1
|
Hsu YH, Chao CN, Huang HY, Zhao PW, Hsu PH, Shen CH, Chen SY, Fang CY. Histone deacetylase III interactions with BK polyomavirus large tumor antigen may affect protein stability. Virol J 2023; 20:155. [PMID: 37464367 DOI: 10.1186/s12985-023-02128-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/12/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Human polyomavirus BK (BKPyV) causes associated nephropathy and contributes to urinary tract cancer development in renal transplant recipients. Large tumor antigen (LT) is an early protein essential in the polyomavirus life cycle. Protein acetylation plays a critical role in regulating protein stability, so this study investigated the acetylation of the BKPyV LT protein. METHODS The BKPyV LT nucleotide was synthesized, and the protein was expressed by transfection into permissive cells. The BKPyV LT protein was immunoprecipitated and subjected to LC-MS/MS analysis to determine the acetylation residues. The relative lysine was then mutated to arginine in the LT nucleotide and BKPyV genome to analyze the role of LT lysine acetylation in the BKPyV life cycle. RESULTS BKPyV LT acetylation sites were identified at Lys3 and Lys230 by mass spectrometry. HDAC3 and HDAC8 and their deacetylation activity are required for BKPyV LT expression. In addition, mutations of Lys3 and Lys230 to arginine increased LT expression, and the interaction of HDAC3 and LT was confirmed by coimmunoprecipitation. CONCLUSIONS HDAC3 is a newly identified protein that interacts with BKPyV LT, and LT acetylation plays a vital role in the BKPyV life cycle.
Collapse
Affiliation(s)
- Yueh-Han Hsu
- Division of Nephrology, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi, Taiwan
- Department of Nursing, Min-Hwei Junior College of Health Care Management, Tainan, Taiwan
| | - Chun-Nun Chao
- Department of Pediatrics, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi, Taiwan
- Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - Hsin-Yi Huang
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi, Taiwan
| | - Pei-Wen Zhao
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi, Taiwan
| | - Pang-Hung Hsu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Cheng-Huang Shen
- Department of Urology, Ditmanson Medical Foundation Chiayi Christian Hospital, Chia-Yi, Taiwan
| | - San-Yuan Chen
- Department of Chinese Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi, Taiwan.
- Department of Sports Management, Chia Nan University of Pharmacy & Science, Tainan City, Taiwan.
| | - Chiung-Yao Fang
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi, Taiwan.
| |
Collapse
|
2
|
Tarnita RM, Wilkie AR, DeCaprio JA. Contribution of DNA Replication to the FAM111A-Mediated Simian Virus 40 Host Range Phenotype. J Virol 2019; 93:e01330-18. [PMID: 30333173 PMCID: PMC6288344 DOI: 10.1128/jvi.01330-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/11/2018] [Indexed: 01/12/2023] Open
Abstract
Host range (HR) mutants of simian virus 40 (SV40) containing mutations in the C terminus of large T antigen fail to replicate efficiently or form plaques in restrictive cell types. HR mutant viruses exhibit impairments at several stages of the viral life cycle, including early and late gene and protein expression, DNA replication, and virion assembly, although the underlying mechanism for these defects is unknown. Host protein FAM111A, whose depletion rescues early and late gene expression and plaque formation for SV40 HR viruses, has been shown to play a role in cellular DNA replication. SV40 viral DNA replication occurs in the nucleus of infected cells in viral replication centers where viral proteins and cellular replication factors localize. Here, we examined the role of viral replication center formation and DNA replication in the FAM111A-mediated HR phenotype. We found that SV40 HR virus rarely formed viral replication centers in restrictive cells, a phenotype that could be rescued by FAM111A depletion. Furthermore, while FAM111A localized to nucleoli in uninfected cells in a cell cycle-dependent manner, FAM111A relocalized to viral replication centers after infection with SV40 wild-type or HR viruses. We also found that inhibition of viral DNA replication through aphidicolin treatment or through the use of replication-defective SV40 mutants diminished the effects of FAM111A depletion on viral gene expression. These results indicate that FAM111A restricts SV40 HR viral replication center formation and that viral DNA replication contributes to the FAM111A-mediated effect on early gene expression.IMPORTANCE SV40 has served as a powerful tool for understanding fundamental viral and cellular processes; however, despite extensive study, the SV40 HR mutant phenotype remains poorly understood. Mutations in the C terminus of large T antigen that disrupt binding to the host protein FAM111A render SV40 HR viruses unable to replicate in restrictive cell types. Our work reveals a defect of HR mutant viruses in the formation of viral replication centers that can be rescued by depletion of FAM111A. Furthermore, inhibition of viral DNA replication reduces the effects of FAM111A restriction on viral gene expression. Additionally, FAM111A is a poorly characterized cellular protein whose mutation leads to two severe human syndromes, Kenny-Caffey syndrome and osteocraniostenosis. Our findings regarding the role of FAM111A in restricting viral replication and its localization to nucleoli and viral replication centers provide further insight into FAM111A function that could help reveal the underlying disease-associated mechanisms.
Collapse
Affiliation(s)
- Roxana M Tarnita
- Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Adrian R Wilkie
- Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, Massachusetts, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - James A DeCaprio
- Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Burger-Calderon R, Ramsey KJ, Dolittle-Hall JM, Seaman WT, Jeffers-Francis LK, Tesfu D, Nickeleit V, Webster-Cyriaque J. Distinct BK polyomavirus non-coding control region (NCCR) variants in oral fluids of HIV- associated Salivary Gland Disease patients. Virology 2016; 493:255-66. [PMID: 27085139 DOI: 10.1016/j.virol.2016.03.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/22/2016] [Accepted: 03/24/2016] [Indexed: 11/27/2022]
Abstract
HIV-associated Salivary Gland Disease (HIVSGD) is among the most common salivary gland-associated complications in HIV positive individuals and was associated with the small DNA tumorvirus BK polyomavirus (BKPyV). The BKPyV non-coding control region (NCCR) is the main determinant of viral replication and rearranges readily. This study analyzed the BKPyV NCCR architecture and viral loads of 35 immunosuppressed individuals. Throatwash samples from subjects diagnosed with HIVSGD and urine samples from transplant patients were BKPyV positive and yielded BKPyV NCCR sequences. 94.7% of the BKPyV HIVSGD NCCRs carried a rearranged OPQPQQS block arrangement, suggesting a distinct architecture among this sample set. BKPyV from HIV positive individuals without HIVSGD harbored NCCR block sequences that were distinct from OPQPQQS. Cloned HIVSGD BKPyV isolates displayed active promoters and efficient replication capability in human salivary gland cells. The unique HIVSGD NCCR architecture may represent a potentially significant oral-tropic BKPyV substrain.
Collapse
Affiliation(s)
- Raquel Burger-Calderon
- Epidemiology Department, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Microbiology and Immunology Department, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kathy J Ramsey
- Department of Dental Ecology, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Janet M Dolittle-Hall
- Department of Dental Ecology, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - William T Seaman
- Department of Dental Ecology, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Daniel Tesfu
- Department of Dental Ecology, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Volker Nickeleit
- Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jennifer Webster-Cyriaque
- Microbiology and Immunology Department, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Dental Ecology, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
4
|
Burger-Calderon R, Webster-Cyriaque J. Human BK Polyomavirus-The Potential for Head and Neck Malignancy and Disease. Cancers (Basel) 2015; 7:1244-70. [PMID: 26184314 PMCID: PMC4586768 DOI: 10.3390/cancers7030835] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 06/25/2015] [Accepted: 06/25/2015] [Indexed: 12/22/2022] Open
Abstract
Members of the human Polyomaviridae family are ubiquitous and pathogenic among immune-compromised individuals. While only Merkel cell polyomavirus (MCPyV) has conclusively been linked to human cancer, all members of the polyomavirus (PyV) family encode the oncoprotein T antigen and may be potentially carcinogenic. Studies focusing on PyV pathogenesis in humans have become more abundant as the number of PyV family members and the list of associated diseases has expanded. BK polyomavirus (BKPyV) in particular has emerged as a new opportunistic pathogen among HIV positive individuals, carrying harmful implications. Increasing evidence links BKPyV to HIV-associated salivary gland disease (HIVSGD). HIVSGD is associated with elevated risk of lymphoma formation and its prevalence has increased among HIV/AIDS patients. Determining the relationship between BKPyV, disease and tumorigenesis among immunosuppressed individuals is necessary and will allow for expanding effective anti-viral treatment and prevention options in the future.
Collapse
Affiliation(s)
- Raquel Burger-Calderon
- Microbiology and Immunology Department, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Jennifer Webster-Cyriaque
- Microbiology and Immunology Department, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Department of Dental Ecology, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
5
|
Li J, Diaz J, Wang X, Tsang SH, You J. Phosphorylation of Merkel cell polyomavirus large tumor antigen at serine 816 by ATM kinase induces apoptosis in host cells. J Biol Chem 2014; 290:1874-84. [PMID: 25480786 DOI: 10.1074/jbc.m114.594895] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Merkel cell carcinoma is a highly aggressive form of skin cancer. Merkel cell polyomavirus (MCV) infection and DNA integration into the host genome correlate with 80% of all Merkel cell carcinoma cases. Integration of the MCV genome frequently results in mutations in the large tumor antigen (LT), leading to expression of a truncated LT that retains pRB binding but with a deletion of the C-terminal domain. Studies from our laboratory and others have shown that the MCV LT C-terminal helicase domain contains growth-inhibiting properties. Additionally, we have shown that host DNA damage response factors are recruited to viral replication centers. In this study, we identified a novel MCV LT phosphorylation site at Ser-816 in the C-terminal domain. We demonstrate that activation of the ATM pathway stimulated MCV LT phosphorylation at Ser-816, whereas inhibition of ATM kinase activity prevented LT phosphorylation at this site. In vitro phosphorylation experiments confirmed that ATM kinase is responsible for phosphorylating MCV LT at Ser-816. Finally, we show that ATM kinase-mediated MCV LT Ser-816 phosphorylation may contribute to the anti-tumorigenic properties of the MCV LT C-terminal domain.
