1
|
Thomas S, Samuel SV, Hoch A, Syphurs C, Diray-Arce J. The Implication of Sphingolipids in Viral Infections. Int J Mol Sci 2023; 24:17303. [PMID: 38139132 PMCID: PMC10743733 DOI: 10.3390/ijms242417303] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Sphingolipids are involved in cell signaling and metabolic pathways, and their metabolites play a critical role in host defense against intracellular pathogens. Here, we review the known mechanisms of sphingolipids in viral infections and discuss the potential implication of the study of sphingolipid metabolism in vaccine and therapeutic development.
Collapse
Affiliation(s)
- Sanya Thomas
- Precision Vaccines Program, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA; (S.T.); (A.H.); (C.S.)
- Harvard Medical School, Boston, MA 02115, USA;
| | - Stephen Varghese Samuel
- Harvard Medical School, Boston, MA 02115, USA;
- Department of Emergency Medicine, Christian Medical College and Hospital, Vellore 632004, India
| | - Annmarie Hoch
- Precision Vaccines Program, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA; (S.T.); (A.H.); (C.S.)
| | - Caitlin Syphurs
- Precision Vaccines Program, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA; (S.T.); (A.H.); (C.S.)
| | - Joann Diray-Arce
- Precision Vaccines Program, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA; (S.T.); (A.H.); (C.S.)
- Harvard Medical School, Boston, MA 02115, USA;
| |
Collapse
|
2
|
Avota E, Bodem J, Chithelen J, Mandasari P, Beyersdorf N, Schneider-Schaulies J. The Manifold Roles of Sphingolipids in Viral Infections. Front Physiol 2021; 12:715527. [PMID: 34658908 PMCID: PMC8511394 DOI: 10.3389/fphys.2021.715527] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022] Open
Abstract
Sphingolipids are essential components of eukaryotic cells. In this review, we want to exemplarily illustrate what is known about the interactions of sphingolipids with various viruses at different steps of their replication cycles. This includes structural interactions during entry at the plasma membrane or endosomal membranes, early interactions leading to sphingolipid-mediated signal transduction, interactions with internal membranes and lipids during replication, and interactions during virus assembly and budding. Targeted interventions in sphingolipid metabolism - as far as they can be tolerated by cells and organisms - may open novel possibilities to support antiviral therapies. Human immunodeficiency virus type 1 (HIV-1) infections have intensively been studied, but for other viral infections, such as influenza A virus (IAV), measles virus (MV), hepatitis C virus (HCV), dengue virus, Ebola virus, and severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), investigations are still in their beginnings. As many inhibitors of sphingolipid metabolism are already in clinical use against other diseases, repurposing studies for applications in some viral infections appear to be a promising approach.
Collapse
Affiliation(s)
- Elita Avota
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Jochen Bodem
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Janice Chithelen
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Putri Mandasari
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Niklas Beyersdorf
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
3
|
Schneider-Schaulies S, Schumacher F, Wigger D, Schöl M, Waghmare T, Schlegel J, Seibel J, Kleuser B. Sphingolipids: Effectors and Achilles Heals in Viral Infections? Cells 2021; 10:cells10092175. [PMID: 34571822 PMCID: PMC8466362 DOI: 10.3390/cells10092175] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 12/26/2022] Open
Abstract
As viruses are obligatory intracellular parasites, any step during their life cycle strictly depends on successful interaction with their particular host cells. In particular, their interaction with cellular membranes is of crucial importance for most steps in the viral replication cycle. Such interactions are initiated by uptake of viral particles and subsequent trafficking to intracellular compartments to access their replication compartments which provide a spatially confined environment concentrating viral and cellular components, and subsequently, employ cellular membranes for assembly and exit of viral progeny. The ability of viruses to actively modulate lipid composition such as sphingolipids (SLs) is essential for successful completion of the viral life cycle. In addition to their structural and biophysical properties of cellular membranes, some sphingolipid (SL) species are bioactive and as such, take part in cellular signaling processes involved in regulating viral replication. It is especially due to the progress made in tools to study accumulation and dynamics of SLs, which visualize their compartmentalization and identify interaction partners at a cellular level, as well as the availability of genetic knockout systems, that the role of particular SL species in the viral replication process can be analyzed and, most importantly, be explored as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Sibylle Schneider-Schaulies
- Institute for Virology and Immunobiology, University of Wuerzburg, 97078 Würzburg, Germany; (S.S.-S.); (M.S.); (T.W.)
| | - Fabian Schumacher
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, 14195 Berlin, Germany; (F.S.); (D.W.)
| | - Dominik Wigger
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, 14195 Berlin, Germany; (F.S.); (D.W.)
| | - Marie Schöl
- Institute for Virology and Immunobiology, University of Wuerzburg, 97078 Würzburg, Germany; (S.S.-S.); (M.S.); (T.W.)
| | - Trushnal Waghmare
- Institute for Virology and Immunobiology, University of Wuerzburg, 97078 Würzburg, Germany; (S.S.-S.); (M.S.); (T.W.)
| | - Jan Schlegel
- Department for Biotechnology and Biophysics, University of Wuerzburg, 97074 Würzburg, Germany;
| | - Jürgen Seibel
- Department for Organic Chemistry, University of Wuerzburg, 97074 Würzburg, Germany;
| | - Burkhard Kleuser
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, 14195 Berlin, Germany; (F.S.); (D.W.)
