1
|
Lamp B, Barth S, Reuscher C, Affeldt S, Cechini A, Netsch A, Lobedank I, Rümenapf T. Essential role of cis-encoded mature NS3 in the genome packaging of classical swine fever virus. J Virol 2025; 99:e0120924. [PMID: 39723819 PMCID: PMC11852850 DOI: 10.1128/jvi.01209-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
Classical swine fever virus (CSFV) is a member of the genus Pestivirus within the family Flaviviridae. The enveloped particles contain a plus-stranded RNA genome encoding a single large polyprotein. The processing of this polyprotein undergoes dynamic changes throughout the infection cycle. The release of mature NS3 from the polyprotein is mediated and regulated by the NS2 autoprotease and a cellular co-factor, restricting efficient cleavage to the early phases of infection. NS3 is a multifunctional viral enzyme exhibiting helicase, NTPase, and protease activities pivotal for viral replication. Hence, the release of mature NS3 fuels replication, whereas unprocessed NS2-3 precursors are vital for progeny virus production in later phases of infection. Thus far, no packaging signals have been identified for pestivirus RNA. To explore the prerequisites for particle assembly, trans-packaging experiments were conducted using CSFV subgenomes and coreless CSFV strains. Intriguingly, we discovered a significant role of mature NS3 in genome packaging, effective only when the protein is encoded by the RNA molecule itself. This finding was reinforced by employing artificially engineered CSFV strains with duplicated NS3 genes, separating uncleavable NS2-3 precursors from mature NS3 molecules. The model for NS2-3/NS3 functions in genome packaging of pestiviruses appears to be much more complicated than anticipated, involving distinct functions of the mature NS3 and its precursor molecule NS2-3. Moreover, the reliance of genome packaging on cis-encoded NS3 may act as a downstream quality control mechanism, averting the packaging of defective genomes and coordinating the encapsidation of RNA molecules before membrane acquisition. IMPORTANCE Pestiviruses are economically significant pathogens in livestock. Although genome organization and non-structural protein functions resemble those of other Flaviviridae genera, distinct differences can be observed. Previous studies showed that coreless CSFV strains can produce coreless virions mediated by single compensatory mutations in NS3. In this study, we could show that only RNA molecules encoding these mutations in the mature NS3 are packaged in the absence of the core protein. Unlike this selectivity, a pool of structural proteins in the host cell was readily available for packaging all CSFV genomes. Similarly, the NS2-3-4A precursor molecules required for packaging could also be provided in trans. Consequently, genome packaging in pestiviruses is governed by cis-encoded mature NS3. Reliance on cis-acting proteins restricts the acceptance of defective genomes and establishes packaging specificity regardless of RNA sequence-specific packaging signals. Understanding the role of NS3 in pestiviral genome packaging might uncover new targets for antiviral therapies.
Collapse
Affiliation(s)
- Benjamin Lamp
- Institute of Virology, Justus-Liebig-Universität Gießen, Giessen, Hesse, Germany
| | - Sandra Barth
- Institute of Virology, Justus-Liebig-Universität Gießen, Giessen, Hesse, Germany
| | - Carina Reuscher
- Institute of Virology, Justus-Liebig-Universität Gießen, Giessen, Hesse, Germany
| | - Sebastian Affeldt
- Institute of Virology, Justus-Liebig-Universität Gießen, Giessen, Hesse, Germany
| | - Angelika Cechini
- Institute of Virology, Justus-Liebig-Universität Gießen, Giessen, Hesse, Germany
| | - Anette Netsch
- Institute of Virology, Justus-Liebig-Universität Gießen, Giessen, Hesse, Germany
| | - Irmin Lobedank
- Institute of Virology, Justus-Liebig-Universität Gießen, Giessen, Hesse, Germany
| | - Till Rümenapf
- Institute of Virology, Department for Pathobiology, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
2
|
Cayatineto HW, Hakim ST. hsa-miR-548d-3p: a potential microRNA to target nucleocapsid and/or capsid genes in multiple members of the Flaviviridae family. FRONTIERS IN BIOINFORMATICS 2025; 4:1487292. [PMID: 39877236 PMCID: PMC11772435 DOI: 10.3389/fbinf.2024.1487292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/11/2024] [Indexed: 01/31/2025] Open
Abstract
Introduction Flaviviridae comprise a group of enveloped, positive-stranded RNA viruses that are mainly transmitted through either mosquitoes or tick bites and/or contaminated blood, blood products, or other body secretions. These viruses cause diseases ranging from mild to severe and are considered important human pathogens. MicroRNAs (miRNAs) are non-coding molecules involved in growth, development, cell proliferation, protein synthesis, apoptosis, and pathogenesis. These small molecules are even being used as gene suppressors in antiviral therapeutics, inhibiting viral replication. In the current study, we used bioinformatic tools to predict a possible miRNA sequence that could be complementary to the nucleocapsid (NP) and/or capsid (CP) gene of the Flaviviridae family and provide an inhibitory solution. Methods Bioinformatics is a field of science that includes tremendous computational analysis, logarithms, and sequence alignments. To predict the right alignments between miRNA and viral mRNA genomes, we used computational databases such as miRBase, NCBI, and Basic Alignment Search Tool-nucleotides (BLAST-n). Results Of the 2,600 mature miRNAs, hsa-miR-548d-3p revealed complementary sequences with the flavivirus capsid gene and bovine viral diarrhea virus (BVDV) capsid gene and was selected as a possible candidate to inhibit flaviviruses. Conclusion Although more detailed in vitro and in vivo studies are required to test the possible inhibitory effects of hsa-miR-548d-3p against flaviviruses, this computational study may be the first step to study further, developing a novel therapeutic for lethal viruses within the Flaviviridae family using suggested candidate miRNAs.
Collapse
Affiliation(s)
| | - S. T. Hakim
- Hakim’s Lab, Department of Biology, School of STEM, Diné College, Tuba City, AZ, United States
| |
Collapse
|
3
|
Geranio F, Affeldt S, Cechini A, Barth S, Reuscher CM, Riedel C, Rümenapf T, Lamp B. Exclusion of Superinfection or Enhancement of Superinfection in Pestiviruses-APPV Infection Is Not Dependent on ADAM17. Viruses 2024; 16:1834. [PMID: 39772144 PMCID: PMC11680174 DOI: 10.3390/v16121834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Some viruses can suppress superinfections of their host cells by related or different virus species. The phenomenon of superinfection exclusion can be caused by inhibiting virus attachment, receptor binding and entry, by replication interference, or competition for host cell resources. Blocking attachment and entry not only prevents unproductive double infections but also stops newly produced virions from re-entering the cell post-exocytosis. In this study, we investigated the exclusion of superinfections between the different pestivirus species. Bovine and porcine cells pre-infected with non-cytopathogenic pestivirus strains were evaluated for susceptibility to subsequent superinfection using comparative titrations. Our findings revealed significant variation in exclusion potency depending on the pre- and superinfecting virus species, as well as the host cell species. Despite this variability, all tested classical pestivirus species reduced host cell susceptibility to subsequent infections, indicating a conserved entry mechanism. Unexpectedly, pre-infection with atypical porcine pestivirus (APPV) increased host cell susceptibility to classical pestiviruses. Further analysis showed that APPV can infect SK-6 cells independently of ADAM17, a critical attachment factor for the classical pestiviruses. These results indicate that APPV uses different binding and entry mechanisms than the other pestiviruses. The observed increase in the susceptibility of cells post-APPV infection warrants further investigation and could have practical implications, such as aiding challenging pestivirus isolation from diagnostic samples.
Collapse
Affiliation(s)
- Francesco Geranio
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Schubertstrasse 81, 35392 Giessen, Germany; (F.G.); (S.A.); (A.C.); (S.B.)
| | - Sebastian Affeldt
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Schubertstrasse 81, 35392 Giessen, Germany; (F.G.); (S.A.); (A.C.); (S.B.)
| | - Angelika Cechini
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Schubertstrasse 81, 35392 Giessen, Germany; (F.G.); (S.A.); (A.C.); (S.B.)
| | - Sandra Barth
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Schubertstrasse 81, 35392 Giessen, Germany; (F.G.); (S.A.); (A.C.); (S.B.)
| | - Carina M. Reuscher
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Schubertstrasse 81, 35392 Giessen, Germany; (F.G.); (S.A.); (A.C.); (S.B.)
| | - Christiane Riedel
- CIRI-Centre International de Recherche en Infectiologie, Université Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 Allée d’Italie, 69007 Lyon, France;
| | - Till Rümenapf
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine, 1210 Vienna, Austria;
| | - Benjamin Lamp
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Schubertstrasse 81, 35392 Giessen, Germany; (F.G.); (S.A.); (A.C.); (S.B.)
| |
Collapse
|
4
|
Iman K, Mirza MU, Sadia F, Froeyen M, Trant JF, Chaudhary SU. Pharmacophore-Assisted Covalent Docking Identifies a Potential Covalent Inhibitor for Drug-Resistant Genotype 3 Variants of Hepatitis C Viral NS3/4A Serine Protease. Viruses 2024; 16:1250. [PMID: 39205224 PMCID: PMC11359326 DOI: 10.3390/v16081250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
The emergence of drug-resistance-inducing mutations in Hepatitis C virus (HCV) coupled with genotypic heterogeneity has made targeting NS3/4A serine protease difficult. In this work, we investigated the mutagenic variations in the binding pocket of Genotype 3 (G3) HCV NS3/4A and evaluated ligands for efficacious inhibition. We report mutations at 14 positions within the ligand-binding residues of HCV NS3/4A, including H57R and S139P within the catalytic triad. We then modelled each mutational variant for pharmacophore-based virtual screening (PBVS) followed by covalent docking towards identifying a potential covalent inhibitor, i.e., cpd-217. The binding stability of cpd-217 was then supported by molecular dynamic simulation followed by MM/GBSA binding free energy calculation. The free energy decomposition analysis indicated that the resistant mutants alter the HCV NS3/4A-ligand interaction, resulting in unbalanced energy distribution within the binding site, leading to drug resistance. Cpd-217 was identified as interacting with all NS3/4A G3 variants with significant covalent docking scores. In conclusion, cpd-217 emerges as a potential inhibitor of HCV NS3/4A G3 variants that warrants further in vitro and in vivo studies. This study provides a theoretical foundation for drug design and development targeting HCV G3 NS3/4A.
Collapse
Affiliation(s)
- Kanzal Iman
- Biomedical Informatics & Engineering Research Laboratory, Department of Life Sciences, Lahore University of Management Sciences, Lahore 36000, Pakistan; (K.I.); (F.S.)
| | - Muhammad Usman Mirza
- Department of Chemistry & Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada;
| | - Fazila Sadia
- Biomedical Informatics & Engineering Research Laboratory, Department of Life Sciences, Lahore University of Management Sciences, Lahore 36000, Pakistan; (K.I.); (F.S.)
| | - Matheus Froeyen
- Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, KU Leuven—University of Leuven, B-3000 Leuven, Belgium;
| | - John F. Trant
- Department of Chemistry & Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada;
| | - Safee Ullah Chaudhary
- Biomedical Informatics & Engineering Research Laboratory, Department of Life Sciences, Lahore University of Management Sciences, Lahore 36000, Pakistan; (K.I.); (F.S.)
| |
Collapse
|
5
|
Doherty JS, Kirkegaard K. Differential inhibition of intra- and inter-molecular protease cleavages by antiviral compounds. J Virol 2023; 97:e0092823. [PMID: 38047713 PMCID: PMC10734437 DOI: 10.1128/jvi.00928-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/27/2023] [Indexed: 12/05/2023] Open
Abstract
IMPORTANCE Most protease-targeted antiviral development evaluates the ability of small molecules to inhibit the cleavage of artificial substrates. However, before they can cleave any other substrates, viral proteases need to cleave themselves out of the viral polyprotein in which they have been translated. This can occur either intra- or inter-molecularly. Whether this process occurs intra- or inter-molecularly has implications for the potential for precursors to accumulate and for the effectiveness of antiviral drugs. We argue that evaluating candidate antivirals for their ability to block these cleavages is vital to drug development because the buildup of uncleaved precursors can be inhibitory to the virus and potentially suppress the selection of drug-resistant variants.
