1
|
Moshirfar M, Kelkar N, Peterson T, Bradshaw J, Parker L, Ronquillo YC, Hoopes PC. The Impact of Antiviral Resistance on Herpetic Keratitis. Eye Contact Lens 2023; 49:127-134. [PMID: 36374154 DOI: 10.1097/icl.0000000000000952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2022] [Indexed: 11/16/2022]
Abstract
ABSTRACT Herpes simplex keratitis resistance to antiviral treatment presents a growing concern. The herpes simplex virus has many different mechanisms of resistance to antiviral treatment, which have been well described. Resistance to acyclovir occurs because of mutations in the viral thymidylate kinase and DNA polymerase that decrease this enzyme's affinity for its substrate. This article discusses factors that explain the prevalence of this resistance, the ability for recurrences in immunocompromised populations, current treatments for acyclovir-resistant herpes simplex keratitis, and novel therapies for this growing concern.
Collapse
Affiliation(s)
- Majid Moshirfar
- Hoopes Vision Research Center (M.M., Y.C.R., P.C.H.), Hoopes Vision, Draper, UT; John A. Moran Eye Center (M.M.), Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT; Utah Lions Eye Bank (M.M.), Murray, UT; University of Arizona College of Medicine-Phoenix (N.K.), Phoenix, AZ; and Rocky Vista University College of Osteopathic Medicine (T.P., J.B., L.P.), Ivins, UT
| | | | | | | | | | | | | |
Collapse
|
2
|
Sindhuja T, Gupta V, Bhari N, Gupta S. Asian guidelines for genital herpes. J Infect Chemother 2021; 27:1389-1399. [PMID: 34332884 DOI: 10.1016/j.jiac.2021.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/12/2021] [Accepted: 07/18/2021] [Indexed: 10/20/2022]
Affiliation(s)
- Tekumalla Sindhuja
- Department of Dermatology and Venereology, All India Institute of Medical Sciences, New Delhi, India
| | - Vishal Gupta
- Department of Dermatology and Venereology, All India Institute of Medical Sciences, New Delhi, India
| | - Neetu Bhari
- Department of Dermatology and Venereology, All India Institute of Medical Sciences, New Delhi, India
| | - Somesh Gupta
- Department of Dermatology and Venereology, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
3
|
Wang S, Hou F, Yao YF, Pan D. Efficient establishment of reactivatable latency by an acyclovir-resistant herpes simplex virus 1 thymidine kinase substitution mutant with reduced neuronal replication. Virology 2021; 556:140-148. [PMID: 33631413 DOI: 10.1016/j.virol.2021.01.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/24/2021] [Accepted: 01/28/2021] [Indexed: 01/13/2023]
Abstract
Herpes simplex virus 1 causes recurrent diseases by reactivating from latency, which requires the viral thymidine kinase (TK) gene. An acyclovir-resistant mutation in TK, V204G, was previously repeatedly identified in a patient with recurrent herpetic keratitis. We found that compared with its parental strain KOS, a laboratory-derived V204G mutant virus was impaired in replication in cultured neurons despite little defect in non-neuronal cells. After corneal inoculation of mice, V204G exhibited defects in ocular replication that were modest over the first three days but severe afterward. Acute replication of V204G in trigeminal ganglia was significantly impaired. However, V204G established latency with viral loads as high as KOS and reactivated with high frequency albeit reduced kinetics. Acyclovir treatment that drastically decreased ocular and ganglionic replication of KOS had little effect on V204G. Thus, despite reduced neuronal replication due to impaired TK activity, this clinically relevant drug-resistant mutant can efficiently establish reactivatable latency.
Collapse
Affiliation(s)
- Shuaishuai Wang
- Department of Ophthalmology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory for Corneal Diseases Research of Zhejiang Province, China
| | - Fujun Hou
- Department of Medical Microbiology and Parasitology, and Department of Infectious Diseases of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Yu-Feng Yao
- Department of Ophthalmology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory for Corneal Diseases Research of Zhejiang Province, China.
| | - Dongli Pan
- Department of Medical Microbiology and Parasitology, and Department of Infectious Diseases of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
4
|
Dogrammatzis C, Waisner H, Kalamvoki M. "Non-Essential" Proteins of HSV-1 with Essential Roles In Vivo: A Comprehensive Review. Viruses 2020; 13:E17. [PMID: 33374862 PMCID: PMC7824580 DOI: 10.3390/v13010017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/19/2022] Open
Abstract
Viruses encode for structural proteins that participate in virion formation and include capsid and envelope proteins. In addition, viruses encode for an array of non-structural accessory proteins important for replication, spread, and immune evasion in the host and are often linked to virus pathogenesis. Most virus accessory proteins are non-essential for growth in cell culture because of the simplicity of the infection barriers or because they have roles only during a state of the infection that does not exist in cell cultures (i.e., tissue-specific functions), or finally because host factors in cell culture can complement their absence. For these reasons, the study of most nonessential viral factors is more complex and requires development of suitable cell culture systems and in vivo models. Approximately half of the proteins encoded by the herpes simplex virus 1 (HSV-1) genome have been classified as non-essential. These proteins have essential roles in vivo in counteracting antiviral responses, facilitating the spread of the virus from the sites of initial infection to the peripheral nervous system, where it establishes lifelong reservoirs, virus pathogenesis, and other regulatory roles during infection. Understanding the functions of the non-essential proteins of herpesviruses is important to understand mechanisms of viral pathogenesis but also to harness properties of these viruses for therapeutic purposes. Here, we have provided a comprehensive summary of the functions of HSV-1 non-essential proteins.