- Correspondence: ; Tel.: +49-30-8386-9823
| |
Collapse
|
4
|
Wang J, Chen YL, Li YK, Chen DK, He JF, Yao N. Functions of Sphingolipids in Pathogenesis During Host-Pathogen Interactions. Front Microbiol 2021; 12:701041. [PMID: 34408731 PMCID: PMC8366399 DOI: 10.3389/fmicb.2021.701041] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/21/2021] [Indexed: 12/23/2022] Open
Abstract
Sphingolipids are a class of membrane lipids that serve as vital structural and signaling bioactive molecules in organisms ranging from yeast to animals. Recent studies have emphasized the importance of sphingolipids as signaling molecules in the development and pathogenicity of microbial pathogens including bacteria, fungi, and viruses. In particular, sphingolipids play key roles in regulating the delicate balance between microbes and hosts during microbial pathogenesis. Some pathogens, such as bacteria and viruses, harness host sphingolipids to promote development and infection, whereas sphingolipids from both the host and pathogen are involved in fungus-host interactions. Moreover, a regulatory role for sphingolipids has been described, but their effects on host physiology and metabolism remain to be elucidated. Here, we summarize the current state of knowledge about the roles of sphingolipids in pathogenesis and interactions with host factors, including how sphingolipids modify pathogen and host metabolism with a focus on pathogenesis regulators and relevant metabolic enzymes. In addition, we discuss emerging perspectives on targeting sphingolipids that function in host-microbe interactions as new therapeutic strategies for infectious diseases.
Collapse
Affiliation(s)
- Jian Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Agriculture, Sun Yat-sen University, Guangzhou, China
| | - Yi-Li Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yong-Kang Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ding-Kang Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jia-Fan He
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Agriculture, Sun Yat-sen University, Guangzhou, China
| | - Nan Yao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Agriculture, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Avota E, Bodem J, Chithelen J, Mandasari P, Beyersdorf N, Schneider-Schaulies J. The Manifold Roles of Sphingolipids in Viral Infections. Front Physiol 2021. [PMID: 34658908 DOI: 10.3389/fphys.2021.71552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
Sphingolipids are essential components of eukaryotic cells. In this review, we want to exemplarily illustrate what is known about the interactions of sphingolipids with various viruses at different steps of their replication cycles. This includes structural interactions during entry at the plasma membrane or endosomal membranes, early interactions leading to sphingolipid-mediated signal transduction, interactions with internal membranes and lipids during replication, and interactions during virus assembly and budding. Targeted interventions in sphingolipid metabolism - as far as they can be tolerated by cells and organisms - may open novel possibilities to support antiviral therapies. Human immunodeficiency virus type 1 (HIV-1) infections have intensively been studied, but for other viral infections, such as influenza A virus (IAV), measles virus (MV), hepatitis C virus (HCV), dengue virus, Ebola virus, and severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), investigations are still in their beginnings. As many inhibitors of sphingolipid metabolism are already in clinical use against other diseases, repurposing studies for applications in some viral infections appear to be a promising approach.
Collapse
Affiliation(s)
- Elita Avota
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Jochen Bodem
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Janice Chithelen
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Putri Mandasari
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Niklas Beyersdorf
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
6
|
Audi A, Soudani N, Dbaibo G, Zaraket H. Depletion of Host and Viral Sphingomyelin Impairs Influenza Virus Infection. Front Microbiol 2020; 11:612. [PMID: 32425895 PMCID: PMC7203554 DOI: 10.3389/fmicb.2020.00612] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/19/2020] [Indexed: 12/19/2022] Open
Abstract
Influenza A virus (IAV) is a major human respiratory pathogen causing annual epidemics as well as periodic pandemics. A complete understanding of the virus pathogenesis and host factors involved in the viral lifecycle is crucial for developing novel therapeutic approaches. Sphingomyelin (SM) is the most abundant membrane sphingolipid. It preferentially associates with cholesterol to form distinct domains named lipid rafts. Sphingomyelinases, including acid sphingomyelinase (ASMase), catalyzes the hydrolysis of membrane SM and consequently transform lipid rafts into ceramide-enriched membrane platforms. In this study, we investigated the effect of SM hydrolysis on IAV propagation. Depleting plasma membrane SM by exogenous bacterial SMase (bSMase) impaired virus infection and reduced virus entry, whereas exogenous SM enhanced infection. Moreover, the depletion of virus envelope SM also reduced virus infectivity and impaired its attachment and internalization. Nonetheless, inhibition of ASMase by desipramine did not affect IAV infection. Similarly, virus replication was not impaired in Niemann-Pick disease type A (NPA) cells, which lack functional ASMase. IAV infection in A549 cells was associated with suppression of ASMase activity starting at 6 h post-infection. Our data reveals that intact cellular and viral envelope SM is required for efficient IAV infection. Therefore, SM metabolism can be a potential target for therapeutic intervention against influenza virus infection.