Collapse
Affiliation(s)
| | - Karla Kirkegaard
- Department of Genetics, Stanford University, Palo Alto, California, USA
- Department of Microbiology and Immunology, Stanford University, Palo Alto, California, USA
| |
Collapse
|
6
|
Choe S, Park GN, Kim KS, Shin J, Lim SI, An BH, Hyun BH, An DJ. Efficacy of an orally administered classical swine fever live marker vaccine (Flc-LOM-BE rns strain) in pigs. Vaccine 2023; 41:7377-7386. [PMID: 37973511 DOI: 10.1016/j.vaccine.2023.10.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
In several countries, classical swine fever (CSF) has not been detected in domestic pigs, but has been detected in wild boars, making the disease difficult to control. To overcome this problem, we inoculated pigs with a CSF live marker vaccine (Flc-LOM-BErns strain), which has "distinguish infection from vaccinated animals (DIVA)" function, to determine whether it is suitable as an oral vaccine specifically for wild boars. Pigs inoculated intramuscularly or orally with the Flc-LOM-BErns vaccine were challenged 2 or 4 weeks later, respectively, with virulent CSFV. Pigs administered the oral Flc-LOM-BErns strain (105.0 and 6.0 TCID50/dose), and those vaccinated intramuscularly (103.0 TCID50/dose), had normal numbers of leukocytes and normal body temperature. Also, they generated protective neutralizing antibodies and anti-BVDV Erns antibodies. In addition, all pigs in these groups survived, with no CSFV RNA detected in feces, spleen, or other organs. Thus, the Flc-LOM-BErns vaccine shows excellent safety and efficacy, while having DIVA function and suitability for oral inoculation.
Collapse
Affiliation(s)
- SeEun Choe
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongbuk-do 39660, Republic of Korea.
| | - Gyu-Nam Park
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongbuk-do 39660, Republic of Korea.
| | - Ki-Sun Kim
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongbuk-do 39660, Republic of Korea.
| | - Jihye Shin
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongbuk-do 39660, Republic of Korea.
| | - Seong-In Lim
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongbuk-do 39660, Republic of Korea.
| | - Byung-Hyun An
- Department of Virology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Bang-Hun Hyun
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongbuk-do 39660, Republic of Korea.
| | - Dong-Jun An
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongbuk-do 39660, Republic of Korea.
| |
Collapse
|
7
|
Fellenberg J, Dubrau D, Isken O, Tautz N. Packaging defects in pestiviral NS4A can be compensated by mutations in NS2 and NS3. J Virol 2023; 97:e0057223. [PMID: 37695056 PMCID: PMC10537661 DOI: 10.1128/jvi.00572-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/18/2023] [Indexed: 09/12/2023] Open
Abstract
The non-structural (NS) proteins of the Flaviviridae members play a dual role in genome replication and virion morphogenesis. For pestiviruses, like bovine viral diarrhea virus, the NS2-3 region and its processing by the NS2 autoprotease is of particular importance. While uncleaved NS2-3 in complex with NS4A is essential for virion assembly, it cannot replace free NS3/4A in the viral replicase. Furthermore, surface interactions between NS3 and the C-terminal cytosolic domain of NS4A were shown to serve as a molecular switch between RNA replication and virion morphogenesis. To further characterize the functionality of NS4A, we performed an alanine-scanning mutagenesis of two NS4A regions, a short highly conserved cytoplasmic linker downstream of the transmembrane domain and the C-terminal domain. NS4A residues critical for polyprotein processing, RNA replication, and/or virion morphogenesis were identified. Three double-alanine mutants, two in the linker region and one close to the C-terminus of NS4A, showed a selective effect on virion assembly. All three packaging defective mutants could be rescued by a selected set of two second-site mutations, located in NS2 and NS3, respectively. This phenotype was additionally confirmed by complementation studies providing the NS2-3/4A packaging molecules containing the rescue mutations in trans. This indicates that the linker region and the cytosolic C-terminal part of NS4A are critical for the formation of protein complexes required for virion morphogenesis. The ability of the identified sets of second-site mutations in NS2-3 to compensate for diverse NS4A defects highlights a surprising functional flexibility for pestiviral NS proteins. IMPORTANCE Positive-strand RNA viruses have a limited coding capacity due to their rather small genome size. To overcome this constraint, viral proteins often exhibit multiple functions that come into play at different stages during the viral replication cycle. The molecular basis for this multifunctionality is often unknown. For the bovine viral diarrhea virus, the non-structural protein (NS) 4A functions as an NS3 protease cofactor, a replicase building block, and a component in virion morphogenesis. Here, we identified the critical amino acids of its C-terminal cytosolic region involved in those processes and show that second-site mutations in NS2 and NS3 can compensate for diverse NS4A defects in virion morphogenesis. The ability to evolve alternative functional solutions by gain-of-function mutations highlights the astounding plasticity of the pestiviral system.
Collapse
Affiliation(s)
- Jonas Fellenberg
- Institute of Virology and Cell Biology, University of Luebeck, Luebeck, Germany
| | - Danilo Dubrau
- Institute of Virology and Cell Biology, University of Luebeck, Luebeck, Germany
| | - Olaf Isken
- Institute of Virology and Cell Biology, University of Luebeck, Luebeck, Germany
| | - Norbert Tautz
- Institute of Virology and Cell Biology, University of Luebeck, Luebeck, Germany
| |
Collapse
|
8
|
Guo X, Zhang M, Liu X, Zhang Y, Wang C, Guo Y. Attachment, Entry, and Intracellular Trafficking of Classical Swine Fever Virus. Viruses 2023; 15:1870. [PMID: 37766277 PMCID: PMC10534341 DOI: 10.3390/v15091870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Classical swine fever virus (CSFV), which is a positive-sense, single-stranded RNA virus with an envelope, is a member of the Pestivirus genus in the Flaviviridae family. CSFV causes a severe and highly contagious disease in pigs and is prevalent worldwide, threatening the pig farming industry. The detailed mechanisms of the CSFV life cycle have been reported, but are still limited. Some receptors and attachment factors of CSFV, including heparan sulfate (HS), laminin receptor (LamR), complement regulatory protein (CD46), MER tyrosine kinase (MERTK), disintegrin, and metalloproteinase domain-containing protein 17 (ADAM17), were identified. After attachment, CSFV internalizes via clathrin-mediated endocytosis (CME) and/or caveolae/raft-dependent endocytosis (CavME). After internalization, CSFV moves to early and late endosomes before uncoating. During this period, intracellular trafficking of CSFV relies on components of the endosomal sorting complex required for transport (ESCRT) and Rab proteins in the endosome dynamics, with a dependence on the cytoskeleton network. This review summarizes the data on the mechanisms of CSFV attachment, internalization pathways, and intracellular trafficking, and provides a general view of the early events in the CSFV life cycle.
Collapse
Affiliation(s)
| | | | | | | | | | - Yidi Guo
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130012, China
| |
Collapse
|
9
|
Al-Kubati AAG, Kandeel M, Hussen J, Hemida MG, Al-Mubarak AIA. Immunoinformatic prediction of the pathogenicity of bovine viral diarrhea virus genotypes: implications for viral virulence determinants, designing novel diagnostic assays and vaccines development. Front Vet Sci 2023; 10:1130147. [PMID: 37483297 PMCID: PMC10359904 DOI: 10.3389/fvets.2023.1130147] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/31/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction Bovine viral diarrhea virus (BVDV) significantly impacts the bovine industries, both dairy and beef sectors. BVDV can infect various domestic and wild animals, most notably cattle. The dynamic variations among BVDV serotypes due to the continuous genetic diversity, especially in BVDV1 (BVDV1), reduce the effectiveness of the currently available vaccines and reduce the specificity/sensitivity of the diagnostic assays. The development of novel, safe, and effective vaccines against BVDV requires deep knowledge of the antigenicity and virulence of the virus. Previous studies on the antigenicity and the virulence of BVDV serotypes have been mainly focused on one or a few BVDV proteins. While however, little is known about the orchestration of all BVDV in the context of viral virulence and immunogenicity. The main aim of the current study was to do a comparative computational evaluation of the immunogenicity, and virulence for all the encoded proteins of both BVDV1 and BVDV2 and their sub-genotypes. Methods To achieve this goal, 11,737 protein sequences were retrieved from Virus Pathogen Resource. The analysis involved a total of 4,583 sequences after the removal of short sequences and those with unknown collection time. We used the MP3 tool to map the pathogenic proteins across different BVDV strains. The potential protective and the epitope motifs were predicted using the VaxiJen and EMBOSS antigen tools, respectively. Results and discussion The virulence prediction revealed that the NS4B proteins of both BVDV1 and BVDV2 likely have essential roles in BVDV virulence. Similarly, both the capsid (C) and the NS4-A proteins of BVDV1 and the Npro and P7 proteins of BVDV2 are likely important virulent factors. There was a clear trend of increasing predicted virulence with the progression of time in the case of BVDV1 proteins, but that was not the case for the BVDV2 proteins. Most of the proteins of the two BVDV serotypes possess antigens predicted immunogens except Npro, P7, and NS4B. However, the predicted antigenicity of the BVDV1 was significantly higher than that of BVDV2. Meanwhile, the predicted immunogenicity of the immunodominant-E2 protein has been decreasing over time. Based on our predicted antigenicity and pathogenicity studies of the two BVDV serotypes, the sub-genotypes (1a, 1f, 1k, 2a, and 2b) may represent ideal candidates for the development of future vaccines against BVDV infection in cattle. In summary, we identified some common differences between the two BVDV genotypes (BVDV1 and BVDV2) and their sub-genotypes regarding their protein antigenicity and pathogenicity. The data presented here will increase our understanding of the molecular pathogenesis of BVDV infection in cattle. It will also pave the way for developing some novel diagnostic assays and novel vaccines against BVDV in the near future.
Collapse
Affiliation(s)
- Anwar A. G. Al-Kubati
- Department of Veterinary Medicine, Faculty of Agriculture and Veterinary Medicine, Thamar University, Thamar, Yemen
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Hofuf, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Jamal Hussen
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Hofuf, Saudi Arabia
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, New York, NY, United States
| | - Maged Gomaa Hemida
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Hofuf, Saudi Arabia
| | - Abdullah I. A. Al-Mubarak
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Hofuf, Saudi Arabia
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, New York, NY, United States
| |
Collapse
|
10
|
Yang N, Xu M, Ma Z, Li H, Song S, Gu X, Liu J, Yang Z, Zhu H, Ma H, Yi J, Wang Y, Wang Z, Sheng J, Chen C. Detection of emerging HoBi-like Pestivirus (BVD-3) during an epidemiological investigation of bovine viral diarrhea virus in Xinjiang: a first-of-its-kind report. Front Microbiol 2023; 14:1222292. [PMID: 37492265 PMCID: PMC10365292 DOI: 10.3389/fmicb.2023.1222292] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 06/20/2023] [Indexed: 07/27/2023] Open
Abstract
Xinjiang pastoral area is the second largest pastoral area in China, accounting for 26.8% of the available grassland area in the country, and the geographical advantage of cattle breeding industry is very obvious. Bovine viral diarrhea virus (BVDV) has always been one of the important viral diseases that have plagued the development of cattle farming industry in the world. As one of the main pastoral areas of China's cattle farming industry, the Xinjiang pastoral area has also been deeply affected. In this study, 6,153 bovine serum samples were collected from 18 large-scale cattle farms in 13 cities in Xinjiang. The antibodies and antigens of 6,153 and 588 serum samples were detected by serological detection methods, respectively. Ten serum samples, which were antigen-positive by ELISA, were randomly selected for RT-PCR detection, sequencing, and phylogenetic analysis of suspected HoBi-like Pestivirus (HoBiPeV) strains. The results showed that the positive rates of BVDV antibodies and antigens were 53.68% (3,303/6,153) and 6.12% (36/588), respectively. One of the 10 randomly selected seropositive samples was infected with the HoBiPeV strain. HoBiPeV, also referred to as BVDV-3, is an emerging atypical Pestivirus that occurs in cattle and small ruminants, and its clinical signs are similar to those of BVDV infection. Based on the whole genome of the BVDV-3 reference strain (JS12/01) on the GenBank, the homology of the detected strain was 96.02%. The whole genome nucleotide sequence was submitted to the GenBank database, and the gene accession number was obtained: OP210314. The whole genome of isolate OP210314 was 12.239 nucleotides and contained a 5'-UTR of 340 nucleotides, a 3'-UTR of 199 nucleotides, and a large open reading frame (ORF) encoding a polyprotein consisting of 3,899 amino acids. In conclusion, the prevalence rate of BVDV infection in Xinjiang dairy cows is high, and the genetic diversity is increasing. This study successfully identified and isolated HoBiPeV in Xinjiang for the first time, posing a potential threat to the cattle industry in Xinjiang.