Collapse
Affiliation(s)
| | | | - Maria Kalamvoki
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (C.D.); (H.W.)
| |
Collapse
|
5
|
Herpes Simplex Virus 1 Replication, Ocular Disease, and Reactivations from Latency Are Restricted Unilaterally after Inoculation of Virus into the Lip. J Virol 2019; 93:JVI.01586-19. [PMID: 31554680 DOI: 10.1128/jvi.01586-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 09/19/2019] [Indexed: 02/07/2023] Open
Abstract
Ocular herpes simplex keratitis (HSK) is a consequence of viral reactivations from trigeminal ganglia (TG) and occurs almost exclusively in the same eye in humans. In our murine oro-ocular (OO) model, herpes simplex virus 1 (HSV-1) inoculation in one side of the lip propagates virus to infect the ipsilateral TG. Replication here allows infection of the brainstem and infection of the contralateral TG. Interestingly, HSK was observed in our OO model only from the eye ipsilateral to the site of lip infection. Thus, unilateral restriction of HSV-1 may be due to differential kinetics of virus arrival in the ipsilateral versus contralateral TG. We inoculated mice with HSV-1 reporter viruses and then superinfected them to monitor changes in acute- and latent-phase gene expression in TG after superinfection compared to the control (single inoculation). Delaying superinfection by 4 days after initial right lip inoculation elicited failed superinfecting-virus gene expression and eliminated clinical signs of disease. Initial inoculation with thymidine kinase-deficient HSV-1 (TKdel) completely abolished reactivation of wild-type (WT) superinfecting virus from TG during the latent stage. In light of these seemingly failed infections, viral genome was detected in both TG. Our data demonstrate that inoculation of HSV-1 in the lip propagates virus to both TG, but with delay in reaching the TG contralateral to the side of lip infection. This delay is responsible for restricting viral replication to the ipsilateral TG, which abrogates ocular disease and viral reactivations from the contralateral side. These observations may help to understand why HSK is observed unilaterally in humans, and they provide insight into vaccine strategies to protect against HSK.IMPORTANCE Herpetic keratitis (HK) is the leading cause of blindness by an infectious agent in the developed world. This disease can occur after reactivation of herpes simplex virus 1 in the trigeminal ganglia, leading to dissemination of virus to, and infection of, the cornea. A clinical paradox is evidenced by the bilateral presence of latent viral genomes in both trigeminal ganglia, while for any given patient the disease is unilateral with recurrences in a single eye. Our study links the kinetics of early infection to unilateral disease phenomenon and demonstrates protection against viral reactivation when kinetics are exploited. Our results have direct implications in the understanding of human disease pathogenesis and immunotherapeutic strategies for the treatment of HK and viral reactivations.
Collapse
|
6
|
Gomes Noll JC, Joshi LR, do Nascimento GM, Vieira Fernandes MH, Sharma B, Furtado Flores E, Diel DG. Deletion of the thymidine kinase gene attenuates Caprine alphaherpesvirus 1 in goats. Vet Microbiol 2019; 237:108370. [PMID: 31585643 DOI: 10.1016/j.vetmic.2019.07.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/19/2019] [Accepted: 07/22/2019] [Indexed: 11/28/2022]
Abstract
Caprine alphaherpesvirus 1 (CpHV-1) is a pathogen associated with systemic infection and respiratory disease in kids and subclinical infection or reproductive failure and abortions in adult goats. The enzyme thymidine kinase (TK) is an important viral product involved in nucleotide synthesis. This property makes the tk gene a common target for herpesvirus attenuation. Here we deleted the tk gene of a CpHV-1 isolate and characterized the recombinant CpHV-1ΔTKin vitro and in vivo. In vitro characterization revealed that the recombinant CpHV-1ΔTK replicated to similar titers and produced plaques of similar size to the parental CpHV-1 strain in BT and CRIB cell lines. Upon intranasal inoculation of young goats, the parental virus replicated more efficiently and for a longer period than the recombinant virus. In addition, infection with the parental virus resulted in mild systemic and respiratory signs whereas the kids inoculated with the recombinant CpHV-1ΔTK virus remained healthy. Goats inoculated with the parental virus also developed higher neutralizing antibody titers when compared to CpHV-1ΔTK inoculated animals. Dexamethasone (Dx) administration on days 35-39 post-inoculation did not result in virus shedding in nasal secretions, indicating lack of reactivation from latency. However, viral DNA was detected in the trigeminal ganglia of animals euthanized at 14 days post-Dx, indicating that both viruses successfully established latent infection. Our results show that the recombinant CpHV-1ΔTK presents an attenuated phenotype when compared to the parental virus, and hence may represent a promising vaccine candidate to prevent CpHV-1 disease in goats.
Collapse
Affiliation(s)
- Jéssica Caroline Gomes Noll
- Programa de Pós-graduação em Medicina Veterinária, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil; Animal Disease Research and Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, South Dakota state University, Brookings, SD, 57007, USA
| | - Lok Raj Joshi
- Animal Disease Research and Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, South Dakota state University, Brookings, SD, 57007, USA
| | - Gabriela Mansano do Nascimento
- Animal Disease Research and Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, South Dakota state University, Brookings, SD, 57007, USA
| | - Maureen Hoch Vieira Fernandes
- Animal Disease Research and Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, South Dakota state University, Brookings, SD, 57007, USA
| | - Bishwas Sharma
- Animal Disease Research and Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, South Dakota state University, Brookings, SD, 57007, USA
| | - Eduardo Furtado Flores
- Programa de Pós-graduação em Medicina Veterinária, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Diego Gustavo Diel
- Animal Disease Research and Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, South Dakota state University, Brookings, SD, 57007, USA.
| |
Collapse
|
7
|
Xie Y, Wu L, Wang M, Cheng A, Yang Q, Wu Y, Jia R, Zhu D, Zhao X, Chen S, Liu M, Zhang S, Wang Y, Xu Z, Chen Z, Zhu L, Luo Q, Liu Y, Yu Y, Zhang L, Chen X. Alpha-Herpesvirus Thymidine Kinase Genes Mediate Viral Virulence and Are Potential Therapeutic Targets. Front Microbiol 2019; 10:941. [PMID: 31134006 PMCID: PMC6517553 DOI: 10.3389/fmicb.2019.00941] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/12/2019] [Indexed: 12/20/2022] Open
Abstract
Alpha-herpesvirus thymidine kinase (TK) genes are virulence-related genes and are nonessential for viral replication; they are often preferred target genes for the construction of gene-deleted attenuated vaccines and genetically engineered vectors for inserting and expressing foreign genes. The enzymes encoded by TK genes are key kinases in the nucleoside salvage pathway and have significant substrate diversity, especially the herpes simplex virus 1 (HSV-1) TK enzyme, which phosphorylates four nucleosides and various nucleoside analogues. Hence, the HSV-1 TK gene is exploited for the treatment of viral infections, as a suicide gene in antitumor therapy, and even for the regulation of stem cell transplantation and treatment of parasitic infection. This review introduces the effects of α-herpesvirus TK genes on viral virulence and infection in the host and classifies and summarizes the current main application domains and potential uses of these genes. In particular, mechanisms of action, clinical limitations, and antiviral and antitumor therapy development strategies are discussed.
