon EBV productive replication, contributing to establishment of an S-phase-like cellular environment with high CDK activity.
Collapse
Affiliation(s)
- Satoko Iwahori
- Division of Virology, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya 464-8681, Japan
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Expression of Epstein–Barr virus BZLF1 immediate-early protein induces p53 degradation independent of MDM2, leading to repression of p53-mediated transcription. Virology 2009; 388:204-11. [DOI: 10.1016/j.virol.2009.03.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 02/25/2009] [Accepted: 03/20/2009] [Indexed: 11/21/2022]
|
32
|
Homologous recombinational repair factors are recruited and loaded onto the viral DNA genome in Epstein-Barr virus replication compartments. J Virol 2009; 83:6641-51. [PMID: 19386720 DOI: 10.1128/jvi.00049-09] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Homologous recombination is an important biological process that facilitates genome rearrangement and repair of DNA double-strand breaks (DSBs). The induction of Epstein-Barr virus (EBV) lytic replication induces ataxia telangiectasia-mutated (ATM)-dependent DNA damage checkpoint signaling, leading to the clustering of phosphorylated ATM and Mre11/Rad50/Nbs1 (MRN) complexes to sites of viral genome synthesis in nuclei. Here we report that homologous recombinational repair (HRR) factors such as replication protein A (RPA), Rad51, and Rad52 as well as MRN complexes are recruited and loaded onto the newly synthesized viral genome in replication compartments. The 32-kDa subunit of RPA is extensively phosphorylated at sites in accordance with those with ATM. The hyperphosphorylation of RPA32 causes a change in RPA conformation, resulting in a switch from the catalysis of DNA replication to the participation in DNA repair. The levels of Rad51 and phosphorylated RPA were found to increase with the progression of viral productive replication, while that of Rad52 proved constant. Furthermore, biochemical fractionation revealed increases in levels of DNA-bound forms of these HRRs. Bromodeoxyuridine-labeled chromatin immunoprecipitation and PCR analyses confirmed the loading of RPA, Rad 51, Rad52, and Mre11 onto newly synthesized viral DNA, and terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling analysis demonstrated DSBs in the EBV replication compartments. HRR factors might be recruited to repair DSBs on the viral genome in viral replication compartments. RNA interference knockdown of RPA32 and Rad51 prevented viral DNA synthesis remarkably, suggesting that homologous recombination and/or repair of viral DNA genome might occur, coupled with DNA replication to facilitate viral genome synthesis.
Collapse
|
33
|
Hume AJ, Kalejta RF. Regulation of the retinoblastoma proteins by the human herpesviruses. Cell Div 2009; 4:1. [PMID: 19146698 PMCID: PMC2636798 DOI: 10.1186/1747-1028-4-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 01/15/2009] [Indexed: 01/21/2023] Open
Abstract
Viruses are obligate intracellular parasites that alter the environment of infected cells in order to replicate more efficiently. One way viruses achieve this is by modulating cell cycle progression. The main regulators of progression out of G0, through G1, and into S phase are the members of the retinoblastoma (Rb) family of tumor suppressors. Rb proteins repress the transcription of genes controlled by the E2F transcription factors. Because the expression of E2F-responsive genes is required for cell cycle progression into the S phase, Rb arrests the cell cycle in G0/G1. A number of viral proteins directly target Rb family members for inactivation, presumably to create an environment more hospitable for viral replication. Such viral proteins include the extensively studied oncoproteins E7 (from human papillomavirus), E1A (from adenovirus), and the large T (tumor) antigen (from simian virus 40). Elucidating how these three viral proteins target and inactivate Rb has proven to be an invaluable approach to augment our understanding of both normal cell cycle progression and carcinogenesis. In addition to these proteins, a number of other virally-encoded inactivators of the Rb family have subsequently been identified including a surprising number encoded by human herpesviruses. Here we review how the human herpesviruses modulate Rb function during infection, introduce the individual viral proteins that directly or indirectly target Rb, and speculate about what roles Rb modulation by these proteins may play in viral replication, pathogenesis, and oncogenesis.