Collapse
Affiliation(s)
- Amani Audi
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Center for Infectious Diseases Research, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Nadia Soudani
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Center for Infectious Diseases Research, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Doctoral School of Science and Technology, Research Platform for Environmental Science (PRASE), Faculty of Sciences, Lebanese University, Beirut, Lebanon
| | - Ghassan Dbaibo
- Center for Infectious Diseases Research, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon.,Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hassan Zaraket
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Center for Infectious Diseases Research, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
7
|
Glucosylceramide synthase maintains influenza virus entry and infection. PLoS One 2020; 15:e0228735. [PMID: 32032363 PMCID: PMC7006932 DOI: 10.1371/journal.pone.0228735] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 01/22/2020] [Indexed: 12/18/2022] Open
Abstract
Influenza virus is an enveloped virus wrapped in a lipid bilayer derived from the host cell plasma membrane. Infection by influenza virus is dependent on these host cell lipids, which include sphingolipids. Here we examined the role of the sphingolipid, glucosylceramide, in influenza virus infection by knocking out the enzyme responsible for its synthesis, glucosylceramide synthase (UGCG). We observed diminished influenza virus infection in HEK 293 and A549 UGCG knockout cells and demonstrated that this is attributed to impaired viral entry. We also observed that entry mediated by the glycoproteins of other enveloped viruses that enter cells by endocytosis is also impaired in UGCG knockout cells, suggesting a broader role for UGCG in viral entry by endocytosis.
Collapse
|
8
|
Yager EJ, Konan KV. Sphingolipids as Potential Therapeutic Targets against Enveloped Human RNA Viruses. Viruses 2019; 11:v11100912. [PMID: 31581580 PMCID: PMC6832137 DOI: 10.3390/v11100912] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/27/2019] [Accepted: 09/28/2019] [Indexed: 12/28/2022] Open
Abstract
Several notable human diseases are caused by enveloped RNA viruses: influenza, AIDS, hepatitis C, dengue hemorrhagic fever, microcephaly, and Guillain-Barré Syndrome. Being enveloped, the life cycle of this group of viruses is critically dependent on host lipid biosynthesis. Viral binding and entry involve interactions between viral envelope glycoproteins and cellular receptors localized to lipid-rich regions of the plasma membrane. Subsequent infection by these viruses leads to reorganization of cellular membranes and lipid metabolism to support the production of new viral particles. Recent work has focused on defining the involvement of specific lipid classes in the entry, genome replication assembly, and viral particle formation of these viruses in hopes of identifying potential therapeutic targets for the treatment or prevention of disease. In this review, we will highlight the role of host sphingolipids in the lifecycle of several medically important enveloped RNA viruses.
Collapse
Affiliation(s)
- Eric J Yager
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY 12208, USA.
| | - Kouacou V Konan
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208-3479, USA.
| |
Collapse
|
9
|
Membrane Dynamics in Health and Disease: Impact on Cellular Signalling. J Membr Biol 2019; 252:213-226. [PMID: 31435696 DOI: 10.1007/s00232-019-00087-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/07/2019] [Indexed: 12/16/2022]
Abstract
Biological membranes display a staggering complexity of lipids and proteins orchestrating cellular functions. Superior analytical tools coupled with numerous functional cellular screens have enabled us to query their role in cellular signalling, trafficking, guiding protein structure and function-all of which rely on the dynamic membrane lipid properties indispensable for proper cellular functions. Alteration of these has led to emergence of various pathological conditions, thus opening an area of lipid-centric therapeutic approaches. This perspective is a short summary of the dynamic properties of membranes essential for proper cellular functions, dictating both protein and lipid functions, and mis-regulated in diseases. Towards the end, we focus on some challenges lying ahead and potential means to tackle the same, mainly underscored by multi-disciplinary approaches.
Collapse
|
10
|
Glucosylceramidase Maintains Influenza Virus Infection by Regulating Endocytosis. J Virol 2019; 93:JVI.00017-19. [PMID: 30918081 PMCID: PMC6613767 DOI: 10.1128/jvi.00017-19] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/14/2019] [Indexed: 01/07/2023] Open
Abstract
Influenza virus is the pathogen responsible for the second largest pandemic in human history. A better understanding of how influenza virus enters host cells may lead to the development of more-efficacious therapies against emerging strains of the virus. Here we show that the glycosphingolipid metabolizing enzyme glucosylceramidase is required for optimal influenza virus trafficking to late endosomes and for consequent fusion, entry, and infection. We also provide evidence that promotion of influenza virus entry by glucosylceramidase extends to other endosome-entering viruses and is due to a general requirement for this enzyme, and hence for optimal levels of glucosylceramide, for efficient trafficking of endogenous cargos, such as the epidermal growth factor (EGF) receptor, along the endocytic pathway. This work therefore has implications for the basic process of endocytosis as well as for pathogenic processes, including virus entry and Gaucher disease. Influenza virus is an RNA virus encapsulated in a lipid bilayer derived from the host cell plasma membrane. Previous studies showed that influenza virus infection depends on cellular lipids, including the sphingolipids sphingomyelin and sphingosine. Here we examined the role of a third sphingolipid, glucosylceramide, in influenza virus infection following clustered regularly interspaced short palindromic repeats with Cas9 (CRISPR-Cas9)-mediated knockout (KO) of its metabolizing enzyme glucosylceramidase (GBA). After confirming GBA knockout of HEK 293 and A549 cells by both Western blotting and lipid mass spectrometry, we observed diminished infection in both KO cell lines by a PR8 (H1N1) green fluorescent protein (GFP) reporter virus. We further showed that the reduction in infection correlated with impaired influenza virus trafficking to late endosomes and hence with fusion and entry. To examine whether GBA is required for other enveloped viruses, we compared the results seen with entry mediated by the glycoproteins of Ebola virus, influenza virus, vesicular stomatitis virus (VSV), and measles virus in GBA knockout cells. Entry inhibition was relatively robust for Ebola virus and influenza virus, modest for VSV, and mild for measles virus, suggesting a greater role for viruses that enter cells by fusing with late endosomes. As the virus studies suggested a general role for GBA along the endocytic pathway, we tested that hypothesis and found that trafficking of epidermal growth factor (EGF) to late endosomes and degradation of its receptor were impaired in GBA knockout cells. Collectively, our findings suggest that GBA is critically important for endocytic trafficking of viruses as well as of cellular cargos, including growth factor receptors. Modulation of glucosylceramide levels may therefore represent a novel accompaniment to strategies to antagonize “late-penetrating” viruses, including influenza virus. IMPORTANCE Influenza virus is the pathogen responsible for the second largest pandemic in human history. A better understanding of how influenza virus enters host cells may lead to the development of more-efficacious therapies against emerging strains of the virus. Here we show that the glycosphingolipid metabolizing enzyme glucosylceramidase is required for optimal influenza virus trafficking to late endosomes and for consequent fusion, entry, and infection. We also provide evidence that promotion of influenza virus entry by glucosylceramidase extends to other endosome-entering viruses and is due to a general requirement for this enzyme, and hence for optimal levels of glucosylceramide, for efficient trafficking of endogenous cargos, such as the epidermal growth factor (EGF) receptor, along the endocytic pathway. This work therefore has implications for the basic process of endocytosis as well as for pathogenic processes, including virus entry and Gaucher disease.
Collapse
|
11
|
Li L, Yu L, Hou X. Cholesterol-rich lipid rafts play a critical role in bovine parainfluenza virus type 3 (BPIV3) infection. Res Vet Sci 2017; 114:341-347. [PMID: 28654867 DOI: 10.1016/j.rvsc.2017.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/14/2017] [Accepted: 04/18/2017] [Indexed: 12/13/2022]
Abstract
Lipid rafts are specialized lipid domains enriched in cholesterol and sphingolipid, which can be utilized in the lifecycle of numerous enveloped viruses. Bovine parainfluenza virustype3 (BPIV3) entry to cell is mediated by receptor binding and membrane fusion, but how lipid rafts in host cell membrane and BPIV3 envelope affect virus infection remains unclear. In this study, we investigated the role of lipid rafts in the different stages of BPIV3 infection. The MDBK cells were treated by methyl-β-cyclodextrin (MβCD) to disrupt cellular lipid raft, and the virus infection was determined. The results showed that MβCD significantly inhibited BPIV3 infection in a dose-dependent manner, but didn't block the binding of virus to the cell membrane. Whereas, the MDBK cells treated by MβCD after virus-entry had no effects on the virus infection, to suggest that BPIV3 infection was associated with lipid rafts in cell membrane during viral entry stage. To further confirm lipid rafts in viral envelope also affected BPIV3 infection, we treated BPIV3 with MβCD to determine the virus titer. We found that disruption of the viral lipid raft caused a significant reduction of viral yield. Cholesterol reconstitution experiment showed that BPIV3 infection was successfully restored by cholesterol supplementation both in cellular membrane and viral envelope, which demonstrated that cholesterol-rich lipid rafts played a critical role in BPIV3 infection. These findings provide insights on our understanding of the mechanism of BPIV3 infection and imply that lipid raft might be a good potential therapeutic target to prevent virus infection.
Collapse
Affiliation(s)
- Liyang Li
- College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Liyun Yu
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Xilin Hou
- College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing 163319, China.
| |
Collapse
|
12
|
Sphingomyelin generated by sphingomyelin synthase 1 is involved in attachment and infection with Japanese encephalitis virus. Sci Rep 2016; 6:37829. [PMID: 27892528 PMCID: PMC5124946 DOI: 10.1038/srep37829] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/02/2016] [Indexed: 12/21/2022] Open
Abstract
Japanese encephalitis virus (JEV) is a mosquito-borne RNA virus which infects target cells via the envelope protein JEV-E. However, its cellular targets are largely unknown. To investigate the role of sphingomyelin (SM) in JEV infection, we utilized SM-deficient immortalized mouse embryonic fibroblasts (tMEF) established from SM synthase 1 (SMS1)/SMS2 double knockout mice. SMS deficiency significantly reduced both intracellular and extracellular JEV levels at 48 h after infection. Furthermore, after 15 min treatment with JEV, the early steps of JEV infection such as attachment and cell entry were also diminished in SMS-deficient tMEFs. The inhibition of JEV attachment and infection were recovered by overexpression of SMS1 but not SMS2, suggesting SMS1 contributes to SM production for JEV attachment and infection. Finally, intraperitoneal injection of JEV into SMS1-deficient mice showed an obvious decrease of JEV infection and its associated pathologies, such as meningitis, lymphocyte infiltration, and elevation of interleukin 6, compared with wild type mice. These results suggest that SMS1-generated SM on the plasma membrane is related in JEV attachment and subsequent infection, and may be a target for inhibition of JEV infection.