Collapse
Affiliation(s)
- Ningning Yang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Mingguo Xu
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Zhenguo Ma
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Honghuan Li
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Shengnan Song
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Xiaoxiao Gu
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Jingnan Liu
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Zhonglian Yang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Hongji Zhu
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Hailong Ma
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Jihai Yi
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Yong Wang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Zhen Wang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Jinliang Sheng
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Chuangfu Chen
- College of Animal Science and Technology, Shihezi University, Shihezi, China
- Key Laboratory of Control and Prevention of Animal Disease, Xinjiang Production and Construction Corps, Shihezi, China
- Co-Innovation Center for Zoonotic Infectious Diseases in the Western Region, Shihezi, China
| |
Collapse
|
11
|
Wu Y, Zhang G, Jiang H, Xin T, Jia L, Zhang Y, Yang Y, Qin T, Xu C, Cao J, Ameni G, Ahmad A, Ding J, Li L, Ma Y, Fan X. Molecular Characteristics of Bovine Viral Diarrhea Virus Strains Isolated from Persistently Infected Cattle. Vet Sci 2023; 10:413. [PMID: 37505819 PMCID: PMC10384089 DOI: 10.3390/vetsci10070413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 07/29/2023] Open
Abstract
In this study, we reported the isolation, identification, and molecular characteristics of nine BVDV strains that were isolated from the serum of persistently infected cattle. The new strains were designated as BVDV TJ2101, TJ2102, TJ2103, TJ2104, TJ2105, TJ2106, TJ2107, TJ2108 and TJ2109. The TJ2102 and TJ2104 strains were found to be cytopathic BVDV, and the other strains were non-cytopathic BVDV. An alignment and phylogenetic analysis showed that the new isolates share 92.2-96.3% homology with the CP7 strain and, thus, were classified as the BVDV-1b subgenotype. A recombination analysis of the genome sequences showed that the new strains could be recombined by the major parent BVDV-1a NADL strain and the minor parent BVDV-1m SD-15 strain. Some genome variations or unique amino acid mutations were found in 5'-UTR, E0 and E2 of these new isolates. In addition, a potential linear B cell epitopes prediction showed that the potential linear B cell epitope at positions 56-61 is highly variable in BVDV-1b. In conclusion, the present study has identified nine strains of BVDV from persistently infected cattle in China. Further studies on the virulence and pathogenesis of these new strains are recommended.
Collapse
Affiliation(s)
- Yinghao Wu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Guangzhi Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hui Jiang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ting Xin
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Li Jia
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Yichen Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yifei Yang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Tong Qin
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chuang Xu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jie Cao
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Gobena Ameni
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Abu Dhabi P.O. Box 15551, United Arab Emirates
| | - Arfan Ahmad
- University Diagnostic Lab, University of Veterinary & Animal Sciences, Lahore 54000, Pakistan
| | - Jiabo Ding
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Limin Li
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Yuzhong Ma
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Xuezheng Fan
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
12
|
Yang N, Hu N, Zhang J, Yi J, Wang Z, Wang Y, Wu P, Chen C. bta-miR-2904 inhibits bovine viral diarrhea virus replication by targeting viral-infection-induced autophagy via ATG13. Arch Virol 2022; 168:11. [PMID: 36576583 DOI: 10.1007/s00705-022-05630-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/09/2022] [Indexed: 12/29/2022]
Abstract
MicroRNAs (miRNAs) are endogenous small and noncoding RNA molecules (18-25 nt) that can regulate expression of their target genes post-transcriptionally. Previously, using high-throughput sequencing data obtained on a Solexa platform, we found that Bos taurus bta-miR-2904 (miR-2904) was significantly upregulated in Madin-Darby bovine kidney (MDBK) cells infected with bovine viral diarrhea virus (BVDV) strain NADL at 2, 6, and 18 h postinfection (hpi) compared to uninfected MDBK cells. Moreover, miR-2904 overexpression significantly reduced BVDV replication. However, the mechanism by which miR-2904 inhibits viral replication remains unclear. In this study, we used electron microscopy, laser confocal microscopy, dual-luciferase reporter analysis, real-time PCR, and Western blot assays to investigate the effect of the miR-2904 expression on BVDV NADL replication and virus-infection-induced autophagy. The results indicate that miR-2904 inhibits autophagy of MDBK cells by targeting autophagy-related gene 13 (ATG13), and overexpression of miR-2904 inhibited the replication of BVDV NADL.
Collapse
Affiliation(s)
- Ningning Yang
- College of Animal Science and Technology, Shihezi University, 832003, Shihezi, Xinjiang, China
| | - Nana Hu
- College of Animal Science and Technology, Shihezi University, 832003, Shihezi, Xinjiang, China
| | - Jiangwei Zhang
- College of Animal Science and Technology, Shihezi University, 832003, Shihezi, Xinjiang, China
| | - Jihai Yi
- College of Animal Science and Technology, Shihezi University, 832003, Shihezi, Xinjiang, China
| | - Zhen Wang
- College of Animal Science and Technology, Shihezi University, 832003, Shihezi, Xinjiang, China
| | - Yong Wang
- College of Animal Science and Technology, Shihezi University, 832003, Shihezi, Xinjiang, China
| | - Peng Wu
- College of Life Science, Shihezi University, 832003, Shihezi, Xinjiang, China
| | - Chuangfu Chen
- College of Animal Science and Technology, Shihezi University, 832003, Shihezi, Xinjiang, China.
| |
Collapse
|
13
|
Yi W, Zheng F, Zhu H, Wu Y, Wei J, Pan Z. Role of the conserved E2 residue G259 in classical swine fever virus production and replication. Virus Res 2022; 313:198747. [DOI: 10.1016/j.virusres.2022.198747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/08/2022] [Accepted: 03/12/2022] [Indexed: 12/31/2022]
|
14
|
Identification of differentially expressed gene pathways between cytopathogenic and non-cytopathogenic BVDV-1 strains by analysis of the transcriptome of infected primary bovine cells. Virology 2021; 567:34-46. [PMID: 34953294 DOI: 10.1016/j.virol.2021.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/24/2021] [Accepted: 12/12/2021] [Indexed: 12/13/2022]
Abstract
The bovine viral diarrhea virus 1 (BVDV-1), belonging to the Pestivirus genus, is characterized by the presence of two biotypes, cytopathogenic (cp) or non-cytopathogenic (ncp). For a better understanding of the host pathogen interactions, we set out to identify transcriptomic signatures of bovine lung primary cells (BPCs) infected with a cp or a ncp strain. For this, we used both a targeted approach by reverse transcription droplet digital PCR and whole genome approach using RNAseq. Data analysis showed 3571 differentially expressed transcripts over time (Fold Change >2) and revealed that the most deregulated pathways for cp strain are signaling pathways involved in responses to viral infection such as inflammatory response or apoptosis pathways. Interestingly, our data analysis revealed a deregulation of Wnt signaling pathway, a pathway described in embryogenesis, that was specifically seen with the BVDV-1 cp but not the ncp suggesting a role of this pathway in viral replication.
Collapse
|
15
|
A double deletion prevents replication of the pestivirus bovine viral diarrhea virus in the placenta of pregnant heifers. PLoS Pathog 2021; 17:e1010107. [PMID: 34879119 PMCID: PMC8654156 DOI: 10.1371/journal.ppat.1010107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/10/2021] [Indexed: 01/13/2023] Open
Abstract
In contrast to wild type bovine viral diarhea virus (BVDV) specific double deletion mutants are not able to establish persistent infection upon infection of a pregnant heifer. Our data shows that this finding results from a defect in transfer of the virus from the mother animal to the fetus. Pregnant heifers were inoculated with such a double deletion mutant or the parental wild type virus and slaughtered pairwise on days 6, 9, 10 and 13 post infection. Viral RNA was detected via qRT-PCR and RNAscope analyses in maternal tissues for both viruses from day 6 p.i. on. However, the double deletion mutant was not detected in placenta and was only found in samples from animals infected with the wild type virus. Similarly, high levels of wild type viral RNA were present in fetal tissues whereas the genome of the double deletion mutant was not detected supporting the hypothesis of a specific inhibition of mutant virus replication in the placenta. We compared the induction of gene expression upon infection of placenta derived cell lines with wild type and mutant virus via gene array analysis. Genes important for the innate immune response were strongly upregulated by the mutant virus compared to the wild type in caruncle epithelial cells that establish the cell layer on the maternal side at the maternal–fetal interface in the placenta. Also, trophoblasts which can be found on the fetal side of the interface showed significant induction of gene expression upon infection with the mutant virus although with lower complexity. Growth curves recorded in both cell lines revealed a general reduction of virus replication in caruncular epithelial cells compared to the trophoblasts. Compared to the wild type virus this effect was dramtic for the mutant virus that reached only a TCID50 of 1.0 at 72 hours post infection. Here we report on animal studies elucidating mechanisms preventing the transfer of a double deletion mutant of a pestivirus to the fetus in pregnant heifers. This mutant lacks both known factors engaged in blocking the innate immune response to pestiviral infection. As shown also in earlier studies, this mutant was not detected in the fetuses at any of the tested time points in contrast to the wild-type (wt) virus. However, similar to the wt the mutant was detected in a large variety of different maternal tissues. The only exception was the placenta where only wt but not mutant virus was detected. Using gene array analyses we showed that infection of two cell lines derived either from the maternal or the fetal site of the maternal-fetal interface with the mutant virus induces a significant antiviral gene expression response. The reaction of cells from the maternal side was more complex and virus replication in these cells was reduced, almost completly blocking the mutant virus. These results support the hypothesis that replication of the mutant virus is blocked in the placenta due to a highly active innate immune response and the prevention of replication also blocks transfer of the virus to the fetus.
Collapse
|
16
|
Reuscher CM, Schmidt L, Netsch A, Lamp B. Characterization of a Cytopathogenic Reporter CSFV. Viruses 2021; 13:1209. [PMID: 34201706 PMCID: PMC8310069 DOI: 10.3390/v13071209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 12/30/2022] Open
Abstract
Cytopathogenic (cp) pestiviruses frequently emerge in cattle that are persistently infected with the bovine viral diarrhea virus (BVDV) as a consequence of RNA recombination and mutation. They induce apoptosis in infected tissue cultures, are highly attenuated in the immunocompetent host, and unable to establish persistent infections after diaplacental infections. Cp strains of BVDV have been used as naturally attenuated live vaccines and for species-specific plaque reduction tests for the indirect serological detection of BVDV. Here, we present a genetically engineered cp strain of the classical swine fever virus (CSFV). Cytopathogenicity of the strain was induced by the insertion of ubiquitin embedded in a large NS3 to NS4B duplication. The CSFV RNA genome was stabilized by the inactivation of the NS2 autoprotease, hindering the deletion of the insertion and the reversion to a wild-type genome. Additional insertion of a mCherry gene at the 5'-end of the E2 gene allowed fluorescence-verified plaque reduction assays for CSFV, thus providing a novel, cost-efficient diagnostic tool. This genetically stabilized cp CSFV strain could be further used as a basis for potential new modified live vaccines. Taken together, we applied reverse genetics to rationally fixate a typical cp NS3 duplication in a CSFV genome.