Collapse
Affiliation(s)
- Adam J Hume
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706-1596, USA.
| | | |
Collapse
|
34
|
Chen X, Liang S, Zheng W, Liao Z, Shang T, Ma W. Meta-analysis of nasopharyngeal carcinoma microarray data explores mechanism of EBV-regulated neoplastic transformation. BMC Genomics 2008; 9:322. [PMID: 18605998 PMCID: PMC2491640 DOI: 10.1186/1471-2164-9-322] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2008] [Accepted: 07/07/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Epstein-Barr virus (EBV) presumably plays an important role in the pathogenesis of nasopharyngeal carcinoma (NPC), but the molecular mechanism of EBV-dependent neoplastic transformation is not well understood. The combination of bioinformatics with evidences from biological experiments paved a new way to gain more insights into the molecular mechanism of cancer. RESULTS We profiled gene expression using a meta-analysis approach. Two sets of meta-genes were obtained. Meta-A genes were identified by finding those commonly activated/deactivated upon EBV infection/reactivation. These genes could be key players for pathways de-regulated by EBV during latent infection and lytic proliferation. Meta-B genes were obtained from differential genes commonly expressed in NPC and PEL (primary effusion lymphoma). We then integrated meta-A, meta-B and associated factors into an interaction network using acquired information. Our analysis suggests that NPC transformation depends on timely regulation of DEK, CDK inhibitor(s), p53, RB and several transcriptional cascades, interconnected by E2F, AP-1, NF-kappaB, STAT3 among others during latent and lytic cycles. CONCLUSION In conclusion, our meta-analysis strategy re-analyzed EBV-related tumor data sets and identified sets of meta-genes possibly involved in maintaining latent or switching to lytic cycles of EBV in NPC. The results of this analysis may shed new lights to further our understanding of the EBV-led neoplastic transformation.
Collapse
Affiliation(s)
- Xia Chen
- Institute of Genetic Engineering, Southern Medical University, Guangzhou, PR China.
| | | | | | | | | | | |
Collapse
|
35
|
Agbottah E, Yeh WI, Berro R, Klase Z, Pedati C, Kehn-Hall K, Wu W, Kashanchi F. Two specific drugs, BMS-345541 and purvalanol A induce apoptosis of HTLV-1 infected cells through inhibition of the NF-kappaB and cell cycle pathways. AIDS Res Ther 2008; 5:12. [PMID: 18544167 PMCID: PMC2483717 DOI: 10.1186/1742-6405-5-12] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Accepted: 06/10/2008] [Indexed: 01/22/2023] Open
Abstract
Human T-cell leukemia virus type-1 (HTLV-1) induces adult T-cell leukemia/lymphoma (ATL/L), a fatal lymphoproliferative disorder, and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), a chronic progressive disease of the central nervous system after a long period of latent infection. Although the mechanism of transformation and leukemogenesis is not fully elucidated, there is evidence to suggest that the viral oncoprotein Tax plays a crucial role in these processes through the regulation of several pathways including NF-κB and the cell cycle pathways. The observation that NF-κB, which is strongly induced by Tax, is indispensable for the maintenance of the malignant phenotype of HTLV-1 by regulating the expression of various genes involved in cell cycle regulation and inhibition of apoptosis provides a possible molecular target for these infected cells. To develop potential new therapeutic strategies for HTLV-1 infected cells, in this present study, we initially screened a battery of NF-κB and CDK inhibitors (total of 35 compounds) to examine their effects on the growth and survival of infected T-cell lines. Two drugs namely BMS-345541 and Purvalanol A exhibited higher levels of growth inhibition and apoptosis in infected cell as compared to uninfected cells. BMS-345541 inhibited IKKβ kinase activity from HTLV-1 infected cells with an IC50 (the 50% of inhibitory concentration) value of 50 nM compared to 500 nM from control cells as measured by in vitro kinase assays. The effects of Purvalanol A were associated with suppression of CDK2/cyclin E complex activity as previously shown by us. Combination of both BMS-345541 and Purvalanol A showed a reduced level of HTLV-1 p19 Gag production in cell culture. The apparent apoptosis in these infected cells were associated with increased caspase-3 activity and PARP cleavage. The potent and selective apoptotic effects of these drugs suggest that both BMS-345541 and Purvalanol A, which target both NF-κB and CDK complex and the G1/S border, might be promising new agents in the treatment of these infected patients.