Collapse
Affiliation(s)
- Jing Li
- From the The Wistar Institute, Philadelphia, Pennsylvania 19104
| | - Jason Diaz
- the Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, and
| | - Xin Wang
- the Department of Molecular Genetics, Lerner Research Institute, Cleveland, Ohio 44295
| | - Sabrina H Tsang
- the Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, and
| | - Jianxin You
- the Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, and
| |
Collapse
|
6
|
Sadeghi F, Salehi-Vaziri M, Ghodsi SM, Alizadeh A, Bokharaei-Salim F, Saroukalaei ST, Mirbolouk M, Monavari SH, Keyvani H. Prevalence of JC polyomavirus large T antigen sequences among Iranian patients with central nervous system tumors. Arch Virol 2014; 160:61-8. [PMID: 25218012 DOI: 10.1007/s00705-014-2230-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 09/03/2014] [Indexed: 01/20/2023]
Abstract
The human neurotropic JC virus (JCV) is of significant interest due to its experimental neuro- oncogenic potential. In clinical samples from human central nervous system (CNS) tumors, detection of JCV sequences suggests a possible association with CNS neoplasms, but the results are discrepant worldwide. To assess the prevalence of JCV sequences in Iranian patients with primary and metastatic CNS malignancies, a total of 58 fresh CNS tumors were examined by quantitative real-time PCR targeting the JCV large T antigen (LT-Ag) gene, and JCV DNA load was determined as viral copy number per cell. All patients were immunocompetent, and none of them had received immunosuppressive therapy before surgical operation. JC virus LT-Ag sequences were found in a total of 15 (25.9 %) out of the 58 tested samples. In primary CNS tumors, JCV sequences were identified more frequently in meningiomas (50.0 %) and schwannomas (35.7 %). In metastatic CNS tumors, JCV LT-Ag was identified in one case with brain adenocarcinoma originating from lung cancer. No statistically significant association between JCV positivity and various types of CNS malignancies was observed (P = 0.565). The mean JCV LT-Ag copy number in 15 positive cases was 1.8 × 10(-4) ± 4.5 × 10(-4) copies per cell (range 1.0 × 10(-5)-1.78 × 10(-3) copies per cell). An inverse correlation between white blood cell (WBC) count and JCV copy number was observed, but this correlation was not statistically significant (R = -0.198, P = 0.480). This study provides the first data on the prevalence of JCV in primary and metastatic CNS tumors from Iranian patients.
Collapse
Affiliation(s)
- Farzin Sadeghi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Removal of a small C-terminal region of JCV and SV40 large T antigens has differential effects on transformation. Virology 2014; 468-470:47-56. [PMID: 25129438 DOI: 10.1016/j.virol.2014.07.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 06/23/2014] [Accepted: 07/21/2014] [Indexed: 01/12/2023]
Abstract
The large T antigen (LT) protein of JCV and SV40 polyomaviruses is required to induce tumors in rodents and transform cells in culture. When both LTs are compared side-by-side in cell culture assays, SV40 shows a more robust transformation phenotype even though the LT sequences are highly conserved. A complete understanding of SV40׳s enhanced transforming capabilities relative to JCV is lacking. When the least conserved region of the LT proteins, the variable linker and host range region (VHR), was removed, changes in T antigen expression and cellular p53 post-translational modifications occurred, but interaction with the pRB pathway was unaffected. Transformation assessed by growth in low serum was reduced after VHR truncation of the SV40, but not the JCV, T antigen. Conversely, anchorage independent transformation was enhanced only by truncation of the JCV VHR. This is the first report to link the SV40 or JCV VHR region to transformation potential.
Collapse
|
8
|
Stakaitytė G, Wood JJ, Knight LM, Abdul-Sada H, Adzahar NS, Nwogu N, Macdonald A, Whitehouse A. Merkel cell polyomavirus: molecular insights into the most recently discovered human tumour virus. Cancers (Basel) 2014; 6:1267-97. [PMID: 24978434 PMCID: PMC4190541 DOI: 10.3390/cancers6031267] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/01/2014] [Accepted: 06/09/2014] [Indexed: 12/21/2022] Open
Abstract
A fifth of worldwide cancer cases have an infectious origin, with viral infection being the foremost. One such cancer is Merkel cell carcinoma (MCC), a rare but aggressive skin malignancy. In 2008, Merkel cell polyomavirus (MCPyV) was discovered as the causative agent of MCC. It is found clonally integrated into the majority of MCC tumours, which require MCPyV oncoproteins to survive. Since its discovery, research has begun to reveal the molecular virology of MCPyV, as well as how it induces tumourigenesis. It is thought to be a common skin commensal, found at low levels in healthy individuals. Upon loss of immunosurveillance, MCPyV reactivates, and a heavy viral load is associated with MCC pathogenesis. Although MCPyV is in many ways similar to classical oncogenic polyomaviruses, such as SV40, subtle differences are beginning to emerge. These unique features highlight the singular position MCPyV has as the only human oncogenic polyomavirus, and open up new avenues for therapies against MCC.
Collapse
Affiliation(s)
- Gabrielė Stakaitytė
- School of Molecular and Cellular Biology and Astbury Centre of Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| | - Jennifer J Wood
- School of Molecular and Cellular Biology and Astbury Centre of Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| | - Laura M Knight
- School of Molecular and Cellular Biology and Astbury Centre of Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| | - Hussein Abdul-Sada
- School of Molecular and Cellular Biology and Astbury Centre of Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| | - Noor Suhana Adzahar
- School of Molecular and Cellular Biology and Astbury Centre of Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| | - Nnenna Nwogu
- School of Molecular and Cellular Biology and Astbury Centre of Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| | - Andrew Macdonald
- School of Molecular and Cellular Biology and Astbury Centre of Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| | - Adrian Whitehouse
- School of Molecular and Cellular Biology and Astbury Centre of Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
9
|
Prosdocimo DA, Anand P, Liao X, Zhu H, Shelkay S, Artero-Calderon P, Zhang L, Kirsh J, Moore D, Rosca MG, Vazquez E, Kerner J, Akat KM, Williams Z, Zhao J, Fujioka H, Tuschl T, Bai X, Schulze PC, Hoppel CL, Jain MK, Haldar SM. Kruppel-like factor 15 is a critical regulator of cardiac lipid metabolism. J Biol Chem 2014; 289:5914-24. [PMID: 24407292 DOI: 10.1074/jbc.m113.531384] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The mammalian heart, the body's largest energy consumer, has evolved robust mechanisms to tightly couple fuel supply with energy demand across a wide range of physiologic and pathophysiologic states, yet, when compared with other organs, relatively little is known about the molecular machinery that directly governs metabolic plasticity in the heart. Although previous studies have defined Kruppel-like factor 15 (KLF15) as a transcriptional repressor of pathologic cardiac hypertrophy, a direct role for the KLF family in cardiac metabolism has not been previously established. We show in human heart samples that KLF15 is induced after birth and reduced in heart failure, a myocardial expression pattern that parallels reliance on lipid oxidation. Isolated working heart studies and unbiased transcriptomic profiling in Klf15-deficient hearts demonstrate that KLF15 is an essential regulator of lipid flux and metabolic homeostasis in the adult myocardium. An important mechanism by which KLF15 regulates its direct transcriptional targets is via interaction with p300 and recruitment of this critical co-activator to promoters. This study establishes KLF15 as a key regulator of myocardial lipid utilization and is the first to implicate the KLF transcription factor family in cardiac metabolism.
Collapse
Affiliation(s)
- Domenick A Prosdocimo
- From the Case Cardiovascular Research Institute and Harrington Heart and Vascular Institute
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Two independent regions of simian virus 40 T antigen increase CBP/p300 levels, alter patterns of cellular histone acetylation, and immortalize primary cells. J Virol 2013; 87:13499-509. [PMID: 24089570 DOI: 10.1128/jvi.02658-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Simian virus 40 (SV40) large T antigen (SVT) interferes with normal cell regulation and thus has been used to identify cellular components controlling proliferation and homeostasis. We have previously shown that SVT-mediated transformation requires interaction with the histone acetyltransferases (HATs) CBP/p300 and now report that the ectopic expression of SVT in several cell types in vivo and in vitro results in a significant increase in the steady-state levels of CBP/p300. Furthermore, SVT-expressing cells contain higher levels of acetylated CBP/p300, a modification that has been linked to increased HAT activity. Concomitantly, the acetylation levels of histone residues H3K56 and H4K12 are markedly increased in SVT-expressing cells. Other polyomavirus-encoded large T antigens also increase the levels of CBP/p300 and sustain a rise in the acetylation levels of H3K56 and H4K12. SVT does not affect the transcription of CBP/p300, but rather, alters their overall levels through increasing the loading of CBP/p300 mRNAs onto polysomes. Two distinct regions within SVT, one located in the amino terminus and one in the carboxy terminus, can independently alter both the levels of CBP/p300 and the loading of CBP/p300 transcripts onto polysomes. Within the amino-terminal fragment, a functional J domain is necessary for increasing CBP/p300 and specific histone acetylation levels, as well as for immortalizing primary cells. These studies uncover the action of polyomavirus T antigens on cellular CBP/p300 and suggest that additional mechanisms are used by T antigens to induce cell immortalization and transformation.
Collapse
|
11
|
Merkel cell polyomavirus large T antigen has growth-promoting and inhibitory activities. J Virol 2013; 87:6118-26. [PMID: 23514892 DOI: 10.1128/jvi.00385-13] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Merkel cell carcinoma (MCC) is a rare and aggressive form of skin cancer. In at least 80% of all MCC, Merkel cell polyomavirus (MCPyV) DNA has undergone clonal integration into the host cell genome, and most tumors express the MCPyV large and small T antigens. In all cases of MCC reported to date, the integrated MCPyV genome has undergone mutations in the large T antigen. These mutations result in expression of a truncated large T antigen that retains the Rb binding or LXCXE motif but deletes the DNA binding and helicase domains. However, the transforming functions of full-length and truncated MCPyV large T antigen are unknown. We compared the transforming activities of full-length, truncated, and alternatively spliced 57kT forms of MCPyV large T antigen. MCPyV large T antigen could bind to Rb but was unable to bind to p53. Furthermore, MCPyV-truncated large T antigen was more effective than full-length and 57kT large T antigen in promoting the growth of human and mouse fibroblasts. In contrast, expression of the MCPyV large T antigen C-terminal 100 residues could inhibit the growth of several different cell types. These data imply that the deletion of the C terminus of MCPyV large T antigen found in MCC serves not only to disrupt viral replication but also results in the loss of a distinct growth-inhibitory function intrinsic to this region.