Collapse
Affiliation(s)
- Ying Xie
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Liping Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - XinXin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yin Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zhiwen Xu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zhengli Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qihui Luo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoyue Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
8
|
|
9
|
Omura N, Fujii H, Yoshikawa T, Yamada S, Harada S, Inagaki T, Shibamura M, Takeyama H, Saijo M. Association between sensitivity of viral thymidine kinase-associated acyclovir-resistant herpes simplex virus type 1 and virulence. Virol J 2017; 14:59. [PMID: 28320407 PMCID: PMC5359899 DOI: 10.1186/s12985-017-0728-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/09/2017] [Indexed: 11/24/2022] Open
Abstract
Background Acyclovir (ACV)-resistant (ACVr) herpes simplex virus type 1 (HSV-1) infections are concern in immunocompromised patients. Most clinical ACVr HSV-1 isolates have mutations in the viral thymidine kinase (vTK) genes. The vTK-associated ACVr HSV-1 shows reduced virulence, but the association between the level of resistance and the virulence of the vTK-associated ACVr HSV-1 is still unclear. Methods The virulence in mice of 5 vTK-associated ACVr HSV-1 clones with a variety of ACV sensitivities, when inoculated through intracerebral and corneal routes, was evaluated in comparison with ACV-sensitive (ACVs) parent HSV-1 TAS. Results Although all the 5 ACVr HSV-1 clones and ACVs HSV-1 TAS showed a similar single-step growth capacity in vitro, the virulence of ACVr HSV-1 clones significantly decreased. A 50% lethal dose (LD50) of each clone was closely correlated with 50% inhibitory concentrations (IC50), demonstrating that the higher the ACV-sensitvity, the the higher the virulence among the ACVr clones. One of the ACVr HSV-1 clones with a relatively low IC50 value maintained similar virulence to that of the parent TAS. The infection in mice with ACVr HSV-1 due to a single amino acid substitution in vTK induced local diseases, keratitis and dermatitis, while vTK-deficient clone did not. Conclusions A statistically significant correlation between the virulence and susceptibility to ACV among ACVr HSV-1 clones was demonstrated.
Collapse
Affiliation(s)
- Natsumi Omura
- Department of Virology 1, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.,Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, Japan
| | - Hikaru Fujii
- Department of Virology 1, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Tomoki Yoshikawa
- Department of Virology 1, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Souichi Yamada
- Department of Virology 1, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Shizuko Harada
- Department of Virology 1, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Takuya Inagaki
- Department of Virology 1, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.,Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, Japan
| | - Miho Shibamura
- Department of Virology 1, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Haruko Takeyama
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, Japan
| | - Masayuki Saijo
- Department of Virology 1, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan. .,Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, Japan.
| |
Collapse
|
10
|
Rowe AM, Yun H, Treat BR, Kinchington PR, Hendricks RL. Subclinical Herpes Simplex Virus Type 1 Infections Provide Site-Specific Resistance to an Unrelated Pathogen. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 198:1706-1717. [PMID: 28062697 PMCID: PMC5815862 DOI: 10.4049/jimmunol.1601310] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 12/08/2016] [Indexed: 11/19/2022]
Abstract
HSV-1 infections of the cornea range in severity from minor transient discomfort to the blinding disease herpes stromal keratitis, yet most patients experience a single episode of epithelial keratitis followed by re-establishment of a clear cornea. We asked whether a single transient episode of HSV-1 epithelial keratitis causes long-term changes in the corneal microenvironment that influence immune responses to subsequent corneal infection or trauma. We showed that C57BL/6 mouse corneas infected with HSV-1 KOS, which induces transient herpes epithelial keratitis without herpes stromal keratitis sequelae, possessed a significant leukocytic infiltrate composed primarily of CD4+ T cells and macrophages along with elevated chemokines and cytokines that persisted without loss of corneal clarity (subclinical inflammation). Chemokine and cytokine expression was CD4+ T cell dependent, in that their production was significantly reduced by systemic CD4+ T cell depletion starting before infection, although short-term (3-d) local CD4+ T cell depletion postinfection did not influence chemokine levels in cornea. Corneas with subclinical inflammation developed significantly greater trauma-induced inflammation when they were recipients of syngeneic corneal transplants but also exhibited significantly increased resistance to infections by unrelated pathogens, such as pseudorabies virus. The resistance to pseudorabies virus was CD4+ T cell dependent, because it was eliminated by local CD4+ T cell depletion from the cornea. We conclude that transient HSV-1 corneal infections cause long-term alterations of the corneal microenvironment that provide CD4-dependent innate resistance to subsequent infections by antigenically unrelated pathogens.
Collapse
Affiliation(s)
- Alexander M Rowe
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201;
| | - Hongming Yun
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201
| | - Benjamin R Treat
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201
| | - Paul R Kinchington
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201; and
| | - Robert L Hendricks
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201; and
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201
| |
Collapse
|
11
|
Thymidine Kinase-Negative Herpes Simplex Virus 1 Can Efficiently Establish Persistent Infection in Neural Tissues of Nude Mice. J Virol 2017; 91:JVI.01979-16. [PMID: 27974554 DOI: 10.1128/jvi.01979-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/05/2016] [Indexed: 01/28/2023] Open
Abstract
Herpes simplex virus 1 (HSV-1) establishes latency in neural tissues of immunocompetent mice but persists in both peripheral and neural tissues of lymphocyte-deficient mice. Thymidine kinase (TK) is believed to be essential for HSV-1 to persist in neural tissues of immunocompromised mice, because infectious virus of a mutant with defects in both TK and UL24 is detected only in peripheral tissues, but not in neural tissues, of severe combined immunodeficiency mice (T. Valyi-Nagy, R. M. Gesser, B. Raengsakulrach, S. L. Deshmane, B. P. Randazzo, A. J. Dillner, and N. W. Fraser, Virology 199:484-490, 1994, https://doi.org/10.1006/viro.1994.1150). Here we find infiltration of CD4 and CD8 T cells in peripheral and neural tissues of mice infected with a TK-negative mutant. We therefore investigated the significance of viral TK and host T cells for HSV-1 to persist in neural tissues using three genetically engineered mutants with defects in only TK or in both TK and UL24 and two strains of nude mice. Surprisingly, all three mutants establish persistent infection in up to 100% of brain stems and 93% of trigeminal ganglia of adult nude mice at 28 days postinfection, as measured by the recovery of infectious virus. Thus, in mouse neural tissues, host T cells block persistent HSV-1 infection, and viral TK is dispensable for the virus to establish persistent infection. Furthermore, we found 30- to 200-fold more virus in neural tissues than in the eye and detected glycoprotein C, a true late viral antigen, in brainstem neurons of nude mice persistently infected with the TK-negative mutant, suggesting that adult mouse neurons can support the replication of TK-negative HSV-1. IMPORTANCE Acyclovir is used to treat herpes simplex virus 1 (HSV-1)-infected immunocompromised patients, but treatment is hindered by the emergence of drug-resistant viruses, mostly those with mutations in viral thymidine kinase (TK), which activates acyclovir. TK mutants are detected in brains of immunocompromised patients with persistent infection. However, answers to the questions as to whether TK-negative (TK-) HSV-1 can establish persistent infection in brains of immunocompromised hosts and whether neurons in vivo are permissive for TK- HSV-1 remain elusive. Using three genetically engineered HSV-1 TK- mutants and two strains of nude mice deficient in T cells, we found that all three HSV-1 TK- mutants can efficiently establish persistent infection in the brain stem and trigeminal ganglion and detected glycoprotein C, a true late viral antigen, in brainstem neurons. Our study provides evidence that TK- HSV-1 can persist in neural tissues and replicate in brain neurons of immunocompromised hosts.