Collapse
|
36
|
Siakallis G, Spandidos DA, Sourvinos G. Herpesviridae and novel inhibitors. Antivir Ther 2008; 14:1051-64. [DOI: 10.3851/imp1467] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
37
|
Inhibition of the cyclin-dependent kinases at the beginning of human cytomegalovirus infection specifically alters the levels and localization of the RNA polymerase II carboxyl-terminal domain kinases cdk9 and cdk7 at the viral transcriptosome. J Virol 2007; 82:394-407. [PMID: 17942543 DOI: 10.1128/jvi.01681-07] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
We previously reported that defined components of the host transcription machinery are recruited to human cytomegalovirus immediate-early (IE) transcription sites, including cdk9 and cdk7 (S. Tamrakar, A. J. Kapasi, and D. H. Spector, J. Virol. 79:15477-15493, 2005). In this report, we further document the complexity of this site, referred to as the transcriptosome, through identification of additional resident proteins, including viral UL69 and cellular cyclin T1, Brd4, histone deacetylase 1 (HDAC1), and HDAC2. To examine the role of cyclin-dependent kinases (cdks) in the establishment of this site, we used roscovitine, a specific inhibitor of cdk1, cdk2, cdk7, and cdk9, that alters processing of viral IE transcripts and inhibits expression of viral early genes. In the presence of roscovitine, IE2, cyclin T1, Brd4, HDAC1, and HDAC2 accumulate at the transcriptosome. However, accumulation of cdk9 and cdk7 was specifically inhibited. Roscovitine treatment also resulted in decreased levels of cdk9 and cdk7 RNA. There was a corresponding reduction in cdk9 protein but only a modest decrease in cdk7 protein. However, overexpression of cdk9 does not compensate for the effects of roscovitine on cdk9 localization or viral gene expression. Delaying the addition of roscovitine until 8 h postinfection prevented all of the observed effects of the cdk inhibitor. These data suggest that IE2 and multiple cellular factors needed for viral RNA synthesis accumulate within the first 8 h at the viral transcriptosome and that functional cdk activity is required for the specific recruitment of cdk7 and cdk9 during this time interval.
Collapse
|
38
|
Orba Y, Sunden Y, Suzuki T, Nagashima K, Kimura T, Tanaka S, Sawa H. Pharmacological cdk inhibitor R-Roscovitine suppresses JC virus proliferation. Virology 2007; 370:173-83. [PMID: 17919676 DOI: 10.1016/j.virol.2007.08.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Revised: 08/22/2007] [Accepted: 08/30/2007] [Indexed: 10/22/2022]
Abstract
The human Polyomavirus JC virus (JCV) utilizes cellular proteins for viral replication and transcription in the host cell nucleus. These cellular proteins represent potential targets for antiviral drugs against the JCV. In this study, we examined the antiviral effects of the pharmacological cyclin-dependent kinase (cdk) inhibitor R-Roscovitine, which has been shown to have antiviral activity against other viruses. We found that Roscovitine significantly inhibited the viral production and cytopathic effects of the JCV in a JCV-infected cell line. Roscovitine attenuated the transcriptional activity of JCV late genes, but not early genes, and also prevented viral replication via inhibiting phosphorylation of the viral early protein, large T antigen. These data suggest that the JCV requires cdks to transcribe late genes and to replicate its own DNA. That Roscovitine exhibited antiviral activity in JCV-infected cells suggests that Roscovitine might have therapeutic utility in the treatment of progressive multifocal leukoencephalopathy (PML).