Collapse
|
13
|
Richichi B, Pastori C, Gherardi S, Venuti A, Cerreto A, Sanvito F, Toma L, Lopalco L, Nativi C. GM-3 Lactone Mimetic Interacts with CD4 and HIV-1 Env Proteins, Hampering HIV-1 Infection without Inducing a Histopathological Alteration. ACS Infect Dis 2016; 2:564-71. [PMID: 27626296 DOI: 10.1021/acsinfecdis.6b00056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Glycosphingolipids (GSLs) are involved in HIV-1 entry. GM-3 ganglioside, a widespread GSL, affects HIV entry and infection in different ways, depending on the concentration, through its anchoring activity in lipid rafts. This explains why the induction of an altered GSLs metabolism was a tempting approach to reducing HIV-1 cell infection. This study assayed the biological properties of a synthetic GM-3 lactone mimetic, 1, aimed at blocking HIV-1 infection without inducing the adverse events expected by an altered metabolism of GLSs in vivo. The mimetic, conjugated to immunogenic protein ovalbumin and multivalently presented, was able to bind the CD4 molecule with high affinity and block its engagement with gp120, thus inhibiting virus entry. Elicited antimimetic antibodies were also able to block HIV-1 infection in vitro, with activity complementary to that observed for 1. These preliminary results show that the use of GSLs mimetics can be a novel promising mode to block HIV-1 infection and that 1 and other GSL mimetics deserve further attention.
Collapse
Affiliation(s)
- Barbara Richichi
- Department of Chemistry, University of Florence, 50019 Sesto F.no (FI), Italy
| | - Claudia Pastori
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, 20127 Milan, Italy
| | - Stefano Gherardi
- Department of Chemistry, University of Florence, 50019 Sesto F.no (FI), Italy
| | - Assunta Venuti
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, 20127 Milan, Italy
| | - Antonella Cerreto
- Department of Chemistry, University of Florence, 50019 Sesto F.no (FI), Italy
| | - Francesca Sanvito
- Pathology Department, Mouse Histopathology Unit, San Raffaele Scientific Institute, 20100 Milan, Italy
| | - Lucio Toma
- Department
of Chemistry, University of Pavia, Pavia, Italy
| | - Lucia Lopalco
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, 20127 Milan, Italy
| | - Cristina Nativi
- Department of Chemistry, University of Florence, 50019 Sesto F.no (FI), Italy
| |
Collapse
|
14
|
Fair RJ, Hahm HS, Seeberger PH. Combination of automated solid-phase and enzymatic oligosaccharide synthesis provides access to α(2,3)-sialylated glycans. Chem Commun (Camb) 2015; 51:6183-5. [PMID: 25754251 DOI: 10.1039/c5cc01368b] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A synthetic strategy combining automated solid-phase chemical synthesis and enzymatic sialylation was developed to access α(2,3)-sialylated glycans.
Collapse
Affiliation(s)
- Richard J Fair
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.
| | | | | |
Collapse
|
15
|
Identification of molecular sub-networks associated with cell survival in a chronically SIVmac-infected human CD4+ T cell line. Virol J 2014; 11:152. [PMID: 25163480 PMCID: PMC4163169 DOI: 10.1186/1743-422x-11-152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 08/15/2014] [Indexed: 12/31/2022] Open
Abstract
Background The deciphering of cellular networks to determine susceptibility to infection by HIV or the related simian immunodeficiency virus (SIV) is a major challenge in infection biology. Results Here, we have compared gene expression profiles of a human CD4+ T cell line at 24 h after infection with a cell line of the same origin permanently releasing SIVmac. A new knowledge-based-network approach (Inter-Chain-Finder, ICF) has been used to identify sub-networks associated with cell survival of a chronically SIV-infected T cell line. Notably, the method can identify not only differentially expressed key hub genes but also non-differentially expressed, critical, ‘hidden’ regulators. Six out of the 13 predicted major hidden key regulators were among the landscape of proteins known to interact with HIV. Several sub-networks were dysregulated upon chronic infection with SIV. Most prominently, factors reported to be engaged in early stages of acute viral infection were affected, e.g. entry, integration and provirus transcription and other cellular responses such as apoptosis and proliferation were modulated. For experimental validation of the gene expression analyses and computational predictions, individual pathways/sub-networks and significantly altered key regulators were investigated further. We showed that the expression of caveolin-1 (Cav-1), the top hub in the affected protein-protein interaction network, was significantly upregulated in chronically SIV-infected CD4+ T cells. Cav-1 is the main determinant of caveolae and a central component of several signal transduction pathways. Furthermore, CD4 downregulation and modulation of the expression of alternate and co-receptors as well as pathways associated with viral integration into the genome were also observed in these cells. Putatively, these modifications interfere with re-infection and the early replication cycle and inhibit cell death provoked by syncytia formation and bystander apoptosis. Conclusions Thus, by using the novel approach for network analysis, ICF, we predict that in the T cell line chronically infected with SIV, cellular processes that are known to be crucial for early phases of HIV/SIV replication are altered and cellular responses that result in cell death are modulated. These modifications presumably contribute to cell survival despite chronic infection. Electronic supplementary material The online version of this article (doi:10.1186/1743-422X-11-152) contains supplementary material, which is available to authorized users.