Collapse
|
12
|
Progress and problems with the use of suicide genes for targeted cancer therapy. Adv Drug Deliv Rev 2016; 99:113-128. [PMID: 26004498 DOI: 10.1016/j.addr.2015.05.009] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 02/19/2015] [Accepted: 05/14/2015] [Indexed: 12/16/2022]
Abstract
Among various gene therapy methods for cancer, suicide gene therapy attracts a special attention because it allows selective conversion of non-toxic compounds into cytotoxic drugs inside cancer cells. As a result, therapeutic index can be increased significantly by introducing high concentrations of cytotoxic molecules to the tumor environment while minimizing impact on normal tissues. Despite significant success at the preclinical level, no cancer suicide gene therapy protocol has delivered the desirable clinical significance yet. This review gives a critical look at the six main enzyme/prodrug systems that are used in suicide gene therapy of cancer and familiarizes readers with the state-of-the-art research and practices in this field. For each enzyme/prodrug system, the mechanisms of action, protein engineering strategies to enhance enzyme stability/affinity and chemical modification techniques to increase prodrug kinetics and potency are discussed. In each category, major clinical trials that have been performed in the past decade with each enzyme/prodrug system are discussed to highlight the progress to date. Finally, shortcomings are underlined and areas that need improvement in order to produce clinical significance are delineated.
Collapse
|
13
|
Rochette PA, Bourget A, Sanabria-Solano C, Lahmidi S, Lavallée GO, Pearson A. Mutation of UL24 impedes the dissemination of acute herpes simplex virus 1 infection from the cornea to neurons of trigeminal ganglia. J Gen Virol 2015; 96:2794-2805. [PMID: 25986633 DOI: 10.1099/vir.0.000189] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Herpes simplex virus 1 (human herpesvirus 1) initially infects epithelial cells of the mucosa and then goes on to infect sensory neurons leading ultimately to a latent infection in trigeminal ganglia (TG). UL24 is a core herpesvirus gene that has been identified as a determinant of pathogenesis in several Alphaherpesvirinae, although the underlying mechanisms are unknown. In a mouse model of ocular infection, a UL24-deficient virus exhibited a reduction in viral titres in tear films of 1 log10, whilst titres in TG are often below the level of detection. Moreover, the efficiency of reactivation from latency was also severely reduced. Herein, we investigated how UL24 contributed to acute infection of TG. Our results comparing the impact of UL24 on viral titres in eye tissue versus in tear films did not reveal a general defect in virus release from the cornea. We also found that the impairment of replication seen in mouse primary embryonic neurons with a UL24-deficient virus was not more severe than that observed in an epithelial cell line. Rather, in situ histological analyses revealed that infection with a UL24-deficient virus led to a significant reduction in the number of acutely infected neurons at 3 days post-infection (p.i.). Moreover, there was a significant reduction in the number of neurons positive for viral DNA at 2 days p.i. for the UL24-deficient virus as compared with that observed for WT or a rescue virus. Our results supported a model whereby UL24 functions in the dissemination of acute infection from the cornea to neurons in TG.
Collapse
Affiliation(s)
- Pierre-Alexandre Rochette
- Université INRS, INRS-Institut Armand-Frappier, 531 boulevard des Prairies, Laval, Québec H7V 1B7, Canada
| | - Amélie Bourget
- Université INRS, INRS-Institut Armand-Frappier, 531 boulevard des Prairies, Laval, Québec H7V 1B7, Canada
| | - Carolina Sanabria-Solano
- Université INRS, INRS-Institut Armand-Frappier, 531 boulevard des Prairies, Laval, Québec H7V 1B7, Canada
| | - Soumia Lahmidi
- Université INRS, INRS-Institut Armand-Frappier, 531 boulevard des Prairies, Laval, Québec H7V 1B7, Canada
| | - Gabriel Ouellet Lavallée
- Université INRS, INRS-Institut Armand-Frappier, 531 boulevard des Prairies, Laval, Québec H7V 1B7, Canada
| | - Angela Pearson
- Université INRS, INRS-Institut Armand-Frappier, 531 boulevard des Prairies, Laval, Québec H7V 1B7, Canada
| |
Collapse
|
14
|
Suazo PA, Tognarelli EI, Kalergis AM, González PA. Herpes simplex virus 2 infection: molecular association with HIV and novel microbicides to prevent disease. Med Microbiol Immunol 2015; 204:161-76. [PMID: 25209142 PMCID: PMC7102243 DOI: 10.1007/s00430-014-0358-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 09/01/2014] [Indexed: 12/17/2022]
Abstract
Infection with herpes simplex viruses is one of the most ancient diseases described to affect humans. Infection with these viruses produces vexing effects to the host, which frequently recur. Infection with herpes simplex viruses is lifelong, and currently there is no vaccine or drug to prevent or cure infection. Prevalence of herpes simplex virus 2 (HSV-2) infection varies significantly depending on the geographical region and nears 20% worldwide. Importantly, HSV-2 is the first cause of genital ulcers in the planet. HSV-2 affects approximately 500 million people around the globe and significantly increases the likelihood of acquiring the human immunodeficiency virus (HIV), as well as its shedding. Thus, controlling HSV-2 infection and spread is of public health concern. Here, we review the diseases produced by herpes simplex viruses, the factors that modulate HSV-2 infection, the relationship between HSV-2 and HIV and novel therapeutic and prophylactic microbicides/antivirals under development to prevent infection and pathological outcomes produced by this virus. We also review mutations associated with HSV-2 resistance to common antivirals.
