1
|
A role for CD4 + helper cells in HIV control and progression. AIDS 2022; 36:1501-1510. [PMID: 35730394 DOI: 10.1097/qad.0000000000003296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE It remains unclear why HIV persists in most untreated individuals, and why a small minority of individuals can control the virus, either spontaneously or after an early treatment. Striking differences have been discovered between patient cohorts in CD4 + T-cell avidity but not in CD8 + T-cell avidity. The present work has the aim to explain the diverse outcome of infection and identify the key virological and immunological parameters predicting the outcome. DESIGN AND METHOD A mathematical model informed by these experiments and taking into account the details of HIV virology is developed. RESULTS The model predicts an arms race between viral dissemination and the proliferation of HIV-specific CD4 + helper cells leading to one of two states: a low-viremia state (controller) or a high-viremia state (progressor). Helper CD4 + cells with a higher avidity favor virus control. The parameter segregating spontaneous and posttreatment controllers is the infectivity difference between activated and resting CD4 + T cells. The model is shown to have a better connection to experiment than a previous model based on T-cell 'exhaustion'. CONCLUSION Using the model informed by patient data, the timing of antiretroviral therapy can be optimized.
Collapse
|
2
|
Keilen J, Gar C, Rottenkolber M, Fueessl L, Joseph AT, Draenert R, Seissler J, Lechner A. No association of natural killer cell number and function in peripheral blood with overweight/obesity and metabolic syndrome in a cohort of young women. Physiol Rep 2022; 10:e15148. [PMID: 35179822 PMCID: PMC8855889 DOI: 10.14814/phy2.15148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023] Open
Abstract
AIM To reexamine the associations of NK cell number and function in the peripheral blood with overweight/obesity and the metabolic syndrome in a large, well-phenotyped human cohort. METHODS Cross-sectional analysis of 273 women in the PPSDiab Study; measurement of absolute and relative number of NK cells in peripheral blood, and of functional parameters CD69 positivity and cytotoxicity against K562 cells; group comparison of NK cell characteristics between lean, overweight, and obese participants, as well as metabolic syndrome scores of 0, 1, 2, and ≥3; Spearman correlation analyses to clinical parameters related to the metabolic syndrome. RESULTS We found no differences in NK cell number and function between lean, overweight, and obese women (relative NK cell number (median (Q1-Q3), [%]) 5.1(2.6-9.4) vs. 4.8 (2.9-8.4) vs. 3.8 (1.7-7.8), p = 0.187; absolute NK cell number [106 /L]: 86.9 (44.6-188.8) vs. 92.6 (52.5-154.6) vs. 85.9 (44-153.8), p = 0.632; CD69+ [%]: 27.2 (12.9-44.3) vs. 37.6 (13.2-52.8) vs. 33.6 (16.3-45), p = 0.136; cytotoxicity [%]: 11.0 (7.1-14.5) vs. 8.5 (6.4-13.2) vs. 11.3 (8.7-14.2), p = 0.094), as well as between different metabolic syndrome scores. Nonesterified fatty acids correlated with absolute and relative NK cell number and cytotoxicity (ρ [p-value]: 0.142 [0.021], 0.119 [0.049], and 0.131 [0.035], respectively). Relative NK cell number further correlated with high-density lipoprotein cholesterol (0.144 [0.018]) and cytotoxicity with 2 h glucose in oral glucose tolerance testing (0.132 [0.034]). CD69 positivity correlated with body fat (0.141 [0.021]), triglycerides (0.129 [0.033]), and plasma leptin (0.155 [0.010]). After correction for multiple testing, none of the associations remained significant. CONCLUSION In the present study, we observed no associations of NK cell number and function in the peripheral blood with overweight/obesity and the metabolic syndrome. Extreme phenotypes of obesity and the metabolic syndrome might have caused differing results in previous studies. Further analyses with a focus on compartments other than peripheral blood may help to clarify the relation between NK cells and metabolic diseases.
Collapse
Affiliation(s)
- Julia Keilen
- Diabetes Research GroupDepartment of Medicine IVUniversity HospitalLMU MunichMunichGermany
- Clinical Cooperation Group DiabetesLudwig‐Maximilians‐Universität München and Helmholtz Zentrum MünchenMunichGermany
- German Center for Diabetes Research (DZD)München‐NeuherbergGermany
| | - Christina Gar
- Diabetes Research GroupDepartment of Medicine IVUniversity HospitalLMU MunichMunichGermany
- Clinical Cooperation Group DiabetesLudwig‐Maximilians‐Universität München and Helmholtz Zentrum MünchenMunichGermany
- German Center for Diabetes Research (DZD)München‐NeuherbergGermany
| | - Marietta Rottenkolber
- Diabetes Research GroupDepartment of Medicine IVUniversity HospitalLMU MunichMunichGermany
- Clinical Cooperation Group DiabetesLudwig‐Maximilians‐Universität München and Helmholtz Zentrum MünchenMunichGermany
- German Center for Diabetes Research (DZD)München‐NeuherbergGermany
| | - Louise U. Fueessl
- Diabetes Research GroupDepartment of Medicine IVUniversity HospitalLMU MunichMunichGermany
- Clinical Cooperation Group DiabetesLudwig‐Maximilians‐Universität München and Helmholtz Zentrum MünchenMunichGermany
- German Center for Diabetes Research (DZD)München‐NeuherbergGermany
| | - Anna T. Joseph
- Diabetes Research GroupDepartment of Medicine IVUniversity HospitalLMU MunichMunichGermany
- Clinical Cooperation Group DiabetesLudwig‐Maximilians‐Universität München and Helmholtz Zentrum MünchenMunichGermany
- German Center for Diabetes Research (DZD)München‐NeuherbergGermany
| | - Rika Draenert
- Stabsstelle Antibiotic StewardshipLMU Klinikum MunichMunichGermany
| | - Jochen Seissler
- Diabetes Research GroupDepartment of Medicine IVUniversity HospitalLMU MunichMunichGermany
- Clinical Cooperation Group DiabetesLudwig‐Maximilians‐Universität München and Helmholtz Zentrum MünchenMunichGermany
- German Center for Diabetes Research (DZD)München‐NeuherbergGermany
| | - Andreas Lechner
- Diabetes Research GroupDepartment of Medicine IVUniversity HospitalLMU MunichMunichGermany
- Clinical Cooperation Group DiabetesLudwig‐Maximilians‐Universität München and Helmholtz Zentrum MünchenMunichGermany
- German Center for Diabetes Research (DZD)München‐NeuherbergGermany
| |
Collapse
|
3
|
Immunologic Control of HIV-1: What Have We Learned and Can We Induce It? Curr HIV/AIDS Rep 2021; 18:211-220. [PMID: 33709324 DOI: 10.1007/s11904-021-00545-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2021] [Indexed: 02/08/2023]
Abstract
PURPOSE OF REVIEW A large amount of data now exists on the virus-specific immune response associated with spontaneous or induced immunologic control of lentiviruses. This review focuses on how the current understanding of HIV-specific immunity might be leveraged into induction of immunologic control and what further research is needed to accomplish this goal. RECENT FINDINGS During chronic infection, the function most robustly associated with immunologic control of HIV-1 is CD8+ T cell cytotoxic capacity. This function has proven difficult to restore in HIV-specific CD8+ T cells of chronically infected progressors in vitro and in vivo. However, progress has been made in inducing an effective CD8+ T cell response prior to lentiviral infection in the macaque model and during acute lentiviral infection in non-human primates. Further study will likely accelerate the ability to induce an effective CD8+ T cell response as part of prophylactic or therapeutic strategies.
Collapse
|
4
|
Grützner EM, Hoffmann T, Wolf E, Gersbacher E, Neizert A, Stirner R, Pauli R, Ulmer A, Brust J, Bogner JR, Jaeger H, Draenert R. Treatment Intensification in HIV-Infected Patients Is Associated With Reduced Frequencies of Regulatory T Cells. Front Immunol 2018; 9:811. [PMID: 29760693 PMCID: PMC5936794 DOI: 10.3389/fimmu.2018.00811] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 04/03/2018] [Indexed: 12/03/2022] Open
Abstract
In untreated HIV infection, the efficacy of T cell responses decreases over the disease course, resulting in disease progression. The reasons for this development are not completely understood. However, immunosuppressive cells are supposedly crucially involved. Treatment strategies to avoid the induction of these cells preserve immune functions and are therefore the object of intense research efforts. In this study, we assessed the effect of treatment intensification [=5-drug antiretroviral therapy (ART)] on the development of suppressive cell subsets. The New Era (NE) study recruited patients with primary HIV infection (PHI) or chronically HIV-infected patients with conventional ART (CHI) and applied an intensified 5-drug regimen containing maraviroc and raltegravir for several years. We compared the frequencies of the immune suppressive cells, namely, the myeloid-derived suppressor cells (MDSCs), regulatory B cells (Bregs), and regulatory T cells (Tregs), of the treatment intensification patients to the control groups, especially to the patients with conventional 3-drug ART, and analyzed the Gag/Nef-specific CD8 T cell responses. There were no differences between PHI and CHI in the NE population (p > 0.11) for any of the studied cell types. Polymorphonuclear myeloid-derived suppressor cell (PMN-MDSC), monocytic myeloid-derived suppressor cell (M-MDSC), and the Breg frequencies were comparable to those of patients with a 3-drug ART. However, the Treg levels were significantly lower in the NE patients than those in 3ART-treated individuals and other control groups (p ≤ 0.0033). The Gag/Nef-specific CD8 T cell response was broader (p = 0.0134) with a higher magnitude (p = 0.026) in the NE population than that in the patients with conventional ART. However, we did not find a correlation between the frequency of the immune suppressive cells and the interferon-gamma+ CD8 T cell response. In the treatment intensification subjects, the frequencies of the immune suppressive cells were comparable or lower than those of the conventional ART-treated subjects, with surprisingly broad HIV-specific CD8 T cell responses, suggesting a preservation of immune function with the applied treatment regimen. Interestingly, these effects were seen in both treatment intensification subpopulations and were not attributed to the start of treatment in primary infection.
Collapse
Affiliation(s)
- Eva M Grützner
- Division of Infectious Diseases, Medizinische Klinik und Poliklinik IV, Ludwig Maximilian University of Munich, Munich, Germany.,German Center for Infection Research, Site Munich LMU, Munich, Germany
| | - Tanja Hoffmann
- Division of Infectious Diseases, Medizinische Klinik und Poliklinik IV, Ludwig Maximilian University of Munich, Munich, Germany
| | - Eva Wolf
- MUC Research GmbH, Munich, Germany
| | | | - Ashley Neizert
- Division of Infectious Diseases, Medizinische Klinik und Poliklinik IV, Ludwig Maximilian University of Munich, Munich, Germany
| | - Renate Stirner
- Division of Infectious Diseases, Medizinische Klinik und Poliklinik IV, Ludwig Maximilian University of Munich, Munich, Germany.,German Center for Infection Research, Site Munich LMU, Munich, Germany
| | - Ramona Pauli
- Dr. Med. Werner Becker, Dr. Med. Ramona Pauli, Gemeinschaftspraxis am Isartor, Munich, Germany
| | - Albrecht Ulmer
- Dr. Med. Albrecht Ulmer, Dr. Med. Bernhard Frietsch, Dr. Med Markus Müller, Gemeinschaftspraxis, Stuttgart, Germany
| | | | - Johannes R Bogner
- Division of Infectious Diseases, Medizinische Klinik und Poliklinik IV, Ludwig Maximilian University of Munich, Munich, Germany.,German Center for Infection Research, Site Munich LMU, Munich, Germany
| | - Hans Jaeger
- MVZ Karlsplatz, HIV Research and Clinical Care Centre, Munich, Germany
| | - Rika Draenert
- Division of Infectious Diseases, Medizinische Klinik und Poliklinik IV, Ludwig Maximilian University of Munich, Munich, Germany.,German Center for Infection Research, Site Munich LMU, Munich, Germany
| |
Collapse
|
5
|
Clayton KL, Collins DR, Lengieza J, Ghebremichael M, Dotiwala F, Lieberman J, Walker BD. Resistance of HIV-infected macrophages to CD8 + T lymphocyte-mediated killing drives activation of the immune system. Nat Immunol 2018; 19:475-486. [PMID: 29670239 PMCID: PMC6025741 DOI: 10.1038/s41590-018-0085-3] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 03/13/2018] [Indexed: 12/19/2022]
Abstract
CD4+ T lymphocytes are the principal target of human immunodeficiency virus (HIV), but infected macrophages also contribute to viral pathogenesis. The killing of infected cells by CD8+ cytotoxic T lymphocytes (CTLs) leads to control of viral replication. Here we found that the killing of macrophages by CTLs was impaired relative to the killing of CD4+ T cells by CTLs, and this resulted in inefficient suppression of HIV. The killing of macrophages depended on caspase-3 and granzyme B, whereas the rapid killing of CD4+ T cells was caspase independent and did not require granzyme B. Moreover, the impaired killing of macrophages was associated with prolonged effector cell-target cell contact time and higher expression of interferon-γ by CTLs, which induced macrophage production of pro-inflammatory chemokines that recruited monocytes and T cells. Similar results were obtained when macrophages presented other viral antigens, suggestive of a general mechanism for macrophage persistence as antigen-presenting cells that enhance inflammation and adaptive immunity. Inefficient killing of macrophages by CTLs might contribute to chronic inflammation, a hallmark of chronic disease caused by HIV.