Collapse
|
12
|
Neurofibromatosis type 2 tumor suppressor protein, NF2, induces proteasome-mediated degradation of JC virus T-antigen in human glioblastoma. PLoS One 2013; 8:e53447. [PMID: 23308224 PMCID: PMC3538535 DOI: 10.1371/journal.pone.0053447] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 11/28/2012] [Indexed: 12/02/2022] Open
Abstract
Neurofibromatosis type 2 protein (NF2) has been shown to act as tumor suppressor primarily through its functions as a cytoskeletal scaffold. However, NF2 can also be found in the nucleus, where its role is less clear. Previously, our group has identified JC virus (JCV) tumor antigen (T-antigen) as a nuclear binding partner for NF2 in tumors derived from JCV T-antigen transgenic mice. The association of NF2 with T-antigen in neuronal origin tumors suggests a potential role for NF2 in regulating the expression of the JCV T-antigen. Here, we report that NF2 suppresses T-antigen protein expression in U-87 MG human glioblastoma cells, which subsequently reduces T-antigen-mediated regulation of the JCV promoter. When T-antigen mRNA was quantified, it was determined that increasing expression of NF2 correlated with an accumulation of T-antigen mRNA; however, a decrease in T-antigen at the protein level was observed. NF2 was found to promote degradation of ubiquitin bound T-antigen protein via a proteasome dependent pathway concomitant with the accumulation of the JCV early mRNA encoding T-antigen. The interaction between T-antigen and NF2 maps to the FERM domain of NF2, which has been shown previously to be responsible for its tumor suppressor activity. Co-immunoprecipitation assays revealed a ternary complex among NF2, T-antigen, and the tumor suppressor protein, p53 within a glioblastoma cell line. Further, these proteins were detected in various degrees in patient tumor tissue, suggesting that these associations may occur in vivo. Collectively, these results demonstrate that NF2 negatively regulates JCV T-antigen expression by proteasome-mediated degradation, and suggest a novel role for NF2 as a suppressor of JCV T-antigen-induced cell cycle regulation.
Collapse
|
13
|
Topalis D, Andrei G, Snoeck R. The large tumor antigen: a "Swiss Army knife" protein possessing the functions required for the polyomavirus life cycle. Antiviral Res 2012. [PMID: 23201316 DOI: 10.1016/j.antiviral.2012.11.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The SV40 large tumor antigen (L-Tag) is involved in the replication and cell transformation processes that take place during the polyomavirus life cycle. The ability of the L-Tag to interact with and to inactivate the tumor suppressor proteins p53 and pRb, makes this polyfunctional protein an interesting target in the search for compounds with antiviral and/or antiproliferative activities designed for the management of polyomavirus-associated diseases. The severe diseases caused by polyomaviruses, mainly in immunocompromised hosts, and the absence of licensed treatments, make the discovery of new antipolyomavirus drugs urgent. Parallels can be made between the SV40 L-Tag and the human papillomavirus (HPV) oncoproteins (E6 and E7) as they are also able to deregulate the cell cycle in order to promote cell transformation and its maintenance. In this review, a presentation of the SV40 L-Tag characteristics, regarding viral replication and cellular transformation, will show how similar these two processes are between the polyoma- and papillomavirus families. Insights at the molecular level will highlight similarities in the binding of polyoma- and papillomavirus replicative helicases to the viral DNA and in their disruptions of the p53 and pRb tumor suppressor proteins.
Collapse
Affiliation(s)
- D Topalis
- Rega Institute for Medical Research, KU Leuven, Belgium.
| | | | | |
Collapse
|
14
|
Rodig SJ, Cheng J, Wardzala J, DoRosario A, Scanlon JJ, Laga AC, Martinez-Fernandez A, Barletta JA, Bellizzi AM, Sadasivam S, Holloway DT, Cooper DJ, Kupper TS, Wang LC, DeCaprio JA. Improved detection suggests all Merkel cell carcinomas harbor Merkel polyomavirus. J Clin Invest 2012; 122:4645-53. [PMID: 23114601 DOI: 10.1172/jci64116] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 09/06/2012] [Indexed: 12/31/2022] Open
Abstract
A human polyomavirus was recently discovered in Merkel cell carcinoma (MCC) specimens. The Merkel cell polyomavirus (MCPyV) genome undergoes clonal integration into the host cell chromosomes of MCC tumors and expresses small T antigen and truncated large T antigen. Previous studies have consistently reported that MCPyV can be detected in approximately 80% of all MCC tumors. We sought to increase the sensitivity of detection of MCPyV in MCC by developing antibodies capable of detecting large T antigen by immunohistochemistry. In addition, we expanded the repertoire of quantitative PCR primers specific for MCPyV to improve the detection of viral DNA in MCC. Here we report that a novel monoclonal antibody detected MCPyV large T antigen expression in 56 of 58 (97%) unique MCC tumors. PCR analysis specifically detected viral DNA in all 60 unique MCC tumors tested. We also detected inactivating point substitution mutations of TP53 in the two MCC specimens that lacked large T antigen expression and in only 1 of 56 tumors positive for large T antigen. These results indicate that MCPyV is present in MCC tumors more frequently than previously reported and that mutations in TP53 tend to occur in MCC tumors that fail to express MCPyV large T antigen.
Collapse
Affiliation(s)
- Scott J Rodig
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Fine DA, Rozenblatt-Rosen O, Padi M, Korkhin A, James RL, Adelmant G, Yoon R, Guo L, Berrios C, Zhang Y, Calderwood MA, Velmurgan S, Cheng J, Marto JA, Hill DE, Cusick ME, Vidal M, Florens L, Washburn MP, Litovchick L, DeCaprio JA. Identification of FAM111A as an SV40 host range restriction and adenovirus helper factor. PLoS Pathog 2012; 8:e1002949. [PMID: 23093934 PMCID: PMC3475652 DOI: 10.1371/journal.ppat.1002949] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 08/22/2012] [Indexed: 11/18/2022] Open
Abstract
The small genome of polyomaviruses encodes a limited number of proteins that are highly dependent on interactions with host cell proteins for efficient viral replication. The SV40 large T antigen (LT) contains several discrete functional domains including the LXCXE or RB-binding motif, the DNA binding and helicase domains that contribute to the viral life cycle. In addition, the LT C-terminal region contains the host range and adenovirus helper functions required for lytic infection in certain restrictive cell types. To understand how LT affects the host cell to facilitate viral replication, we expressed full-length or functional domains of LT in cells, identified interacting host proteins and carried out expression profiling. LT perturbed the expression of p53 target genes and subsets of cell-cycle dependent genes regulated by the DREAM and the B-Myb-MuvB complexes. Affinity purification of LT followed by mass spectrometry revealed a specific interaction between the LT C-terminal region and FAM111A, a previously uncharacterized protein. Depletion of FAM111A recapitulated the effects of heterologous expression of the LT C-terminal region, including increased viral gene expression and lytic infection of SV40 host range mutants and adenovirus replication in restrictive cells. FAM111A functions as a host range restriction factor that is specifically targeted by SV40 LT. Viruses have evolved numerous mechanisms to counteract host cell defenses to facilitate productive infection. Simian Virus 40 (SV40) replication depends on specific interactions between large T antigen (LT) and a wide variety of host cell proteins. Although the LT C-terminal region has no evident enzymatic activity, mutations or deletions of this region significantly reduce the ability of the virus to replicate in restrictive cell types. Here, we identified host proteins that bind to LT and determined that the LT C-terminal region binds specifically to FAM111A. This physical interaction was required for efficient viral replication and sustained viral gene expression in restrictive cell types. In addition, RNAi-mediated knockdown of FAM111A levels in restrictive cells restored lytic infection of SV40 host range mutants and human adenovirus. These results indicate that FAM111A plays an important role in viral host range restriction. Our study provides insights into the viral-host perturbations caused by SV40 LT and the interaction of viruses with host restriction factors.
Collapse
Affiliation(s)
- Debrah A. Fine
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Program in Virology, Harvard University Graduate School of Arts and Sciences, Division of Medical Sciences, Boston, Massachusetts, United States of America
- Genomic Analysis of Network Perturbations Center of Excellence in Genomic Science, Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Orit Rozenblatt-Rosen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Genomic Analysis of Network Perturbations Center of Excellence in Genomic Science, Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Megha Padi
- Genomic Analysis of Network Perturbations Center of Excellence in Genomic Science, Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Center for Cancer Computational Biology, Department of Biostatistics and Computational Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Anna Korkhin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Genomic Analysis of Network Perturbations Center of Excellence in Genomic Science, Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Robert L. James
- Genomic Analysis of Network Perturbations Center of Excellence in Genomic Science, Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Guillaume Adelmant
- Genomic Analysis of Network Perturbations Center of Excellence in Genomic Science, Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Blais Proteomics Center and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Rosa Yoon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Program in Virology, Harvard University Graduate School of Arts and Sciences, Division of Medical Sciences, Boston, Massachusetts, United States of America
| | - Luxuan Guo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Christian Berrios
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Program in Virology, Harvard University Graduate School of Arts and Sciences, Division of Medical Sciences, Boston, Massachusetts, United States of America
| | - Ying Zhang
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Michael A. Calderwood
- Genomic Analysis of Network Perturbations Center of Excellence in Genomic Science, Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Soundarapandian Velmurgan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Jingwei Cheng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jarrod A. Marto
- Genomic Analysis of Network Perturbations Center of Excellence in Genomic Science, Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Blais Proteomics Center and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - David E. Hill
- Genomic Analysis of Network Perturbations Center of Excellence in Genomic Science, Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michael E. Cusick
- Genomic Analysis of Network Perturbations Center of Excellence in Genomic Science, Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Marc Vidal
- Genomic Analysis of Network Perturbations Center of Excellence in Genomic Science, Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Laurence Florens
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Michael P. Washburn
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Larisa Litovchick
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Genomic Analysis of Network Perturbations Center of Excellence in Genomic Science, Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - James A. DeCaprio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Program in Virology, Harvard University Graduate School of Arts and Sciences, Division of Medical Sciences, Boston, Massachusetts, United States of America
- Genomic Analysis of Network Perturbations Center of Excellence in Genomic Science, Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
16
|
Comparative analysis of SV40 17kT and LT function in vivo demonstrates that LT's C-terminus re-programs hepatic gene expression and is necessary for tumorigenesis in the liver. Oncogenesis 2012; 1:e28. [PMID: 23552841 PMCID: PMC3503294 DOI: 10.1038/oncsis.2012.27] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Transformation by Simian Virus 40 (SV40) large T antigen (LT) is mediated in large part by its interaction with a variety of cellular proteins at distinct binding domains within LT. While the interaction of LT's N-terminus with the tumor suppressor Rb is absolutely required for LT-dependent transformation, the requirement for the interaction of LT's C-terminus with p53 is less clear and cell- and context-dependent. Here, we report a line of transgenic mice expressing a doxycycline-inducible liver-specific viral transcript that produces abundant 17kT, a naturally occurring SV40 early product that is co-linear with LT for the first 131 amino acids and that binds to Rb, but not p53. Comparative analysis of livers of transgenic mice expressing either 17kT or full length LT demonstrates that 17kT stimulates cell proliferation and induces hepatic hyperplasia but is incapable of inducing hepatic dysplasia or promoting hepatocarcinogenesis. Gene expression profiling demonstrates that 17kT and LT invoke a set of shared molecular signatures consistent with the action of LT's N-terminus on Rb-E2F-mediated control of hepatocyte transcription. However, 17kT also induces a unique set of genes, many of which are known transcriptional targets of p53, while LT actively suppresses them. LT also uniquely deregulates the expression of a subset of genes within the imprinted network and rapidly re-programs hepatocyte gene expression to a more fetal-like state. Finally, we provide evidence that the LT/p53 complex provides a gain-of-function for LT-dependent transformation in the liver, and confirm the absolute requirement for LT's C-terminus for liver tumor development by demonstrating that phosphatase and tensin homolog (PTEN)-deficiency readily cooperates with LT, but not 17kT, for tumorigenesis. These results confirm independent and inter-dependent functions for LT's N- and C-terminus and emphasize differences in the requirements for LT's C-terminus in cell-type dependent transformation.