Collapse
|
16
|
Abstract
Besides their essential role in the immune system, sphingolipids and their metabolites are potential key regulators in the life cycle of obligatory intracellular pathogens such as viruses. They are involved in lateral and vertical segregation of receptors required for attachment, membrane fusion and endocytosis, as well as in the intracellular replication, assembly and release of viruses. Glycosphingolipids may themselves act as receptors for viruses, such as Galactosylceramide for human immunodeficiency virus (HIV). In addition, sphingolipids and their metabolites are inseparably interwoven in signal transduction processes, dynamic alterations of the cytoskeleton, and the regulation of innate and intrinsic responses of infected target cells. Depending on the nature of the intracellular pathogen, they may support or inhibit infections. Understanding of the underlying mechanisms depending on the specific virus, immune control, and type of disease may open new avenues for therapeutic interventions.
Collapse
|
17
|
Abstract
HIV entry involves binding of the trimeric viral envelope glycoprotein (Env) gp120/gp41 to cell surface receptors, which triggers conformational changes in Env that drive the membrane fusion reaction. The conformational landscape that the lipids and Env navigate en route to fusion has been examined by biophysical measurements on the microscale, whereas electron tomography, x-rays, and NMR have provided insights into the process on the nanoscale and atomic scale. However, the coupling between the lipid and protein pathways that give rise to fusion has not been resolved. Here, we discuss the known and unknown about the overall HIV Env-mediated fusion process.
Collapse
Affiliation(s)
| | - Stewart Durell
- Laboratory of Cell Biology, Center for Cancer Research, NCI, National Institutes of Health, and
| | - Mathias Viard
- From the Nanobiology Program and
- the Basic Science Program, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program (CCRNP), Frederick National Lab, Frederick, Maryland 21702
| |
Collapse
|
18
|
Haughey NJ, Tovar-y-Romo LB, Bandaru VVR. Roles for biological membranes in regulating human immunodeficiency virus replication and progress in the development of HIV therapeutics that target lipid metabolism. J Neuroimmune Pharmacol 2011; 6:284-95. [PMID: 21445582 DOI: 10.1007/s11481-011-9274-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 03/08/2011] [Indexed: 01/14/2023]
Abstract
Infection by the human immunodeficiency virus (HIV) involves a number of important interactions with lipid components in host membranes that regulate binding, fusion, internalization, and viral assembly. Available data suggests that HIV actively modifies the sphingolipid content of cellular membranes to create focal environments that are favorable for infection. In this review, we summarize the roles that membrane lipids play in HIV infection and discuss the current status of therapeutics that attempt to modify biological membranes to inhibit HIV.
Collapse
Affiliation(s)
- Norman J Haughey
- Department of Neurology, Richard T. Johnson Division of Neuroimmunology and Neurological Infections, The Johns Hopkins University School of Medicine, Meyer 6-109, 600N. Wolfe Street, Baltimore, MD 21287, USA.
| | | | | |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW Histo-blood group antigens belonging to the P1PK and GLOB blood group systems are involved in bacterial infections, but a substantial body of evidence is emerging that some of these glycosphingolipids play a role in HIV infection. These recent findings have raised additional questions regarding the possible role of the P/Gb3 histo-blood group antigen in HIV-1 infection. RECENT FINDINGS Early studies implicated a number of glycosphingolipids able to interact with HIV envelope glycoprotein 120. It has been recently reported that cellular or soluble P/Gb3 histo-blood group antigen provides protection from HIV-1 infection. This resistance mechanism appears to be mediated through inhibition of fusion of the HIV-1 envelope to the cell target membrane. Protection has been shown to be provided to both HIV-1 X4 and R5 tropic strains. Indeed, an inverse correlation has been documented between the expression of P/Gb3 on the cellular membrane and susceptibility to HIV infection. Moreover, soluble P/Gb3 analogues have been shown to inhibit HIV infection. SUMMARY The P/Gb3 histo-blood group antigen is the first described cell surface expressed natural resistance factor for prevention of HIV infection. Increased expression of P/Gb3 correlates to decreased HIV infection, whereas decreased or absent P/Gb3 increases HIV susceptibility. Soluble P/Gb3 analogues can inhibit HIV by two mechanisms: direct inhibition of the free virus and inhibition of viral entry. Future development of soluble P/Gb3 analogues, pharmacologic means of increasing cell surface expression of P/Gb3 on HIV susceptible target cells or both may result in novel therapeutic modalities for the prevention and eradication of HIV/AIDS.
Collapse
|
20
|
Abstract
Retroviruses undergo several critical steps to complete a replication cycle. These include the complex processes of virus entry, assembly, and budding that often take place at the plasma membrane of the host cell. Both virus entry and release involve membrane fusion/fission reactions between the viral envelopes and host cell membranes. Accumulating evidence indicates important roles for lipids and lipid microdomains in virus entry and egress. In this review, we outline the current understanding of the role of lipids and membrane microdomains in retroviral replication.