Collapse
Affiliation(s)
| | - David R Collins
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Josh Lengieza
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | | | - Farokh Dotiwala
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Judy Lieberman
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Bruce D Walker
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA. .,Howard Hughes Medical Institute, Chevy Chase, MD, USA. .,Institute of Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
6
|
Torquato BGS, Oliveira MS, Juliano GR, Aguiar LS, Juliano GR, Silveira LMD, Espíndula AP, Oliveira LF, Cavellani CL, Oliveira FAD, Teixeira VDPA, Ferraz MLF. Analysis of the collagen fibers on autopsied patients’ uterus with the Acquired Immunodeficiency Syndrome. REVISTA BRASILEIRA DE SAÚDE MATERNO INFANTIL 2018. [DOI: 10.1590/1806-93042018000100010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract Objectives: to compare the percentage of collagen fibers in the autopsied women’s uterine body and cervix with and without the Acquired Immunodeficiency Syndrome (Aids). Methods: 30 autopsied women’s medical files were selected from 1988 to 2013. 30 fragments of the uterine body and 30 cervix were collected and then divided into two groups, 15 with Aids and 15 without, The quantification of the collagen fibers of the uterine body and cervix was performed on slides stained with picrosirius, using the KS-300® system. Results: the percentage of collagen fibers was lower for cervix (U=336544; p=0.001) and higher for the uterine body (U=308726,5; p=0.004) in the retroviral group when compared to the group without the disease. The percentage was higher for cervix than the uterine body in the group with Aids (t=0,4793; p=0.0031). the same result was found in the group without Aids (t=2,397; p=0.0637). Conclusions: the increase in the percentage of collagen fibers in the uterine body of women with Aids’ indicates an immune response for viral infection and reveals a failure in keeping the infection restricted to the cervix. The interpretation of the histochemical and morphometric parameters can be useful in the diagnosis associated to HIV infection, contributing for clinical improvement and life expectancy.
Collapse
|
7
|
Kafando A, Fournier E, Serhir B, Martineau C, Doualla-Bell F, Sangaré MN, Sylla M, Chamberland A, El-Far M, Charest H, Tremblay CL. HIV-1 envelope sequence-based diversity measures for identifying recent infections. PLoS One 2017; 12:e0189999. [PMID: 29284009 PMCID: PMC5746209 DOI: 10.1371/journal.pone.0189999] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 12/06/2017] [Indexed: 12/17/2022] Open
Abstract
Identifying recent HIV-1 infections is crucial for monitoring HIV-1 incidence and optimizing public health prevention efforts. To identify recent HIV-1 infections, we evaluated and compared the performance of 4 sequence-based diversity measures including percent diversity, percent complexity, Shannon entropy and number of haplotypes targeting 13 genetic segments within the env gene of HIV-1. A total of 597 diagnostic samples obtained in 2013 and 2015 from recently and chronically HIV-1 infected individuals were selected. From the selected samples, 249 (134 from recent versus 115 from chronic infections) env coding regions, including V1-C5 of gp120 and the gp41 ectodomain of HIV-1, were successfully amplified and sequenced by next generation sequencing (NGS) using the Illumina MiSeq platform. The ability of the four sequence-based diversity measures to correctly identify recent HIV infections was evaluated using the frequency distribution curves, median and interquartile range and area under the curve (AUC) of the receiver operating characteristic (ROC). Comparing the median and interquartile range and evaluating the frequency distribution curves associated with the 4 sequence-based diversity measures, we observed that the percent diversity, number of haplotypes and Shannon entropy demonstrated significant potential to discriminate recent from chronic infections (p<0.0001). Using the AUC of ROC analysis, only the Shannon entropy measure within three HIV-1 env segments could accurately identify recent infections at a satisfactory level. The env segments were gp120 C2_1 (AUC = 0.806), gp120 C2_3 (AUC = 0.805) and gp120 V3 (AUC = 0.812). Our results clearly indicate that the Shannon entropy measure represents a useful tool for predicting HIV-1 infection recency.
Collapse
Affiliation(s)
- Alexis Kafando
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
| | - Eric Fournier
- Laboratoire de santé publique du Québec, Institut national de santé publique du Québec, Sainte-Anne-de-Bellevue, Québec, Canada
| | - Bouchra Serhir
- Laboratoire de santé publique du Québec, Institut national de santé publique du Québec, Sainte-Anne-de-Bellevue, Québec, Canada
| | - Christine Martineau
- Laboratoire de santé publique du Québec, Institut national de santé publique du Québec, Sainte-Anne-de-Bellevue, Québec, Canada
| | - Florence Doualla-Bell
- Laboratoire de santé publique du Québec, Institut national de santé publique du Québec, Sainte-Anne-de-Bellevue, Québec, Canada
- Department of medicine, division of experimental medicine, McGill University, Montreal, Québec, Canada
| | - Mohamed Ndongo Sangaré
- Département de médecine sociale et préventive, École de santé publique, université de Montréal, Montréal, Québec, Canada
| | - Mohamed Sylla
- Centre de recherche du centre hospitalier de l’Université de Montréal, Montréal, Québec, Canada
| | - Annie Chamberland
- Centre de recherche du centre hospitalier de l’Université de Montréal, Montréal, Québec, Canada
| | - Mohamed El-Far
- Centre de recherche du centre hospitalier de l’Université de Montréal, Montréal, Québec, Canada
| | - Hugues Charest
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
- Laboratoire de santé publique du Québec, Institut national de santé publique du Québec, Sainte-Anne-de-Bellevue, Québec, Canada
| | - Cécile L. Tremblay
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
- Laboratoire de santé publique du Québec, Institut national de santé publique du Québec, Sainte-Anne-de-Bellevue, Québec, Canada
- Centre de recherche du centre hospitalier de l’Université de Montréal, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
8
|
Wikramaratna PS, Lourenço J, Klenerman P, Pybus OG, Gupta S. Effects of neutralizing antibodies on escape from CD8+ T-cell responses in HIV-1 infection. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0290. [PMID: 26150656 PMCID: PMC4528488 DOI: 10.1098/rstb.2014.0290] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Despite substantial advances in our knowledge of immune responses against HIV-1 and of its evolution within the host, it remains unclear why control of the virus eventually breaks down. Here, we present a new theoretical framework for the infection dynamics of HIV-1 that combines antibody and CD8+ T-cell responses, notably taking into account their different lifespans. Several apparent paradoxes in HIV pathogenesis and genetics of host susceptibility can be reconciled within this framework by assigning a crucial role to antibody responses in the control of viraemia. We argue that, although escape from or progressive loss of quality of CD8+ T-cell responses can accelerate disease progression, the underlying cause of the breakdown of virus control is the loss of antibody induction due to depletion of CD4+ T cells. Furthermore, strong antibody responses can prevent CD8+ T-cell escape from occurring for an extended period, even in the presence of highly efficacious CD8+ T-cell responses.
Collapse
Affiliation(s)
| | - José Lourenço
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| | - Paul Klenerman
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Oliver G Pybus
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| | - Sunetra Gupta
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| |
Collapse
|
9
|
Fiore-Gartland A, Manso BA, Friedrich DP, Gabriel EE, Finak G, Moodie Z, Hertz T, De Rosa SC, Frahm N, Gilbert PB, McElrath MJ. Pooled-Peptide Epitope Mapping Strategies Are Efficient and Highly Sensitive: An Evaluation of Methods for Identifying Human T Cell Epitope Specificities in Large-Scale HIV Vaccine Efficacy Trials. PLoS One 2016; 11:e0147812. [PMID: 26863315 PMCID: PMC4749288 DOI: 10.1371/journal.pone.0147812] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/22/2015] [Indexed: 11/19/2022] Open
Abstract
The interferon gamma, enzyme-linked immunospot (IFN-γ ELISpot) assay is widely used to identify viral antigen-specific T cells is frequently employed to quantify T cell responses in HIV vaccine studies. It can be used to define T cell epitope specificities using panels of peptide antigens, but with sample and cost constraints there is a critical need to improve the efficiency of epitope mapping for large and variable pathogens. We evaluated two epitope mapping strategies, based on group testing, for their ability to identify vaccine-induced T-cells from participants in the Step HIV-1 vaccine efficacy trial, and compared the findings to an approach of assaying each peptide individually. The group testing strategies reduced the number of assays required by >7-fold without significantly altering the accuracy of T-cell breadth estimates. Assays of small pools containing 7–30 peptides were highly sensitive and effective at detecting single positive peptides as well as summating responses to multiple peptides. Also, assays with a single 15-mer peptide, containing an identified epitope, did not always elicit a response providing validation that 15-mer peptides are not optimal antigens for detecting CD8+ T cells. Our findings further validate pooling-based epitope mapping strategies, which are critical for characterizing vaccine-induced T-cell responses and more broadly for informing iterative vaccine design. We also show ways to improve their application with computational peptide:MHC binding predictors that can accurately identify the optimal epitope within a 15-mer peptide and within a pool of 15-mer peptides.
Collapse
Affiliation(s)
- Andrew Fiore-Gartland
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, 98109, United States of America
- * E-mail:
| | - Bryce A. Manso
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, 98109, United States of America
| | - David P. Friedrich
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, 98109, United States of America
| | - Erin E. Gabriel
- Biostatistics Research Branch, National Institute of Allergy and Infectious Disease, Rockville, Maryland, 20852, United States of America
| | - Greg Finak
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, 98109, United States of America
| | - Zoe Moodie
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, 98109, United States of America
| | - Tomer Hertz
- Shraga Segal Department of Microbiology, Immunology and Genetics, Ben Gurion Institute of the Negev, Beer-Sheva, 84105, Israel
| | - Stephen C. De Rosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, 98109, United States of America
| | - Nicole Frahm
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, 98109, United States of America
| | - Peter B. Gilbert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, 98109, United States of America
| | - M. Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, 98109, United States of America
| |
Collapse
|
10
|
Identifying Recent HIV Infections: From Serological Assays to Genomics. Viruses 2015; 7:5508-24. [PMID: 26512688 PMCID: PMC4632395 DOI: 10.3390/v7102887] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 10/12/2015] [Accepted: 10/13/2015] [Indexed: 01/07/2023] Open
Abstract
In this paper, we review serological and molecular based methods to identify HIV infection recency. The accurate identification of recent HIV infection continues to be an important research area and has implications for HIV prevention and treatment interventions. Longitudinal cohorts that follow HIV negative individuals over time are the current gold standard approach, but they are logistically challenging, time consuming and an expensive enterprise. Methods that utilize cross-sectional testing and biomarker information have become an affordable alternative to the longitudinal approach. These methods use well-characterized biological makers to differentiate between recent and established HIV infections. However, recent results have identified a number of limitations in serological based assays that are sensitive to the variability in immune responses modulated by HIV subtypes, viral load and antiretroviral therapy. Molecular methods that explore the dynamics between the timing of infection and viral evolution are now emerging as a promising approach. The combination of serological and molecular methods may provide a good solution to identify recent HIV infection in cross-sectional data. As part of this review, we present the advantages and limitations of serological and molecular based methods and their potential complementary role for the identification of HIV infection recency.
Collapse
|
11
|
Success and failure of the cellular immune response against HIV-1. Nat Immunol 2015; 16:563-70. [PMID: 25988888 DOI: 10.1038/ni.3161] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 03/27/2015] [Indexed: 02/07/2023]
Abstract
The cellular immune response to HIV-1 has now been studied in extraordinary detail. A very large body of data provides the most likely reasons that the HIV-specific cellular immune response succeeds in a small number of people but fails in most. Understanding the success and failure of the HIV-specific cellular immune response has implications that extend not only to immunotherapies and vaccines for HIV-1 but also to the cellular immune response in other disease states. This Review focuses on the mechanisms that are most likely responsible for durable and potent immunologic control of HIV-1. Although we now have a detailed picture of the cellular immune responses to HIV-1, important questions remain regarding the nature of these responses and how they arise.