Collapse
Affiliation(s)
- Carina Maria Reuscher
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University, Biomedical Research Center, Schubertstrasse 81, 35392 Giessen, Germany
| | - Lisa Schmidt
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University, Biomedical Research Center, Schubertstrasse 81, 35392 Giessen, Germany
| | - Anette Netsch
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University, Biomedical Research Center, Schubertstrasse 81, 35392 Giessen, Germany
| | - Benjamin Lamp
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University, Biomedical Research Center, Schubertstrasse 81, 35392 Giessen, Germany
| |
Collapse
|
17
|
Membrane Topology of Pestiviral Non-Structural Protein 2 and determination of the minimal autoprotease domain. J Virol 2021; 95:JVI.00154-21. [PMID: 33731461 PMCID: PMC8139697 DOI: 10.1128/jvi.00154-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pestiviruses like bovine viral diarrhea virus (BVDV) belong to the family Flaviviridae A distinctive feature of the Flaviviridae is the importance of non-structural (NS) proteins for RNA genome replication and virus morphogenesis. For pestiviruses, the NS2 protease-mediated release of NS3 is essential for RNA replication, whereas uncleaved NS2-3 is indispensable for producing viral progeny. Accordingly, in the pestiviral life cycle the switch from RNA replication to virion morphogenesis is temporally regulated by the extent of NS2-3 cleavage, which is catalyzed by the NS2 autoprotease. A detailed knowledge of the structural and functional properties of pestiviral NS2 and NS2-3 is mandatory for a better understanding of these processes.In the present study, we experimentally determined the membrane topology of NS2 of BVDV-1 strain NCP7 by the Substituted Cysteine Accessibility Method (SCAM) assay. According to the resulting model, the N terminus of NS2 resides in the ER lumen and is followed by three transmembrane segments (TM) and a cytoplasmic C-terminal protease domain. We used the resulting model for fine mapping of the minimal autoprotease domain. Only one TM segment was found to be essential for maintaining residual autoprotease activity. While the topology of pestiviral NS2 is overall comparable to the one of hepatitis C virus (HCV) NS2, our data also reveal potentially important differences between the two molecules. The improved knowledge about structural and functional properties of this protein will support future functional and structural studies on pestiviral NS2.ImportancePestiviral NS2 is central to the regulation of RNA replication and virion morphogenesis via its autoprotease activity. This activity is temporally regulated by the cellular DNAJC14 as a cofactor: while free NS3 is required for RNA replication as a component of the viral replicase, only uncleaved NS2-3 supports virion morphogenesis. For a better understanding of the underlying molecular interactions, topological and structural data are required. The topology-based determination of the minimal NS2-protease domain in the present study will facilitate future attempts to determine the structure of this unusual protease cofactor complex. In the hepatitis C virus system, NS2 functions as a hub in virion morphogenesis by interacting with structural as well as non-structural proteins. Our knowledge of the membrane topology will significantly support future detailed interaction studies for pestiviral NS2.
Collapse
|
18
|
Riedel C, Aitkenhead H, El Omari K, Rümenapf T. Atypical Porcine Pestiviruses: Relationships and Conserved Structural Features. Viruses 2021; 13:v13050760. [PMID: 33926056 PMCID: PMC8146772 DOI: 10.3390/v13050760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 01/22/2023] Open
Abstract
For two decades, the genus pestivirus has been expanding and the host range now extends to rodents, bats and marine mammals. In this review, we focus on one of the most diverse pestiviruses, atypical porcine pestivirus or pestivirus K, comparing its special traits to what is already known at the structural and functional level from other pestiviruses.
Collapse
Affiliation(s)
- Christiane Riedel
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
- Correspondence:
| | - Hazel Aitkenhead
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; (H.A.); (K.E.O.)
- Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0FA, UK
| | - Kamel El Omari
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; (H.A.); (K.E.O.)
- Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0FA, UK
| | - Till Rümenapf
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
| |
Collapse
|
19
|
Zheng F, Yi W, Liu W, Zhu H, Gong P, Pan Z. A positively charged surface patch on the pestivirus NS3 protease module plays an important role in modulating NS3 helicase activity and virus production. Arch Virol 2021; 166:1633-1642. [PMID: 33787991 DOI: 10.1007/s00705-021-05055-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 02/08/2021] [Indexed: 10/21/2022]
Abstract
Pestivirus nonstructural protein 3 (NS3) is a multifunctional protein with protease and helicase activities that are essential for virus replication. In this study, we used a combination of biochemical and genetic approaches to investigate the relationship between a positively charged patch on the protease module and NS3 function. The surface patch is composed of four basic residues, R50, K74 and K94 in the NS3 protease domain and H24 in the structurally integrated cofactor NS4APCS. Single-residue or simultaneous four-residue substitutions in the patch to alanine or aspartic acid had little effect on ATPase activity. However, single substitutions of R50, K94 or H24 or a simultaneous four-residue substitution resulted in apparent changes in the helicase activity and RNA-binding ability of NS3. When these mutations were introduced into a classical swine fever virus (CSFV) cDNA clone, a single substitution at K94 or a simultaneous four-residue substitution (Qua_A or Qua_D) impaired the production of infectious virus. Furthermore, the replication efficiency of the CSFV variants was partially correlated with the helicase activity of NS3 in vitro. Our results suggest that the conserved positively charged patch on NS3 plays an important role in modulating the NS3 helicase activity in vitro and CSFV production.
Collapse
Affiliation(s)
- Fengwei Zheng
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Weicheng Yi
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Weichi Liu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Hongchang Zhu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Peng Gong
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Zishu Pan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
20
|
Abstract
Viral infections lead to the death of more than a million people each year around the world, both directly and indirectly. Viruses interfere with many cell functions, particularly critical pathways for cell death, by affecting various intracellular mediators. MicroRNAs (miRNAs) are a major example of these mediators because they are involved in many (if not most) cellular mechanisms. Virus-regulated miRNAs have been implicated in three cell death pathways, namely, apoptosis, autophagy, and anoikis. Several molecules (e.g., BECN1 and B cell lymphoma 2 [BCL2] family members) are involved in both apoptosis and autophagy, while activation of anoikis leads to cell death similar to apoptosis. These mechanistic similarities suggest that common regulators, including some miRNAs (e.g., miR-21 and miR-192), are involved in different cell death pathways. Because the balance between cell proliferation and cell death is pivotal to the homeostasis of the human body, miRNAs that regulate cell death pathways have drawn much attention from researchers. miR-21 is regulated by several viruses and can affect both apoptosis and anoikis via modulating various targets, such as PDCD4, PTEN, interleukin (IL)-12, Maspin, and Fas-L. miR-34 can be downregulated by viral infection and has different effects on apoptosis, depending on the type of virus and/or host cell. The present review summarizes the existing knowledge on virus-regulated miRNAs involved in the modulation of cell death pathways. Understanding the mechanisms for virus-mediated regulation of cell death pathways could provide valuable information to improve the diagnosis and treatment of many viral diseases.
Collapse
|
21
|
Pasin F, Shan H, García B, Müller M, San León D, Ludman M, Fresno DH, Fátyol K, Munné-Bosch S, Rodrigo G, García JA. Abscisic Acid Connects Phytohormone Signaling with RNA Metabolic Pathways and Promotes an Antiviral Response that Is Evaded by a Self-Controlled RNA Virus. PLANT COMMUNICATIONS 2020; 1:100099. [PMID: 32984814 PMCID: PMC7518510 DOI: 10.1016/j.xplc.2020.100099] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 05/13/2023]
Abstract
A complex network of cellular receptors, RNA targeting pathways, and small-molecule signaling provides robust plant immunity and tolerance to viruses. To maximize their fitness, viruses must evolve control mechanisms to balance host immune evasion and plant-damaging effects. The genus Potyvirus comprises plant viruses characterized by RNA genomes that encode large polyproteins led by the P1 protease. A P1 autoinhibitory domain controls polyprotein processing, the release of a downstream functional RNA-silencing suppressor, and viral replication. Here, we show that P1Pro, a plum pox virus clone that lacks the P1 autoinhibitory domain, triggers complex reprogramming of the host transcriptome and high levels of abscisic acid (ABA) accumulation. A meta-analysis highlighted ABA connections with host pathways known to control RNA stability, turnover, maturation, and translation. Transcriptomic changes triggered by P1Pro infection or ABA showed similarities in host RNA abundance and diversity. Genetic and hormone treatment assays showed that ABA promotes plant resistance to potyviral infection. Finally, quantitative mathematical modeling of viral replication in the presence of defense pathways supported self-control of polyprotein processing kinetics as a viral mechanism that attenuates the magnitude of the host antiviral response. Overall, our findings indicate that ABA is an active player in plant antiviral immunity, which is nonetheless evaded by a self-controlled RNA virus.
Collapse
Affiliation(s)
- Fabio Pasin
- Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain
- Agricultural Biotechnology Research Center, Academia Sinica, 11529 Taipei, Taiwan
| | - Hongying Shan
- Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain
| | - Beatriz García
- Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain
| | - Maren Müller
- Departamento de Biología Evolutiva, Ecología y Ciencias Ambientales, Facultad de Biología, Universidad de Barcelona, 08028 Barcelona, Spain
| | - David San León
- Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain
| | - Márta Ludman
- Agricultural Biotechnology Institute, National Agricultural Research and Innovation Centre, 2100 Gödöllő, Hungary
| | - David H. Fresno
- Departamento de Biología Evolutiva, Ecología y Ciencias Ambientales, Facultad de Biología, Universidad de Barcelona, 08028 Barcelona, Spain
| | - Károly Fátyol
- Agricultural Biotechnology Institute, National Agricultural Research and Innovation Centre, 2100 Gödöllő, Hungary
| | - Sergi Munné-Bosch
- Departamento de Biología Evolutiva, Ecología y Ciencias Ambientales, Facultad de Biología, Universidad de Barcelona, 08028 Barcelona, Spain
| | - Guillermo Rodrigo
- Institute for Integrative Systems Biology (I2SysBio), CSIC-University of Valencia, 46980 Paterna, Spain
| | | |
Collapse
|
22
|
Clinical and Serological Evaluation of LINDA Virus Infections in Post-Weaning Piglets. Viruses 2019; 11:v11110975. [PMID: 31652833 PMCID: PMC6893756 DOI: 10.3390/v11110975] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/14/2019] [Accepted: 10/21/2019] [Indexed: 01/04/2023] Open
Abstract
The novel pestivirus species known as lateral-shaking inducing neuro-degenerative agent (LINDA) virus emerged in 2015 in a piglet-producing farm in Austria. Affected piglets showed strong congenital tremor as a result of severe lesions in the central nervous system. Here, we report the results of a controlled animal infection experiment. Post-weaning piglets were infected with LINDA to determine the susceptibility of pigs, the clinical consequences of infection and the humoral immune response against LINDA. No clinically overt disease signs were observed in the piglets. Viremia was hardly detectable, but LINDA was present in the spleen and several lymphatic organs until the end of the experiment on day 28 post-infection. Oronasal virus shedding together with the infection of one sentinel animal provided additional evidence for the successful replication and spread of LINDA in the piglets. Starting on day 14 post-infection, all infected animals showed a strong humoral immune response with high titers of neutralizing antibodies against LINDA. No cross-neutralizing activity of these sera with other pestiviral species was observed. According to these data, following postnatal infection, LINDA is a rather benign virus that can be controlled by the pig’s immune system. However, further studies are needed to investigate the effects of LINDA on the fetus after intrauterine infection.
Collapse
|
23
|
CRISPR/Cas9-Mediated Knockout of DNAJC14 Verifies This Chaperone as a Pivotal Host Factor for RNA Replication of Pestiviruses. J Virol 2019; 93:JVI.01714-18. [PMID: 30518653 DOI: 10.1128/jvi.01714-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/20/2018] [Indexed: 12/19/2022] Open
Abstract
Pestiviruses like bovine viral diarrhea virus (BVDV) are a threat to livestock. For pestiviruses, cytopathogenic (cp) and noncytopathogenic (noncp) strains are distinguished in cell culture. The noncp biotype of BVDV is capable of establishing persistent infections, which is a major problem in disease control. The noncp biotype rests on temporal control of viral RNA replication, mediated by regulated cleavage of nonstructural protein 2-3 (NS2-3). This cleavage is catalyzed by the autoprotease in NS2, the activity of which depends on its cellular cofactor, DNAJC14. Since this chaperone is available in small amounts and binds tightly to NS2, NS2-3 translated later in infection is no longer cleaved. As NS3 is an essential constituent of the viral replicase, this shift in polyprotein processing correlates with downregulation of RNA replication. In contrast, cp BVDV strains arising mostly by RNA recombination show highly variable genome structures and display unrestricted NS3 release. The functional importance of DNAJC14 for noncp pestiviruses has been established so far only for BVDV-1. It was therefore enigmatic whether replication of other noncp pestiviruses is also DNAJC14 dependent. By generating bovine and porcine DNAJC14 knockout cells, we could show that (i) replication of 6 distinct noncp pestivirus species (A to D, F, and G) depends on DNAJC14, (ii) the pestiviral replicase NS3-5B can assemble into functional complexes in the absence of DNAJC14, and (iii) all cp pestiviruses replicate their RNA and generate infectious progeny independent of host DNAJC14. Together, these findings confirm DNAJC14 as a pivotal cellular cofactor for the replication and maintenance of the noncp biotype of pestiviruses.IMPORTANCE Only noncp pestivirus strains are capable of establishing life-long persistent infections to generate the virus reservoir in the field. The molecular basis for this biotype is only partially understood and only investigated in depth for BVDV-1 strains. Temporal control of viral RNA replication correlates with the noncp biotype and is mediated by limiting amounts of cellular DNAJC14 that activate the viral NS2 protease to catalyze the release of the essential replicase component NS3. Here, we demonstrate that several species of noncp pestiviruses depend on DNAJC14 for their RNA replication. Moreover, all cp pestiviruses, in sharp contrast to their noncp counterparts, replicate independently of DNAJC14. The generation of a cp BVDV in the persistently infected animal is causative for onset of mucosal disease. Therefore, the observed strict biotype-specific difference in DNAJC14 dependency should be further examined for its role in cell type/tissue tropism and the pathogenesis of this lethal disease.