Collapse
|
21
|
Zhou N, Fan L, Ho HT, Nowicka-Sans B, Sun Y, Zhu Y, Hu Y, McAuliffe B, Rose B, Fang H, Wang T, Kadow J, Krystal M, Alexander L, Colonno R, Lin PF. Increased sensitivity of HIV variants selected by attachment inhibitors to broadly neutralizing antibodies. Virology 2010; 402:256-61. [PMID: 20400170 DOI: 10.1016/j.virol.2010.03.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 01/20/2010] [Accepted: 03/18/2010] [Indexed: 11/30/2022]
Abstract
Treatment with HIV attachment inhibitors (AIs) can select for escape mutants throughout the viral envelope. We report on three such mutations: F423Y (gp120 CD4 binding pocket) and I595F and K655E (gp41 ectodomain). Each displayed decreased sensitivity to the AI BMS-488043 and earlier generation AIs, along with increased sensitivity to the broadly neutralizing antibodies 2F5 and 4E10, without affecting the rate of viral entry or sensitivity to the entry inhibitors AMD-3100 and Enfuvirtide. We also observed that I595F did not substantially increase envelope sensitivity to HIV-infected patient sera. Based on these observations, we propose that although F423Y, I595F and K655E may all affect the presentation of the 2F5 and 4E10 epitopes, natural immune mimicry is rare only for the I595F effect. Thus, it seems that in addition to restricting AI resistance development, incorporation of I595F into an appropriate vehicle could elicit a novel antiviral response to improve vaccine efficacy.
Collapse
Affiliation(s)
- Nannan Zhou
- Department of Virology, 5 Department of Research Parkway, Wallingford, CT 06498, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Chan RB, Tanner L, Wenk MR. Implications for lipids during replication of enveloped viruses. Chem Phys Lipids 2010; 163:449-59. [PMID: 20230810 PMCID: PMC7124286 DOI: 10.1016/j.chemphyslip.2010.03.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 03/08/2010] [Indexed: 01/27/2023]
Abstract
Enveloped viruses, which include many medically important viruses such as human immunodeficiency virus, influenza virus and hepatitis C virus, are intracellular parasites that acquire lipid envelopes from their host cells. Success of replication is intimately linked to their ability to hijack host cell mechanisms, particularly those related to membrane dynamics and lipid metabolism. Despite recent progress, our knowledge of lipid mediated virus-host interactions remains highly incomplete. In addition, diverse experimental systems are used to study different stages of virus replication thus complicating comparisons. This review aims to present a unifying view of the widely diverse strategies used by enveloped viruses at distinct stages of their replication cycles.
Collapse
Affiliation(s)
- Robin B Chan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | |
Collapse
|
23
|
Ramkumar S, Sakac D, Binnington B, Branch DR, Lingwood CA. Induction of HIV-1 resistance: cell susceptibility to infection is an inverse function of globotriaosyl ceramide levels. Glycobiology 2008; 19:76-82. [DOI: 10.1093/glycob/cwn106] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
24
|
Rawat SS, Zimmerman C, Johnson BT, Cho E, Lockett SJ, Blumenthal R, Puri A. Restricted lateral mobility of plasma membrane CD4 impairs HIV-1 envelope glycoprotein mediated fusion. Mol Membr Biol 2008; 25:83-94. [PMID: 18097956 DOI: 10.1080/09687680701613713] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We investigated the effect of receptor mobility on HIV-1 envelope glycoprotein (Env)-triggered fusion using B16 mouse melanoma cells that are engineered to express CD4 and CXCR4 or CCR5. These engineered cells are resistant to fusion mediated CD4-dependent HIV-1 envelope glycoprotein. Receptor mobility was measured by fluorescence recovery after photobleaching (FRAP) using either fluorescently-labeled antibodies or transient expression of GFP-tagged receptors in the cells. No significant differences between B16 and NIH3T3 (fusion-permissive) cells were seen in lateral mobility of CCR5 or lipid probes. By contrast CD4 mobility in B16 cells was about seven-fold reduced compared to its mobility in fusion-permissive NIH3T3 cells. However, a CD4 mutant (RA5) that localizes to non-raft membrane microdomains exhibited a three-fold increased mobility in B16 cells as compared with WT-CD4. Interestingly, the B16 cells expressing the RA5 mutant (but not the wild type CD4) and coreceptors supported HIV-1 Env-mediated fusion. Our data demonstrate that the lateral mobility of CD4 is an important determinant of HIV-1 fusion/entry.
Collapse
Affiliation(s)
- Satinder S Rawat
- CCRNP, NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702-1201, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Solid-phase capture of pathogenic bacteria by using gangliosides and detection with real-time PCR. Appl Environ Microbiol 2008; 74:2254-8. [PMID: 18263751 DOI: 10.1128/aem.02601-07] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We developed a method for concentrating pathogens from samples without enrichment. Immobilized gangliosides concentrated bacteria for detection with real-time PCR. A sensitivity of approximately 4 CFU/ml (3 h) in samples without competing microflora was achieved. Samples with competing microflora had a sensitivity of 40,000 CFU/ml. The variance was less than one cycle.