Collapse
Affiliation(s)
- Paula A. Suazo
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avenida Portugal 49, 8331010 Santiago, Chile
| | - Eduardo I. Tognarelli
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avenida Portugal 49, 8331010 Santiago, Chile
| | - Alexis M. Kalergis
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avenida Portugal 49, 8331010 Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avenida Portugal 49, 8331010 Santiago, Chile
- Departamento de Inmunología Clínica y Reumatología, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- INSERM U1064, Nantes, France
| | - Pablo A. González
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avenida Portugal 49, 8331010 Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avenida Portugal 49, 8331010 Santiago, Chile
| |
Collapse
|
15
|
LeGoff J, Péré H, Bélec L. Diagnosis of genital herpes simplex virus infection in the clinical laboratory. Virol J 2014; 11:83. [PMID: 24885431 PMCID: PMC4032358 DOI: 10.1186/1743-422x-11-83] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 05/01/2014] [Indexed: 01/13/2023] Open
Abstract
Since the type of herpes simplex virus (HSV) infection affects prognosis and subsequent counseling, type-specific testing to distinguish HSV-1 from HSV-2 is always recommended. Although PCR has been the diagnostic standard method for HSV infections of the central nervous system, until now viral culture has been the test of choice for HSV genital infection. However, HSV PCR, with its consistently and substantially higher rate of HSV detection, could replace viral culture as the gold standard for the diagnosis of genital herpes in people with active mucocutaneous lesions, regardless of anatomic location or viral type. Alternatively, antigen detection—an immunofluorescence test or enzyme immunoassay from samples from symptomatic patients--could be employed, but HSV type determination is of importance. Type-specific serology based on glycoprotein G should be used for detecting asymptomatic individuals but widespread screening for HSV antibodies is not recommended. In conclusion, rapid and accurate laboratory diagnosis of HSV is now become a necessity, given the difficulty in making the clinical diagnosis of HSV, the growing worldwide prevalence of genital herpes and the availability of effective antiviral therapy.
Collapse
Affiliation(s)
- Jérôme LeGoff
- Université Paris Diderot, Sorbonne Paris Cité, Microbiology laboratory, Inserm U941, Hôpital Saint-Louis, APHP, 1 Avenue Claude Vellefaux, Paris 75010, France.
| | | | | |
Collapse
|
16
|
Piret J, Boivin G. Antiviral drug resistance in herpesviruses other than cytomegalovirus. Rev Med Virol 2014; 24:186-218. [DOI: 10.1002/rmv.1787] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 01/23/2014] [Accepted: 01/29/2014] [Indexed: 12/16/2022]
Affiliation(s)
- Jocelyne Piret
- Research Center in Infectious Diseases; Laval University; Quebec City QC Canada
| | - Guy Boivin
- Research Center in Infectious Diseases; Laval University; Quebec City QC Canada
| |
Collapse
|
17
|
Tranylcypromine reduces herpes simplex virus 1 infection in mice. Antimicrob Agents Chemother 2014; 58:2807-15. [PMID: 24590478 DOI: 10.1128/aac.02617-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) infects the majority of the human population and establishes latency by maintaining viral genomes in neurons of sensory ganglia. Latent virus can undergo reactivation to cause recurrent infection. Both primary and recurrent infections can cause devastating diseases, including encephalitis and corneal blindness. Acyclovir is used to treat patients, but virus resistance to acyclovir is frequently reported. Recent in vitro findings reveal that pretreatment of cells with tranylcypromine (TCP), a drug widely used in the clinic to treat neurological disorders, restrains HSV-1 gene transcription by inhibiting the histone-modifying enzyme lysine-specific demethylase 1. The present study was designed to examine the anti-HSV-1 efficacy of TCP in vivo because of the paucity of reports on this issue. Using the murine model, we found that TCP decreased the severity of wild-type-virus-induced encephalitis and corneal blindness, infection with the acyclovir-resistant (thymidine kinase-negative) HSV-1 mutant, and tissue viral loads. Additionally, TCP blocked in vivo viral reactivation in trigeminal ganglia. These results support the therapeutic potential of TCP for controlling HSV-1 infection.
Collapse
|
18
|
Terrell SL, Pesola JM, Coen DM. Roles of conserved residues within the pre-NH2-terminal domain of herpes simplex virus 1 DNA polymerase in replication and latency in mice. J Gen Virol 2014; 95:940-947. [PMID: 24413420 DOI: 10.1099/vir.0.061903-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The catalytic subunit of the herpes simplex virus 1 DNA polymerase (HSV-1 Pol) is essential for viral DNA synthesis and production of infectious virus in cell culture. While mutations that affect 5'-3' polymerase activity have been evaluated in animal models of HSV-1 infection, mutations that affect other functions of HSV-1 Pol have not. In a previous report, we utilized bacterial artificial chromosome technology to generate defined HSV-1 pol mutants with lesions in the previously uncharacterized pre-NH2-terminal domain. We found that the extreme N-terminal 42 residues (deletion mutant polΔN43) were dispensable for replication in cell culture, while residues 44-49 (alanine-substitution mutant polA6) were required for efficient viral DNA synthesis and production of infectious virus. In this study, we sought to address the importance of these conserved elements in viral replication in a mouse corneal infection model. Mutant virus polΔN43 exhibited no meaningful defect in acute or latent infection despite strong conservation of residues 1-42 with HSV-2 Pol. The polA6 mutation caused a modest defect in replication at the site of inoculation, and was severely impaired for ganglionic replication, even at high inocula that permitted efficient corneal replication. Additionally, the polA6 mutation resulted in reduced latency establishment and subsequent reactivation. Moreover, we found that the polA6 replication defect in cultured cells was exacerbated in resting cells as compared to dividing cells. These results reveal an important role for the conserved motif at residues 44-49 of HSV-1 Pol for ganglionic viral replication.