Collapse
|
24
|
Pan S, Mou C, Chen Z. An emerging novel virus: Atypical porcine pestivirus (APPV). Rev Med Virol 2018; 29:e2018. [PMID: 30411827 DOI: 10.1002/rmv.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/02/2018] [Accepted: 10/16/2018] [Indexed: 12/27/2022]
Abstract
Emerging porcine pestivirus diseases frequently challenge prevention and control strategies in the swine industry. Over the past decade, a few novel pestiviruses have been identified in pigs. This article focuses on the recently emerging atypical porcine pestivirus (APPV) that potentially threatens global swine herd health security. The virus was first identified in 2016, in the United States and thereafter, accumulated evidence shows that it is currently distributed in three continents. The clinical presentation of APPV-infected pigs is characterized by congenital tremor (CT) type A-II in piglets, while adult pigs may become persistent carriers and shedders. Here, a literature review is conducted to summarize the published findings in the virus genomic biology, transmission, epidemiology, pathogenesis, and diagnosis, which would shed light on acceleration of development of anti-APPV strategies.
Collapse
Affiliation(s)
- Shuonan Pan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Chunxiao Mou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zhenhai Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
25
|
Goraya MU, Ziaghum F, Chen S, Raza A, Chen Y, Chi X. Role of innate immunity in pathophysiology of classical swine fever virus infection. Microb Pathog 2018; 119:248-254. [DOI: 10.1016/j.micpath.2018.04.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 04/02/2018] [Accepted: 04/11/2018] [Indexed: 12/25/2022]
|
26
|
Rodamilans B, Shan H, Pasin F, García JA. Plant Viral Proteases: Beyond the Role of Peptide Cutters. FRONTIERS IN PLANT SCIENCE 2018; 9:666. [PMID: 29868107 PMCID: PMC5967125 DOI: 10.3389/fpls.2018.00666] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/30/2018] [Indexed: 05/23/2023]
Abstract
Almost half of known plant viral species rely on proteolytic cleavages as key co- and post-translational modifications throughout their infection cycle. Most of these viruses encode their own endopeptidases, proteases with high substrate specificity that internally cleave large polyprotein precursors for the release of functional sub-units. Processing of the polyprotein, however, is not an all-or-nothing process in which endopeptidases act as simple peptide cutters. On the contrary, spatial-temporal modulation of these polyprotein cleavage events is crucial for a successful viral infection. In this way, the processing of the polyprotein coordinates viral replication, assembly and movement, and has significant impact on pathogen fitness and virulence. In this mini-review, we give an overview of plant viral proteases emphasizing their importance during viral infections and the varied functionalities that result from their proteolytic activities.
Collapse
Affiliation(s)
- Bernardo Rodamilans
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Hongying Shan
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Fabio Pasin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Juan Antonio García
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
27
|
Uncoupling of Protease trans-Cleavage and Helicase Activities in Pestivirus NS3. J Virol 2017; 91:JVI.01094-17. [PMID: 28835495 DOI: 10.1128/jvi.01094-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/07/2017] [Indexed: 01/25/2023] Open
Abstract
The nonstructural protein NS3 from the Flaviviridae family is a multifunctional protein that contains an N-terminal protease and a C-terminal helicase, playing essential roles in viral polyprotein processing and genome replication. Here we report a full-length crystal structure of the classical swine fever virus (CSFV) NS3 in complex with its NS4A protease cofactor segment (PCS) at a 2.35-Å resolution. The structure reveals a previously unidentified ∼2,200-Å2 intramolecular protease-helicase interface comprising three clusters of interactions, representing a "closed" global conformation related to the NS3-NS4A cis-cleavage event. Although this conformation is incompatible with protease trans-cleavage, it appears to be functionally important and beneficial to the helicase activity, as the mutations designed to perturb this conformation impaired both the helicase activities in vitro and virus production in vivo Our work reveals important features of protease-helicase coordination in pestivirus NS3 and provides a key basis for how different conformational states may explicitly contribute to certain functions of this natural protease-helicase fusion protein.IMPORTANCE Many RNA viruses encode helicases to aid their RNA genome replication and transcription by unwinding structured RNA. Being naturally fused to a protease participating in viral polyprotein processing, the NS3 helicases encoded by the Flaviviridae family viruses are unique. Therefore, how these two enzyme modules coordinate in a single polypeptide is of particular interest. Here we report a previously unidentified conformation of pestivirus NS3 in complex with its NS4A protease cofactor segment (PCS). This conformational state is related to the protease cis-cleavage event and is optimal for the function of helicase. This work provides an important basis to understand how different enzymatic activities of NS3 may be achieved by the coordination between the protease and helicase through different conformational states.
Collapse
|
28
|
Zhao C, Shen X, Wu R, Li L, Pan Z. Classical swine fever virus nonstructural protein p7 modulates infectious virus production. Sci Rep 2017; 7:12995. [PMID: 29021567 PMCID: PMC5636883 DOI: 10.1038/s41598-017-13352-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/21/2017] [Indexed: 02/07/2023] Open
Abstract
The classical swine fever virus (CSFV) nonstructural protein p7 is crucial for virus production, yet precisely how the p7 modulates this process is unclear. In this study, we first identified the interactions of p7 with E2 and NS2. The key binding regions of both p7 and NS2 mapped to the first transmembrane (TM1) domain of two proteins. Three amino acid substitutions in the TM1 region of p7 (p7TDI18/19/20AAA, p7EVV21/22/23AAA and p7YFY25/26/30AAA) impaired infectious virus production and reduced the interaction of p7 with the NS2 protein. The E2p7 processing and mature p7, but not the E2p7 precursor, are essential for infectious virus production. Bicistronic mutants (pSM/E2/IRES) with single substitutions at residues 1 to 9 of p7 exhibited a significantly increased infectious CSFV titer compared to their counterparts in the context of pSM. Viral genomic RNA copies of the mutants exhibited similar levels compared with the wt CSFV. Our results demonstrated that CSFV p7 and its precursor E2p7 modulate viral protein interactions and infectious virus production without influencing viral RNA replication.
Collapse
Affiliation(s)
- Cheng Zhao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiaofang Shen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Rui Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ling Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zishu Pan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
29
|
Zhou Y, Ren Y, Cong Y, Mu Y, Yin R, Ding Z. Autophagy induced by bovine viral diarrhea virus infection counteracts apoptosis and innate immune activation. Arch Virol 2017; 162:3103-3118. [PMID: 28702931 PMCID: PMC7086613 DOI: 10.1007/s00705-017-3482-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 06/22/2017] [Indexed: 01/09/2023]
Abstract
Bovine viral diarrhea virus (BVDV) is an important pathogen of cattle that plays a complex role in disease. There are two biotypes of BVDV: non-cytopathic (NCP) and cytopathic (CP). One strategy that has been used to treat or prevent virus-associated diseases is the modulation of autophagy, which is used by the innate immune system to defend against viral infection; however, at present, the interplay between autophagy and BVDV remains unclear. Madin-Darby bovine kidney cells stably expressing microtubule-associated protein 1 light chain 3B (LC3B) with green fluorescent protein (GFP) (GFP-LC3-MDBK cells) and autophagy-deficient MDBKs (shBCN1-MDBK cells) were constructed. Then MDBK, GFP-LC3-MDBK and shBCN1-MDBK cells were infected with CP or NCP BVDV strains. The LC3-II turnover rate was estimated by western blot, autophagosomes were visualized by confocal microscopy, and ultrastructural analysis was performed using electron microscopy. Autophagy flux was observed using chloroquine as an inhibitor of the autophagic process. The influence of autophagy on BVDV replication and release was investigated using virus titration, and its effect on cell viability was also studied. The effect of BVDV-induced autophagy on the survival of BVDV-infected host cell, cell apoptosis, and interferon (IFN) signalling was studied by flow cytometric analysis and quantitative RT-(q)PCR using shBCN1-MDBK cells. we found that infection with either CP or NCP BVDV strains induced steady-state autophagy in MDBK cells, as evident by the increased number of double- or single-membrane vesicles, the accumulation of GFP- microtubule-associated protein 1 light chain 3 (LC3) dots, and the conversion of LC3-I (cytosolic) to LC3-II (membrane-bound) forms. The complete autophagic process was verified by monitoring the LC3-II turnover ratio, lysosomal delivery, and proteolysis. In addition, we found that CP and NCP BVDV growth was inhibited in MDBK cells treated with high levels of an autophagy inducer or inhibitor, or in autophagy deficient-MDBK cells. Furthermore, our studies also suggested that CP and NCP BVDV infection in autophagy-knockdown MDBK cells increased apoptotic cell death and enhanced the expression of the mRNAs for IFN-α, Mx1, IFN-β, and OAS-1 as compared with control MDBK cells. Our study provides strong evidence that BVDV infection induces autophagy, which facilitates BVDV replication in MDBK cells and impairs the innate immune response. These findings might help to illustrate the pathogenesis of persistent infection caused by BVDV.
Collapse
Affiliation(s)
- Yulong Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Xi’an Road 5333#, Changchun, 130062 Jilin China
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319 China
| | - Yachao Ren
- Harbin Medical University-Daqing, Daqing, 163319 China
| | - Yanlong Cong
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Xi’an Road 5333#, Changchun, 130062 Jilin China
| | - Yu Mu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Xi’an Road 5333#, Changchun, 130062 Jilin China
| | - Renfu Yin
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Xi’an Road 5333#, Changchun, 130062 Jilin China
| | - Zhuang Ding
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Xi’an Road 5333#, Changchun, 130062 Jilin China
| |
Collapse
|
30
|
Lei J, Hilgenfeld R. RNA-virus proteases counteracting host innate immunity. FEBS Lett 2017; 591:3190-3210. [PMID: 28850669 PMCID: PMC7163997 DOI: 10.1002/1873-3468.12827] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 01/20/2023]
Abstract
Virus invasion triggers host immune responses, in particular, innate immune responses. Pathogen‐associated molecular patterns of viruses (such as dsRNA, ssRNA, or viral proteins) released during virus replication are detected by the corresponding pattern‐recognition receptors of the host, and innate immune responses are induced. Through production of type‐I and type‐III interferons as well as various other cytokines, the host innate immune system forms the frontline to protect host cells and inhibit virus infection. Not surprisingly, viruses have evolved diverse strategies to counter this antiviral system. In this review, we discuss the multiple strategies used by proteases of positive‐sense single‐stranded RNA viruses of the families Picornaviridae, Coronaviridae, and Flaviviridae, when counteracting host innate immune responses.
Collapse
Affiliation(s)
- Jian Lei
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Germany
| | - Rolf Hilgenfeld
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Germany.,German Center for Infection Research (DZIF), Hamburg - Lübeck - Borstel - Riems Site, University of Lübeck, Germany
| |
Collapse
|
31
|
Classical Swine Fever-An Updated Review. Viruses 2017; 9:v9040086. [PMID: 28430168 PMCID: PMC5408692 DOI: 10.3390/v9040086] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/11/2017] [Accepted: 04/13/2017] [Indexed: 01/03/2023] Open
Abstract
Classical swine fever (CSF) remains one of the most important transboundary viral diseases of swine worldwide. The causative agent is CSF virus, a small, enveloped RNA virus of the genus Pestivirus. Based on partial sequences, three genotypes can be distinguished that do not, however, directly correlate with virulence. Depending on both virus and host factors, a wide range of clinical syndromes can be observed and thus, laboratory confirmation is mandatory. To this means, both direct and indirect methods are utilized with an increasing degree of commercialization. Both infections in domestic pigs and wild boar are of great relevance; and wild boars are a reservoir host transmitting the virus sporadically also to pig farms. Control strategies for epidemic outbreaks in free countries are mainly based on classical intervention measures; i.e., quarantine and strict culling of affected herds. In these countries, vaccination is only an emergency option. However, live vaccines are used for controlling the disease in endemically infected regions in Asia, Eastern Europe, the Americas, and some African countries. Here, we will provide a concise, updated review on virus properties, clinical signs and pathology, epidemiology, pathogenesis and immune responses, diagnosis and vaccination possibilities.