Collapse
|
12
|
Chawansuntati K, Chotirosniramit N, Sugandhavesa P, Aurpibul L, Thetket S, Kosashunhanan N, Supindham T, Kaewthip O, Sroysuwan P, Sirisanthana T, Suparatpinyo K, Wipasa J. Low expression of activation marker CD69 and chemokine receptors CCR5 and CXCR3 on memory T cells after 2009 H1N1 influenza A antigen stimulation in vitro following H1N1 vaccination of HIV-infected individuals. Hum Vaccin Immunother 2015; 11:2253-65. [PMID: 26091502 DOI: 10.1080/21645515.2015.1051275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Unlike well-studied antibody responses to pandemic 2009 H1N1 influenza A virus vaccines in human immunodeficiency virus-infected (HIV+) individuals, less well understood are cell-mediated immune (CMI) responses to this antigen in this susceptible population. We investigated such influenza-specific CMI responses in 61 HIV+ individuals and in 20 HIV-negative (HIV-) healthy controls. Each was vaccinated with a single licensed dose of inactivated, split-virion vaccine comprised of the influenza A/California/7/2009 (H1N1) virus-like strain. Cells collected just prior to vaccination and at 1 and 3 months afterwards were stimulated in vitro with dialyzed vaccine antigen and assayed by flow cytometry for cytokines TNF-α, IFN-γ, IL-2, and IL-10, for degranulation marker CD107a, as well as phenotypes of memory T-cell subpopulations. Comparable increases of cytokine-producing and CD107a-expressing T cells were observed in both HIV+ subjects and healthy HIV-controls. However, by 3 months post-vaccination, in vitro antigen stimulation of peripheral blood mononuclear cells induced greater expansion in controls of both CD4 and CD8 central memory and effector memory T cells, as well as higher expression of the activation marker CD69 and chemokine receptors CCR5 and CXCR3 than in HIV+ subjects. We concluded CD4+ and CD8+ memory T cells produce cytokines at comparable levels in both groups, whereas the expression after in vitro stimulation of molecules critical for cell migration to infection sites are lower in the HIV+ than in comparable controls. Further immunization strategies against influenza are needed to improve the CMI responses in people living with HIV.
Collapse
|
13
|
Kløverpris HN, McGregor R, McLaren JE, Ladell K, Harndahl M, Stryhn A, Carlson JM, Koofhethile C, Gerritsen B, Keşmir C, Chen F, Riddell L, Luzzi G, Leslie A, Walker BD, Ndung'u T, Buus S, Price DA, Goulder PJ. CD8+ TCR Bias and Immunodominance in HIV-1 Infection. THE JOURNAL OF IMMUNOLOGY 2015; 194:5329-45. [PMID: 25911754 DOI: 10.4049/jimmunol.1400854] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 02/25/2015] [Indexed: 12/25/2022]
Abstract
Immunodominance describes a phenomenon whereby the immune system consistently targets only a fraction of the available Ag pool derived from a given pathogen. In the case of CD8(+) T cells, these constrained epitope-targeting patterns are linked to HLA class I expression and determine disease progression. Despite the biological importance of these predetermined response hierarchies, little is known about the factors that control immunodominance in vivo. In this study, we conducted an extensive analysis of CD8(+) T cell responses restricted by a single HLA class I molecule to evaluate the mechanisms that contribute to epitope-targeting frequency and antiviral efficacy in HIV-1 infection. A clear immunodominance hierarchy was observed across 20 epitopes restricted by HLA-B*42:01, which is highly prevalent in populations of African origin. Moreover, in line with previous studies, Gag-specific responses and targeting breadth were associated with lower viral load set-points. However, peptide-HLA-B*42:01 binding affinity and stability were not significantly linked with targeting frequencies. Instead, immunodominance correlated with epitope-specific usage of public TCRs, defined as amino acid residue-identical TRB sequences that occur in multiple individuals. Collectively, these results provide important insights into a potential link between shared TCR recruitment, immunodominance, and antiviral efficacy in a major human infection.
Collapse
Affiliation(s)
- Henrik N Kløverpris
- Department of Paediatrics, University of Oxford, Oxford OX1 3SY, United Kingdom; Department of International Health, Immunology, and Microbiology, University of Copenhagen, 2200-Copenhagen N, Denmark; KwaZulu-Natal Research Institute for Tuberculosis and HIV, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa;
| | - Reuben McGregor
- Department of Paediatrics, University of Oxford, Oxford OX1 3SY, United Kingdom
| | - James E McLaren
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Kristin Ladell
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Mikkel Harndahl
- Department of International Health, Immunology, and Microbiology, University of Copenhagen, 2200-Copenhagen N, Denmark
| | - Anette Stryhn
- Department of International Health, Immunology, and Microbiology, University of Copenhagen, 2200-Copenhagen N, Denmark
| | | | - Catherine Koofhethile
- HIV Pathogenesis Program, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban 4013, South Africa
| | - Bram Gerritsen
- Theoretical Biology Group, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Can Keşmir
- Theoretical Biology Group, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Fabian Chen
- Department of Sexual Health, Royal Berkshire Hospital, Reading RG1 5AN, United Kingdom
| | - Lynn Riddell
- Department of Genitourinary Medicine, Northamptonshire Healthcare National Health Service Trust, Northampton General Hospital, Cliftonville, Northampton NN1 5BD, United Kingdom
| | - Graz Luzzi
- Department of Sexual Health, Wycombe Hospital, High Wycombe HP11 2TT, United Kingdom
| | - Alasdair Leslie
- KwaZulu-Natal Research Institute for Tuberculosis and HIV, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Bruce D Walker
- Ragon Institute of MGH, MIT, and Harvard, Boston, MA 02129; Howard Hughes Medical Institute, Chevy Chase, MD 20815; and
| | - Thumbi Ndung'u
- KwaZulu-Natal Research Institute for Tuberculosis and HIV, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa; HIV Pathogenesis Program, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban 4013, South Africa; Max Planck Institute for Infection Biology, D-10117 Berlin, Germany
| | - Søren Buus
- Department of International Health, Immunology, and Microbiology, University of Copenhagen, 2200-Copenhagen N, Denmark
| | - David A Price
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Philip J Goulder
- Department of Paediatrics, University of Oxford, Oxford OX1 3SY, United Kingdom
| |
Collapse
|
14
|
Tansiri Y, Rowland-Jones SL, Ananworanich J, Hansasuta P. Clinical outcome of HIV viraemic controllers and noncontrollers with normal CD4 counts is exclusively determined by antigen-specific CD8+ T-cell-mediated HIV suppression. PLoS One 2015; 10:e0118871. [PMID: 25764310 PMCID: PMC4357381 DOI: 10.1371/journal.pone.0118871] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 01/08/2015] [Indexed: 12/19/2022] Open
Abstract
In this cross-sectional study we evaluated T-cell responses using several assays to determine immune correlates of HIV control that distinguish untreated viraemic controllers (VC) from noncontrollers (NC) with similar CD4 counts. Samples were taken from 65 ART-naïve chronically HIV-infected VC and NC from Thailand with matching CD4 counts in the normal range (>450 cells/μl). We determined HIVp24-specific T-cell responses using standard Interferon-gamma (IFNγ) ELISpot assays, and compared the functional quality of HIVp24-specific CD8+ T-cell responses using polychromatic flow cytometry. Finally, in vitro HIV suppression assays were performed to evaluate directly the activity of CD8+ T cells in HIV control. Autologous CD4+ T cells were infected with primary patient-derived HIV isolates and the HIV suppressive activity of CD8+ T cells was determined after co-culture, measuring production of HIVp24 Ag by ELISA. The HIVp24-specific T-cell responses of VC and NC could not completely be differentiated through measurement of IFNγ-producing cells using ELISpot assays, nor by the absolute cell numbers of polyfunctional HIVp24-specific CD8+ T cells. However, in vitro HIV suppression assays showed clear differences between VC and NC. HIV suppressive activity, mediated by either ex vivo unstimulated CD8+ T cells or HIVp24-specific T-cell lines, was significantly greater using cells from VC than NC cells. Additionally, we were able to demonstrate a significant correlation between the level of HIV suppressive activity mediated by ex vivo unstimulated CD8+ T cells and plasma viral load (pVL) (Spearman r = -0.7345, p = 0.0003). This study provides evidence that in vitro HIV suppression assays are the most informative in the functional evaluation of CD8+ T-cell responses and can distinguish between VC and NC.
Collapse
Affiliation(s)
- Yada Tansiri
- Division of Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sarah L. Rowland-Jones
- Nuffield Department of Medicine, NDM Research Building, University of Oxford, Old Road Campus, Headington, OX3 7FZ, Oxford, United Kingdom
| | | | - Pokrath Hansasuta
- Division of Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
15
|
Broad and persistent Gag-specific CD8+ T-cell responses are associated with viral control but rarely drive viral escape during primary HIV-1 infection. AIDS 2015; 29:23-33. [PMID: 25387316 DOI: 10.1097/qad.0000000000000508] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE We characterized protein-specific CD8 T-cell immunodominance patterns during the first year of HIV-1 infection, and their impact on viral evolution and immune control. METHODS We analyzed CD8 T-cell responses to the full HIV-1 proteome during the first year of infection in 18 antiretroviral-naïve individuals with acute HIV-1 subtype C infection, all identified prior to seroconversion. Ex-vivo and cultured interferon-γ ELISPOT assays were performed and viruses from plasma were sequenced within defined CTL Gag epitopes. RESULTS Nef-specific CD8 T-cell responses were dominant during the first 4 weeks after infection and made up 40% of the total responses at this time; yet, by 1 year, responses against this region had declined and Gag responses made up to 47% of all T-cell responses measured. An inverse correlation between the breadth of Gag-specific responses and viral load set point was evident at 26 weeks after infection (P = 0.0081, r = -0.60) and beyond. An inverse correlation between the number of persistent responses targeting Gag and viral set point was also identified (P = 0.01, r = -0.58). Gag-specific responses detectable by the cultured ELISPOT assay correlated negatively with viral load set point (P = 0.0013, r = -0.91). Sequence evolution in targeted and nontargeted Gag epitopes in this cohort was infrequent. CONCLUSIONS These data underscore the importance of HIV-specific CD8 T-cell responses, particularly to the Gag protein, in the maintenance of low viral load levels during primary infection, and show that these responses are initially poorly elicited by natural infection. These data have implications for vaccine design strategies.
Collapse
|
16
|
Smith KN, Mailliard RB, Rinaldo CR. Programming T cell Killers for an HIV Cure: Teach the New Dogs New Tricks and Let the Sleeping Dogs Lie. ACTA ACUST UNITED AC 2015; 6:67-77. [PMID: 28344852 DOI: 10.1615/forumimmundisther.2016014160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Despite the success of combination antiretroviral therapy (cART), a latent viral reservoir persists in HIV-1-infected persons. Unfortunately, endogenous cytotoxic T lymphocytes (CTLs) are unable to control viral rebound when patients are removed from cART. A "kick and kill" strategy has been proposed to eradicate this reservoir, whereby infected T cells are induced to express viral proteins via latency-inducing drugs followed by their elimination by CTLs. It has yet to be determined if stimulation of existing HIV-1-specific CTL will be sufficient, or if new CTLs should be primed from naïve T cells. In this review, we propose that dendritic cells (DCs), the most potent antigen presenting cells, act as dog trainers and can induce T cells (the dogs) to do magnificent tricks. We propose the hypothesis that an HIV-1 cure will require targeting of naïve T cells and will necessitate "teaching new dogs new tricks" while avoiding activation of potentially dysfunctional endogenous memory CTLs (letting the sleeping dogs lie).