Collapse
Affiliation(s)
- Shariya L Terrell
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Jean M Pesola
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Donald M Coen
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
19
|
Net -1 frameshifting on a noncanonical sequence in a herpes simplex virus drug-resistant mutant is stimulated by nonstop mRNA. Proc Natl Acad Sci U S A 2012; 109:14852-7. [PMID: 22927407 DOI: 10.1073/pnas.1206582109] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Ribosomal frameshifting entails slippage of the translational machinery during elongation. Frameshifting permits expression of more than one polypeptide from an otherwise monocistronic mRNA, and can restore expression of polypeptides in the face of frameshift mutations. A common mutation conferring acyclovir resistance in patients with herpes simplex virus disease deletes one cytosine from a run of six cytosines (C-chord) in the viral thymidine kinase (tk) gene. However, this mutation does not abolish TK activity, which is important for pathogenicity. To investigate how this mutant retains TK activity, we engineered and analyzed viruses expressing epitope-tagged TK. We found that the mutant's TK activity can be accounted for by low levels of full-length TK polypeptide produced by net -1 frameshifting during translation. The efficiency of frameshifting was relatively high, 3-5%, as the polypeptide from the reading frame generated by the deletion, which lacks stop codons (nonstop), was poorly expressed mainly because of inefficient protein synthesis. Stop codons introduced into this reading frame greatly increased its expression, but greatly decreased the level of full-length TK, indicating that frameshifting is strongly stimulated by a new mechanism, nonstop mRNA, which we hypothesize involves stalling of ribosomes on the polyA tail. Mutational studies indicated that frameshifting occurs on or near the C-chord, a region lacking a canonical slippery sequence. Nonstop stimulation of frameshifting also occurred when the C-chord was replaced with a canonical slippery sequence from HIV. This mechanism thus permits biologically and clinically relevant TK synthesis, and may occur more generally.
Collapse
|
20
|
Quantification and analysis of thymidine kinase expression from acyclovir-resistant G-string insertion and deletion mutants in herpes simplex virus-infected cells. J Virol 2012; 86:4518-26. [PMID: 22301158 DOI: 10.1128/jvi.06995-11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To be clinically relevant, drug-resistant mutants must both evade drug action and retain pathogenicity. Many acyclovir-resistant herpes simplex virus mutants from clinical isolates have one or two base insertions (G8 and G9) or one base deletion (G6) in a homopolymeric run of seven guanines (G string) in the gene encoding thymidine kinase (TK). Nevertheless, G8 and G9 mutants express detectable TK activity and can reactivate from latency in mice, a pathogenicity marker. On the basis of studies using cell-free systems, ribosomal frameshifting can explain this ability to express TK. To investigate frameshifting in infected cells, we constructed viruses that express epitope-tagged versions of wild-type and mutant TKs. We measured TK activity by plaque autoradiography and expression of frameshifted and unframeshifted TK polypeptides using a very sensitive immunoprecipitation-Western blotting method. The G6 mutant expressed ∼0.01% of wild-type levels of TK polypeptide. For the G9 mutant, consistent with previous results, much TK expression could be ascribed to reversion. For the G8 mutant, from these assays and pulse-labeling studies, we determined the ratio of synthesis of frameshifted to unframeshifted polypeptides to be 1:100. The effects of stop codons before or after the G string argue that frameshifting can initiate within the first six guanines. However, frameshifting efficiency was altered by stop codons downstream of the string in the 0 frame. The G8 mutant expressed only 0.1% of the wild-type level of full-length TK, considerably lower than estimated previously. Thus, remarkably low levels of TK are sufficient for reactivation from latency in mice.
Collapse
|
21
|
Shafer RW, Najera I, Chou S. Mechanisms of Resistance to Antiviral Agents. MANUAL OF CLINICAL MICROBIOLOGY 2011:1710-1728. [DOI: 10.1128/9781555816728.ch109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
22
|
Resistance of herpes simplex viruses to nucleoside analogues: mechanisms, prevalence, and management. Antimicrob Agents Chemother 2010; 55:459-72. [PMID: 21078929 DOI: 10.1128/aac.00615-10] [Citation(s) in RCA: 366] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex viruses (HSV) type 1 and type 2 are responsible for recurrent orolabial and genital infections. The standard therapy for the management of HSV infections includes acyclovir (ACV) and penciclovir (PCV) with their respective prodrugs valacyclovir and famciclovir. These compounds are phosphorylated by the viral thymidine kinase (TK) and then by cellular kinases. The triphosphate forms selectively inhibit the viral DNA polymerase (DNA pol) activity. Drug-resistant HSV isolates are frequently recovered from immunocompromised patients but rarely found in immunocompetent subjects. The gold standard phenotypic method for evaluating the susceptibility of HSV isolates to antiviral drugs is the plaque reduction assay. Plaque autoradiography allows the associated phenotype to be distinguished (TK-wild-type, TK-negative, TK-low-producer, or TK-altered viruses or mixtures of wild-type and mutant viruses). Genotypic characterization of drug-resistant isolates can reveal mutations located in the viral TK and/or in the DNA pol genes. Recombinant HSV mutants can be generated to analyze the contribution of each specific mutation with regard to the drug resistance phenotype. Most ACV-resistant mutants exhibit some reduction in their capacity to establish latency and to reactivate, as well as in their degree of neurovirulence in animal models of HSV infection. For instance, TK-negative HSV mutants establish latency with a lower efficiency than wild-type strains and reactivate poorly. DNA pol HSV mutants exhibit different degrees of attenuation of neurovirulence. The management of ACV- or PCV-resistant HSV infections includes the use of the pyrophosphate analogue foscarnet and the nucleotide analogue cidofovir. There is a need to develop new antiherpetic compounds with different mechanisms of action.
Collapse
|
23
|
Dambrosi S, Martin M, Yim K, Miles B, Canas J, Sergerie Y, Boivin G. Neurovirulence and latency of drug-resistant clinical herpes simplex viruses in animal models. J Med Virol 2010; 82:1000-6. [PMID: 20419814 DOI: 10.1002/jmv.21773] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Herpes simplex virus (HSV) resistance to acyclovir or foscarnet results from mutations in viral thymidine kinase (TK) and/or DNA polymerase (pol) genes. Replication kinetics and virulence of TK and/or DNA pol clinical mutants were assessed using models of mouse encephalitis and cotton rat genital infection. Replication capacities in Vero cells of a DNA pol altered strain (L850I) and a TK/DNA pol mutant (C467deletion/A912V) were significantly lower than those of unrelated wild-type (WT) strains, while a double DNA pol mutant (S724N/P920S) demonstrated replication kinetics similar to the WT. The replication of a TK-deficient mutant (G439.5addition) was impaired (low m.o.i.) or unaltered (high m.o.i.) compared to that of a WT virus depending on the viral inoculum. Compared to a survival rate of 6% for mice infected intranasally with WT HSV-1 or -2 viruses, G439.5add, C467deletion/A912V and L850I strains were associated with survival rates of 100% (P < 0.05) whereas mice infected with the S724N/P920S mutant had a survival rate of 33% (P = 0.08). Brain viral titers were higher in mice infected with WT HSV-1 or -2 strains and the double DNA pol mutant. All strains except the DNA pol mutant L850I were able to establish latency in the dorsal root ganglia of cotton rats. A good correlation was generally found between replication kinetics of DNA pol mutants and their neurovirulence potential in mice whereas such correlation was not straightforward for TK mutants.