Collapse
Affiliation(s)
- Yasuko Orba
- Department of Molecular Pathobiology, Hokkaido University Research Center for Zoonosis Control, N18, W9, Kita-ku, 060-0818, Sapporo, Japan
| | | | | | | | | | | | | |
Collapse
|
39
|
Li FQ, Tam JP, Liu DX. Cell cycle arrest and apoptosis induced by the coronavirus infectious bronchitis virus in the absence of p53. Virology 2007; 365:435-45. [PMID: 17493653 PMCID: PMC7103336 DOI: 10.1016/j.virol.2007.04.015] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Revised: 03/04/2007] [Accepted: 04/05/2007] [Indexed: 01/01/2023]
Abstract
Manipulation of the cell cycle and induction of apoptosis are two common strategies used by many viruses to regulate their infection cycles. In cells infected with coronaviruses, cell cycle perturbation and apoptosis were observed in several reports. However, little is known about how these effects are brought out, and how manipulation of the functions of host cells would influence the replication cycle of coronavirus. In this study, we demonstrate that infection with coronavirus infectious bronchitis virus (IBV) imposed a growth-inhibitory effect on cultured cells by inducing cell cycle arrest at S and G2/M phases in both p53-null cell line H1299 and Vero cells. This cell cycle arrest was catalyzed by the modulation of various cell cycle regulatory genes and the accumulation of hypophosphorylated RB, but was independent of p53. Proteasome inhibitors, such as lactacystin and NLVS, could bypass the IBV-induced S-phase arrest by restoring the expression of corresponding cyclin/Cdk complexes. Our data also showed that cell cycle arrest at both S- and G2/M-phases was manipulated by IBV for the enhancement of viral replication. In addition, apoptosis induced by IBV at late stages of the infection cycle in cultured cells was shown to be p53-independent. This conclusion was drawn based on the observations that apoptosis occurred in both IBV-infected H1299 and Vero cells, and that IBV infection did not affect the expression of p53 in host cells.
Collapse
Affiliation(s)
- Frank Q Li
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | | | | |
Collapse
|
40
|
Schang LM, St Vincent MR, Lacasse JJ. Five years of progress on cyclin-dependent kinases and other cellular proteins as potential targets for antiviral drugs. Antivir Chem Chemother 2007; 17:293-320. [PMID: 17249245 DOI: 10.1177/095632020601700601] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In 1997-1998, the pharmacological cyclin-dependent kinase (CDK) inhibitors (PCIs) were independently discovered to inhibit replication of human cytomegalovirus, herpes simplex virus type 1 and HIV-1. The results from small clinical trials against cancer were then suggesting that PCIs could be safe enough to be used clinically. It was thus hypothesized that PCIs could have the potential to be developed as novel antivirals targeting cellular proteins. Consequently, Antiviral Chemistry & Chemotherapy published in 2001 the first review on the potential of CDKs, and cellular proteins in general, as potential targets for antivirals. The viral functions inhibited by PCIs, or their cellular targets, were then just starting to be characterized. The antiviral spectrum of PCIs and their effects on viral disease were still mostly untested. Even their actual specificity was not yet completely characterized. In addition, cellular proteins were not accepted as valid targets for antivirals. Significant progress has been made in the last 5 years in understanding the antiviral activities of PCIs and the potential roles of cellular proteins in general as targets for antivirals. The first clinical trials of the antiviral activities of PCIs and other inhibitors of cellular protein kinases have now been scheduled. Herein, we review the progress made since the publication of the first review on PCIs as potential antiviral drugs and on CDKs, and cellular proteins in general, as potential targets for antiviral drugs. We also highlight the major issues that still need to be addressed before PCIs or other drugs targeting cellular proteins can be developed as clinical antivirals.
Collapse
Affiliation(s)
- Luis M Schang
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada.
| | | | | |
Collapse
|
41
|
Lee CP, Chen JY, Wang JT, Kimura K, Takemoto A, Lu CC, Chen MR. Epstein-Barr virus BGLF4 kinase induces premature chromosome condensation through activation of condensin and topoisomerase II. J Virol 2007; 81:5166-80. [PMID: 17360754 PMCID: PMC1900198 DOI: 10.1128/jvi.00120-07] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Previous studies of Epstein-Barr virus (EBV) replication focused mainly on the viral and cellular factors involved in replication compartment assembly and controlling the cell cycle. However, little is known about how EBV reorganizes nuclear architecture and the chromatin territories. In EBV-positive nasopharyngeal carcinoma NA cells or Akata cells, we noticed that cellular chromatin becomes highly condensed upon EBV reactivation. In searching for the possible mechanisms involved, we found that transient expression of EBV BGLF4 kinase induces unscheduled chromosome condensation, nuclear lamina disassembly, and stress fiber rearrangements, independently of cellular DNA replication and Cdc2 activity. BGLF4 interacts with condensin complexes, the major components in mitotic chromosome assembly, and induces condensin phosphorylation at Cdc2 consensus motifs. BGLF4 also stimulates the decatenation activity of topoisomerase II, suggesting that it may induce chromosome condensation through condensin and topoisomerase II activation. The ability to induce chromosome condensation is conserved in another gammaherpesvirus kinase, murine herpesvirus 68 ORF36. Together, these findings suggest a novel mechanism by which gammaherpesvirus kinases may induce multiple premature mitotic events to provide more extrachromosomal space for viral DNA replication and successful egress of nucleocapsid from the nucleus.