Collapse
Affiliation(s)
- Kellie N Smith
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA; Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA
| | - Robbie B Mailliard
- Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA
| | - Charles R Rinaldo
- Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA; Pathology, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
17
|
Abstract
UNLABELLED Recall T cell responses to HIV-1 antigens are used as a surrogate for endogenous cellular immune responses generated during infection. Current methods of identifying antigen-specific T cell reactivity in HIV-1 infection use bulk peripheral blood mononuclear cells (PBMC) yet ignore professional antigen-presenting cells (APC) that could reveal otherwise hidden responses. In the present study, peptides representing autologous variants of major histocompatibility complex (MHC) class I-restricted epitopes from HIV-1 Gag and Env were used as antigens in gamma interferon (IFN-γ) enzyme-linked immunosorbent spot (ELISpot) and polyfunctional cytokine assays. Here we show that dendritic cells (DC) enhanced T cell reactivity at all stages of disease progression but specifically restored T cell reactivity after combination antiretroviral therapy (cART) to early infection levels. Type 1 cytokine secretion was also enhanced by DC and was most apparent late post-cART. We additionally show that DC reveal polyfunctional T cell responses after many years of treatment, when potential immunotherapies would be implemented. These data underscore the potential efficacy of DC immunotherapy that aims to awaken a dormant, autologous, HIV-1-specific CD8+ T cell response. IMPORTANCE Assessment of endogenous HIV-1-specific T cell responses is critical for generating immunotherapies for subjects on cART. Current assays ignore the ability of dendritic cells to reveal these responses and may therefore underestimate the breadth and magnitude of T cell reactivity. As DC do not prime new responses in these assays, it can be assumed that the observed responses are not detected without appropriate stimulation. This is important because dogma states that HIV-1 mutates to evade host recognition and that CD8+ cytotoxic T lymphocyte (CTL) failure is due to the inability of T cells to recognize the autologous virus. The results presented here indicate that responses to autologous virus are generated during infection but may need additional stimulation to be effective. Detecting the breadth and magnitude of HIV-1-specific T cell reactivity generated in vivo is of the utmost importance for generating effective DC immunotherapies.
Collapse
|
18
|
Roider J, Kalteis AL, Vollbrecht T, Gloning L, Stirner R, Henrich N, Bogner JR, Draenert R. Adaptation of CD8 T cell responses to changing HIV-1 sequences in a cohort of HIV-1 infected individuals not selected for a certain HLA allele. PLoS One 2013; 8:e80045. [PMID: 24312453 PMCID: PMC3849264 DOI: 10.1371/journal.pone.0080045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 09/26/2013] [Indexed: 12/13/2022] Open
Abstract
HIV evades CD8 T cell mediated pressure by viral escape mutations in targeted CD8 T cell epitopes. A viral escape mutation can lead to a decline of the respective CD8 T cell response. Our question was what happened after the decline of a CD8 T cell response and - in the case of viral escape – if a new CD8 T cell response towards the mutated antigen could be generated in a population not selected for certain HLA alleles. We studied 19 antiretroviral-naïve HIV-1 infected individuals with different disease courses longitudinally. A median number of 12 (range 2-24) CD8 T cell responses towards Gag and Nef were detected per study subject. A total of 30 declining CD8 T cell responses were studied in detail and viral sequence analyses showed amino acid changes in 25 (83%) of these. Peptide titration assays and definition of optimal CD8 T cell epitopes revealed 12 viral escape mutations with one de-novo response (8%). The de-novo response, however, showed less effector functions than the original CD8 T cell response. In addition we identified 4 shifts in immunodominance. For one further shift in immunodominance, the mutations occurred outside the optimal epitope and might represent processing changes. Interestingly, four adaptations to the virus (the de-novo response and 3 shifts in immunodominance) occurred in the group of chronically infected progressors. None of the subjects with adaptation to the changing virus carried the HLA alleles B57, B*58:01 or B27. Our results show that CD8 T cell responses adapt to the mutations of HIV. However it was limited to only 20% (5 out of 25) of the epitopes with viral sequence changes in a cohort not expressing protective HLA alleles.
Collapse
Affiliation(s)
- Julia Roider
- Department of Infectious Diseases, Medizinische Klinik und Poliklinik IV der Ludwig-Maximilians-University, Munich, Germany
| | - Anna-Lena Kalteis
- Department of Infectious Diseases, Medizinische Klinik und Poliklinik IV der Ludwig-Maximilians-University, Munich, Germany
| | - Thomas Vollbrecht
- Department of Infectious Diseases, Medizinische Klinik und Poliklinik IV der Ludwig-Maximilians-University, Munich, Germany
| | - Lisa Gloning
- Department of Infectious Diseases, Medizinische Klinik und Poliklinik IV der Ludwig-Maximilians-University, Munich, Germany
| | - Renate Stirner
- Department of Infectious Diseases, Medizinische Klinik und Poliklinik IV der Ludwig-Maximilians-University, Munich, Germany
| | - Nadja Henrich
- Department of Infectious Diseases, Medizinische Klinik und Poliklinik IV der Ludwig-Maximilians-University, Munich, Germany
| | - Johannes R. Bogner
- Department of Infectious Diseases, Medizinische Klinik und Poliklinik IV der Ludwig-Maximilians-University, Munich, Germany
| | - Rika Draenert
- Department of Infectious Diseases, Medizinische Klinik und Poliklinik IV der Ludwig-Maximilians-University, Munich, Germany
- * E-mail:
| |
Collapse
|
19
|
Miedema F, Hazenberg MD, Tesselaar K, van Baarle D, de Boer RJ, Borghans JAM. Immune activation and collateral damage in AIDS pathogenesis. Front Immunol 2013; 4:298. [PMID: 24133492 PMCID: PMC3783946 DOI: 10.3389/fimmu.2013.00298] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 09/09/2013] [Indexed: 12/17/2022] Open
Abstract
In the past decade, evidence has accumulated that human immunodeficiency virus (HIV)-induced chronic immune activation drives progression to AIDS. Studies among different monkey species have shown that the difference between pathological and non-pathological infection is determined by the response of the immune system to the virus, rather than its cytopathicity. Here we review the current understanding of the various mechanisms driving chronic immune activation in HIV infection, the cell types involved, its effects on HIV-specific immunity, and how persistent inflammation may cause AIDS and the wide spectrum of non-AIDS related pathology. We argue that therapeutic relief of inflammation may be beneficial to delay HIV-disease progression and to reduce non-AIDS related pathological side effects of HIV-induced chronic immune stimulation.
Collapse
Affiliation(s)
- Frank Miedema
- Department of Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Mette D. Hazenberg
- Department of Internal Medicine and Hematology, Academic Medical Center, Amsterdam, Netherlands
| | - Kiki Tesselaar
- Department of Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Debbie van Baarle
- Department of Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Rob J. de Boer
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, Netherlands
| | - José A. M. Borghans
- Department of Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
20
|
HIV-1-infected individuals in antiretroviral therapy react specifically with polyfunctional T-cell responses to Gag p24. J Acquir Immune Defic Syndr 2013; 63:418-27. [PMID: 23507659 DOI: 10.1097/qai.0b013e31828fa22b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Still no effective HIV-1 prophylactic or therapeutic vaccines are available. However, as the proportion of HIV-1-infected individuals on antiretroviral treatment is increasing, knowledge about the residual immune response is important for the possible development of an HIV-1 vaccine. METHODS In this study, the magnitude, breadth, and quality of the HIV-1-specific T-cell response in HIV-1-infected viremic individuals (n = 19) and individuals on highly active antiretroviral treatment (HAART) (n = 14) using multicolor flow cytometry were determined. RESULTS We found that magnitude and breadth of the CD8 T-cell response were significantly higher in viremic individuals than individuals on HAART (P < 0.0001 and P < 0.0001, respectively) and that the functionality of the overall HIV-1-specific response was significantly different in individuals on HAART and viremic individuals (P = 0.0020). In individuals on HAART, the remaining responses were primarily detected upon stimulation with overlapping peptides from Gag p24, integrase, and Nef. The Gag p24 response was more polyfunctional than corresponding responses observed in viremic individuals. CONCLUSIONS Identification of highly immunogenic regions also recognized by individuals on HAART may be important for HIV-1 vaccine development. Irrespective of HLA haplotype, specific regions within the HIV-1 genome that is targeted more frequently in individuals on HAART have been identified. However, further studies are required to establish if these particular regions could be interesting for a future vaccine that might limit the time and opportunity for escape mutations.
Collapse
|
21
|
van Deutekom HWM, Wijnker G, de Boer RJ. The rate of immune escape vanishes when multiple immune responses control an HIV infection. THE JOURNAL OF IMMUNOLOGY 2013; 191:3277-86. [PMID: 23940274 DOI: 10.4049/jimmunol.1300962] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
During the first months of HIV infection, the virus typically evolves several immune escape mutations. These mutations are found in epitopes in viral proteins and reduce the impact of the CD8⁺ T cells specific for these epitopes. Recent data show that only a subset of the epitopes escapes, that most of these escapes evolve early, and that the rate of immune escape slows down considerably. To investigate why the evolution of immune escape slows down over the time of infection, we have extended a consensus mathematical model to allow several immune responses to control the virus together. In the extended model, most escapes also occur early, and the immune escape rate becomes small later, and typically only a minority of the epitopes escape. We show that escaping one of the many immune responses provides little advantage after viral setpoint has been approached because the total killing rate hardly depends on the breadth of the immune response. If the breadth of the immune response slowly wanes during disease progression, the model predicts an increase in the rate of immune escape at late stages of infection. Overall, the most striking prediction of the model is that HIV evolves a small number of immune escapes, in both relative and absolute terms, when the CTL immune response is broad.
Collapse
|
22
|
Mailliard RB, Smith KN, Fecek RJ, Rappocciolo G, Nascimento EJM, Marques ET, Watkins SC, Mullins JI, Rinaldo CR. Selective induction of CTL helper rather than killer activity by natural epitope variants promotes dendritic cell-mediated HIV-1 dissemination. THE JOURNAL OF IMMUNOLOGY 2013; 191:2570-80. [PMID: 23913962 DOI: 10.4049/jimmunol.1300373] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The ability of HIV-1 to rapidly accumulate mutations provides the virus with an effective means of escaping CD8(+) CTL responses. In this study, we describe how subtle alterations in CTL epitopes expressed by naturally occurring HIV-1 variants can result in an incomplete escape from CTL recognition, providing the virus with a selective advantage. Rather than paralyzing the CTL response, these epitope modifications selectively induce the CTL to produce proinflammatory cytokines in the absence of target killing. Importantly, instead of dampening the immune response through CTL elimination of variant Ag-expressing immature dendritic cells (DC), a positive CTL-to-DC immune feedback loop dominates whereby the immature DC differentiate into mature proinflammatory DC. Moreover, these CTL-programmed DC exhibit a superior capacity to mediate HIV-1 trans-infection of T cells. This discordant induction of CTL helper activity in the absence of killing most likely contributes to the chronic immune activation associated with HIV-1 infection, and can be used by HIV-1 to promote viral dissemination and persistence. Our findings highlight the need to address the detrimental potential of eliciting dysfunctional cross-reactive memory CTL responses when designing and implementing anti-HIV-1 immunotherapies.
Collapse
Affiliation(s)
- Robbie B Mailliard
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Viganò S, Bellutti Enders F, Miconnet I, Cellerai C, Savoye AL, Rozot V, Perreau M, Faouzi M, Ohmiti K, Cavassini M, Bart PA, Pantaleo G, Harari A. Rapid perturbation in viremia levels drives increases in functional avidity of HIV-specific CD8 T cells. PLoS Pathog 2013; 9:e1003423. [PMID: 23853580 PMCID: PMC3701695 DOI: 10.1371/journal.ppat.1003423] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 04/30/2013] [Indexed: 01/16/2023] Open
Abstract
The factors determining the functional avidity and its relationship with the broad heterogeneity of antiviral T cell responses remain partially understood. We investigated HIV-specific CD8 T cell responses in 85 patients with primary HIV infection (PHI) or chronic (progressive and non-progressive) infection. The functional avidity of HIV-specific CD8 T cells was not different between patients with progressive and non-progressive chronic infection. However, it was significantly lower in PHI patients at the time of diagnosis of acute infection and after control of virus replication following one year of successful antiretroviral therapy. High-avidity HIV-specific CD8 T cells expressed lower levels of CD27 and CD28 and were enriched in cells with an exhausted phenotype, i.e. co-expressing PD-1/2B4/CD160. Of note, a significant increase in the functional avidity of HIV-specific CD8 T cells occurred in early-treated PHI patients experiencing a virus rebound after spontaneous treatment interruption. This increase in functional avidity was associated with the accumulation of PD-1/2B4/CD160 positive cells, loss of polyfunctionality and increased TCR renewal. The increased TCR renewal may provide the mechanistic basis for the generation of high-avidity HIV-specific CD8 T cells. These results provide insights on the relationships between functional avidity, viremia, T-cell exhaustion and TCR renewal of antiviral CD8 T cell responses. CD8 T cells directed against virus are complex and functionally heterogeneous. One relevant component of CD8 T cells is their functional avidity which reflects their sensitivity to cognate antigens, i.e. how prone T cells are to respond when they encounter low doses of antigens. In patients with chronic and established HIV infection, we observed that the sensitivity of HIV-specific CD8 T cells was not different between patients with progressive or non-progressive disease. In contrast, the sensitivity of HIV-specific CD8 T cells was significantly lower in patients with early and recent HIV infection. Furthermore, CD8 T cells of high avidity were preferentially associated with a state of functional impairment known as exhaustion. Of interest, some patients treated with antiretroviral therapy during acute infection spontaneously interrupted their treatment and experienced a rebound of virus. In these patients, the avidity of HIV-specific CD8 T cells increased and this increase was associated to stronger cell exhaustion and greater renewal of the population of antiviral CD8 T cells, thus potentially providing the mechanistic basis for the generation of high-avidity CD8 T cells. Overall, our data suggest that rapid perturbation in viremia levels drove increases in the functional avidity of HIV-specific CD8 T cells.