Collapse
Affiliation(s)
- Sarah Dambrosi
- Research Center in Infectious Diseases, Centre Hospitalier Universitaire de Québec, Pavillon CHUL, Université Laval, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
24
|
Leiva-Torres GA, Rochette PA, Pearson A. Differential importance of highly conserved residues in UL24 for herpes simplex virus 1 replication in vivo and reactivation. J Gen Virol 2010; 91:1109-16. [PMID: 20071482 DOI: 10.1099/vir.0.017921-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The UL24 gene of herpes simplex virus 1 (HSV-1) is widely conserved among all subfamilies of the Herpesviridae. It is one of only four HSV-1 genes for which mutations have been mapped that confer a syncytial plaque phenotype. In a mouse model of infection, UL24-deficient viruses exhibit reduced titres, particularly in neurons, and an apparent defect in reactivation from latency. There are several highly conserved residues in UL24; however, their importance in the role of UL24 in vivo is unknown. In this study, we compared virus strains with substitution mutations corresponding to the PD-(D/E)XK endonuclease motif of UL24 (vUL24-E99A/K101A) or a substitution of another highly conserved residue (vUL24-G121A). Both mutant viruses cause the formation of syncytial plaques at 39 degrees C; however, we found that the viruses differed dramatically when tested in a mouse model of infection. vUL24-E99A/K101A exhibited titres in the eye that were 10-fold lower than those of the wild-type virus KOS, and titres in trigeminal ganglia (TG) that were more than 2 log10 lower. Clinical signs were barely detectable with vUL24-E99A/K101A. Furthermore, the percentage of TG from which virus reactivated was also significantly lower for this mutant than for KOS. In contrast, vUL24-G121A behaved similarly to the wild-type virus in mice. These results are consistent with the endonuclease motif being important for the role of UL24 in vivo and also imply that the UL24 temperature-dependent syncytial plaque phenotype can be separated genetically from several in vivo phenotypes.
Collapse
|
25
|
Silva SC, Brum MCS, Weiblen R, Flores EF, Chowdhury SI. A bovine herpesvirus 5 recombinant defective in the thymidine kinase (TK) gene and a double mutant lacking TK and the glycoprotein E gene are fully attenuated for rabbits. Braz J Med Biol Res 2009; 43:150-9. [PMID: 20027480 DOI: 10.1590/s0100-879x2009007500030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Accepted: 12/10/2009] [Indexed: 05/26/2023] Open
Abstract
Bovine herpesvirus 5 (BoHV-5), the agent of herpetic meningoencephalitis in cattle, is an important pathogen of cattle in South America and several efforts have been made to produce safer and more effective vaccines. In the present study, we investigated in rabbits the virulence of three recombinant viruses constructed from a neurovirulent Brazilian BoHV-5 strain (SV507/99). The recombinants are defective in glycoprotein E (BoHV-5gEDelta), thymidine kinase (BoHV-5TKDelta) and both proteins (BoHV-5gEDeltaTKDelta). Rabbits inoculated with the parental virus (N = 8) developed neurological disease and died or were euthanized in extremis between days 7 and 13 post-infection (pi). Infectivity was detected in several areas of their brains. Three of 8 rabbits inoculated with the recombinant BoHV-5gEDelta developed neurological signs between days 10 and 15 pi and were also euthanized. A more restricted virus distribution was detected in the brain of these animals. Rabbits inoculated with the recombinants BoHV-5TKDelta (N = 8) or BoHV-5gEDeltaTKDelta (N = 8) remained healthy throughout the experiment in spite of variable levels of virus replication in the nose. Dexamethasone (Dx) administration to rabbits inoculated with the three recombinants at day 42 pi did not result in viral reactivation, as demonstrated by absence of virus shedding and/or increase in virus neutralizing titers. Nevertheless, viral DNA was detected in the trigeminal ganglia or olfactory bulbs of all animals at day 28 post-Dx, demonstrating they were latently infected. These results show that recombinants BoHV-5TKDelta and BoHV-5gEDeltaTKDelta are attenuated for rabbits and constitute potential vaccine candidates upon the confirmation of this phenotype in cattle.
Collapse
Affiliation(s)
- S C Silva
- Setor de Virologia, Departamento de Microbiologia e Parasitologia and Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil
| | | | | | | | | |
Collapse
|
26
|
Wang K, Mahalingam G, Hoover SE, Mont EK, Holland SM, Cohen JI, Straus SE. Diverse herpes simplex virus type 1 thymidine kinase mutants in individual human neurons and Ganglia. J Virol 2007; 81:6817-26. [PMID: 17459924 PMCID: PMC1933309 DOI: 10.1128/jvi.00166-07] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutations in the thymidine kinase gene (tk) of herpes simplex virus type 1 (HSV-1) explain most cases of virus resistance to acyclovir (ACV) treatment. Mucocutaneous lesions of patients with ACV resistance contain mixed populations of tk mutant and wild-type virus. However, it is unknown whether human ganglia also contain mixed populations since the replication of HSV tk mutants in animal neurons is impaired. Here we report the detection of mutated HSV tk sequences in human ganglia. Trigeminal and dorsal root ganglia were obtained at autopsy from an immunocompromised woman with chronic mucocutaneous infection with ACV-resistant HSV-1. The HSV-1 tk open reading frames from ganglia were amplified by PCR, cloned, and sequenced. tk mutations were detected in a seven-G homopolymer region in 11 of 12 ganglia tested, with clonal frequencies ranging from 4.2 to 76% HSV-1 tk mutants per ganglion. In 8 of 11 ganglia, the mutations were heterogeneous, varying from a deletion of one G to an insertion of one to three G residues, with the two-G insertion being the most common. Each ganglion had its own pattern of mutant populations. When individual neurons from one ganglion were analyzed by laser capture microdissection and PCR, 6 of 14 HSV-1-positive neurons were coinfected with HSV tk mutants and wild-type virus, 4 of 14 were infected with wild-type virus alone, and 4 of 14 were infected with tk mutant virus alone. These data suggest that diverse tk mutants arise independently under drug selection and establish latency in human sensory ganglia alone or together with wild-type virus.