Collapse
|
17
|
Delbue S, Comar M, Ferrante P. Review on the relationship between human polyomaviruses-associated tumors and host immune system. Clin Dev Immunol 2012; 2012:542092. [PMID: 22489251 PMCID: PMC3318214 DOI: 10.1155/2012/542092] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 01/11/2012] [Indexed: 02/05/2023]
Abstract
The polyomaviruses are small DNA viruses that can establish latency in the human host. The name polyomavirus is derived from the Greek roots poly-, which means "many," and -oma, which means "tumours." These viruses were originally isolated in mouse (mPyV) and in monkey (SV40). In 1971, the first human polyomaviruses BK and JC were isolated and subsequently demonstrated to be ubiquitous in the human population. To date, at least nine members of the Polyomaviridae family have been identified, some of them playing an etiological role in malignancies in immunosuppressed patients. Here, we describe the biology of human polyomaviruses, their nonmalignant and malignant potentials ability, and their relationship with the host immune response.
Collapse
Affiliation(s)
- Serena Delbue
- Laboratory of Transkìlational Research, Health Science Foundation Ettore Sansavini, Corso Garibaldi, 11-48022 Lugo, Italy.
| | | | | |
Collapse
|
18
|
Abstract
Viruses have evolved with their hosts, which include all living species. This has been partly responsible for the development of highly advanced immune systems in the hosts. However, viruses too have evolved ways to regulate and evade the host's immune defence. In addition to mutational mechanisms that viruses employ to mimic the host genome and undergo latency to evade the host's recognition of the pathogen, they have also developed epigenetic mechanisms by which they can render the host's immune responses inactive to their antigens. The epigenetic regulation of gene expression is intrinsically active inside the host and is involved in regulating gene expression and cellular differentiation. Viral immune evasion strategies are an area of major concern in modern biomedical research. Immune evasion strategies may involve interference with the host antigen presentation machinery or host immune gene expression capabilities, and viruses, in these manners, introduce and propagate infection. The aim of this review is to elucidate the various epigenetic changes that viruses are capable of bringing about in their host in order to enhance their own survivability and pathogenesis.
Collapse
Affiliation(s)
- Dwaipayan Adhya
- National Brain Research Centre, Manesar, Haryana 122 050, India
| | | |
Collapse
|
19
|
Ramamoorthy S, Devaraj B, Miyai K, Luo L, Liu YT, Boland CR, Goel A, Carethers JM. John Cunningham virus T-antigen expression in anal carcinoma. Cancer 2010; 117:2379-85. [PMID: 24048785 DOI: 10.1002/cncr.25793] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 10/07/2010] [Accepted: 10/11/2010] [Indexed: 12/29/2022]
Abstract
BACKGROUND Anal carcinoma is thought to be driven by human papillomavirus (HPV) infection through interrupting function of cell regulatory proteins such as p53 and pRb. John Cunningham virus (JCV) expresses a T-antigen that causes malignant transformation through development of aneuploidy and interaction with some of the same regulatory proteins as HPV. JCV T-antigen is present in brain, gastric, and colon malignancies, but has not been evaluated in anal cancers. The authors examined a cohort of anal cancers for JCV T-antigen and correlated this with clinicopathologic data. METHODS Archived anal carcinomas were analyzed for JCV T-antigen expression. DNA from tumor and normal tissue was sequenced for JCV with viral copies determined by quantitative polymerase chain reaction and Southern blotting. HPV and microsatellite instability (MSI) status was correlated with JCV T-antigen expression. RESULTS Of 21 cases of anal cancer (mean age 49 years, 38% female), 12 (57%) were in human immunodeficiency virus (HIV)-positive individuals. All 21 cancers expressed JCV T-antigen, including 9 HPV-negative specimens. More JCV copies were present in cancer versus surrounding normal tissue (mean 32.54 copies/μg DNA vs 2.98 copies/μg DNA, P = .0267). There was no correlation between disease stage and viral copies, nor between viral copies and HIV-positive or -negative status (28.7 vs 36.34 copies/μg DNA, respectively, P = .7804). In subset analysis, no association was found between JCV T-antigen expression and HPV or MSI status. CONCLUSIONS Anal carcinomas uniformly express JCV T-antigen and contain more viral copies compared with surrounding normal tissue. JCV and its T-antigen oncogenic protein, presumably through interruption of cell regulatory proteins, may play a role in anal cancer pathogenesis.
Collapse
Affiliation(s)
- Sonia Ramamoorthy
- Department of Surgery, University of California, San Diego, California; Moores Comprehensive Cancer Center, University of California, San Diego, California
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Over 50 years of polyomavirus research has produced a wealth of insights into not only general biologic processes in mammalian cells, but also, how conditions can be altered and signaling systems tweaked to produce transformation phenotypes. In the past few years three new members (KIV, WUV, and MCV) have joined two previously known (JCV and BKV) human polyomaviruses. In this review, we present updated information on general virologic features of these polyomaviruses in their natural host, concentrating on the association of MCV with human Merkel cell carcinoma. We further present a discussion on advances made in SV40 as the prototypic model, which has and will continue to inform our understanding about viruses and cancer.
Collapse
Affiliation(s)
- Ole Gjoerup
- Cancer Virology Program, Hillman Cancer Research Pavilion, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | | |
Collapse
|
21
|
Wilson BJ, Tremblay AM, Deblois G, Sylvain-Drolet G, Giguère V. An acetylation switch modulates the transcriptional activity of estrogen-related receptor alpha. Mol Endocrinol 2010; 24:1349-58. [PMID: 20484414 PMCID: PMC5417470 DOI: 10.1210/me.2009-0441] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Accepted: 04/15/2010] [Indexed: 12/23/2022] Open
Abstract
Posttranslational modifications are instrumental to achieve gene- and tissue-specific regulatory outcomes by transcription factors. Nuclear receptors are dynamically modulated by several types of posttranslational modifications including phosphorylation, methylation, acetylation, ubiquitination, and sumoylation. The estrogen-related receptor alpha (ERRalpha, NR3B1) is phosphorylated on multiple sites, and sumoylated in the amino-terminal region in a phosphorylation-dependent manner. Here we demonstrate that ERRalpha interacts with and is acetylated by p300 coactivator associated factor (PCAF) in vitro and in mouse liver. Purified PCAF acetylated the DNA-binding domain of ERRalpha on four highly-conserved lysines. In addition, coexpression of PCAF reduced the transcriptional activity of ERRalpha and, reciprocally, a deacetylase screen identified histone deacetylase 8 (HDAC8) and sirtuin 1 homolog (Sirt1) as independent enhancers of ERRalpha transcriptional function. HDAC8 and Sirt1 were also demonstrated to interact directly with ERRalpha in vivo and to deacetylate and increase the DNA binding affinity of ERRalpha in vitro. The removal of PCAF increases the DNA binding of ERRalpha in vivo, whereas the removal of Sirt1 and HDAC8 decreases it as assessed by chromatin immunoprecipitation assay. Altogether, our results show that ERRalpha is an acetylated protein and imply the existence of a dynamic acetylation/deacetylation switch involved in the control of ERRalpha transcriptional activity.
Collapse
Affiliation(s)
- Brian J Wilson
- Rosalind and Morris Goodman Cancer Research Centre, Montréal, Québec, Canada H3A1A3
| | | | | | | | | |
Collapse
|
22
|
Bollag B, Hofstetter CA, Reviriego-Mendoza MM, Frisque RJ. JC virus small T antigen binds phosphatase PP2A and Rb family proteins and is required for efficient viral DNA replication activity. PLoS One 2010; 5:e10606. [PMID: 20485545 PMCID: PMC2868895 DOI: 10.1371/journal.pone.0010606] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 04/19/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The human polyomavirus, JC virus (JCV) produces five tumor proteins encoded by transcripts alternatively spliced from one precursor messenger RNA. Significant attention has been given to replication and transforming activities of JCV's large tumor antigen (TAg) and three T' proteins, but little is known about small tumor antigen (tAg) functions. Amino-terminal sequences of tAg overlap with those of the other tumor proteins, but the carboxy half of tAg is unique. These latter sequences are the least conserved among the early coding regions of primate polyomaviruses. METHODOLOGY AND FINDINGS We investigated the ability of wild type and mutant forms of JCV tAg to interact with cellular proteins involved in regulating cell proliferation and survival. The JCV P99A tAg is mutated at a conserved proline, which in the SV40 tAg is required for efficient interaction with protein phosphatase 2A (PP2A), and the C157A mutant tAg is altered at one of two newly recognized LxCxE motifs. Relative to wild type and C157A tAgs, P99A tAg interacts inefficiently with PP2A in vivo. Unlike SV40 tAg, JCV tAg binds to the Rb family of tumor suppressor proteins. Viral DNAs expressing mutant t proteins replicated less efficiently than did the intact JCV genome. A JCV construct incapable of expressing tAg was replication-incompetent, a defect not complemented in trans using a tAg-expressing vector. CONCLUSIONS JCV tAg possesses unique properties among the polyomavirus small t proteins. It contributes significantly to viral DNA replication in vivo; a tAg null mutant failed to display detectable DNA replication activity, and a tAg substitution mutant, reduced in PP2A binding, was replication-defective. Our observation that JCV tAg binds Rb proteins, indicates all five JCV tumor proteins have the potential to influence cell cycle progression in infected and transformed cells. It remains unclear how these proteins coordinate their unique and overlapping functions.