Collapse
|
32
|
Molecular chaperone Jiv promotes the RNA replication of classical swine fever virus. Virus Genes 2017; 53:426-433. [PMID: 28341934 DOI: 10.1007/s11262-017-1448-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 03/18/2017] [Indexed: 12/18/2022]
Abstract
The nonstructural protein 2 (NS2) of classical swine fever virus (CSFV) is a self-splicing ribozyme wherein the precursor protein NS2-3 is cleaved, and the cleavage efficiency of NS2-3 is crucial to the replication of viral RNA. However, the proteolytic activity of NS2 autoprotease may be achieved through a cellular chaperone called J-domain protein interacting with viral protein (Jiv) or its fragment Jiv90, as evidence suggests that Jiv is required for the proper functioning of the NS2 protein of bovine viral diarrhea virus. Hence, the expression of Jiv may be correlated with the replication efficiency of CSFV RNA. We investigated the expression levels of Jiv and viral RNA in CSFV-infected cells and tissues using Real-time RT-PCR or Western blot analysis. The obtained results show that Jiv90 possibly plays an important role in the lifecycle of CSFV because the distribution of Jiv90 protein shows a positive correlation with the viral load of CSFV. Furthermore, the overexpression or knockdown of Jiv90 in swine cells can also significantly promote or decrease the viral load, respectively. The detection of Flow cytometry shows that the overexpression of Jiv90 prolongs the G1 phase of cell cycles but has no effect on apoptosis. These findings are likely to be of benefit in clarifying the pathogenesis of the CSFV.
Collapse
|
33
|
Dubrau D, Tortorici MA, Rey FA, Tautz N. A positive-strand RNA virus uses alternative protein-protein interactions within a viral protease/cofactor complex to switch between RNA replication and virion morphogenesis. PLoS Pathog 2017; 13:e1006134. [PMID: 28151973 PMCID: PMC5308820 DOI: 10.1371/journal.ppat.1006134] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 02/14/2017] [Accepted: 12/16/2016] [Indexed: 01/20/2023] Open
Abstract
The viruses of the family Flaviviridae possess a positive-strand RNA genome and express a single polyprotein which is processed into functional proteins. Initially, the nonstructural (NS) proteins, which are not part of the virions, form complexes capable of genome replication. Later on, the NS proteins also play a critical role in virion formation. The molecular basis to understand how the same proteins form different complexes required in both processes is so far unknown. For pestiviruses, uncleaved NS2-3 is essential for virion morphogenesis while NS3 is required for RNA replication but is not functional in viral assembly. Recently, we identified two gain of function mutations, located in the C-terminal region of NS2 and in the serine protease domain of NS3 (NS3 residue 132), which allow NS2 and NS3 to substitute for uncleaved NS2-3 in particle assembly. We report here the crystal structure of pestivirus NS3-4A showing that the NS3 residue 132 maps to a surface patch interacting with the C-terminal region of NS4A (NS4A-kink region) suggesting a critical role of this contact in virion morphogenesis. We show that destabilization of this interaction, either by alanine exchanges at this NS3/4A-kink interface, led to a gain of function of the NS3/4A complex in particle formation. In contrast, RNA replication and thus replicase assembly requires a stable association between NS3 and the NS4A-kink region. Thus, we propose that two variants of NS3/4A complexes exist in pestivirus infected cells each representing a basic building block required for either RNA replication or virion morphogenesis. This could be further corroborated by trans-complementation studies with a replication-defective NS3/4A double mutant that was still functional in viral assembly. Our observations illustrate the presence of alternative overlapping surfaces providing different contacts between the same proteins, allowing the switch from RNA replication to virion formation. Many positive-strand RNA viruses replicate without transcribing subgenomic RNAs otherwise often used to temporally coordinate the expression of proteins involved either in genome replication (early) or virion formation (late). Instead, the RNA genomes of the Flaviviridae are translated into a single polyprotein. Their nonstructural proteins (NS), while not present in the virions, are known to be crucially involved in RNA replication and virion formation. The important question how the same proteins form specific complexes required for fundamentally different aspects of the viral replication cycle is not solved yet. For pestiviruses the mature NS3/4A complex is an essential component of the viral RNA-replicase but is incapable of participating in virion morphogenesis which in turn depends on uncleaved NS2-3 in complex with NS4A. However, a gain of function mutation in NS3 enabled the NS3/4A complex to function in virion assembly. Using structure guided mutagenesis in combination with functional studies we identified the interface between NS3 and the C-terminal NS4A region as a module critical for the decision whether a NS3/4A complex serves in RNA replication or as a packaging component. Thus, we propose that subtle changes in local protein interactions represent decisive switches in viral complex formation pathways.
Collapse
Affiliation(s)
- Danilo Dubrau
- Institute of Virology and Cell Biology, University of Luebeck, Luebeck, Germany
| | - M. Alejandra Tortorici
- Institut Pasteur, Unité de Virologie Structurale, Paris, France
- CNRS UMR 3569 Virologie, Paris, France
| | - Félix A. Rey
- Institut Pasteur, Unité de Virologie Structurale, Paris, France
- CNRS UMR 3569 Virologie, Paris, France
| | - Norbert Tautz
- Institute of Virology and Cell Biology, University of Luebeck, Luebeck, Germany
- * E-mail:
| |
Collapse
|
34
|
Chaperone-Assisted Protein Folding Is Critical for Yellow Fever Virus NS3/4A Cleavage and Replication. J Virol 2016; 90:3212-28. [PMID: 26739057 DOI: 10.1128/jvi.03077-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 01/04/2016] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED DNAJC14, a heat shock protein 40 (Hsp40) cochaperone, assists with Hsp70-mediated protein folding. Overexpressed DNAJC14 is targeted to sites of yellow fever virus (YFV) replication complex (RC) formation, where it interacts with viral nonstructural (NS) proteins and inhibits viral RNA replication. How RCs are assembled and the roles of chaperones in this coordinated process are largely unknown. We hypothesized that chaperones are diverted from their normal cellular protein quality control function to play similar roles during viral infection. Here, we show that DNAJC14 overexpression affects YFV polyprotein processing and alters RC assembly. We monitored YFV NS2A-5 polyprotein processing by the viral NS2B-3 protease in DNAJC14-overexpressing cells. Notably, DNAJC14 mutants that did not inhibit YFV replication had minimal effects on polyprotein processing, while overexpressed wild-type DNAJC14 affected the NS3/4A and NS4A/2K cleavage sites, resulting in altered NS3-to-NS3-4A ratios. This suggests that DNAJC14's folding activity normally modulates NS3/4A/2K cleavage events to liberate appropriate levels of NS3 and NS4A and promote RC formation. We introduced amino acid substitutions at the NS3/4A site to alter the levels of the NS3 and NS4A products and examined their effects on YFV replication. Residues with reduced cleavage efficiency did not support viral RNA replication, and only revertant viruses with a restored wild-type arginine or lysine residue at the NS3/4A site were obtained. We conclude that DNAJC14 inhibition of RC formation upon DNAJC14 overexpression is likely due to chaperone dysregulation and that YFV probably utilizes DNAJC14's cochaperone function to modulate processing at the NS3/4A site as a mechanism ensuring virus replication. IMPORTANCE Flaviviruses are single-stranded RNA viruses that cause a wide range of illnesses. Upon host cell entry, the viral genome is translated on endoplasmic reticulum (ER) membranes to produce a single polyprotein, which is cleaved by host and viral proteases to generate viral proteins required for genome replication and virion production. Several studies suggest a role for molecular chaperones during these processes. While the details of chaperone roles have been elusive, in this report we show that overexpression of the ER-resident cochaperone DNAJC14 affects YFV polyprotein processing at the NS3/4A site. This work reveals that DNAJC14 modulation of NS3/4A site processing is an important mechanism to ensure virus replication. Our work highlights the importance of finely regulating flavivirus polyprotein processing. In addition, it suggests future studies to address similarities and/or differences among flaviviruses and to interrogate the precise mechanisms employed for polyprotein processing, a critical step that can ultimately be targeted for novel drug development.
Collapse
|
35
|
Characterization of the Determinants of NS2-3-Independent Virion Morphogenesis of Pestiviruses. J Virol 2015; 89:11668-80. [PMID: 26355097 DOI: 10.1128/jvi.01646-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/04/2015] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED A peculiarity of the Flaviviridae is the critical function of nonstructural (NS) proteins for virus particle formation. For pestiviruses, like bovine viral diarrhea virus (BVDV), uncleaved NS2-3 represents an essential factor for virion morphogenesis, while NS3 is an essential component of the viral replicase. Accordingly, in natural pestivirus isolates, processing at the NS2-3 cleavage site is not complete, to allow for virion morphogenesis. Virion morphogenesis of the related hepatitis C virus (HCV) shows a major deviation from that of pestiviruses: while RNA replication also requires free NS3, virion formation does not depend on uncleaved NS2-NS3. Recently, we described a BVDV-1 chimera based on strain NCP7 encompassing the NS2-4B*-coding region of strain Osloss (E. Lattwein, O. Klemens, S. Schwindt, P. Becher, and N. Tautz, J Virol 86:427-437, 2012, doi:10.1128/JVI.06133-11). This chimera allowed for the production of infectious virus particles in the absence of uncleaved NS2-3. The Osloss sequence deviates in the NS2-4B* part from NCP7 in 48 amino acids and also has a ubiquitin insertion between NS2 and NS3. The present study demonstrates that in the NCP7 backbone, only two amino acid exchanges in NS2 (E1576V) and NS3 (V1721A) are sufficient and necessary to allow for efficient NS2-3-independent virion morphogenesis. The adaptation of a bicistronic virus encompassing an internal ribosomal entry site element between the NS2 and NS3 coding sequences to efficient virion morphogenesis led to the identification of additional amino acids in E2, NS2, and NS5B that are critically involved in this process. The surprisingly small requirements for approximating the packaging schemes of pestiviruses and HCV with respect to the NS2-3 region is in favor of a common mechanism in an ancestral virus. IMPORTANCE For positive-strand RNA viruses, the processing products of the viral polyprotein serve in RNA replication as well as virion morphogenesis. For bovine viral diarrhea virus, nonstructural protein NS2-3 is of critical importance to switch between these processes. While free NS3 is essential for RNA replication, uncleaved NS2-3, which accumulates over time in the infected cell, is required for virion morphogenesis. In contrast, the virion morphogenesis of the related hepatitis C virus is independent from uncleaved NS2-NS3. Here, we demonstrate that pestiviruses can adapt to virion morphogenesis in the absence of uncleaved NS2-3 by just two amino acid exchanges. While the mechanism behind this gain of function remains elusive, the fact that it can be achieved by such minor changes is in line with the assumption that an ancestral virus already used this mechanism but lost it in the course of adapting to a new host/infection strategy.
Collapse
|
36
|
Li L, Wu R, Zheng F, Zhao C, Pan Z. The N-terminus of classical swine fever virus (CSFV) nonstructural protein 2 modulates viral genome RNA replication. Virus Res 2015; 210:90-9. [PMID: 26232654 DOI: 10.1016/j.virusres.2015.07.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/17/2015] [Accepted: 07/21/2015] [Indexed: 10/23/2022]
Abstract
Pestivirus nonstructural protein 2 (NS2) is a multifunctional, hydrophobic protein with an important but poorly understood role in viral RNA replication and infectious virus production. In the present study, based on sequence analysis, we mutated several representative conserved residues within the N-terminus of NS2 of classical swine fever virus (CSFV) and investigated how these mutations affected viral RNA replication and infectious virus production. Our results demonstrated that the mutation of two aspartic acids, NS2/D60A or NS2/D60K and NS2/D78K, in the N-terminus of NS2 abolished infectious virus production and that the substitution of arginine for alanine at position 100 (NS2/R100A) resulted in significantly decreased viral titer. The serial passage of cells containing viral genomic RNA molecules generated the revertants NS2/A60D, NS2/K60D and NS2/K78D, leading to the recovery of infectious virus. In the context of the NS2/R100A mutant, the NS2/I90L mutation compensated for infectious virus production. The regulatory roles of the indicated amino acid residues were identified to occur at the viral RNA replication level. These results revealed a novel function for the NS2 N-terminus of CSFV in modulating viral RNA replication.