Collapse
Affiliation(s)
- Selena Viganò
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Felicitas Bellutti Enders
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Isabelle Miconnet
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Cristina Cellerai
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Anne-Laure Savoye
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Virginie Rozot
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Matthieu Perreau
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Mohamed Faouzi
- The Center of Clinical Epidemiology, Institut de Médecine Sociale et Préventive, Lausanne University Hospital, Lausanne, Switzerland
| | - Khalid Ohmiti
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
- The Center of Clinical Epidemiology, Institut de Médecine Sociale et Préventive, Lausanne University Hospital, Lausanne, Switzerland
| | - Matthias Cavassini
- Service of Infectious Diseases, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Pierre-Alexandre Bart
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Giuseppe Pantaleo
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
- Swiss Vaccine Research Institute, Lausanne, Switzerland
| | - Alexandre Harari
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
- Swiss Vaccine Research Institute, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
24
|
Kunwar P, Hawkins N, Dinges WL, Liu Y, Gabriel EE, Swan DA, Stevens CE, Maenza J, Collier AC, Mullins JI, Hertz T, Yu X, Horton H. Superior control of HIV-1 replication by CD8+ T cells targeting conserved epitopes: implications for HIV vaccine design. PLoS One 2013; 8:e64405. [PMID: 23741326 PMCID: PMC3669284 DOI: 10.1371/journal.pone.0064405] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 04/12/2013] [Indexed: 12/21/2022] Open
Abstract
A successful HIV vaccine will likely induce both humoral and cell-mediated immunity, however, the enormous diversity of HIV has hampered the development of a vaccine that effectively elicits both arms of the adaptive immune response. To tackle the problem of viral diversity, T cell-based vaccine approaches have focused on two main strategies (i) increasing the breadth of vaccine-induced responses or (ii) increasing vaccine-induced responses targeting only conserved regions of the virus. The relative extent to which set-point viremia is impacted by epitope-conservation of CD8+ T cell responses elicited during early HIV-infection is unknown but has important implications for vaccine design. To address this question, we comprehensively mapped HIV-1 CD8+ T cell epitope-specificities in 23 ART-naïve individuals during early infection and computed their conservation score (CS) by three different methods (prevalence, entropy and conseq) on clade-B and group-M sequence alignments. The majority of CD8+ T cell responses were directed against variable epitopes (p<0.01). Interestingly, increasing breadth of CD8+ T cell responses specifically recognizing conserved epitopes was associated with lower set-point viremia (r = - 0.65, p = 0.009). Moreover, subjects possessing CD8+ T cells recognizing at least one conserved epitope had 1.4 log10 lower set-point viremia compared to those recognizing only variable epitopes (p = 0.021). The association between viral control and the breadth of conserved CD8+ T cell responses may be influenced by the method of CS definition and sequences used to determine conservation levels. Strikingly, targeting variable versus conserved epitopes was independent of HLA type (p = 0.215). The associations with viral control were independent of functional avidity of CD8+ T cell responses elicited during early infection. Taken together, these data suggest that the next-generation of T-cell based HIV-1 vaccines should focus on strategies that can elicit CD8+ T cell responses to multiple conserved epitopes of HIV-1.
Collapse
Affiliation(s)
- Pratima Kunwar
- Viral Vaccine Program, Seattle Biomedical Research Institute, Seattle, Washington, United States of America
- Department of Global Health, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Natalie Hawkins
- Statistical Center for HIV Research and Prevention, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Warren L. Dinges
- Viral Vaccine Program, Seattle Biomedical Research Institute, Seattle, Washington, United States of America
- Polyclinic Infectious Disease, Seattle, Washington, United States of America
| | - Yi Liu
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Erin E. Gabriel
- Statistical Center for HIV Research and Prevention, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - David A. Swan
- Statistical Center for HIV Research and Prevention, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Claire E. Stevens
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Janine Maenza
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Ann C. Collier
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - James I. Mullins
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
- Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Tomer Hertz
- Statistical Center for HIV Research and Prevention, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Xuesong Yu
- Statistical Center for HIV Research and Prevention, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Helen Horton
- Viral Vaccine Program, Seattle Biomedical Research Institute, Seattle, Washington, United States of America
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
- Department of Global Health, University of Washington School of Medicine, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
25
|
Zaunders J, van Bockel D. Innate and Adaptive Immunity in Long-Term Non-Progression in HIV Disease. Front Immunol 2013; 4:95. [PMID: 23630526 PMCID: PMC3633949 DOI: 10.3389/fimmu.2013.00095] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 04/09/2013] [Indexed: 12/20/2022] Open
Abstract
Long-term non-progressors (LTNP) were identified after 10-15 years of the epidemic, and have been the subject of intense investigation ever since. In a small minority of cases, infection with nef/3'LTR deleted attenuated viral strains allowed control over viral replication. A common feature of LTNP is the readily detected proliferation of CD4 T-cells in vitro, in response to p24. In some cases, the responding CD4 T-cells have cytotoxic effector function and may target conserved p24 epitopes, similar to the CD8 T-cells described below. LTNP may also carry much lower HIV DNA burden in key CD4 subsets, presumably resulting from lower viral replication during primary infection. Some studies, but not others, suggest that LTNP have CD4 T-cells that are relatively resistant to HIV infection in vitro. One possible mechanism may involve up-regulation of the cell cycle regulator p21/waf in CD4 T-cells from LTNP. Delayed progression in Caucasian LTNP is also partly associated with heterozygosity of the Δ32 CCR5 allele, probably through decreased expression of CCR5 co-receptor on CD4 T-cells. However, in approximately half of Caucasian LTNP, two host genotypes, namely HLA-B57 and HLA-B27, are associated with viral control. Immunodominant CD8 T-cells from these individuals target epitopes in p24 that are highly conserved, and escape mutations have significant fitness costs to the virus. Furthermore, recent studies have suggested that these CD8 T-cells from LTNP, but not from HLA-B27 or HLA-B57 progressors, can cross-react with intermediate escape mutations, preventing full escape via compensatory mutations. Humoral immunity appears to play little part in LTNP subjects, since broadly neutralizing antibodies are rare, even amongst slow progressors. Recent genome-wide comparisons between LTNP and progressors have confirmed the HLA-B57, HLA-B27, and delta32 CCR5 allelic associations, plus indicated a role for HLA-C/KIR interactions, but have not revealed any new genotypes so far. Nevertheless, it is hoped that studying the mechanisms of intracellular restriction factors, such as the recently identified SAMHD1, will lead to a better understanding of non-progression.
Collapse
Affiliation(s)
- John Zaunders
- Centre for Applied Medical Research, St Vincent's Hospital Darlinghurst, NSW, Australia
| | | |
Collapse
|
26
|
Abstract
HIV-specific cytotoxic T lymphocytes (CTL) are preferentially primed for apoptosis, and this may represent a viral escape mechanism. We hypothesized that HIV-infected individuals that control virus to undetectable levels without antiretroviral therapy (ART) (elite controllers [EC]) have the capacity to upregulate survival factors that allow them to resist apoptosis. To address this, we performed cross-sectional and longitudinal analysis of proapoptotic (cleaved caspase-3) and antiapoptotic (Bcl-2) markers of cytomegalovirus (CMV) and HIV-specific CD8 T cells in a cohort of HIV-infected subjects with various degrees of viral control on and off ART. We demonstrated that HIV-specific CTL from EC are more resistant to apoptosis than those with pharmacologic control (successfully treated patients [ST]), despite similar in vivo conditions. Longitudinal analysis of chronically infected persons starting ART revealed that the frequency of HIV-specific T cells prone to death decreased, suggesting that this phenotype is partially reversible even though it never achieves the levels present in EC. Elucidating the apoptotic factors contributing to the survival of CTL in EC is paramount to our development of effective HIV-1 vaccines. Furthermore, a better understanding of cellular markers that can be utilized to predict response durability in disease- or vaccine-elicited responses will advance the field.
Collapse
|
27
|
Liu MKP, Hawkins N, Ritchie AJ, Ganusov VV, Whale V, Brackenridge S, Li H, Pavlicek JW, Cai F, Rose-Abrahams M, Treurnicht F, Hraber P, Riou C, Gray C, Ferrari G, Tanner R, Ping LH, Anderson JA, Swanstrom R, Cohen M, Karim SSA, Haynes B, Borrow P, Perelson AS, Shaw GM, Hahn BH, Williamson C, Korber BT, Gao F, Self S, McMichael A, Goonetilleke N. Vertical T cell immunodominance and epitope entropy determine HIV-1 escape. J Clin Invest 2012; 123:380-93. [PMID: 23221345 DOI: 10.1172/jci65330] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 10/05/2012] [Indexed: 12/26/2022] Open
Abstract
HIV-1 accumulates mutations in and around reactive epitopes to escape recognition and killing by CD8+ T cells. Measurements of HIV-1 time to escape should therefore provide information on which parameters are most important for T cell-mediated in vivo control of HIV-1. Primary HIV-1-specific T cell responses were fully mapped in 17 individuals, and the time to virus escape, which ranged from days to years, was measured for each epitope. While higher magnitude of an individual T cell response was associated with more rapid escape, the most significant T cell measure was its relative immunodominance measured in acute infection. This identified subject-level or "vertical" immunodominance as the primary determinant of in vivo CD8+ T cell pressure in HIV-1 infection. Conversely, escape was slowed significantly by lower population variability, or entropy, of the epitope targeted. Immunodominance and epitope entropy combined to explain half of all the variability in time to escape. These data explain how CD8+ T cells can exert significant and sustained HIV-1 pressure even when escape is very slow and that within an individual, the impacts of other T cell factors on HIV-1 escape should be considered in the context of immunodominance.
Collapse
Affiliation(s)
- Michael K P Liu
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Functional avidity: a measure to predict the efficacy of effector T cells? Clin Dev Immunol 2012; 2012:153863. [PMID: 23227083 PMCID: PMC3511839 DOI: 10.1155/2012/153863] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 10/22/2012] [Indexed: 01/30/2023]
Abstract
The functional avidity is determined by exposing T-cell populations in vitro to different amounts of cognate antigen. T-cells with high functional avidity respond to low antigen doses. This in vitro measure is thought to correlate well with the in vivo effector capacity of T-cells. We here present the multifaceted factors determining and influencing the functional avidity of T-cells. We outline how changes in the functional avidity can occur over the course of an infection. This process, known as avidity maturation, can occur despite the fact that T-cells express a fixed TCR. Furthermore, examples are provided illustrating the importance of generating T-cell populations that exhibit a high functional avidity when responding to an infection or tumors. Furthermore, we discuss whether criteria based on which we evaluate an effective T-cell response to acute infections can also be applied to chronic infections such as HIV. Finally, we also focus on observations that high-avidity T-cells show higher signs of exhaustion and facilitate the emergence of virus escape variants. The review summarizes our current understanding of how this may occur as well as how T-cells of different functional avidity contribute to antiviral and anti-tumor immunity. Enhancing our knowledge in this field is relevant for tumor immunotherapy and vaccines design.
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW Much of the current HIV-1 vaccine research focuses on harnessing the cytotoxic T-lymphocyte arm of the immune response. However, HIV-1 appears to have an unerring ability to evade cytotoxic T-lymphocyte responses, through the process of escape mutation, and thus the potential benefit of a cytotoxic T-lymphocyte-based vaccine remains uncertain. This review focuses on several recent studies that question whether escape mutation is always detrimental to the host, and may provide new hope for the success of a cytotoxic T-lymphocyte-based vaccine against HIV. RECENT FINDINGS Several recent studies, in both natural HIV-1 infection and the SIV model, have identified examples of cytotoxic T-lymphocyte escape mutants that revert on transmission to individuals lacking the selecting major histocompatibility complex alleles. The obvious implication of these data is that some cytotoxic T-lymphocyte responses can only be evaded through escape mutations that actually reduce the replicative fitness of the virus. In addition, a recent vaccine study in macaques found that the control of immunodeficiency virus to undetectable levels was only achieved in animals that were able to force the virus to make such detrimental escape mutations. These data raise the intriguing possibility that, rather than undermining cytotoxic T-lymphocyte vaccines, escape mutation may be one of the keys to their success. SUMMARY Clearly, not all escape mutations help to control viral replication. We discuss how these new data may assist in the struggle to develop a successful cytotoxic T-lymphocyte-based HIV vaccine, and what they tell us about the responses such a vaccine should aim to elicit.