Collapse
Affiliation(s)
- Brigitte Bollag
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Catherine A. Hofstetter
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Marta M. Reviriego-Mendoza
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Richard J. Frisque
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
23
|
Urvalek AM, Wang X, Lu H, Zhao J. KLF8 recruits the p300 and PCAF co-activators to its amino terminal activation domain to activate transcription. Cell Cycle 2010; 9:601-11. [PMID: 20107328 DOI: 10.4161/cc.9.3.10606] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Krüppel-like factor 8 (KLF8) regulates critical cellular processes including cell cycle progression, transformation, epithelial-to-mesenchymal transition, migration and invasion by either repressing or activating target gene promoters. As a repressor, KLF8 recruits the CtBP co-repressor via its PVDLS repression motif. However, how KLF8 acts as an activator has not been determined. Here we report the identification of both the KLF8 activation domain and associated co-activators. By site-directed mutagenesis and cyclin D1 promoter reporter assays using both mouse fibroblasts and human epithelial cells, we determined that deletion of residues 100-260 or mutation of Q118-Q248 abolished KLF8 transactivity. this transactivity was dramatically reduced in p300(-/-), CBP(-/-) or PCAF(-/-) cells and could be restored by re-expressing p300 or PCAF, but not CBP. Co-immunoprecipitation analyses demonstrated that KLF8 interacted with these co-activators whereas the Q118N-Q248N mutant did not. Chromatin immunoprecipitation experiments showed that KLF8 promoted histone acetylation at the promoter whereas the Q118N-Q248N mutant had a dramatic loss of this function. Western blotting revealed that unlike wild-type KLF8 the Q118N-Q248N was no longer able to upregulate cyclin D1 protein level. BrdU incorporation assays showed that the Q118N-Q248N mutant also lost the ability to promote DNA synthesis. Taken together, these results identified the KLF8 activation domain located between residues 101-260 where the well-conserved Q118 and Q248 are essential for recruiting p300 and PCAF to activate target gene transcription.
Collapse
Affiliation(s)
- Alison M Urvalek
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, NY, USA
| | | | | | | |
Collapse
|
24
|
GCN5-dependent acetylation of HIV-1 integrase enhances viral integration. Retrovirology 2010; 7:18. [PMID: 20226045 PMCID: PMC2848186 DOI: 10.1186/1742-4690-7-18] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 03/12/2010] [Indexed: 11/24/2022] Open
Abstract
Background An essential event during the replication cycle of HIV-1 is the integration of the reverse transcribed viral DNA into the host cellular genome. Our former report revealed that HIV-1 integrase (IN), the enzyme that catalyzes the integration reaction, is positively regulated by acetylation mediated by the histone acetyltransferase (HAT) p300. Results In this study we demonstrate that another cellular HAT, GCN5, acetylates IN leading to enhanced 3'-end processing and strand transfer activities. GCN5 participates in the integration step of HIV-1 replication cycle as demonstrated by the reduced infectivity, due to inefficient provirus formation, in GCN5 knockdown cells. Within the C-terminal domain of IN, four lysines (K258, K264, K266, and K273) are targeted by GCN5 acetylation, three of which (K264, K266, and K273) are also modified by p300. Replication analysis of HIV-1 clones carrying substitutions at the IN lysines acetylated by both GCN5 and p300, or exclusively by GCN5, demonstrated that these residues are required for efficient viral integration. In addition, a comparative analysis of the replication efficiencies of the IN triple- and quadruple-mutant viruses revealed that even though the lysines targeted by both GCN5 and p300 are required for efficient virus integration, the residue exclusively modified by GCN5 (K258) does not affect this process. Conclusions The results presented here further demonstrate the relevance of IN post-translational modification by acetylation, which results from the catalytic activities of multiple HATs during the viral replication cycle. Finally, this study contributes to clarifying the recent debate raised on the role of IN acetylated lysines during HIV-1 infection.
Collapse
|
25
|
Lilley CE, Chaurushiya MS, Weitzman MD. Chromatin at the intersection of viral infection and DNA damage. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1799:319-27. [PMID: 19616655 PMCID: PMC2838936 DOI: 10.1016/j.bbagrm.2009.06.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 06/25/2009] [Indexed: 11/18/2022]
Abstract
During infection, viruses cause global disruption to nuclear architecture in their attempt to take over the cell. In turn, the host responds with various defenses, which include chromatin-mediated silencing of the viral genome and activation of DNA damage signaling pathways. Dynamic exchanges at chromatin, and specific post-translational modifications on histones have recently emerged as master controllers of DNA damage signaling and repair. Studying viral control of chromatin modifications is identifying histones as important players in the battle between host and virus for control of cell cycle and gene expression. These studies are revealing new complexities of the virus-host interaction, uncovering the potential of chromatin as an anti-viral defense mechanism, and also providing unique insights into the role of chromatin in DNA repair.
Collapse
Affiliation(s)
- Caroline E Lilley
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
26
|
Shuda M, Arora R, Kwun HJ, Feng H, Sarid R, Fernández-Figueras MT, Tolstov Y, Gjoerup O, Mansukhani MM, Swerdlow SH, Chaudhary PM, Kirkwood JM, Nalesnik MA, Kant JA, Weiss LM, Moore PS, Chang Y. Human Merkel cell polyomavirus infection I. MCV T antigen expression in Merkel cell carcinoma, lymphoid tissues and lymphoid tumors. Int J Cancer 2009; 125:1243-9. [PMID: 19499546 DOI: 10.1002/ijc.24510] [Citation(s) in RCA: 279] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Merkel cell polyomavirus (MCV) is a recently discovered human virus closely related to African green monkey lymphotropic polyomavirus. MCV DNA is integrated in approximately 80% of Merkel cell carcinomas (MCC), a neuroendocrine skin cancer linked to lymphoid malignancies such as chronic lymphocytic leukemia (CLL). To assess MCV infection and its association with human diseases, we developed a monoclonal antibody that specifically recognizes endogenous and transfected MCV large T (LT) antigen. We show expression of MCV LT protein localized to nuclei of tumor cells from MCC having PCR quantified MCV genome at an average of 5.2 (range 0.8-14.3) T antigen DNA copies per cell. Expression of this putative viral oncoprotein in tumor cells provides the mechanistic underpinning supporting the notion that MCV causes a subset of MCC. In contrast, although 2.2% of 325 hematolymphoid malignancies surveyed also showed evidence for MCV infection by DNA PCR, none were positive at high viral copy numbers, and none of 173 lymphoid malignancies examined on tissue microarrays expressed MCV LT protein in tumor cells. As with some of the other human polyomaviruses, lymphocytes may serve as a tissue reservoir for MCV infection, but hematolymphoid malignancies associated with MCC are unlikely to be caused by MCV.
Collapse
Affiliation(s)
- Masahiro Shuda
- Molecular Virology Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Cheng J, DeCaprio JA, Fluck MM, Schaffhausen BS. Cellular transformation by Simian Virus 40 and Murine Polyoma Virus T antigens. Semin Cancer Biol 2009; 19:218-28. [PMID: 19505649 PMCID: PMC2694755 DOI: 10.1016/j.semcancer.2009.03.002] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 03/19/2009] [Accepted: 03/20/2009] [Indexed: 01/09/2023]
Abstract
Simian Virus 40 (SV40) and Mouse Polyoma Virus (PY) are small DNA tumor viruses that have been used extensively to study cellular transformation. The SV40 early region encodes three tumor antigens, large T (LT), small T (ST) and 17KT that contribute to cellular transformation. While PY also encodes LT and ST, the unique middle T (MT) generates most of the transforming activity. SV40 LT mediated transformation requires binding to the tumor suppressor proteins Rb and p53 in the nucleus and ST binding to the protein phosphatase PP2A in the cytoplasm. SV40 LT also binds to several additional cellular proteins including p300, CBP, Cul7, IRS1, Bub1, Nbs1 and Fbxw7 that contribute to viral transformation. PY MT transformation is dependent on binding to PP2A and the Src family protein tyrosine kinases (PTK) and assembly of a signaling complex on cell membranes that leads to transformation in a manner similar to Her2/neu. Phosphorylation of MT tyrosine residues activates key signaling molecules including Shc/Grb2, PI3K and PLCgamma1. The unique contributions of SV40 LT and ST and PY MT to cellular transformation have provided significant insights into our understanding of tumor suppressors, oncogenes and the process of oncogenesis.
Collapse
Affiliation(s)
- Jingwei Cheng
- Department of Medical Oncology, Dana-Farber Cancer Institute; Department of Medicine, Brigham and Women’s Hospital; and Harvard Medical School, Boston, MA 02115
| | - James A. DeCaprio
- Department of Medical Oncology, Dana-Farber Cancer Institute; Department of Medicine, Brigham and Women’s Hospital; and Harvard Medical School, Boston, MA 02115
- Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA 02115
| | - Michele M. Fluck
- Department of Microbiology and Molecular Genetics, Interdepartmental Program in Cell and Molecular Biology, Michigan State University, East Lansing, MI 48824
| | | |
Collapse
|
28
|
Wild-type p53 enhances efficiency of simian virus 40 large-T-antigen-induced cellular transformation. J Virol 2009; 83:10106-18. [PMID: 19625393 DOI: 10.1128/jvi.00174-09] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Abortive infection of BALB/c mouse embryo fibroblasts differing in p53 gene status (p53(+/+) versus p53(-/)(-)) with simian virus 40 (SV40) revealed a quantitatively and qualitatively decreased transformation efficiency in p53(-/-) cells compared to p53(+/+) cells, suggesting a supportive effect of wild-type (wt) p53 in the SV40 transformation process. SV40 transformation efficiency also was low in immortalized p53(-/-) BALB/c 10-1 cells but could be restored to approximately the level in immortalized p53(+/+) BALB/c 3T3 cells by reconstituting wt p53, but not mutant p53 (mutp53), expression. Stable expression of large T antigen (LT) in p53(+/+) 3T3 cells resulted in full transformation, while LT expression in p53(-/-) 10-1 cells could not promote growth in suspension or in soft agar to a significant extent. The helper effect of wt p53 is mediated by its cooperation with LT and resides in the p53 N terminus, as an N-terminally truncated p53 (DeltaNp53) could not rescue the p53-null phenotype. The p53 N terminus serves as a scaffold for recruiting transcriptional regulators like p300/CBP and Mdm2 into the LT-p53 complex. Consequently, LT affected global and specific gene expression in p53(+/+) cells significantly more than in p53(-/-) cells. Our data suggest that recruitment of transcriptional regulators into the LT-p53 complex may help to modify cellular gene expression in response to the needs of cellular transformation.