Collapse
Affiliation(s)
- Ling Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Rui Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Fengwei Zheng
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Cheng Zhao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zishu Pan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
37
|
Hause BM, Collin EA, Peddireddi L, Yuan F, Chen Z, Hesse RA, Gauger PC, Clement T, Fang Y, Anderson G. Discovery of a novel putative atypical porcine pestivirus in pigs in the USA. J Gen Virol 2015. [PMID: 26219947 DOI: 10.1099/jgv.0.000251] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Pestiviruses are some of the most significant pathogens affecting ruminants and swine. Here, we assembled a 11 276 bp contig encoding a predicted 3635 aa polyprotein from porcine serum with 68 % pairwise identity to that of a recently partially characterized Rhinolophus affinis pestivirus (RaPV) and approximately 25-28 % pairwise identity to those of other pestiviruses. The virus was provisionally named atypical porcine pestivirus (APPV). Metagenomic sequencing of 182 serum samples identified four additional APPV-positive samples. Positive samples originated from five states and ELISAs using recombinant APPV Erns found cross-reactive antibodies in 94 % of a collection of porcine serum samples, suggesting widespread distribution of APPV in the US swine herd. The molecular and serological results suggest that APPV is a novel, highly divergent porcine pestivirus widely distributed in US pigs.
Collapse
Affiliation(s)
- Ben M Hause
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, Kansas, USA.,Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, USA
| | - Emily A Collin
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, Kansas, USA.,Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, USA
| | - Lalitha Peddireddi
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, Kansas, USA.,Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, USA
| | - Fangfeng Yuan
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, USA
| | - Zhenhai Chen
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, USA
| | - Richard A Hesse
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, Kansas, USA.,Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, USA
| | - Phillip C Gauger
- Department of Veterinary Diagnostic and Population Animal Medicine, Iowa State University, Ames, Iowa, USA
| | - Travis Clement
- Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, SD, USA
| | - Ying Fang
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, USA
| | - Gary Anderson
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, Kansas, USA.,Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
38
|
Abstract
Pestiviruses are among the economically most important pathogens of livestock. The biology of these viruses is characterized by unique and interesting features that are both crucial for their success as pathogens and challenging from a scientific point of view. Elucidation of these features at the molecular level has made striking progress during recent years. The analyses revealed that major aspects of pestivirus biology show significant similarity to the biology of human hepatitis C virus (HCV). The detailed molecular analyses conducted for pestiviruses and HCV supported and complemented each other during the last three decades resulting in elucidation of the functions of viral proteins and RNA elements in replication and virus-host interaction. For pestiviruses, the analyses also helped to shed light on the molecular basis of persistent infection, a special strategy these viruses have evolved to be maintained within their host population. The results of these investigations are summarized in this chapter.
Collapse
Affiliation(s)
- Norbert Tautz
- Institute for Virology and Cell Biology, University of Lübeck, Lübeck, Germany
| | - Birke Andrea Tews
- Institut für Immunologie, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Gregor Meyers
- Institut für Immunologie, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany.
| |
Collapse
|
39
|
Shan H, Pasin F, Valli A, Castillo C, Rajulu C, Carbonell A, Simón-Mateo C, García JA, Rodamilans B. The Potyviridae P1a leader protease contributes to host range specificity. Virology 2015; 476:264-270. [PMID: 25562450 DOI: 10.1016/j.virol.2014.12.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 11/24/2014] [Accepted: 12/07/2014] [Indexed: 11/24/2022]
Abstract
The P1a protein of the ipomovirus Cucumber vein yellowing virus is one of the self-cleavage serine proteases present in Potyviridae family members. P1a is located at the N-terminal end of the viral polyprotein, and is closely related to potyviral P1 protease. For its proteolytic activity, P1a requires a still unknown host factor; this might be linked to involvement in host specificity. Here we built a series of constructs and chimeric viruses to help elucidate the role of P1a cleavage in host range definition. We demonstrate that host-dependent separation of P1a from the remainder of the polyprotein is essential for suppressing RNA silencing defenses and for efficient viral infection. These findings support the role of viral proteases as important determinants in host adaptation.
Collapse
Affiliation(s)
- Hongying Shan
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - Fabio Pasin
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049 Madrid, Spain.
| | - Adrián Valli
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - Carla Castillo
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - Charukesi Rajulu
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - Alberto Carbonell
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - Carmen Simón-Mateo
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - Juan Antonio García
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049 Madrid, Spain.
| | - Bernardo Rodamilans
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049 Madrid, Spain.
| |
Collapse
|
40
|
Li Y, Tas A, Sun Z, Snijder EJ, Fang Y. Proteolytic processing of the porcine reproductive and respiratory syndrome virus replicase. Virus Res 2014; 202:48-59. [PMID: 25557977 DOI: 10.1016/j.virusres.2014.12.027] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/19/2014] [Accepted: 12/22/2014] [Indexed: 01/16/2023]
Abstract
The porcine reproductive and respiratory syndrome virus (PRRSV) replicase polyproteins pp1a and pp1ab are proteolytically processed by four proteases encoded in ORF1a. In this study, a large set of PRRSV replicase cleavage products were identified and pp1a cleavage sites were verified by using a combination of bioinformatics, proteomics, immunoprecipitation, and site-directed mutagenesis. For genotype 1 PRRSV (isolate SD01-08), proteomic analysis identified H180/S181, G385/A386, and G1446/A1447 as the cleavage sites separating nsp1α/1β, nsp1β/nsp2, and nsp2/nsp3, respectively. Transient expression of nsp2-8, nsp3-8, nsp4-8, nsp5-8 (using the recombinant vaccinia virus/T7 RNA polymerase system) and immunoprecipitation identified the cleavage end products nsp2, nsp3, nsp4, nsp7α and nsp7β, and various processing intermediates. Our studies also revealed the existence of alternative proteolytic processing pathways for the processing of the nsp3-8 region, depending on the presence or absence of nsp2 as a co-factor. The identity of most cleavage products was further corroborated by site-directed mutagenesis of individual cleavage sites in constructs expressing nsp3-8 or nsp4-8. This study constitutes the first in-depth experimental analysis of PRRSV replicase processing and the data are discussed against the background of the processing scheme previously derived for the arterivirus prototype, the distantly related equine arteritis virus (EAV). Despite several differences between the two viruses, of which the functional significance remains to be studied, our study demonstrates the general conservation of the replicase pp1a processing scheme between EAV and PRRSV, and likely also the other members of the arterivirus family.
Collapse
Affiliation(s)
- Yanhua Li
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, USA; Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Ali Tas
- Department of Medical Microbiology, Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Zhi Sun
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, USA
| | - Eric J Snijder
- Department of Medical Microbiology, Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands.
| | - Ying Fang
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, USA; Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
41
|
Fu Q, Shi H, Shi M, Meng L, Bao H, Zhang G, Ren Y, Zhang H, Guo F, Qiao J, Jia B, Wang P, Ni W, Sheng J, Chen C. Roles of bovine viral diarrhea virus envelope glycoproteins in inducing autophagy in MDBK cells. Microb Pathog 2014; 76:61-6. [DOI: 10.1016/j.micpath.2014.09.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 09/16/2014] [Accepted: 09/18/2014] [Indexed: 01/07/2023]
|
42
|
Darweesh MF, Rajput MKS, Braun LJ, Ridpath JF, Neill JD, Chase CCL. Characterization of the cytopathic BVDV strains isolated from 13 mucosal disease cases arising in a cattle herd. Virus Res 2014; 195:141-7. [PMID: 25300803 DOI: 10.1016/j.virusres.2014.09.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 09/25/2014] [Accepted: 09/29/2014] [Indexed: 11/25/2022]
Abstract
Bovine viral diarrhea virus (BVDV) is a positive single stranded RNA virus belonging to the Pestivirus genus of the Flaviviridae family. BVDV has a wide host range that includes most ruminants. Noncytopathic (ncp) BVDV may establish lifelong persistent infections in calves following infection of the fetus between 40 and 120 days of gestation. Cytopathic (cp) BVDV strains arise from ncp strains via mutations. The most common cp mutations are insertions of RNA derived from either host or a duplication of viral sequences into the region of the genome coding for the NS2/3 protein. Superinfection of a persistently infected animal with a cp virus can give rise to mucosal disease, a condition that is invariably fatal. A herd of 136 bred 3-year old cows was studied. These cows gave birth to 41 PI animals of which 23 succumbed to mucosal disease. In this study, we characterized the ncp and cp viruses isolated from 13 of these animals. All viruses belonged to the BVDV type 2a genotype and were highly similar. All the cp viruses contained an insertion in the NS2/3 coding region consisting of the sequences derived from the transcript encoding a DnaJ protein named Jiv90. Comparison of the inserted DnaJ regions along with the flanking viral sequences in the insertion 3' end of the 13 cp isolates revealed sequence identities ranging from 96% to 99% with common borders. This suggested that one animal likely developed a cp virus that then progressively spread to the other 12 animals. Interestingly, when the inserted mammalian gene replicated within viral genome, it showed conservation of the same conserved motifs between the different species, which may indicate a role for these motifs in the insertion function within the virus genome. This is the first characterization of multiple cp bovine viral diarrhea virus isolates that spread in a herd under natural conditions.
Collapse
Affiliation(s)
- Mahmoud F Darweesh
- Department of Veterinary and Biomedical Sciences, SDSU, Brookings, SD 570076, USA.
| | - Mrigendra K S Rajput
- Department of Veterinary and Biomedical Sciences, SDSU, Brookings, SD 570076, USA.
| | - Lyle J Braun
- Department of Veterinary and Biomedical Sciences, SDSU, Brookings, SD 570076, USA.
| | - Julia F Ridpath
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA 50010, USA.
| | - John D Neill
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA 50010, USA.
| | | |
Collapse
|
43
|
Fu Q, Shi H, Ni W, Shi M, Meng L, Zhang H, Ren Y, Guo F, Wang P, Qiao J, Jia B, Chen C. Lentivirus-mediated Bos taurus bta-miR-29b overexpression interferes with bovine viral diarrhoea virus replication and viral infection-related autophagy by directly targeting ATG14 and ATG9A in Madin-Darby bovine kidney cells. J Gen Virol 2014; 96:85-94. [PMID: 25234643 DOI: 10.1099/vir.0.067140-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of short endogenous RNA molecules with the ability to control development, autophagy, apoptosis and the stress response in eukaryotes by pairing with partially complementary sites in the 3' UTRs of targeted genes. Recent studies have demonstrated that miRNAs serve as critical effectors in intricate networks of host-pathogen interactions. Notably, we found that Bos taurus bta-miR-29b (referred to as miR-29b herein) was significantly upregulated >2.3-fold in bovine viral diarrhoea virus (BVDV) strain NADL-infected Madin-Darby bovine kidney (MDBK) cells 6 h post-infection compared with normal MDBK cells. However, the roles of miR-29b in BVDV infection and pathogenesis remain unclear. Here, we report the inhibitory effects of miR-29b on BVDV NADL replication and viral infection-related autophagy. miR-29b overexpression mediated by miRNA precursor-expressing lentivirus resulted in the attenuation of BVDV NADL infection-related autophagy by directly downregulating the intracellular expression levels of two key autophagy-associated proteins, ATG14 and ATG9A. Moreover, ATG14 and ATG9A overexpression rescue not only reversed miR-29b-inhibited autophagy, but also increased BVDV NADL replication. In previous studies, we found that the early stages of autophagy contributed to BVDV NADL replication in MDBK cells and that the inhibition of autophagy repressed BVDV NADL replication, which was also proved in the present study. Collectively, our results establish a novel link between miR-29b and viral replication, and also provide a new pathway for the intimate interaction between host cells and pathogens.