Collapse
|
30
|
Qualitative host factors associated with immunological control of HIV infection by CD8 T cells. Curr Opin HIV AIDS 2012; 1:28-33. [PMID: 19372780 DOI: 10.1097/01.coh.0000194108.14601.69] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Despite significant technical advances that have permitted an increasingly more quantitative and detailed study of virus-specific cellular immunity over the past few years, our understanding of the nature of immunological control in rare cases of non-progressive HIV infection and diminished control in the majority of untreated chronically infected patients remains incomplete. This review will summarize recent findings and points of controversy within areas of active investigation of the cellular immune response to HIV. RECENT FINDINGS It is now appreciated that high frequencies of virus-specific CD8 T cells are readily detectable in chronic HIV infection, but do not restrict viral replication. For this reason, attention has shifted to qualitative features of the host immune response that might accurately determine the restriction of viral replication. A number of qualitative changes in the phenotype, cytokine secretion, and proliferative capacity of HIV-specific CD8 T cells of progressors have recently been described. SUMMARY Given that the desired response to the majority of vaccines in pre-clinical or clinical testing is to stimulate cellular immunity in an attempt to alter disease progression, understanding these qualitative features is of particular relevance. Further study will probably yield critical information for the means to stimulate effective immunity in vaccinees, prevent the loss of control of viral replication upon infection of vaccinees, or induce durable immunological control in humans already infected with HIV.
Collapse
|
31
|
Wang W, Qiu C, Qiu C, Wang Y, Zhang X, Xu J. Development of skewed functionality of HIV-1-specific cytotoxic CD8(+) T cells from primary to early chronic phase of HIV infection. PLoS One 2012; 7:e44983. [PMID: 23028721 PMCID: PMC3441698 DOI: 10.1371/journal.pone.0044983] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 08/15/2012] [Indexed: 11/18/2022] Open
Abstract
In recent years, the prevalence of HIV-1 infection has been rapidly increasing among men who have sex with men (MSM). However, it remains unknown how the host immune system responds to the infection in this population. We assessed the quantity of HIV-specific CD8+ T-cell responses by using Elispot assay and their functionalities by measuring 5 CD8+ T-cell evaluations (IL-2, MIP-1β, CD107a, TNF-α, IFN-γ) with flow cytometry assays among 18 primarily and 37 early chronically HIV-infected MSM. Our results demonstrated that subjects at early chronic phase developed HIV-specific CD8+ T-cell responses with higher magnitudes and more diversified functionalities in comparison with those at primary infection. However, populations with IL-2+ CD107a+ or in combination with other functionality failed to develop in parallel. The multifunctional but not monofunctional HIV-specific CD8+ T cells were associated with higher CD4+ T -cell counts and lower viral loads. These data revealed that prolonged infection from primary to early chronic infection could selectively increase the functionalities of HIV-specific CD8+ T cells in HIV-infected MSM population, the failure to develop IL-2 and cytotoxic functionalities in parallel may explain why the increased HIV-specific CD8+ T cells were unable to enhance the containment of HIV-1 replication at the early chronic stage.
Collapse
Affiliation(s)
- Wanhai Wang
- Shanghai Public Health Clinical Center, the Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of Shanghai Medical College and Institute of Medical Microbiology, Fudan University, Shanghai, China
| | - Chenli Qiu
- Shanghai Public Health Clinical Center, the Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of Shanghai Medical College and Institute of Medical Microbiology, Fudan University, Shanghai, China
| | - Chao Qiu
- Shanghai Public Health Clinical Center, the Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of Shanghai Medical College and Institute of Medical Microbiology, Fudan University, Shanghai, China
| | - Ying Wang
- Shanghai Center for Disease Control and Prevention, Shanghai, China
| | - Xiaoyan Zhang
- Shanghai Public Health Clinical Center, the Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of Shanghai Medical College and Institute of Medical Microbiology, Fudan University, Shanghai, China
- State Key Laboratory for Infectious Disease Prevention and Control, China CDC, Beijing, China
- * E-mail: (JX); (XZ)
| | - Jianqing Xu
- Shanghai Public Health Clinical Center, the Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of Shanghai Medical College and Institute of Medical Microbiology, Fudan University, Shanghai, China
- State Key Laboratory for Infectious Disease Prevention and Control, China CDC, Beijing, China
- * E-mail: (JX); (XZ)
| |
Collapse
|
32
|
Borges M, Barreira-Silva P, Flórido M, Jordan MB, Correia-Neves M, Appelberg R. Molecular and cellular mechanisms of Mycobacterium avium-induced thymic atrophy. THE JOURNAL OF IMMUNOLOGY 2012; 189:3600-8. [PMID: 22922815 DOI: 10.4049/jimmunol.1201525] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Thymic atrophy has been described as a consequence of infection by several pathogens and shown to be induced through diverse mechanisms. Using the mouse model of Mycobacterium avium infection, we show in this study that the production of NO from IFN-γ-activated macrophages plays a major role in mycobacterial infection-induced thymic atrophy. Our results show that disseminated infection with a highly virulent strain of M. avium, but not with a low-virulence strain, led to a progressive thymic atrophy. Thymic involution was prevented in genetically manipulated mice unable to produce IFN-γ or the inducible NO synthase. In addition, mice with a selective impairment of IFN-γ signaling in macrophages were similarly protected from infection-induced thymic atrophy. A slight increase in the concentration of corticosterone was found in mice infected with the highly virulent strain, and thymocytes presented an increased susceptibility to dexamethasone-induced death during disseminated infection. The administration of an antagonist of glucocorticoid receptors partially reverted the infection-induced thymic atrophy. We observed a reduction in all thymocyte populations analyzed, including the earliest thymic precursors, suggesting a defect during thymic colonization by T cell precursors and/or during the differentiation of these cells in the bone marrow in addition to local demise of thymic cells. Our data suggest a complex picture underlying thymic atrophy during infection by M. avium with the participation of locally produced NO, endogenous corticosteroid activity, and reduced bone marrow seeding.
Collapse
Affiliation(s)
- Margarida Borges
- Institute for Molecular and Cell Biology, University of Porto, 4150-180 Porto, Portugal
| | | | | | | | | | | |
Collapse
|
33
|
Chronic progressive HIV-1 infection is associated with elevated levels of myeloid-derived suppressor cells. AIDS 2012; 26:F31-7. [PMID: 22526518 DOI: 10.1097/qad.0b013e328354b43f] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Myeloid-derived suppressor cells (MDSCs) have been described as suppressors of T-cell functions in many tumor models. However, MDSC in HIV-1 infection have not been studied to date. As impaired T-cell function is a hallmark of chronic progressive HIV-1 infection, we hypothesized that MDSC also play a role here. METHODS Surface staining and flow cytometry analysis were performed on freshly isolated peripheral blood mononuclear cells (PBMC) of HIV-infected individuals and compared to healthy controls and individuals with lung carcinoma. MDSC of late-stage HIV-infected individuals were isolated using magnetic beads and cocultured with the respective CD8 T cells for evaluation of proliferative capacity. RESULTS We found that chronically HIV-infected HAART-naive individuals had significantly higher CD11bCD14CD33CD15 MDSC levels than healthy controls (P = 0.01). MDSC frequencies showed a positive correlation with viral load (r = 0.24, P = 0.0002) and a negative correlation with CD4 cell count (r = 0.29, P < 0.0001). Initiation of HAART led to a rapid drop in MDSC levels. MDSC from HIV-infected progressors restricted the proliferative capacity of CD8 T cells from healthy donors and of Gag/Nef-specific CD8 T cells from HIV-controllers in vitro. Furthermore, CD11bCD14CD33CD15 MDSC induced the expansion of CD4CD25FoxP3 regulatory T cells when coincubated with PBMC from controllers in vitro. CONCLUSION We conclude that chronic uncontrolled HIV-infection is associated with elevated levels of MDSC, which potentially contribute to the impaired T-cell responses characteristic for the progressive disease stage.
Collapse
|
34
|
Abstract
The complex interplay between the host immune response and HIV has been the subject of intense research over the last 25 years. HIV and simian immunodeficiency virus (SIV) CD8 T cells have been of particular interest since they were demonstrated to be temporally associated with reduction in virus load shortly following transmission. Here, we briefly review the phenotypic and functional properties of HIV-specific and SIV-specific CD8 T-cell subsets during HIV infection and consider the influence of viral variation with specific responses that are associated with disease progression or control. The development of an effective HIV/AIDS vaccine combined with existing successful prevention and treatment strategies is essential for preventing new infections. In the context of previous clinical HIV/AIDS vaccine trials, we consider the challenges faced by therapeutic and vaccine strategies designed to elicit effective HIV-specific CD8 T cells.
Collapse
|
35
|
Abstract
Evolution of RNA viruses occurs through disequilibria of collections of closely related mutant spectra or mutant clouds termed viral quasispecies. Here we review the origin of the quasispecies concept and some biological implications of quasispecies dynamics. Two main aspects are addressed: (i) mutant clouds as reservoirs of phenotypic variants for virus adaptability and (ii) the internal interactions that are established within mutant spectra that render a virus ensemble the unit of selection. The understanding of viruses as quasispecies has led to new antiviral designs, such as lethal mutagenesis, whose aim is to drive viruses toward low fitness values with limited chances of fitness recovery. The impact of quasispecies for three salient human pathogens, human immunodeficiency virus and the hepatitis B and C viruses, is reviewed, with emphasis on antiviral treatment strategies. Finally, extensions of quasispecies to nonviral systems are briefly mentioned to emphasize the broad applicability of quasispecies theory.
Collapse
Affiliation(s)
- Esteban Domingo
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), C/ Nicolás Cabrera, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain.
| | | | | |
Collapse
|
36
|
Mostowy R, Kouyos RD, Hoof I, Hinkley T, Haddad M, Whitcomb JM, Petropoulos CJ, Keşmir C, Bonhoeffer S. Estimating the fitness cost of escape from HLA presentation in HIV-1 protease and reverse transcriptase. PLoS Comput Biol 2012; 8:e1002525. [PMID: 22654656 PMCID: PMC3359966 DOI: 10.1371/journal.pcbi.1002525] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 04/03/2012] [Indexed: 12/11/2022] Open
Abstract
Human immunodeficiency virus (HIV-1) is, like most pathogens, under selective pressure to escape the immune system of its host. In particular, HIV-1 can avoid recognition by cytotoxic T lymphocytes (CTLs) by altering the binding affinity of viral peptides to human leukocyte antigen (HLA) molecules, the role of which is to present those peptides to the immune system. It is generally assumed that HLA escape mutations carry a replicative fitness cost, but these costs have not been quantified. In this study, we assess the replicative cost of mutations which are likely to escape presentation by HLA molecules in the region of HIV-1 protease and reverse transcriptase. Specifically, we combine computational approaches for prediction of in vitro replicative fitness and peptide binding affinity to HLA molecules. We find that mutations which impair binding to HLA-A molecules tend to have lower in vitro replicative fitness than mutations which do not impair binding to HLA-A molecules, suggesting that HLA-A escape mutations carry higher fitness costs than non-escape mutations. We argue that the association between fitness and HLA-A binding impairment is probably due to an intrinsic cost of escape from HLA-A molecules, and these costs are particularly strong for HLA-A alleles associated with efficient virus control. Counter-intuitively, we do not observe a significant effect in the case of HLA-B, but, as discussed, this does not argue against the relevance of HLA-B in virus control. Overall, this article points to the intriguing possibility that HLA-A molecules preferentially target more conserved regions of HIV-1, emphasizing the importance of HLA-A genes in the evolution of HIV-1 and RNA viruses in general. Our immune system can recognize and kill virus-infected cells by distinguishing between self and virus-derived protein fragments, called peptides, displayed on the surface of each cell. One requirement for a successful recognition is that those peptides bind to the human leukocyte antigen (HLA) class I molecules, which present them to the immune system. As a counter-strategy, human immunodeficiency virus type 1 (HIV-1) can acquire mutations that prevent this binding, thereby helping the virus to escape the surveillance of T-lymphocytes. It is likely that the virus pays a replicative cost for such escape mutations, but the magnitude of this cost has remained elusive. Here, we quantified this fitness cost in HIV-1 protease and reverse transcriptase by combining two computational systems biology approaches: one for prediction of in vitro replicative fitness, and one for the prediction of the efficiency of peptide binding to HLA. We found that in viral proteins targeted by HLA-A molecules, mutations which disrupt binding to those molecules carry a lower replicative fitness than mutations which do not have such an effect. We argue that these results are consistent with the hypothesis that our immune systems might have evolved to target genetic regions of RNA viruses which are costly for the pathogen to alter.