Collapse
|
29
|
Simian virus 40 T-antigen-mediated gene regulation in enterocytes is controlled primarily by the Rb-E2F pathway. J Virol 2009; 83:9521-31. [PMID: 19570859 DOI: 10.1128/jvi.00583-09] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Simian virus 40 large T antigen (TAg) contributes to cell transformation, in part, by targeting two well-characterized tumor suppressors, pRb and p53. TAg expression affects the transcriptional circuits controlled by Rb and by p53. We have performed a microarray analysis to examine the global change in gene expression induced by wild-type TAg (TAg(wt)) and TAg mutants, in an effort to link changes in gene expression to specific transforming functions. For this analysis we have used enterocytes from the mouse small intestine expressing TAg. Expression of TAg(wt) in the mouse intestine results in hyperplasia and dysplasia. Our analysis indicates that practically all gene expression regulated by TAg in enterocytes is dependent upon its binding and inactivation of the Rb family proteins. To further dissect the role of the Rb family in the induction of intestinal hyperplasia, we have screened several lines of transgenic mice expressing a truncated TAg (TAg(N136)), which is able to interfere with the Rb pathway but lacks the functions associated with the carboxy terminus of the protein. This analysis confirmed the pivotal association between the Rb pathway and the induction of intestinal hyperplasia and revealed that upregulation of p53 target genes is not associated with the tumorigenic phenotype. Furthermore, we found that TAg(N136) was sufficient to induce intestinal hyperplasia, although the appearance of dysplasia was significantly delayed.
Collapse
|
30
|
A structure-guided mutational analysis of simian virus 40 large T antigen: identification of surface residues required for viral replication and transformation. J Virol 2009; 83:8781-8. [PMID: 19553311 DOI: 10.1128/jvi.00621-09] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Simian virus 40 large T antigen (TAg) transforms cells in culture and induces tumors in rodents. Genetic studies suggest that TAg interaction with the chaperone hsp70 and tumor suppressors pRb and p53 may not be sufficient to elicit complete transformation of cells. In order to identify additional cellular factors important for transformation, we designed mutations on the solvent-exposed surface of TAg. We hypothesized that surface residues would interact directly with cellular targets and that the mutation of these residues might disrupt this interaction without perturbing TAg's global structure. Using structural data, we identified 61 amino acids on the surface of TAg. Each surface amino acid was changed to an alanine. Furthermore, five patches containing clusters of charged amino acids on the surface of TAg were identified. Within these patches, we selectively mutated three to four charged amino acids and thus generated five mutants (patch mutants 1 to 5). We observed that while patch mutants 3 and 4 induced foci in REF52 cells, patch mutants 1 and 2 were deficient in focus formation. We determined that the patch 1 mutant is defective in p53 binding, thus explaining its defect in transformation. The patch 2 mutant can interact with the Rb family members and p53 like wild-type TAg but is unable to transform cells, suggesting that it is defective for action on an unknown cellular target essential for transformation. Our results suggest that the histone acetyltransferase CBP/p300 is one of the potential targets affected by the mutations in patch 2.
Collapse
|
31
|
Sáenz Robles MT, Pipas JM. T antigen transgenic mouse models. Semin Cancer Biol 2009; 19:229-35. [PMID: 19505650 DOI: 10.1016/j.semcancer.2009.02.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 02/03/2009] [Accepted: 02/06/2009] [Indexed: 01/12/2023]
Abstract
The study of polyomavirus has benefited immensely from two scientific methodologies, cell culture and in vitro studies on one side and the use of transgenic mice as experimental models on the other. Both approaches allowed us to identify cellular products targeted by the viruses, the consequences of these interactions at the phenotypic and molecular level, and thus the potential roles of the targets within their normal cellular context. In particular, cell culture and in vitro reports suggest a model explaining partially how SV40 large T antigen contributes to oncogenic transformation. In most cases, T antigen induces cell cycle entry by inactivation of the Rb proteins (pRb, p130, and p107), thus activating E2F-dependent transcription and subsequent S-phase entry. Simultaneously, T antigen blocks p53 activity and therefore prevents the ensuing cell-cycle arrest and apoptosis. For the most part, studies of T antigen expression in transgenic mice support this model, but the use of T antigen mutants and their expression in different tissue and cell type settings have expanded our knowledge of the model system and raised important questions regarding tumorigenic mechanisms functioning in vivo.
Collapse
|
32
|
Cantalupo PG, Sáenz-Robles MT, Rathi AV, Beerman RW, Patterson WH, Whitehead RH, Pipas JM. Cell-type specific regulation of gene expression by simian virus 40 T antigens. Virology 2009; 386:183-91. [PMID: 19201438 DOI: 10.1016/j.virol.2008.12.038] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 12/02/2008] [Accepted: 12/26/2008] [Indexed: 10/21/2022]
Abstract
SV40 transforms cells through the action of two oncoproteins, large T antigen and small t antigen. Small t antigen targets phosphatase PP2A, while large T antigen stimulates cell proliferation and survival by action on multiple proteins, including the tumor suppressors Rb and p53. Large T antigen also binds components of the transcription initiation complex and several transcription factors. We examined global gene expression in SV40-transformed mouse embryo fibroblasts, and in enterocytes obtained from transgenic mice. SV40 transformation alters the expression of approximately 800 cellular genes in both systems. Much of this regulation is observed in both MEFs and enterocytes and is consistent with T antigen action on the Rb-E2F pathway. However, the regulation of many genes is cell-type specific, suggesting that unique signaling pathways are activated in different cell types upon transformation, and that the consequences of SV40 transformation depends on the type of cell targeted.
Collapse
Affiliation(s)
- Paul G Cantalupo
- Department of Biological Sciences, 559 Crawford Hall, University of Pittsburgh Pittsburgh, Pennsylvania 15260, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
How the Rb tumor suppressor structure and function was revealed by the study of Adenovirus and SV40. Virology 2009; 384:274-84. [PMID: 19150725 DOI: 10.1016/j.virol.2008.12.010] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Accepted: 12/08/2008] [Indexed: 12/14/2022]
Abstract
The review recounts the history of how the study of the DNA tumor viruses including polyoma, SV40 and Adenovirus brought key insights into the structure and function of the Retinoblastoma protein (Rb). Knudsen's model of the two-hit hypothesis to explain patterns of hereditary and sporadic retinoblastoma provided the foundation for the tumor suppressor hypothesis that ultimately led to the cloning of the Rb gene. The discovery that SV40 and Adenovirus could cause tumors when inoculated into animals was startling not only because SV40 had contaminated the poliovirus vaccine and Adenovirus was a common cause of viral induced pneumonia but also because they provided an opportunity to study the genetics and biochemistry of cancer. Studies of mutant forms of these viruses led to the identification of the E1A and Large T antigen (LT) oncogenes and their small transforming elements including the Adenovirus Conserved Regions (CR), the SV40 J domain and the LxCxE motif. The immunoprecipitation studies that initially revealed the size and ultimately the identity of cellular proteins that could bind to these transforming elements were enabled by the widespread development of highly specific monoclonal antibodies against E1A and LT. The identification of Rb as an E1A and LT interacting protein quickly led to the cloning of p107, p130, p300, CBP, p400 and TRRAP and the concept that viral transformation was due, at least in part, to the perturbation of the function of normal cellular proteins. In addition, studies on the ability of E1A to transactivate the Adenovirus E2 promoter led to the cloning of the heterodimeric E2F and DP transcription factor and recognition that Rb repressed transcription of cellular genes required for cell cycle entry and progression. More recent studies have revealed how E1A and LT combine the activity of Rb and the other cellular associated proteins to perturb expression of many genes during viral infection and tumor formation.
Collapse
|
34
|
Pipas JM. SV40: Cell transformation and tumorigenesis. Virology 2008; 384:294-303. [PMID: 19070883 DOI: 10.1016/j.virol.2008.11.024] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Accepted: 11/18/2008] [Indexed: 10/21/2022]
Abstract
The story of SV40-induced tumorigenesis and cellular transformation is intimately entwined with the development of modern molecular biology. Because SV40 and other viruses have small genomes and are relatively easy to manipulate in the laboratory, they offered tractable systems for molecular analysis. Thus, many of the early efforts to understand how eukaryotes replicate their DNA, regulate expression of their genes, and translate mRNA were focused on viral systems. The discovery that SV40 induces tumors in certain laboratory animals and transforms many types of cultured cells offered the first opportunity to explore the molecular basis for cancer. The goal of this article is to highlight some of the experiments that have led to our current view of SV40-induced transformation and to provide some context as to how they contributed to basic research in molecular biology and to our understanding of cancer.
Collapse
Affiliation(s)
- James M Pipas
- Department of Biological Sciences, University of Pittsburgh, PA 15260, USA.
| |
Collapse
|
35
|
Dyer MD, Murali TM, Sobral BW. The landscape of human proteins interacting with viruses and other pathogens. PLoS Pathog 2008; 4:e32. [PMID: 18282095 PMCID: PMC2242834 DOI: 10.1371/journal.ppat.0040032] [Citation(s) in RCA: 244] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Accepted: 01/04/2008] [Indexed: 12/28/2022] Open
Abstract
Infectious diseases result in millions of deaths each year. Mechanisms of infection have been studied in detail for many pathogens. However, many questions are relatively unexplored. What are the properties of human proteins that interact with pathogens? Do pathogens interact with certain functional classes of human proteins? Which infection mechanisms and pathways are commonly triggered by multiple pathogens? In this paper, to our knowledge, we provide the first study of the landscape of human proteins interacting with pathogens. We integrate human-pathogen protein-protein interactions (PPIs) for 190 pathogen strains from seven public databases. Nearly all of the 10,477 human-pathogen PPIs are for viral systems (98.3%), with the majority belonging to the human-HIV system (77.9%). We find that both viral and bacterial pathogens tend to interact with hubs (proteins with many interacting partners) and bottlenecks (proteins that are central to many paths in the network) in the human PPI network. We construct separate sets of human proteins interacting with bacterial pathogens, viral pathogens, and those interacting with multiple bacteria and with multiple viruses. Gene Ontology functions enriched in these sets reveal a number of processes, such as cell cycle regulation, nuclear transport, and immune response that participate in interactions with different pathogens. Our results provide the first global view of strategies used by pathogens to subvert human cellular processes and infect human cells. Supplementary data accompanying this paper is available at http://staff.vbi.vt.edu/dyermd/publications/dyer2008a.html.