Collapse
Affiliation(s)
- Chung-Pei Lee
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
42
|
Izumiya Y, Izumiya C, Van Geelen A, Wang DH, Lam KS, Luciw PA, Kung HJ. Kaposi's sarcoma-associated herpesvirus-encoded protein kinase and its interaction with K-bZIP. J Virol 2006; 81:1072-82. [PMID: 17108053 PMCID: PMC1797516 DOI: 10.1128/jvi.01473-06] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The oncogenic herpesvirus, Kaposi's sarcoma-associated herpesvirus, also identified as human herpesvirus 8, contains genes producing proteins that control transcription and influence cell signaling. Open reading frame 36 (ORF36) of this virus encodes a serine/threonine protein kinase, which is designated the viral protein kinase (vPK). Our recent efforts to elucidate the role of vPK in the viral life cycle have focused on identifying viral protein substrates and determining the effects of vPK-mediated phosphorylation on specific steps in viral replication. The vPK gene was transcribed into 4.2-kb and 3.6-kb mRNAs during the early and late phases of viral reactivation. vPK is colocalized with viral DNA replication/transcription compartments as marked by a polymerase processivity factor, and K-bZIP, a protein known to bind the viral DNA replication origin (Ori-Lyt) and to regulate viral transcription. The vPK physically associated with and strongly phosphorylated K-bZIP at threonine 111, a site also recognized by the cyclin-dependent kinase Cdk2. Both K-bZIP and vPK were corecruited to viral promoters targeted by K-bZIP as well as to the Ori-Lyt region. Phosphorylation of K-bZIP by vPK had a negative impact on K-bZIP transcription repression activity. The extent of posttranslational modification of K-bZIP by sumoylation, a process that influences its repression function, was decreased by vPK phosphorylation at threonine 111. Our data thus identify a new role of vPK as a modulator of viral transcription.
Collapse
Affiliation(s)
- Yoshihiro Izumiya
- University of California-Davis, Cancer Center, Research III Room 2400B, 4645 2nd Ave., Sacramento, CA 95817, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Phosphorylation of MCM4 at sites inactivating DNA helicase activity of the MCM4-MCM6-MCM7 complex during Epstein-Barr virus productive replication. J Virol 2006. [PMID: 17005684 DOI: 10.1128/jvi.00678-06j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Induction of Epstein-Barr virus (EBV) lytic replication blocks chromosomal DNA replication notwithstanding an S-phase-like cellular environment with high cyclin-dependent kinase (CDK) activity. We report here that the phosphorylated form of MCM4, a subunit of the MCM complex essential for chromosomal DNA replication, increases with progression of lytic replication, Thr-19 and Thr-110 being CDK2/CDK1 targets whose phosphorylation inactivates MCM4-MCM6-MCM7 (MCM4-6-7) complex-associated DNA helicase. Expression of EBV-encoded protein kinase (EBV-PK) in HeLa cells caused phosphorylation of these sites on MCM4, leading to cell growth arrest. In vitro, the sites of MCM4 of the MCM4-6-7 hexamer were confirmed to be phosphorylated with EBV-PK, with the same loss of helicase activity as with CDK2/cyclin A. Introducing mutations in the N-terminal six Ser and Thr residues of MCM4 reduced the inhibition by CDK2/cyclin A, while EBV-PK inhibited the helicase activities of both wild-type and mutant MCM4-6-7 hexamers, probably since EBV-PK can phosphorylate MCM6 and another site(s) of MCM4 in addition to the N-terminal residues. Therefore, phosphorylation of the MCM complex by redundant actions of CDK and EBV-PK during lytic replication might provide one mechanism to block chromosomal DNA replication in the infected cells through inactivation of DNA unwinding by the MCM4-6-7 complex.