Collapse
Affiliation(s)
- Qiang Fu
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, PR China
| | - Huijun Shi
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, PR China
| | - Wei Ni
- College of Life Technology, Shihezi University, Shihezi 832003, Xinjiang, PR China
| | - Mengting Shi
- College of Life Technology, Shihezi University, Shihezi 832003, Xinjiang, PR China
| | - Luping Meng
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, PR China
| | - Hui Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, PR China
| | - Yan Ren
- College of Medicine, Shihezi University, Shihezi 832003, Xinjiang, PR China
| | - Fei Guo
- College of Medicine, Shihezi University, Shihezi 832003, Xinjiang, PR China
| | - Pengyan Wang
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, PR China
| | - Jun Qiao
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, PR China
| | - Bin Jia
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, PR China
| | - Chuangfu Chen
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, PR China
| |
Collapse
|
44
|
Castro EF, Campos RH, Cavallaro LV. Stability of the resistance to the thiosemicarbazone derived from 5,6-dimethoxy-1-indanone, a non-nucleoside polymerase inhibitor of bovine viral diarrhea virus. PLoS One 2014; 9:e100528. [PMID: 24950191 PMCID: PMC4065067 DOI: 10.1371/journal.pone.0100528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 05/28/2014] [Indexed: 12/03/2022] Open
Abstract
Bovine viral diarrhea virus (BVDV) is the prototype Pestivirus. BVDV infection is distributed worldwide and causes serious problems for the livestock industry. The thiosemicarbazone of 5,6-dimethoxy-1-indanone (TSC) is a non-nucleoside polymerase inhibitor (NNI) of BVDV. All TSC-resistant BVDV variants (BVDV-TSCr T1–5) present an N264D mutation in the NS5B gene (RdRp) whereas the variant BVDV-TSCr T1 also presents an NS5B A392E mutation. In the present study, we carried out twenty passages of BVDV-TSCr T1–5 in MDBK cells in the absence of TSC to evaluate the stability of the resistance. The viral populations obtained (BVDV R1–5) remained resistant to the antiviral compound and conserved the mutations in NS5B associated with this phenotype. Along the passages, BVDV R2, R3 and R5 presented a delay in the production of cytopathic effect that correlated with a decrease in cell apoptosis and intracellular accumulation of viral RNA. The complete genome sequences that encode for NS2 to NS5B, Npro and Erns were analyzed. Additional mutations were detected in the NS5B of BVDV R1, R3 and R4. In both BVDV R2 and R3, most of the mutations found were localized in NS5A, whereas in BVDV R5, the only mutation fixed was NS5A V177A. These results suggest that mutations in NS5A could alter BVDV cytopathogenicity. In conclusion, the stability of the resistance to TSC may be due to the fixation of different compensatory mutations in each BVDV-TSCr. During their replication in a TSC-free medium, some virus populations presented a kind of interaction with the host cell that resembled a persistent infection: decreased cytopathogenicity and viral genome synthesis. This is the first report on the stability of antiviral resistance and on the evolution of NNI-resistant BVDV variants. The results obtained for BVDV-TSCr could also be applied for other NNIs.
Collapse
Affiliation(s)
- Eliana F. Castro
- Cátedra de Virología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Rodolfo H. Campos
- Cátedra de Virología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Lucía V. Cavallaro
- Cátedra de Virología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
45
|
Bachofen C, Grant DM, Willoughby K, Zadoks RN, Dagleish MP, Russell GC. Experimental infection of rabbits with bovine viral diarrhoea virus by a natural route of exposure. Vet Res 2014; 45:34. [PMID: 24690167 PMCID: PMC4234416 DOI: 10.1186/1297-9716-45-34] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 03/07/2014] [Indexed: 11/10/2022] Open
Abstract
Bovine viral diarrhoea virus (BVDV) is an important pathogen of cattle that can naturally infect a wide range of even-toed ungulates. Non-bovine hosts may represent reservoirs for the virus that have the potential to hamper BVDV eradication programs usually focused on cattle. Rabbits are very abundant in countries such as the United Kingdom or Australia and are often living on or near livestock pastures. Earlier reports indicated that rabbits can propagate BVDV upon intravenous exposure and that natural infection of rabbits with BVDV may occur but experimental proof of infection of rabbits by a natural route is lacking. Therefore, New Zealand White rabbits were exposed to a Scottish BVDV field strain intravenously, oro-nasally and by contaminating their hay with virus. None of the animals showed any clinical signs. However, the lymphoid organs from animals sacrificed at day five after exposure showed histological changes typical of transient infection with pestivirus. Most organ samples and some buffy coat samples were virus positive at day five but saliva samples remained negative. Development of antibodies was observed in all intravenously challenged animals, in all of the nebulised group and in four of six animals exposed to contaminated hay. To our knowledge this is the first report of BVDV propagation in a species other than ruminants or pigs after exposure to the virus by a natural route. However, to assess the role of rabbits as a potential reservoir for BVDV it remains to be determined whether persistent infection caused by intra-uterine infection is possible and whether BVDV is circulating in wild rabbit populations.
Collapse
Affiliation(s)
| | | | | | | | | | - George C Russell
- Moredun Research Institute, Pentlands Science Park, Penicuik EH26 0PZ, UK.
| |
Collapse
|
46
|
Vilcek S, Leskova V, Meyer D, Postel A, Becher P. Molecular characterization of border disease virus strain Aveyron. Vet Microbiol 2014; 171:87-92. [PMID: 24742950 DOI: 10.1016/j.vetmic.2014.03.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 03/21/2014] [Accepted: 03/22/2014] [Indexed: 11/17/2022]
Abstract
For the pestivirus border disease virus (BDV) at least seven major genotypes have been described (BDV-1-BDV-7). So far, complete genomic sequences have been reported for four BDV genotypes (BDV-1-BDV-4). In this study we report the entire genomic sequence of the noncytopathogenic (ncp) BDV-5 reference strain Aveyron. The viral genome encompasses 12,284 nucleotides (nt) and contains one large open reading frame (11,700 nt) flanked by a 370 nt long 5'-untranslated region (UTR) and a 214 nt long 3'-UTR. The genome organization as well as the lengths of the viral polyprotein (3899 amino acids) and the 5'-UTR are very similar to the ones of other BDV strains, while the 3'-UTR of BDV Aveyron is considerably shorter when compared to other BDV strains. Comparative analysis of complete coding sequences revealed that BDV Aveyron shares nucleotide sequence identities of 76.9% to 79.0% with the other BDV strains, and less than 72% identity with other pestiviruses. In contrast to other BDV strains, a unique insertion of four amino acids (KAPD) of unknown origin is present in the C-terminal part of the viral autoprotease NS2 encoded by BDV Aveyron. Immunoblot analysis revealed that infection of cells with the ncp BDV strain Aveyron comprising this unique insertion in NS2 resulted in the expression of high amounts of NS3 and thereby showed that BDV Aveyron significantly differs from other ncp BDV strains in terms of NS2-3 processing and production of NS3.
Collapse
Affiliation(s)
- Stefan Vilcek
- University of Veterinary Medicine and Pharmacy, SK 041 81 Kosice, Slovakia
| | - Valeria Leskova
- University of Veterinary Medicine and Pharmacy, SK 041 81 Kosice, Slovakia
| | - Denise Meyer
- Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine, D-30559 Hannover, Germany
| | - Alexander Postel
- Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine, D-30559 Hannover, Germany
| | - Paul Becher
- Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine, D-30559 Hannover, Germany.
| |
Collapse
|
47
|
Pasin F, Simón-Mateo C, García JA. The hypervariable amino-terminus of P1 protease modulates potyviral replication and host defense responses. PLoS Pathog 2014; 10:e1003985. [PMID: 24603811 PMCID: PMC3946448 DOI: 10.1371/journal.ppat.1003985] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Accepted: 01/23/2014] [Indexed: 12/22/2022] Open
Abstract
The replication of many RNA viruses involves the translation of polyproteins, whose processing by endopeptidases is a critical step for the release of functional subunits. P1 is the first protease encoded in plant potyvirus genomes; once activated by an as-yet-unknown host factor, it acts in cis on its own C-terminal end, hydrolyzing the P1-HCPro junction. Earlier research suggests that P1 cooperates with HCPro to inhibit host RNA silencing defenses. Using Plum pox virus as a model, we show that although P1 does not have a major direct role in RNA silencing suppression, it can indeed modulate HCPro function by its self-cleavage activity. To study P1 protease regulation, we used bioinformatic analysis and in vitro activity experiments to map the core C-terminal catalytic domain. We present evidence that the hypervariable region that precedes the protease domain is predicted as intrinsically disordered, and that it behaves as a negative regulator of P1 proteolytic activity in in vitro cleavage assays. In viral infections, removal of the P1 protease antagonistic regulator is associated with greater symptom severity, induction of salicylate-dependent pathogenesis-related proteins, and reduced viral loads. We suggest that fine modulation of a viral protease activity has evolved to keep viral amplification below host-detrimental levels, and thus to maintain higher long-term replicative capacity.
Collapse
Affiliation(s)
- Fabio Pasin
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Carmen Simón-Mateo
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Juan Antonio García
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| |
Collapse
|
48
|
Abstract
Bovine viral diarrhea virus (BVDV) continues to be of economic significance to the livestock industry in terms of acute disease and fetal loss. Many of the lesions relating to BVDV infection have been well described previously. The virus is perpetuated in herds through the presence of calves that are persistently infected. Relationships between various species and biotypes of BVDV and host defenses are increasingly understood. Understanding of the host defense mechanisms of innate immunity and adaptive immunity continues to improve, and the effects of the virus on these immune mechanisms are being used to explain how persistent infection develops. The noncytopathic biotype of BVDV plays the major role in its effects on the host defenses by inhibiting various aspects of the innate immune system and creation of immunotolerance in the fetus during early gestation. Recent advances have allowed for development of affordable test strategies to identify and remove persistently infected animals. With these improved tests and removal strategies, the livestock industry can begin more widespread effective control programs.
Collapse
Affiliation(s)
- B. W. Brodersen
- Nebraska Veterinary Diagnostic Center, University of Nebraska–Lincoln, Lincoln, NE, USA
| |
Collapse
|
49
|
Fu Q, Shi H, Zhang H, Ren Y, Guo F, Qiao J, Jia B, Wang P, Chen C. Autophagy during early stages contributes to bovine viral diarrhea virus replication in MDBK cells. J Basic Microbiol 2013; 54:1044-52. [PMID: 24347372 DOI: 10.1002/jobm.201300750] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 11/16/2013] [Indexed: 12/18/2022]
Abstract
Autophagy (or autophagocytosis) is an essential and precise control process by which cells degrade unnecessary or dysfunctional cellular components or organelles in the cytoplasm in response to nutrient depletion, exogenous pathogens, or other stimuli. This process results in the removal of damaged or surplus organelles and macromolecular complexes via a lysosome-dependent mechanism. Bovine viral diarrhea virus (BVDV) is a ssRNA virus of the Flaviviridae family (genus Pestivirus). BVDV infection results in major economic losses due to poor reproductive performance and poor calf performance in cattle herds. In our previous studies, we have shown that BVDV NADL infection significantly increases autophagy in MDBK cells. To further define the interactions between autophagy and BVDV infection, we investigated the effects of autophagy on the replication of BVDV NADL. The findings showed that autophagy was inhibited by treatment with 3-methyladenine (3-MA) or wortmannin and that the knockdown of LC3 and Beclin1 using lentivirus-mediated RNA interference (RNAi) suppressed BVDV NADL replication. In contrast, the findings showed the replication of BVDV NADL was significantly increased by treatment with the autophagy inducer rapamycin within 18 h post-infection (pi). However, the mRNA levels of BVDV NADL 5'UTRs showed a downward trend after 18 h pi, and this effect was reversed by chloroquine treatment. Therefore, we inferred that infection with BVDV NADL increases autophagy, which in turn favors BVDV NADL replication at early stages.
Collapse
Affiliation(s)
- Qiang Fu
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, Xinjiang, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Functional characterization of bovine viral diarrhea virus nonstructural protein 5A by reverse genetic analysis and live cell imaging. J Virol 2013; 88:82-98. [PMID: 24131714 DOI: 10.1128/jvi.01957-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Nonstructural protein 5A (NS5A) of bovine viral diarrhea virus (BVDV) is a hydrophilic phosphoprotein with RNA binding activity and a critical component of the viral replicase. In silico analysis suggests that NS5A encompasses three domains interconnected by two low-complexity sequences (LCSs). While domain I harbors two functional determinants, an N-terminal amphipathic helix important for membrane association, and a Zn-binding site essential for RNA replication, the structure and function of the C-terminal half of NS5A are still ill defined. In this study, we introduced a panel of 10 amino acid deletions covering the C-terminal half of NS5A. In the context of a highly efficient monocistronic replicon, deletions in LCS I and the N-terminal part of domain II, as well as in domain III, were tolerated with regard to RNA replication. When introduced into a bicistronic replicon, only deletions in LCS I and the N-terminal part of domain II were tolerated. In the context of the viral full-length genome, these mutations allowed residual virion morphogenesis. Based on these data, a functional monocistronic BVDV replicon coding for an NS5A variant with an insertion of the fluorescent protein mCherry was constructed. Live cell imaging demonstrated that a fraction of NS5A-mCherry localizes to the surface of lipid droplets. Taken together, this study provides novel insights into the functions of BVDV NS5A. Moreover, we established the first pestiviral replicon expressing fluorescent NS5A-mCherry to directly visualize functional viral replication complexes by live cell imaging.
Collapse
|