Collapse
Affiliation(s)
- Matthew D Dyer
- Genetics, Bioinformatics, and Computational Biology Program, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - T. M Murali
- Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- * To whom correspondence should be addressed. E-mail: (TMM), (BWS)
| | - Bruno W Sobral
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- * To whom correspondence should be addressed. E-mail: (TMM), (BWS)
| |
Collapse
|
36
|
Fioriti D, Russo G, Mischitelli M, Anzivino E, Bellizzi A, Di Monaco F, Di Silverio F, Giordano A, Chiarini F, Pietropaolo V. A case of human polyomavirus Bk infection in a patient affected by late stage prostate cancer: could viral infection be correlated with cancer progression? Int J Immunopathol Pharmacol 2007; 20:405-11. [PMID: 17624255 DOI: 10.1177/039463200702000223] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The basic molecular mechanisms regulating prostate cancer (PCA) development and progression are very poorly understood. Different tumor suppressor genes are implicated in PCA. In particular, since the mutation rate of the p53 gene is also low, researchers have speculated that an infectious agent might play an important role in PCA. Polyomaviruses are candidates for this agent. We selected a patient with a diagnosis of PCA and underwent radical prostatectomy, to investigate the presence of polyomavirus BK (BKV) sequences (urine and neoplastic tissues) and the mutation pattern of p53 gene. The results obtained showed the presence of BKV DNA and of p53 gene mutations in exons 6, 8 and 9. We speculate that BKV might contribute to cellular transformation process, triggered possibly by p53 gene mutations.
Collapse
Affiliation(s)
- D Fioriti
- Department of Public Health Sciences, La Sapienza University, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Valls E, Blanco-García N, Aquizu N, Piedra D, Estarás C, de la Cruz X, Martínez-Balbás MA. Involvement of chromatin and histone deacetylation in SV40 T antigen transcription regulation. Nucleic Acids Res 2007; 35:1958-68. [PMID: 17341466 PMCID: PMC1874590 DOI: 10.1093/nar/gkl1113] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Simian Virus 40 (SV40) large T antigen (T Ag) is a multifunctional viral oncoprotein that regulates viral and cellular transcriptional activity. However, the mechanisms by which such regulation occurs remain unclear. Here we show that T antigen represses CBP-mediated transcriptional activity. This repression is concomitant with histone H3 deacetylation and is TSA sensitive. Moreover, our results demonstrate that T antigen interacts with HDAC1 in vitro in an Rb-independent manner. In addition, the overexpression of HDAC1 cooperates with T antigen to antagonize CBP transactivation function and correlates with chromatin deacetylation of the TK promoter. Finally, decreasing HDAC1 levels with small interfering RNA (siRNA) partially abolishes T antigen-induced repression. These findings highlight the importance of the histone acetylation/deacetylation balance in the cellular transformation mediated by oncoviral proteins.
Collapse
Affiliation(s)
- Ester Valls
- Instituto de Biología Molecular de Barcelona. CID. Consejo Superior de Investigaciones Científicas (CSIC). Josep Samitier 1,5. Parc Cientific de Barcelona. E-08028 Barcelona. Spain, Institut de Recerca Biomédica-PCB. Josep Samitier 1, 5. E-08028 Barcelona, Spain and Institut Català per la Recerca i Estudis Avançats (ICREA). Passeig Lluís Companys, 23. E-08018 Barcelona, Spain
| | - Noemí Blanco-García
- Instituto de Biología Molecular de Barcelona. CID. Consejo Superior de Investigaciones Científicas (CSIC). Josep Samitier 1,5. Parc Cientific de Barcelona. E-08028 Barcelona. Spain, Institut de Recerca Biomédica-PCB. Josep Samitier 1, 5. E-08028 Barcelona, Spain and Institut Català per la Recerca i Estudis Avançats (ICREA). Passeig Lluís Companys, 23. E-08018 Barcelona, Spain
| | - Naiara Aquizu
- Instituto de Biología Molecular de Barcelona. CID. Consejo Superior de Investigaciones Científicas (CSIC). Josep Samitier 1,5. Parc Cientific de Barcelona. E-08028 Barcelona. Spain, Institut de Recerca Biomédica-PCB. Josep Samitier 1, 5. E-08028 Barcelona, Spain and Institut Català per la Recerca i Estudis Avançats (ICREA). Passeig Lluís Companys, 23. E-08018 Barcelona, Spain
| | - David Piedra
- Instituto de Biología Molecular de Barcelona. CID. Consejo Superior de Investigaciones Científicas (CSIC). Josep Samitier 1,5. Parc Cientific de Barcelona. E-08028 Barcelona. Spain, Institut de Recerca Biomédica-PCB. Josep Samitier 1, 5. E-08028 Barcelona, Spain and Institut Català per la Recerca i Estudis Avançats (ICREA). Passeig Lluís Companys, 23. E-08018 Barcelona, Spain
| | - Conchi Estarás
- Instituto de Biología Molecular de Barcelona. CID. Consejo Superior de Investigaciones Científicas (CSIC). Josep Samitier 1,5. Parc Cientific de Barcelona. E-08028 Barcelona. Spain, Institut de Recerca Biomédica-PCB. Josep Samitier 1, 5. E-08028 Barcelona, Spain and Institut Català per la Recerca i Estudis Avançats (ICREA). Passeig Lluís Companys, 23. E-08018 Barcelona, Spain
| | - Xavier de la Cruz
- Instituto de Biología Molecular de Barcelona. CID. Consejo Superior de Investigaciones Científicas (CSIC). Josep Samitier 1,5. Parc Cientific de Barcelona. E-08028 Barcelona. Spain, Institut de Recerca Biomédica-PCB. Josep Samitier 1, 5. E-08028 Barcelona, Spain and Institut Català per la Recerca i Estudis Avançats (ICREA). Passeig Lluís Companys, 23. E-08018 Barcelona, Spain
| | - Marian A. Martínez-Balbás
- Instituto de Biología Molecular de Barcelona. CID. Consejo Superior de Investigaciones Científicas (CSIC). Josep Samitier 1,5. Parc Cientific de Barcelona. E-08028 Barcelona. Spain, Institut de Recerca Biomédica-PCB. Josep Samitier 1, 5. E-08028 Barcelona, Spain and Institut Català per la Recerca i Estudis Avançats (ICREA). Passeig Lluís Companys, 23. E-08018 Barcelona, Spain
- *To whom correspondance should be addressed. 34-93-403496134-93-4034979
| |
Collapse
|
38
|
Miller CL, Arnold MM, Broering TJ, Eichwald C, Kim J, Dinoso JB, Nibert ML. Virus-derived platforms for visualizing protein associations inside cells. Mol Cell Proteomics 2007; 6:1027-38. [PMID: 17339631 DOI: 10.1074/mcp.m700056-mcp200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein-protein associations are vital to cellular functions. Here we describe a helpful new method to demonstrate protein-protein associations inside cells based on the capacity of orthoreovirus protein muNS to form large cytoplasmic inclusions, easily visualized by light microscopy, and to recruit other proteins to these structures in a specific manner. We introduce this technology by the identification of a sixth orthoreovirus protein, RNA-dependent RNA polymerase lambda3, that was recruited to the structures through an association with muNS. We then established the broader utility of this technology by using a truncated, fluorescently tagged form of muNS as a fusion platform to present the mammalian tumor suppressor p53, which strongly recruited its known interactor simian virus 40 large T antigen to the muNS-derived structures. In both examples, we further localized a region of the recruited protein that is key to its recruitment. Using either endogenous p53 or a second fluorescently tagged fusion of p53 with the rotavirus NSP5 protein, we demonstrated p53 oligomerization as well as p53 association with another of its cellular interaction partners, the CREB-binding proteins, within the inclusions. Furthermore using the p53-fused fluorescent muNS platform in conjunction with three-color microscopy, we identified a ternary complex comprising p53, simian virus 40 large T antigen, and retinoblastoma protein. The new method is technically simple, uses commonly available resources, and is adaptable to high throughput formats.
Collapse
Affiliation(s)
- Cathy L Miller
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Shimazu T, Horinouchi S, Yoshida M. Multiple Histone Deacetylases and the CREB-binding Protein Regulate Pre-mRNA 3′-End Processing. J Biol Chem 2007; 282:4470-4478. [PMID: 17172643 DOI: 10.1074/jbc.m609745200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Trichostatin A (TSA), a specific inhibitor of histone deacetylases (HDACs), induces acetylation of various non-histone proteins such as p53 and alpha-tubulin. We purified several acetylated proteins by the affinity to an anti-acetylated lysine (AcLys) antibody from cells treated with TSA and identified them by mass spectrometry. Here we report on acetylation of CFIm25, a component of mammalian cleavage factor Im (CF Im), and poly(A) polymerase (PAP), a polyadenylating enzyme for the pre-mRNA 3'-end. The residues acetylated in these proteins were mapped onto the regions required for interaction with each other. Whereas CBP acetylated these proteins, HDAC1, HDAC3, HDAC10, SIRT1, and SIRT2 were involved in in vivo deacetylation. Acetylation of the CFIm25 occurred depending on the cleavage factor complex formation. Importantly, the interaction between PAP and CF Im complex was decreased by acetylation. We also demonstrated that acetylation of PAP inhibited the nuclear localization of PAP by inhibiting the binding to the importin alpha/beta complex. These results suggest that CBP and HDACs regulate the 3'-end processing machinery and modulate the localization of PAP through the acetylation and deacetylation cycle.