Collapse
|
44
|
Kudoh A, Daikoku T, Ishimi Y, Kawaguchi Y, Shirata N, Iwahori S, Isomura H, Tsurumi T. Phosphorylation of MCM4 at sites inactivating DNA helicase activity of the MCM4-MCM6-MCM7 complex during Epstein-Barr virus productive replication. J Virol 2006; 80:10064-72. [PMID: 17005684 PMCID: PMC1617282 DOI: 10.1128/jvi.00678-06] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Induction of Epstein-Barr virus (EBV) lytic replication blocks chromosomal DNA replication notwithstanding an S-phase-like cellular environment with high cyclin-dependent kinase (CDK) activity. We report here that the phosphorylated form of MCM4, a subunit of the MCM complex essential for chromosomal DNA replication, increases with progression of lytic replication, Thr-19 and Thr-110 being CDK2/CDK1 targets whose phosphorylation inactivates MCM4-MCM6-MCM7 (MCM4-6-7) complex-associated DNA helicase. Expression of EBV-encoded protein kinase (EBV-PK) in HeLa cells caused phosphorylation of these sites on MCM4, leading to cell growth arrest. In vitro, the sites of MCM4 of the MCM4-6-7 hexamer were confirmed to be phosphorylated with EBV-PK, with the same loss of helicase activity as with CDK2/cyclin A. Introducing mutations in the N-terminal six Ser and Thr residues of MCM4 reduced the inhibition by CDK2/cyclin A, while EBV-PK inhibited the helicase activities of both wild-type and mutant MCM4-6-7 hexamers, probably since EBV-PK can phosphorylate MCM6 and another site(s) of MCM4 in addition to the N-terminal residues. Therefore, phosphorylation of the MCM complex by redundant actions of CDK and EBV-PK during lytic replication might provide one mechanism to block chromosomal DNA replication in the infected cells through inactivation of DNA unwinding by the MCM4-6-7 complex.
Collapse
Affiliation(s)
- Ayumi Kudoh
- Division of Virology, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya 464-8681, Japan
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Sanchez V, Spector DH. Cyclin-dependent kinase activity is required for efficient expression and posttranslational modification of human cytomegalovirus proteins and for production of extracellular particles. J Virol 2006; 80:5886-96. [PMID: 16731927 PMCID: PMC1472584 DOI: 10.1128/jvi.02656-05] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
We have previously shown that the addition of the cyclin-dependent kinase (cdk) inhibitor Roscovitine at the beginning of infection of cells with human cytomegalovirus (HCMV) significantly disrupts immediate-early gene expression and the progression of the infection. In the present study, we have examined the effects of cdk inhibition on late viral events by delaying addition of Roscovitine until 24 h postinfection. Although viral DNA replication was inhibited two- to threefold by treatment of infected cells with Roscovitine, the drop did not correspond to the 1- to 2-log-unit decrease in virus titer. Quantification of viral DNA in the supernatant from cells revealed that there was a significant reduction in the production or release of extracellular particles. We observed a lag in the expression of several viral proteins but there was a significant decrease in the steady-state levels of IE2-86. Likewise, the steady-state level of the essential tegument protein UL32 (pp150) was reduced. The levels of pp150 and IE2-86 mRNA were not greatly affected by treatment with Roscovitine and thus did not correlate with the reduced levels of protein. In contrast, the expression of the tegument protein ppUL69 was higher in drug-treated samples, and the protein accumulated in a hyperphosphorylated form. ppUL69 localized to intranuclear aggregates that did not overlap with viral replication centers in cells treated with Roscovitine. Taken together, these data indicate that cdk activity is required at multiple steps during HCMV infection, including the expression, modification, and localization of virus-encoded proteins.