Collapse
|
26
|
Jacobs A, Garg H, Viard M, Raviv Y, Puri A, Blumenthal R. HIV-1 envelope glycoprotein-mediated fusion and pathogenesis: implications for therapy and vaccine development. Vaccine 2008; 26:3026-35. [PMID: 18242797 DOI: 10.1016/j.vaccine.2007.12.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 12/11/2007] [Accepted: 12/12/2007] [Indexed: 11/25/2022]
Abstract
Our overall goal is to understand how viral envelope proteins mediate membrane fusion and pathogenesis. Membrane fusion is a crucial step in the delivery of the viral genome into the cell resulting in infection. On the other hand, fusion activity of viral envelope glycoproteins expressed in infected cells may cause the demise of uninfected bystander cells by apoptosis. Our general approach is to kinetically resolve steps in the pathway of viral envelope glycoprotein-mediated membrane fusion and to uncover physical parameters underlying those steps using a variety of biochemical, biophysical, virological, and molecular and cell biological techniques. Since HIV fusion involves a complex cascade of interactions of the envelope glycoprotein with two receptors, membrane organization plays an important role and interfering with it may modulate entry. To study this phenomenon, we have either examined cell lines with differential expression of sphingolipids (such as GM3), or altered membrane organization by modifying levels of cholesterol, ceramides, or glycosphingolipids. We show that the localized plasma membrane lipid microenvironment (and not the specific membrane lipids) in the vicinity of CD4 controls receptor mobility and HIV-1 fusion. The complex cascade of conformational changes that must occur to allow virus entry is also a very important target for therapy and vaccine development. We have recently designed and tested peptide analogs composed of chemical spacers and reactive moieties positioned strategically to promote permanent attachment. Using a temperature-arrested state in vitro assay we show evidence for the trapping of a pre-six-helix bundle fusion intermediate by a covalent reaction with the inhibitory reactive peptide. Also, using photo-reactive hydrophobic probes we have found ways to inactivate viral envelope glycoproteins while leaving their overall structures intact. Finally, in order to study the envelope glycoprotein effects on pathogenesis, we have used an in vitro model of co-culture of envelope-expressing cells as effectors and CD4+ T cells as targets. We delineated that apoptosis mediated by envelope glycoprotein in bystander cells correlates with transmembrane subunit (gp41)-induced hemifusion. The apoptotic pathway initiated by this interaction involves caspase-3-dependent mitochondrial depolarization and reactive oxygen species production, which depends on the phenotype of the envelope glycoprotein associated with the virus. Taken as a whole, our studies have many different important implications for antiviral therapies and vaccine development.
Collapse
Affiliation(s)
- Amy Jacobs
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | | | | | | | | | | |
Collapse
|
27
|
Wenk MR. Lipidomics of host-pathogen interactions. FEBS Lett 2006; 580:5541-51. [PMID: 16859687 DOI: 10.1016/j.febslet.2006.07.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2006] [Revised: 07/02/2006] [Accepted: 07/03/2006] [Indexed: 12/16/2022]
Abstract
The cell biology of intracellular pathogens (viruses, bacteria, eukaryotic parasites) has provided us with molecular information of host-pathogen interactions. As a result it is becoming increasingly evident that lipids play important roles at various stages of host-pathogen interactions. They act in first line recognition and host cell signaling during pathogen docking, invasion and intracellular trafficking. Lipid metabolism is a housekeeping function in energy homeostasis and biomembrane synthesis during pathogen replication and persistence. Lipids of enormous chemical diversity play roles as immunomodulatory factors. Thus, novel biochemical analytics in combination with cell and molecular biology are a promising recipe for dissecting the roles of lipids in host-pathogen interactions.
Collapse
Affiliation(s)
- Markus R Wenk
- Department of Biochemistry, National University of Singapore, Yong Loo Lin School of Medicine, 8 Medical Drive, Block MD7, Singapore 117597, Singapore.
| |
Collapse
|
28
|
Abstract
HIV-1 infects host cells by sequential interactions of its fusion protein (gp120-gp41) with receptors CD4, CXCR4 and/or CCR5 followed by fusion of viral and host membranes. Studies indicate that additional factors such as receptor density and composition of viral and cellular lipids can dramatically modulate the fusion reaction. Lipid rafts, which primarily consist of sphingolipids and cholesterol, have been implicated for infectious route of HIV-1 entry. Plasma membrane Glycosphingolipids (GSLs) have been proposed to support HIV-1 infection in multiple ways: (a) as alternate receptor(s) for CD4-independent entry in neuronal and other cell types, (b) viral transmission, and (c) gp120-gp41-mediated membrane fusion. However, the exact mechanism(s) by which GSLs support fusion is still elusive. This article will focus on the contribution of target membrane sphingolipids and their metabolites in modulating viral entry. We will discuss the current working hypotheses underlying the mechanisms by which these lipids promote and/or block HIV-1 entry. Recent approaches in the design and development of novel glycosyl derivatives, as anti-HIV agents will be summarized.
Collapse
Affiliation(s)
- Satinder S Rawat
- Laboratory of Experimental and Computational Biology, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, P.O. Box B, Bldg. 469, Rm. 211, Miller Drive, Frederick, MD 21702, USA
| | | | | |
Collapse
|
29
|
Lund N, Branch DR, Sakac D, Lingwood CA, Siatskas C, Robinson CJ, Brady RO, Medin JA. Lack of susceptibility of cells from patients with Fabry disease to productive infection with R5 human immunodeficiency virus. AIDS 2005; 19:1543-6. [PMID: 16135910 DOI: 10.1097/01.aids.0000183521.90878.79] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A lack of viral replication after HIV-1Ba-L (R5) but not HIV-1IIIB (X4) infection was found using in-vitro activated peripheral blood-derived mononuclear cells from patients with Fabry disease, who have a defect in the catabolism of globotriaosylceramide. CCR5, but not CD4 or CXCR4 expression levels, were lower and the surface expression of globotriaosylceramide was negligible on activated patients' cells. Our findings suggest a novel resistance mechanism to productive infection with R5 HIV-1 that potentially involves abnormal globotriaosylceramide catabolism.
Collapse
Affiliation(s)
- Nicole Lund
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|