Collapse
Affiliation(s)
- Kening Wang
- Medical Virology Section, Laboratory of Clinical Infectious Disease, NIAID/NIH, Building 10, Room 11N-234, 10 Center Dr., Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Portsmouth D, Hlavaty J, Renner M. Suicide genes for cancer therapy. Mol Aspects Med 2007; 28:4-41. [PMID: 17306358 DOI: 10.1016/j.mam.2006.12.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Accepted: 12/18/2006] [Indexed: 12/31/2022]
Abstract
The principle of using suicide genes for gene directed enzyme prodrug therapy (GDEPT) of cancer has gained increasing significance during the 20 years since its inception. The astute application of suitable GDEPT systems should permit tumour ablation in the absence of off-target toxicity commonly associated with classical chemotherapy, a hypothesis which is supported by encouraging results in a multitude of pre-clinical animal models. This review provides a clear explanation of the rationale behind the GDEPT principle, outlining the advantages and limitations of different GDEPT strategies with respect to the roles of the bystander effect, the immune system and the selectivity of the activated prodrug in contributing to their therapeutic efficacy. An in-depth analysis of the most widely used suicide gene/prodrug combinations is presented, including details of the latest advances in enzyme and prodrug optimisation and results from the most recent clinical trials.
Collapse
Affiliation(s)
- Daniel Portsmouth
- Research Institute for Virology and Biomedicine, University of Veterinary Medicine, Vienna, Austria
| | | | | |
Collapse
|
28
|
Chen SH, Lin YW, Griffiths A, Huang WY, Chen SH. Competition and complementation between thymidine kinase-negative and wild-type herpes simplex virus during co-infection of mouse trigeminal ganglia. J Gen Virol 2006; 87:3495-3502. [PMID: 17098963 DOI: 10.1099/vir.0.82223-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Laboratory strains of herpes simplex virus lacking thymidine kinase (TK) cannot replicate acutely to detectable levels in mouse trigeminal ganglia and do not reactivate from latency. However, many pathogenic clinical isolates that are resistant to the antiviral drug acyclovir are heterogeneous populations of TK-negative (TK(-)) and TK-positive (TK(+)) viruses. To recapitulate this in vivo, mice were infected with mixtures of wild-type virus and a recombinant TK(-) mutant in various ratios. Following co-infection, the replication, number of latent viral genomes and reactivation efficiency of TK(+) virus in trigeminal ganglia were reduced in a manner related to the amount of TK(-) virus in the inoculum. TK(+) virus did not always complement the acute replication or increase the number of latent viral genomes of TK(-) mutant in mouse ganglia. Even so, TK(+) virus could still confer the pathogenic phenotype to a TK(-) mutant, somehow providing sufficient TK activity in trans to permit a TK(-) mutant to reactivate from latently infected ganglia.
Collapse
Affiliation(s)
- Shih-Heng Chen
- Institute of Basic Medical Sciences and Department of Microbiology and Immunology, Medical College, National Cheng Kung University, Tainan 70101, Taiwan, Republic of China
| | - Yu-Wen Lin
- Institute of Basic Medical Sciences and Department of Microbiology and Immunology, Medical College, National Cheng Kung University, Tainan 70101, Taiwan, Republic of China
| | - Anthony Griffiths
- Department of Virology and Immunology, Southwest Foundation for Biomedical Research, 7620 NW Loop 410, San Antonio, TX 78227, USA
| | - Wen-Yen Huang
- Institute of Basic Medical Sciences and Department of Microbiology and Immunology, Medical College, National Cheng Kung University, Tainan 70101, Taiwan, Republic of China
| | - Shun-Hua Chen
- Institute of Basic Medical Sciences and Department of Microbiology and Immunology, Medical College, National Cheng Kung University, Tainan 70101, Taiwan, Republic of China
| |
Collapse
|
29
|
Chen SH, Yao HW, Huang WY, Hsu KS, Lei HY, Shiau AL, Chen SH. Efficient reactivation of latent herpes simplex virus from mouse central nervous system tissues. J Virol 2006; 80:12387-92. [PMID: 17005636 PMCID: PMC1676271 DOI: 10.1128/jvi.01232-06] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
For decades, numerous ex vivo studies have documented that latent herpes simplex virus (HSV) reactivates efficiently from ganglia, but rarely from the central nervous systems (CNS), of mice when assayed by mincing tissues before explant culture, despite the presence of viral genomes in both sites. Here we show that 88% of mouse brain stems reactivated latent virus when they were dissociated into cell suspensions before ex vivo explant culture. The efficient reactivation of HSV from the mouse CNS was demonstrated with more than one viral strain, viral serotype, and mouse strain, further indicating that the CNS can be an authentic latency site for HSV with the potential to cause recurrent disease.
Collapse
Affiliation(s)
- Shih-Heng Chen
- Department of Microbiology and Immunology, Medical College, National Cheng Kung University, Tainan, Taiwan 701, Republic of China
| | | | | | | | | | | | | |
Collapse
|
30
|
Bae PK, Kim JH, Kim HS, Chung IK, Paik SG, Lee CK. Intracellular uptake of thymidine and antiherpetic drugs for thymidine kinase-deficient mutants of herpes simplex virus type 1. Antiviral Res 2006; 70:93-104. [PMID: 16546268 DOI: 10.1016/j.antiviral.2006.01.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Revised: 11/30/2005] [Accepted: 01/20/2006] [Indexed: 11/21/2022]
Abstract
The influence of the thymidine (Thd) kinase (TK) of herpes simplex virus type 1 (HSV-1) on the intracellular uptake and anabolism of nucleosides has been investigated. To compare the differences between the TK-positive (TK(+)) and TK-deficient strains, acyclovir (ACV)-resistant strains were cloned from a cell culture and classified into 2 groups, viz. the TK-partial (TK(p)) and TK-negative (TK(-)). The cellular uptake of thymidine was highly dependent on the viral TK (vTK) activity. The TK(+) strain showed the highest level of intracellular thymidine uptake, the TK(p) strain a moderate level, which varied from strain to strain, and the TK(-) and mock strains showed little uptake. The inhibition of viral replication by ACV, ganciclovir (GCV) and penciclovir (PCV) did not decrease the Thd uptake at all. On the contrary, a notable increase found to be induced by ACV. The influence of the vTK on the uptake of GCV or PCV was much greater than that of ACV. The metabolism was generally less dependent on the vTK activity than the influx. The influx and phosphorylation rates of GCV and PCV were dependent on the substrate specificity of the vTK.
Collapse
Affiliation(s)
- Pan Kee Bae
- Pharmacology Research Center, Korea Research Institute of Chemical Technology, Daejon 305-600, South Korea
| | | | | | | | | | | |
Collapse
|