Collapse
Affiliation(s)
- Veronica Sanchez
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0712, USA
| | | |
Collapse
|
46
|
Abstract
Epstein–Barr virus (EBV) is a gammaherpesvirus with a 172kb genome and many genes encoding enzymes for lytic viral DNA replication. Recent observations indicate that an S-phase-like environment and the activated DNA repair system are required for viral lytic DNA replication. The virally encoded DNA replication-associated enzymes are then expressed in two clusters, suggesting their participation at different stages of replication. Simultaneously, EBV-encoded regulatory proteins may modulate cell-cycle control to enhance virus replication efficiency. The interactions among proteins in the viral replication complex and cellular proteins may either generate structural specificities for replication proteins or stabilize the protein complexes. During infection, EBV has evolved several strategies to overcome the host defense mechanism, such as interfering with innate immunity and withdrawing into a latent state. This review discusses the latest progress in viral control of lytic replication and the interactions among viral lytic replication compartment and cellular machineries. The possible contribution of EBV lytic gene products to human malignancy is also discussed.
Collapse
Affiliation(s)
- Chih-Chung Lu
- Graduate Institute of Microbiology, No 1, Jen-Ai Rd, 1st Section, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Mei-Ru Chen
- Graduate Institute of Microbiology, No 1, Jen-Ai Rd, 1st Section, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
47
|
Yang XJ, Liu J, Ye L, Liao QJ, Wu JG, Gao JR, She YL, Wu ZH, Ye LB. HCV NS2 protein inhibits cell proliferation and induces cell cycle arrest in the S-phase in mammalian cells through down-regulation of cyclin A expression. Virus Res 2006; 121:134-43. [PMID: 16797769 DOI: 10.1016/j.virusres.2006.02.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Revised: 01/28/2006] [Accepted: 02/07/2006] [Indexed: 11/29/2022]
Abstract
Chronic hepatitis C virus (HCV) infection often leads to liver cancer. NS2 protein is a HCV hydrophobic transmembrane protein that associates with several cellular proteins in mammalian cells. In this report, we investigated the functions of NS2 protein by examining its effects on cell growth and cell cycle progression. Stable NS2-expressing HeLa and Vero cell lines were established by transfection of the cells with pcDNA3.1(-)-NS2 followed by selection of the transfected cells in the presence of G418. We found that the proliferation rates of both NS2-expressing cell lines were inhibited by 40-50% compared with the control cells that were transfected with pcDNA3.1(-) control vector. Cell cycle analysis of these NS2-expressing cell lines shows that the proportion of cells in the S-phase increased significantly compared to that of control cells that do not express NS2 protein, suggesting NS2 protein induces cell cycle arrest in the S-phase. Further studies showed that the induction of cell cycle arrest in the S-phase by NS2 protein is associated with the decrease of cyclin A level. In contrast, the expression of NS2 protein does not affect the levels of cyclin-dependent kinase CDK2, CDK4, cyclin D1, or cyclin E. Our results suggest that HCV NS2 protein inhibits cell growth and induces the cell cycle arrest in the S-phase through down-regulation of cyclin A expression, which may be beneficial to HCV viral replication. Our findings not only provide information in the understanding mechanism of HCV infection, but also provide guidance for the future development of potential therapeutics for the prevention and treatment of the viral infection.
Collapse
Affiliation(s)
- Xiao-Jun Yang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Schelcher C, Valencia S, Delecluse HJ, Hicks M, Sinclair AJ. Mutation of a single amino acid residue in the basic region of the Epstein-Barr virus (EBV) lytic cycle switch protein Zta (BZLF1) prevents reactivation of EBV from latency. J Virol 2005; 79:13822-8. [PMID: 16227304 PMCID: PMC1262594 DOI: 10.1128/jvi.79.21.13822-13828.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Zta, the product of the BZLF1 gene carried by Epstein-Barr virus (EBV), is crucial for reactivation of EBV from latency. Zta is a member of the bZIP family of transcription factors, and in common with many of these, Zta possesses a conserved cysteine residue in its basic region (C189) and a further cysteine residue in its ZIP region (C222). We demonstrate that C189 is required to reactivate EBV from latency but C222 is not and that this single amino acid affects two independent functions of Zta, (i) binding to a Zta-responsive site and (ii) manipulating the cell cycle.