Collapse
Affiliation(s)
- Rafal Mostowy
- Institute for Integrative Biology, ETH Zurich, Zurich, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW The goal of this study is to review key recent findings related to the immunopathogenesis of hepatitis C virus (HCV) infection, especially in regards to T lymphocytes. It aims to complement other reviews in this issue on the roles of host genetics (IL-28B), acute HCV infection (when disease outcome is determined) and other factors that may influence fibrosis progression (microbial translocation). The main focus is on specific immunity and T cells in the context of success and failure to control viral infection. RECENT FINDINGS This review focuses on two areas of intense interest in the recent literature: the relationship between the human leukocyte antigen (HLA), class I-restricted T-cell responses and the evolution of the virus and the role of inhibitory markers on T cells in the immunopathogenesis of HCV. When appropriate, we compare findings from studies of HIV-specific immunity. SUMMARY From examining the virus and the mutational changes associated with T-cell responses and from analyzing the markers on T cells, there have been numerous advances in the understanding of immune evasion mechanisms employed by HCV.
Collapse
|
38
|
Keane NM, Roberts SG, Almeida CAM, Krishnan T, Chopra A, Demaine E, Laird R, Tschochner M, Carlson JM, Mallal S, Heckerman D, James I, John M. High-avidity, high-IFNγ-producing CD8 T-cell responses following immune selection during HIV-1 infection. Immunol Cell Biol 2012; 90:224-34. [PMID: 21577229 PMCID: PMC3173576 DOI: 10.1038/icb.2011.34] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
HIV-1 mutations, which reduce or abolish CTL responses against virus-infected cells, are frequently selected in acute and chronic HIV infection. Among population HIV-1 sequences, immune selection is evident as human leukocyte antigen (HLA) allele-associated substitutions of amino acids within or near CD8 T-cell epitopes. In these cases, the non-adapted epitope is susceptible to immune recognition until an escape mutation renders the epitope less immunogenic. However, several population-based studies have independently identified HLA-associated viral changes, which lead to the formation of a new T-cell epitope, suggesting that the immune responses that these variants or 'neo-epitopes' elicit provide an evolutionary advantage to the virus rather than the host. Here, we examined the functional characteristics of eight CD8 T-cell responses that result from viral adaptation in 125 HLA-genotyped individuals with chronic HIV-1 infection. Neo-epitopes included well-characterized immunodominant epitopes restricted by common HLA alleles, and in most cases the T-cell responses against the neo-epitope showed significantly greater functional avidity and higher IFNγ production than T cells for non-adapted epitopes, but were not more cytotoxic. Neo-epitope formation and emergence of cognate T-cell response coincident with a rise in viral load was then observed in vivo in an acutely infected individual. These findings show that HIV-1 adaptation not only abrogates the immune recognition of early targeted epitopes, but may also increase immune recognition to other epitopes, which elicit immunodominant but non-protective T-cell responses. These data have implications for immunodominance associated with polyvalent vaccines based on the diversity of chronic HIV-1 sequences.
Collapse
Affiliation(s)
- Niamh M Keane
- Centre for Clinical Immunology and Biomedical Statistics, Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Vollbrecht T, Eberle J, Roider J, Bühler S, Stirner R, Henrich N, Seybold U, Bogner JR, Draenert R. Control of M184V HIV-1 mutants by CD8 T-cell responses. Med Microbiol Immunol 2011; 201:201-11. [PMID: 22200907 DOI: 10.1007/s00430-011-0222-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Indexed: 01/10/2023]
Abstract
Antiretroviral treatment directed against HIV is highly effective, yet limited by drug resistance mutations. We hypothesized that CD8 T cells targeting drug-resistant HIV mutants are able to inhibit viral replication in the setting of a failing therapeutic regimen. We evaluated CD8 T-cell responses and mapped epitopes in HIV-infected patients by interferon-gamma Elispot and intracellular cytokine staining. Autologous virus was sequenced by RT-PCR. Viral replication inhibition assays were performed using M184V mutant virus and CD8 T cell lines. CD8 T-cell responses toward the regions of viral drug resistance mutations in Pol are frequent. Focusing on the M184V mutation, A*02:01-YQYVDDLYV and A*02:01-VIYQYVDDLYV were identified as optimal epitopes for the majority of study subjects. Viral replication of M184V HIV mutants was inhibited by CD8 T cell lines in vitro. In case of a failing lamivudine/emtricitabine containing regimen, individuals with a CD8 T-cell response toward M184V had a significant lower viral load than those without a CD8 response (p = 0.005). Two study subjects even achieved an undetectable viral load. Our data suggest that control of M184V mutant virus by CD8 T-cell responses is possible in vitro and in vivo. This control has important implications for therapeutic vaccination strategies.
Collapse
|
40
|
Peretz Y, Marra O, Thomas R, Legault D, Côté P, Boulassel MR, Rouleau D, Routy JP, Sékaly RP, Tsoukas CM, Tremblay C, Bernard NF. Relative contribution of HIV-specific functional lymphocyte subsets restricted by protective and non-protective HLA alleles. Viral Immunol 2011; 24:189-98. [PMID: 21668360 DOI: 10.1089/vim.2010.0117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Expression of major histocompatibility complex (MHC) class I alleles such as B*57 and B*27 are associated with slow HIV disease progression. HIV-specific immune responses in slow progressors (SP) are characterized by a poly-functional profile. We previously observed within infected subjects that HIV peptide-specific responses could differ from each other in their functional composition. We investigate here whether responses restricted by MHC class I alleles associated with slow disease progression have a more poly-functional profile than responses restricted by other alleles. We stimulated peripheral blood mononuclear cells (PBMCs) isolated from 36 chronically HIV-infected individuals with a panel of optimal peptides restricted by the HLA alleles expressed by each subject, and assessed the contribution of single IL-2-, single IFN-γ-, and IFN-γ/IL-2-secreting lymphocytes to the total response measured using a dual color ELISPOT assay. The contribution of functional subsets to responses restricted by HLA B*57/B*27 was similar in SP and progressors. For responses restricted by other MHC class I alleles, dual IFN-γ/IL-2-secreting lymphocytes contributed significantly more to the total response in SP than progressors. Within SP subjects, peptides restricted by both B*57/B*27 and other alleles stimulated responses with similar functional profiles. In progressors, peptides restricted by B*57/B*27 stimulated responses composed of a significantly greater proportion of IFN-γ/IL-2-secreting cells than peptides restricted by other alleles. Within progressors, the contribution of IFN-γ/IL-2-secreting lymphocytes was greater to epitopes restricted by protective HLA alleles compared with responses restricted by other alleles. HLA haplotypes influence the relative functional composition of HIV-specific responses.
Collapse
Affiliation(s)
- Yoav Peretz
- National Immune Monitoring Laboratory (NIML), Genome Québec, Montreal, Québec, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Antigen sensitivity and T-cell receptor avidity as critical determinants of HIV control. Curr Opin HIV AIDS 2011; 6:157-62. [PMID: 21399498 DOI: 10.1097/coh.0b013e3283453dfd] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW Induction of highly effective T cells capable of performing elite control of HIV replication represents a major goal of vaccinology. Here, we review the recent evidence supporting the central role of antigen sensitivity and T-cell receptor (TCR) avidity in determining anti-HIV T-cell efficacy. We discuss why the modulation of these factors represents an interesting approach for the rational design of HIV vaccines. RECENT FINDINGS The qualitative attributes of T-cell efficacy against HIV are closely related to the sensitivity of the cells for their cognate antigen, which appears essential to control viral replication in HIV-infected patients and is in turn strongly influenced by TCR avidity. High antigen sensitivity and TCR avidity present also potential caveats, notably T-cell clonal exhaustion and rapid emergence of escape variants. SUMMARY The central role of antigen sensitivity and TCR avidity in determining the quality of T-cell responses against HIV represents a new development in our understanding of the immune control of HIV, and the quest for an effective vaccine. Strategies to improve T-cell efficacy in vaccination approaches may rely on selecting T cells with high antigen sensitivity during priming.
Collapse
|
42
|
HIV-specific CD8+ T-cell proliferation is prospectively associated with delayed disease progression. Immunol Cell Biol 2011; 90:346-51. [PMID: 21606945 DOI: 10.1038/icb.2011.44] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Human immunodeficiency virus (HIV)-specific CD8(+) T-cell proliferation is consistently correlated with enhanced host HIV immune control, but whether proliferative responses are a cause or consequence of immune protection is unclear. We measured Env-specific CD8(+) T-cell proliferation and interferon (IFN)-γ secretion in HIV-infected participants with CD4 counts >200, who then completed 121 person-years of prospective follow-up to monitor HIV disease progression. In all, 13 of 31 participants (42%) reached end point during longitudinal follow-up. Strong Env-specific CD8(+) T-cell proliferation (>10% of CD8(+) T cells) was observed in 14/31 participants at baseline, and this was associated with a longer time to HIV disease progression end point, stratified baseline CD4 count (P=0.016). No associations were observed for IFN-γ ELISPOT responses and progression (P>0.2). Strong proliferation remained significant in multivariate Cox regression analyses (P=0.044) as an independent predictor of delayed HIV disease progression, along with baseline CD4 count (P=0.04). Duration of HIV infection was associated with more rapid progression in univariate, but not multivariate, analysis (P=0.112). Age and baseline viral load were not predictive of progression. HIV-specific CD8(+) T-cell proliferation was a correlate of protective immunity in this prospective study; such responses may be important for HIV vaccine protection.
Collapse
|
43
|
Hersperger AR, Migueles SA, Betts MR, Connors M. Qualitative features of the HIV-specific CD8+ T-cell response associated with immunologic control. Curr Opin HIV AIDS 2011; 6:169-73. [PMID: 21399496 PMCID: PMC4309378 DOI: 10.1097/coh.0b013e3283454c39] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE OF REVIEW Over the past 2 years, a clearer picture has emerged regarding the properties of HIV-specific CD8+ T cells associated with immunologic control of HIV replication. These properties represent a potential mechanism by which rare patients might control HIV replication in the absence of antiretroviral therapy. This review addresses the background and recent findings that have lead to our current understanding of these mechanism(s). RECENT FINDINGS Patients with immunologic control of HIV are not distinguished by targeted specificities, or greater numbers or breadth of their HIV-specific CD8+ T-cell response. For this reason, recent work has focused greater attention on qualitative features of this response. The qualitative features most closely associated with immunologic control of HIV are related to the granule-exocytosis-mediated elimination of HIV-infected CD4 T cells. The ability of HIV-specific CD8+ T cells to increase their contents of proteins known to mediate cytotoxicity, such as granzyme B and perforin, appears to be a critical means by which HIV-specific cytotoxic capacity is regulated. SUMMARY Investigation from multiple groups has now focused upon HIV-specific CD8+ T-cell granule-exocytosis-mediated cytotoxicity as a correlate of immunologic control of HIV. In the near future, a more detailed understanding of the qualities associated with immunologic control may provide critical insights regarding the necessary features of a response that should be stimulated by immunotherapies or T-cell-based vaccines.
Collapse
Affiliation(s)
- Adam R. Hersperger
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stephen A. Migueles
- HIV-Specific Immunity Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Michael R. Betts
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mark Connors
- HIV-Specific Immunity Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
44
|
Kityo C, Bousheri S, Akao J, Ssali F, Byaruhanga R, Ssewanyana I, Muloma P, Myalo S, Magala R, Lu Y, Mugyenyi P, Cao H. Therapeutic immunization in HIV infected Ugandans receiving stable antiretroviral treatment: a Phase I safety study. Vaccine 2011; 29:1617-23. [PMID: 21211581 DOI: 10.1016/j.vaccine.2010.12.066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 12/16/2010] [Accepted: 12/17/2010] [Indexed: 12/19/2022]
Abstract
Therapeutic immunizations in HIV infection may boost immunity during antiretroviral treatment. We report on the first therapeutic vaccine trial in Uganda, Africa. This open label Phase I trial was designed to assess the safety, tolerability and immunogenicity of a therapeutic HIV-1 vaccine candidate. Thirty HIV positive volunteers receiving a stable regimen of antiretroviral therapy with CD4 counts >400 were recruited for the safety evaluation of LFn-p24C, a detoxified anthrax-derived polypeptide fused to the subtype C HIV gag protein p24. The vaccine was well tolerated and HIV RNA levels remained undetectable following three immunizations. CD4 counts in vaccine recipients were significantly higher compared to the control individuals after 12 months. HIV-specific responses were associated with higher gain in CD4 counts following LFn-p24C immunizations. Volunteers were subsequently asked to undergo a 30-day period of observed treatment interruption. 8/24 (30%) individuals showed no evidence of viral rebound during treatment interruption. All demonstrated prompt suppression of viral load following resumption of ART. Our data demonstrate the safety of LFn-p24C and suggest that adjunct therapeutic immunization may benefit select individuals in further boosting an immune response.