Collapse
Affiliation(s)
- Tadahiro Shimazu
- Chemical Genetics Laboratory, Discovery Research Institute, RIKEN, Wako, Saitama 351-0198, Japan; Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan, and
| | - Sueharu Horinouchi
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan, and
| | - Minoru Yoshida
- Chemical Genetics Laboratory, Discovery Research Institute, RIKEN, Wako, Saitama 351-0198, Japan; Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan, and; CREST Research Project, JST, Saitama 332-0012, Japan.
| |
Collapse
|
40
|
Kasper JS, Arai T, DeCaprio JA. A novel p53-binding domain in CUL7. Biochem Biophys Res Commun 2006; 348:132-8. [PMID: 16875676 DOI: 10.1016/j.bbrc.2006.07.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Accepted: 07/01/2006] [Indexed: 11/21/2022]
Abstract
CUL7 is a member of the cullin RING ligase family and forms an SCF-like complex with SKP1 and FBXW8. CUL7 is required for normal mouse embryonic development and cellular proliferation, and is highly homologous to PARC, a p53-associated, parkin-like cytoplasmic protein. We determined that CUL7, in a manner similar to PARC, can bind directly to p53 but does not affect p53 expression. We identified a discrete, co-linear domain in CUL7 that is conserved in PARC and HERC2, and is necessary and sufficient for p53-binding. The presence of p53 stabilized expression of this domain and we demonstrate that this p53-binding domain of CUL7 contributes to the cytoplasmic localization of CUL7. The results support the model that p53 plays a role in regulation of CUL7 activity.
Collapse
Affiliation(s)
- Jocelyn S Kasper
- Department of Medical Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA
| | | | | |
Collapse
|
41
|
Shimazu T, Komatsu Y, Nakayama KI, Fukazawa H, Horinouchi S, Yoshida M. Regulation of SV40 large T-antigen stability by reversible acetylation. Oncogene 2006; 25:7391-400. [PMID: 16767160 DOI: 10.1038/sj.onc.1209731] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Reversible acetylation on protein lysine residues has been shown to regulate the function of both nuclear proteins such as histones and p53 and cytoplasmic proteins such as alpha-tubulin. To identify novel acetylated proteins, we purified several proteins by the affinity to an anti-acetylated-lysine antibody from cells treated with trichostatin A (TSA). Among the proteins identified, here we report acetylation of the SV40 large T antigen (T-Ag). The acetylation site was determined to be lysine-697, which is located adjacent to the C-terminal Cdc4 phospho-degron (CPD). Overexpression of the CBP acetyltransferase acetylated T-Ag, whereas HDAC1, HDAC3 and SIRT1 bound and deacetylated T-Ag. The acetylation and deacetylation occurred independently of p53, a binding partner of T-Ag, but the acetylation was enhanced in the presence of p53. T-Ag in the cells treated with TSA and NA or the acetylation mimic mutant (K697Q) became unstable in COS-7 cells, suggesting that acetylation regulates stability of T-Ag. Indeed, NIH3T3 cells stably expressing K697Q showed decreased anchorage-independent growth compared with those expressing wild type or the K697R mutant. These results demonstrate that acetylation destabilizes T-Ag and regulates the transforming activity of T-Ag in NIH3T3 cells.
Collapse
Affiliation(s)
- T Shimazu
- Chemical Genetics Laboratory, RIKEN, Hirosawa 2-1, Wako, Saitama, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Borger DR, DeCaprio JA. Targeting of p300/CREB binding protein coactivators by simian virus 40 is mediated through p53. J Virol 2006; 80:4292-303. [PMID: 16611888 PMCID: PMC1472010 DOI: 10.1128/jvi.80.9.4292-4303.2006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The primary transforming functions of simian virus 40 large T antigen (SV40 LT) are conferred primarily through the binding and inactivation of p53 and the retinoblastoma family members. Normal p53 function requires an association with the CREB binding protein (CBP)/p300 coactivators, and a ternary complex containing SV40 LT, p53, and CBP/p300 has been identified previously. In this report, we have evaluated a secondary function of p53 bound to the SV40 LT complex in mediating the binding of human CBP/p300. We demonstrate that p53 associated with SV40 LT was posttranslationally modified in a manner consistent with the binding of CBP/p300. Furthermore, expression of SV40 LT induced the proportion of p53 phosphorylated on S15. An essential function for p53 in bridging the interaction between SV40 LT and CBP/p300 was identified through the reconstitution of the SV40 LT-CBP/p300 complex upon p53 reexpression in p53-null cells. In addition, the SV40 LT-CBP/p300 complex was disrupted through RNA interference-mediated depletion of endogenous p53. We also demonstrate that SV40 LT was acetylated in a p300- and p53-dependent manner, at least in part through the CH3 domain of p300. Therefore, the binding of p53 serves to modify SV40 LT by targeting CBP and p300 binding to direct the acetylation of SV40 LT.
Collapse
Affiliation(s)
- Darrell R Borger
- Dana-Farber Cancer Institute, Department of Medical Oncology, Harvard Medical School, Mayer Building 457, 44 Binney Street, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
43
|
Poulin DL, DeCaprio JA. The carboxyl-terminal domain of large T antigen rescues SV40 host range activity in trans independent of acetylation. Virology 2006; 349:212-21. [PMID: 16510165 DOI: 10.1016/j.virol.2006.01.046] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 12/01/2005] [Accepted: 01/31/2006] [Indexed: 11/18/2022]
Abstract
The host range activity of SV40 has been described as the inability of mutant viruses with deletions in the C terminal region of large T Ag to replicate in certain types of African green monkey kidney cells. We constructed new mutant viruses expressing truncated T Ag proteins and found that these mutant viruses exhibited the host range phenotype. The host range phenotype was independent of acetylation of T Ag at lysine 697. Co-expression of the C terminal domain of T Ag (aa 627-708) in trans increased both T Ag and VP1 mRNA as well as protein levels for host range mutant viruses in the restrictive cell type. In addition, the T Ag 627-708 fragment promoted the productive lytic infection of host range mutant viruses in the nonpermissive cell type. The carboxyl-terminal region of T Ag contains a biological function essential for the SV40 viral life cycle.
Collapse
Affiliation(s)
- Danielle L Poulin
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
44
|
Ahuja D, Sáenz-Robles MT, Pipas JM. SV40 large T antigen targets multiple cellular pathways to elicit cellular transformation. Oncogene 2005; 24:7729-45. [PMID: 16299533 DOI: 10.1038/sj.onc.1209046] [Citation(s) in RCA: 407] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
DNA tumor viruses such as simian virus 40 (SV40) express dominant acting oncoproteins that exert their effects by associating with key cellular targets and altering the signaling pathways they govern. Thus, tumor viruses have proved to be invaluable aids in identifying proteins that participate in tumorigenesis, and in understanding the molecular basis for the transformed phenotype. The roles played by the SV40-encoded 708 amino-acid large T antigen (T antigen), and 174 amino acid small T antigen (t antigen), in transformation have been examined extensively. These studies have firmly established that large T antigen's inhibition of the p53 and Rb-family of tumor suppressors and small T antigen's action on the pp2A phosphatase, are important for SV40-induced transformation. It is not yet clear if the Rb, p53 and pp2A proteins are the only targets through which SV40 transforms cells, or whether additional targets await discovery. Finally, expression of SV40 oncoproteins in transgenic mice results in effects ranging from hyperplasia to invasive carcinoma accompanied by metastasis, depending on the tissue in which they are expressed. Thus, the consequences of SV40 action on these targets depend on the cell type being studied. The identification of additional cellular targets important for transformation, and understanding the molecular basis for the cell type-specific action of the viral T antigens are two important areas through which SV40 will continue to contribute to our understanding of cancer.
Collapse
Affiliation(s)
- Deepika Ahuja
- Department of Biological Sciences, University of Pittsburgh, PA 15260, USA
| | | | | |
Collapse
|
45
|
White MK, Khalili K. Expression of JC virus regulatory proteins in human cancer: potential mechanisms for tumourigenesis. Eur J Cancer 2005; 41:2537-48. [PMID: 16219459 DOI: 10.1016/j.ejca.2005.08.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
JC virus (JCV) is a human polyomavirus that is the etiologic agent of the fatal demyelinating disease of the central nervous system known as progressive multifocal leukoencephalopathy (PML). JCV is also linked to some tumours of the brain and other organs as evidenced by the presence of JCV DNA sequences and the expression of viral proteins in clinical samples. Since JCV is highly oncogenic in experimental animals and transforms cells in culture, it is possible that JCV contributes to the malignant phenotype of human tumours with which it is associated. JCV encodes three non-capsid regulatory proteins: large T-antigen, small t-antigen and agnoprotein that interact with a number of cellular target proteins and interfere with certain normal cellular functions. In this review, we discuss how JCV proteins deregulate signalling pathways especially ones pertaining to transcriptional regulation and cell cycle control. These effects may be involved in the progression of JCV-associated tumours and may represent potential therapeutic targets.
Collapse
Affiliation(s)
- Martyn K White
- Center for Neurovirology, Department of Neuroscience, Temple University School of Medicine, 1900 North 12th Street, MS 015-96, Room 203, Philadelphia, PA 19122, USA
| | | |
Collapse
|
46
|
Kasper JS, Kuwabara H, Arai T, Ali SH, DeCaprio JA. Simian virus 40 large T antigen's association with the CUL7 SCF complex contributes to cellular transformation. J Virol 2005; 79:11685-92. [PMID: 16140746 PMCID: PMC1212609 DOI: 10.1128/jvi.79.18.11685-11692.2005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Simian virus 40 large T antigen (T Ag) is capable of immortalizing and transforming rodent cells. The transforming activity of T Ag is due in large part to perturbation of the tumor suppressor proteins p53 and the retinoblastoma (pRB) family members. Inactivation of these tumor suppressors may not be sufficient for T Ag-mediated cellular transformation. It has been shown that T Ag associates with an SCF-like complex that contains a member of the cullin family of E3 ubiquitin ligases, CUL7, as well as SKP1, RBX1, and an F-box protein, FBXW8. We identified T Ag residues 69 to 83 as required for T Ag binding to the CUL7 complex. We demonstrate that delta69-83 T Ag, while it lost its ability to associate with CUL7, retained binding to p53 and pRB family members. In the presence of CUL7, wild-type (WT) T Ag but not delta69-83 T Ag was able to induce proliferation of mouse embryo fibroblasts, an indication of cellular transformation. In contrast, WT and delta69-83 T Ag enabled mouse embryo fibroblasts to proliferate to similarly high densities in the absence of CUL7. Our data suggest that, in addition to p53 and the pRB family members, T Ag serves to bind to and inactivate the growth-suppressing properties of CUL7. In addition, these results imply that, at least in the presence of T Ag, CUL7 may function as a tumor suppressor.
Collapse
Affiliation(s)
- Jocelyn S Kasper
- Dana-Farber Cancer Institute, Department of Medical Oncology and Harvard Medical School, Mayer Building 457, 44 Binney Street, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|