Collapse
Affiliation(s)
- Celine Schelcher
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | | | | | | | | |
Collapse
|
49
|
Cannon M, Cesarman E, Boshoff C. KSHV G protein-coupled receptor inhibits lytic gene transcription in primary-effusion lymphoma cells via p21-mediated inhibition of Cdk2. Blood 2005; 107:277-84. [PMID: 16150942 PMCID: PMC1895347 DOI: 10.1182/blood-2005-06-2350] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Kaposi sarcoma (KS) remains the most common AIDS-associated malignancy worldwide. In sub-Saharan Africa especially, this aggressive endothelial-cell tumor is a cause of widespread morbidity and mortality. Infection with Kaposi sarcoma-associated herpesvirus (KSHV) is now known to be an etiologic force behind KS and primary-effusion lymphoma (PEL). Over time, KSHV has pirated many human genes whose products regulate angiogenesis, inflammation, and the cell cycle. One of these, the KSHV vGPCR, is a lytic product that is a constitutively active homolog of the IL-8 receptor. Although it is considered a viral oncogene and causes KS-like lesions in mice, vGPCR expression results in cell-cycle arrest of KSHV-infected PEL cells. In the present study, we show that this arrest is mediated by p21 in a p53-independent manner; the resulting Cdk2 inhibition decreases the efficiency of chemical induction of KSHV lytic transcripts ORF 50 and 26. Importantly, Cdk2 activity is also essential for replication in other human herpesviruses. The ability of vGPCR to delay or abort KSHV replication may explain how despite being a lytic product, this potent signaling molecule has a vital role in tumor formation via its induction of various KS-associated cytokines.
Collapse
Affiliation(s)
- Mark Cannon
- Division of International Medicine and Infectious Diseases, Department of Medicine, Weill Medical College of Cornell University, New York, NY, USA.
| | | | | |
Collapse
|
50
|
Habran L, Bontems S, Di Valentin E, Sadzot-Delvaux C, Piette J. Varicella-zoster virus IE63 protein phosphorylation by roscovitine-sensitive cyclin-dependent kinases modulates its cellular localization and activity. J Biol Chem 2005; 280:29135-43. [PMID: 15955820 DOI: 10.1074/jbc.m503312200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During the first stage of Varicella-Zoster virus (VZV) infection, IE63 (immediate early 63 protein) is mostly expressed in the nucleus and also slightly in the cytoplasm, and during latency, IE63 localizes in the cytoplasm quite exclusively. Because phosphorylation is known to regulate various cellular mechanisms, we investigated the impact of phosphorylation by roscovitine-sensitive cyclin-dependent kinase (RSC) on the localization and functional properties of IE63. We demonstrated first that IE63 was phosphorylated on Ser-224 in vitro by CDK1 and CDK5 but not by CDK2, CDK7, or CDK9. Furthermore, by using roscovitine and CDK1 inhibitor III (CiIII), we showed that CDK1 phosphorylated IE63 on Ser-224 in vivo. By mutagenesis and the use of inhibitors, we demonstrated that phosphorylation on Ser-224 was important for the correct localization of the protein. Indeed, the substitution of these residues by alanine led to an exclusive nuclear localization of the protein, whereas mutations into glutamic acid did not modify its subcellular distribution. When transfected or VZV-infected cells were treated with roscovitine or CiIII, an exclusive nuclear localization of IE63 was also observed. By using a transfection assay, we also showed that phosphorylation on Ser-224 and Thr-222 was essential for the down-regulation of the basal activity of the VZV DNA polymerase gene promoter. Similarly, roscovitine and CiIII impaired these properties of the wild-type form of IE63. These observations clearly demonstrated the importance of CDK1-mediated IE63 phosphorylation for a correct distribution of IE63 between both cellular compartments and for its repressive activity toward the promoter tested.
Collapse
Affiliation(s)
- Lionel Habran
- Laboratory of Virology and Immunology, Center for Biomedical Genoproteomics, Institute of Pathology B23, University of Liège, B-4000, Liège, Belgium
| | | | | | | | | |
Collapse
|