Collapse
Affiliation(s)
- Cissy Kityo
- Joint Clinical Research Centre, Kampala, Uganda
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Epitope mapping of HIV-specific CD8+ T cell responses by multiple immunological readouts reveals distinct specificities defined by function. J Virol 2010; 85:1275-86. [PMID: 21084478 DOI: 10.1128/jvi.01707-10] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The limited success of HIV vaccine candidates to date highlights our need to better characterize protective cell-mediated immunity (CMI). While HIV-specific CD8(+) T cell responses have been defined largely by measuring gamma interferon (IFN-γ), these responses are not always protective, and it is unclear whether the same epitopes would predominate if other functional parameters were examined. Here, we assessed the epitope specificity of HIV-specific CD8(+) T cell responses by multiparametric flow cytometry, measuring five CD8(+) T cell functions (IFN-γ, macrophage inflammatory protein 1β [MIP-1β], tumor necrosis factor alpha [TNF-α], interleukin-2 [IL-2], and proliferative capacity) in 24 chronically HIV-infected individuals. Sixty-nine epitope-specific responses to 50 epitopes within p24 were measured. Surprisingly, most epitope-specific responses were IFN-γ negative (50/69 responses). Many responses had polyfunctional (33%) and proliferative (19%) components. An inverse association between IL-2 and proliferation responses was also observed, contrary to what was described previously. We confirm that long-term nonprogressors (LTNP) have more polyfunctional responses and also have higher-magnitude and broader p24-specific proliferation and higher levels of IL-2 and TNF-α production than do progressing controls. Together, these data suggest that the specificity of CD8(+) T cell responses differs depending on the immunological readout, with a 3.5-fold increase in breadth detected by including multiple parameters. Furthermore, the identification of epitopes that elicit polyfunctional responses reinforces the need for the comprehensive evaluation of HIV vaccine candidates, and these epitopes may represent novel targets for CMI-based vaccines.
Collapse
|
46
|
Kadolsky UD, Asquith B. Quantifying the impact of human immunodeficiency virus-1 escape from cytotoxic T-lymphocytes. PLoS Comput Biol 2010; 6:e1000981. [PMID: 21079675 PMCID: PMC2973816 DOI: 10.1371/journal.pcbi.1000981] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2010] [Accepted: 09/28/2010] [Indexed: 11/20/2022] Open
Abstract
HIV-1 escape from the cytotoxic T-lymphocyte (CTL) response leads to a weakening of viral control and is likely to be detrimental to the patient. To date, the impact of escape on viral load and CD4(+) T cell count has not been quantified, primarily because of sparse longitudinal data and the difficulty of separating cause and effect in cross-sectional studies. We use two independent methods to quantify the impact of HIV-1 escape from CTLs in chronic infection: mathematical modelling of escape and statistical analysis of a cross-sectional cohort. Mathematical modelling revealed a modest increase in log viral load of 0.051 copies ml(-1) per escape event. Analysis of the cross-sectional cohort revealed a significant positive association between viral load and the number of "escape events", after correcting for length of infection and rate of replication. We estimate that a single CTL escape event leads to a viral load increase of 0.11 log copies ml(-1) (95% confidence interval: 0.040-0.18), consistent with the predictions from the mathematical modelling. Overall, the number of escape events could only account for approximately 6% of the viral load variation in the cohort. Our findings indicate that although the loss of the CTL response for a single epitope results in a highly statistically significant increase in viral load, the biological impact is modest. We suggest that this small increase in viral load is explained by the small growth advantage of the variant relative to the wildtype virus. Escape from CTLs had a measurable, but unexpectedly low, impact on viral load in chronic infection.
Collapse
Affiliation(s)
- Ulrich D Kadolsky
- Department of Immunology, Division of Medicine, Imperial College London, London, United Kingdom.
| | | |
Collapse
|
47
|
Pohling J, Zipperlen K, Hollett NA, Gallant ME, Grant MD. Human immunodeficiency virus type I-specific CD8+ T cell subset abnormalities in chronic infection persist through effective antiretroviral therapy. BMC Infect Dis 2010; 10:129. [PMID: 20500844 PMCID: PMC2894832 DOI: 10.1186/1471-2334-10-129] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 05/25/2010] [Indexed: 11/13/2022] Open
Abstract
Background Effective highly active antiretroviral therapy (HAART) reduces human immunodeficiency virus (HIV) replication, restores CD4+ T lymphocyte counts and greatly reduces the incidence of opportunistic infections. While this demonstrates improved generalized immune function, rapid rebound to pre-treatment viral replication levels following treatment interruption indicates little improvement in immune control of HIV replication. The extent to which HAART can normalize HIV-specific CD8+ T cell function over time in individuals with chronic infection remains an important unresolved issue. In this study, we evaluated the magnitude, general specificity and character of HIV specific CD8+ T cell responses at four time points across 2-9 years in 2 groups of chronically infected individuals separated on the basis of either effective antiretroviral suppression or ongoing replication of HIV. Methods Peripheral blood mononuclear cells (PBMC) were stimulated with overlapping 15mer peptides spanning HIV Gag, Pol, Env and Nef proteins. Cells producing interferon-γ (IFN-γ) or interleukin-2 (IL-2) were enumerated by ELISPOT and phenotyped by flow cytometry. Results and Conclusions The magnitude of the HIV-specific CD8+ T cell response ranged from < .01 to approximately 1.0% of PBMC and was significantly greater in the group with detectable viral replication. Stronger responses reflected higher numbers of CD8+CD45RA- effector memory cells producing IFN-γ, but not IL-2. Magnitude, general specificity and character of the HIV-specific CD8+ T cell response changed little over the study period. While antiretroviral suppression of HIV in chronic infection reduces HIV-specific CD8+ T cell response magnitude in the short term, it had no significant effect on response character over periods up to 9 years.
Collapse
Affiliation(s)
- Julia Pohling
- Immunology and Infectious Diseases Program, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St, John's NL, Canada
| | | | | | | | | |
Collapse
|
48
|
Wang S, Buchli R, Schiller J, Gao J, VanGundy RS, Hildebrand WH, Eckels DD. Natural epitope variants of the hepatitis C virus impair cytotoxic T lymphocyte activity. World J Gastroenterol 2010; 16:1953-69. [PMID: 20419832 PMCID: PMC2860072 DOI: 10.3748/wjg.v16.i16.1953] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIM: To understand how interactions between hepatitis C virus (HCV) and the host’s immune system might lead to viral persistence or effective elimination of HCV.
METHODS: Nucleotides 3519-3935 of the non-structural 3 (NS3) region were amplified by using reverse transcription polymerase chain reaction (PCR). PCR products of the HCV NS3 regions were integrated into a PCR® T7TOPO® TA vector and then sequenced in both directions using an automated DNA sequencer. Relative major histocompatibility complex binding levels of wild-type and variant peptides were performed by fluorescence polarization-based peptide competition assays. Peptides with wild type and variant sequences of NS3 were synthesized locally using F-moc chemistry and purified by high-performance liquid chromatography. Specific cytotoxic T lymphocytes (CTLs) clones toward HCV NS3 wild-type peptides were generated through limiting dilution cloning. The CTL clones specifically recognizing HCV NS3 wild-type peptides were tested by tetramer staining and flow cytometry. Cytolytic activity of CTL clones was measured using target cells labeled with the fluorescence enhancing ligand, DELFIA EuTDA.
RESULTS: The pattern of natural variants within three human leukocyte antigen (HLA)-A2-restricted NS3 epitopes has been examined in one patient with chronic HCV infection at 12, 28 and 63 mo post-infection. Results obtained may provide convincing evidence of immune selection pressure for all epitopes investigated. Statistical analysis of the extensive sequence variation found within these NS3 epitopes favors a Darwinian selection model of variant viruses. Mutations within the epitopes coincided with the decline of CTL responses, and peptide-binding studies suggested a significant impact of the mutation on T cell recognition rather than peptide presentation by HLA molecules. While most variants were either not recognized or elicited low responses, such could antagonize CTL responses to target cells pulsed with wild-type peptides.
CONCLUSION: Cross-recognition of CTL epitopes from wild-type and naturally-occurring HCV variants may lead to impaired immune responses and ultimately contribute to viral persistence.
Collapse
|
49
|
Vollbrecht T, Brackmann H, Henrich N, Roeling J, Seybold U, Bogner JR, Goebel FD, Draenert R. Impact of changes in antigen level on CD38/PD-1 co-expression on HIV-specific CD8 T cells in chronic, untreated HIV-1 infection. J Med Virol 2010; 82:358-70. [PMID: 20087935 DOI: 10.1002/jmv.21723] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Excessive immune activation is a hallmark of chronic uncontrolled HIV infection. During the past years, growing evidence suggests that immune inhibitory signals also play an important role in progressive disease. However, the relationship between positive and negative immune signals on HIV-specific CD8 T cells has not been studied in detail so far in chronic HIV-1 infection. In this study, the expression of markers of positive (CD38) and negative (PD-1) immune signals on virus-specific CD8 T cells in chronic, untreated HIV-1 infection was evaluated using intracellular cytokine staining. Viral escape mutations were assessed by autologous virus sequence analysis and subsequent peptide titration assays. Single-epitope CD8 T-cell responses toward Gag, Pol, and Nef were compared in 12 HIV-1 controllers (viral load <5,000 cp/ml) and 12 HIV-1 progressors (viral load >50,000 cp/ml) and a highly significant increase of CD38/PD-1 co-expression on virus-specific CD8 T cells in progressors was found (P < 0.0001). The level of CD38/PD-1 co-expression was independent of epitope specificity. Longitudinal follow-up revealed a clear drop in CD38/PD-1 co-expression on virus-specific CD8 T cells after the suppression of antigen following either viral escape mutation or the initiation of HAART (P = 0.004). Antigen persistence with a fluctuating viral load revealed stable levels of CD38/PD-1 co-expression whereas significant rises in viral load were accompanied or even preceded by substantial increases in CD38/PD-1 co-expression. The CD38/PD-1 phenotype clearly distinguishes HIV-specific CD8 T-cell responses between controllers and progressors. Whether it plays a causative role in disease progression remains debatable. J. Med. Virol. 82:358-370, 2010. (c) 2010 Wiley-Liss, Inc.
Collapse
|
50
|
Parsons MS, Zipperlen K, Gallant M, Howley C, Grant M. Distinct phenotype of unrestricted cytotoxic T lymphocytes from human immunodeficiency virus-infected individuals. J Clin Immunol 2010; 30:272-9. [PMID: 20099013 DOI: 10.1007/s10875-009-9361-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 12/08/2009] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Human immunodeficiency virus (HIV)-infected individuals have CD8(+) cytotoxic T lymphocytes (CTL) that kill activated uninfected T lymphocytes. These CTL are independent of class Ia human histocompatibility-linked leukocyte antigens (HLA-Ia). METHODS To further characterize these CTL, we investigated their possible restriction to non-classical class Ib HLA-E molecules and their expression of natural killer cell receptors (NKR) that are often affected in HIV infection. RESULTS We found no role for HLA-E in CTL-mediated killing of activated uninfected T lymphocytes. The non-HLA-restricted CTL did not express NKG2A, an inhibitory NKR that binds HLA-E, nor CD56, a prominent marker on previously described non-HLA-restricted CTL. DISCUSSION This NKG2A(-)CD56(-) phenotype of HLA-unrestricted CTL that kill uninfected activated T lymphocytes matches generalized changes on CD8(+) T lymphocytes that occur in progressive HIV infection, suggesting these phenotypic changes may reflect pathogenic evolution of the CD8(+) T cell repertoire. These CTL represent a unique phenotypic and functional subset with potential relevance to HIV pathogenesis.
Collapse
Affiliation(s)
- Matthew S Parsons
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | | | | | | | | |
Collapse
|