1
|
Schwarzer P, Kokona D, Ebneter A, Zinkernagel MS. Effect of Inhibition of Colony-Stimulating Factor 1 Receptor on Choroidal Neovascularization in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 190:412-425. [PMID: 31783006 DOI: 10.1016/j.ajpath.2019.10.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 07/09/2019] [Accepted: 10/21/2019] [Indexed: 12/15/2022]
Abstract
Neovascular age-related macular degeneration is one of the leading causes of blindness. Microglia and macrophages play a critical role in choroidal neovascularization (CNV) and may, therefore, be potential targets to modulate the disease course. This study evaluated the effect of the colony-stimulating factor-1 receptor inhibitor PLX5622 on experimental laser-induced CNV. A 98% reduction of retinal microglia cells was observed in the retina 1 week after initiation of PLX5622 treatment, preventing accumulation of macrophages within the laser site and leading to a reduction of leukocytes within the choroid after CNV induction. Mice treated with PLX5622 had a significantly faster decrease of the CNV lesion size, as revealed by in vivo imaging and immunohistochemistry from day 3 to day 14 compared with untreated mice. Several inflammatory modulators, such as chemokine (C-C motif) ligand 9, granulocyte-macrophage colony-stimulating factor, soluble tumor necrosis factor receptor-I, IL-1α, and matrix metallopeptidase-2, were elevated in the acute phase of the disease when microglia were ablated with PLX5622, whereas other cytokines (eg, interferon-γ, IL-4, and IL-10) were reduced. Our results suggest that colony-stimulating factor-1 receptor inhibition may be a novel therapeutic target in patients with neovascular age-related macular degeneration.
Collapse
Affiliation(s)
- Petra Schwarzer
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern; and the Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Despina Kokona
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern; and the Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Andreas Ebneter
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern; and the Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Martin S Zinkernagel
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern; and the Department for BioMedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
2
|
Hermanns HM, Wohlfahrt J, Mais C, Hergovits S, Jahn D, Geier A. Endocytosis of pro-inflammatory cytokine receptors and its relevance for signal transduction. Biol Chem 2017; 397:695-708. [PMID: 27071147 DOI: 10.1515/hsz-2015-0277] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 04/04/2016] [Indexed: 12/14/2022]
Abstract
The pro-inflammatory cytokines tumor necrosis factor (TNF), interleukin-1 (IL-1) and interleukin-6 (IL-6) are key players of the innate and adaptive immunity. Their activity needs to be tightly controlled to allow the initiation of an appropriate immune response as defense mechanism against pathogens or tissue injury. Excessive or sustained signaling of either of these cytokines leads to severe diseases, including rheumatoid arthritis, inflammatory bowel diseases (Crohn's disease, ulcerative colitis), steatohepatitis, periodic fevers and even cancer. Studies carried out in the last 30 years have emphasized that an elaborate control system for each of these cytokines exists. Here, we summarize what is currently known about the involvement of receptor endocytosis in the regulation of these pro-inflammatory cytokines' signaling cascades. Particularly in the last few years it was shown that this cellular process is far more than a mere feedback mechanism to clear cytokines from the circulation and to shut off their signal transduction.
Collapse
|
3
|
Rodríguez-Martín S, Kropp KA, Wilhelmi V, Lisnic VJ, Hsieh WY, Blanc M, Livingston A, Busche A, Tekotte H, Messerle M, Auer M, Fraser I, Jonjic S, Angulo A, Reddehase MJ, Ghazal P. Ablation of the regulatory IE1 protein of murine cytomegalovirus alters in vivo pro-inflammatory TNF-alpha production during acute infection. PLoS Pathog 2012; 8:e1002901. [PMID: 22952450 PMCID: PMC3431344 DOI: 10.1371/journal.ppat.1002901] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 07/27/2012] [Indexed: 12/24/2022] Open
Abstract
Little is known about the role of viral genes in modulating host cytokine responses. Here we report a new functional role of the viral encoded IE1 protein of the murine cytomegalovirus in sculpting the inflammatory response in an acute infection. In time course experiments of infected primary macrophages (MΦs) measuring cytokine production levels, genetic ablation of the immediate-early 1 (ie1) gene results in a significant increase in TNFα production. Intracellular staining for cytokine production and viral early gene expression shows that TNFα production is highly associated with the productively infected MΦ population of cells. The ie1- dependent phenotype of enhanced MΦ TNFα production occurs at both protein and RNA levels. Noticeably, we show in a series of in vivo infection experiments that in multiple organs the presence of ie1 potently inhibits the pro-inflammatory cytokine response. From these experiments, levels of TNFα, and to a lesser extent IFNβ, but not the anti-inflammatory cytokine IL10, are moderated in the presence of ie1. The ie1- mediated inhibition of TNFα production has a similar quantitative phenotype profile in infection of susceptible (BALB/c) and resistant (C57BL/6) mouse strains as well as in a severe immuno-ablative model of infection. In vitro experiments with infected macrophages reveal that deletion of ie1 results in increased sensitivity of viral replication to TNFα inhibition. However, in vivo infection studies show that genetic ablation of TNFα or TNFRp55 receptor is not sufficient to rescue the restricted replication phenotype of the ie1 mutant virus. These results provide, for the first time, evidence for a role of IE1 as a regulator of the pro-inflammatory response and demonstrate a specific pathogen gene capable of moderating the host production of TNFα in vivo. The suppression of the production rather than the blockage of action of the potent inflammatory mediator TNFα is a particular hallmark of anti-TNFα mechanisms associated with microbial and parasitic infections. Whether this mode of counter-regulation is an important feature of infection by viruses is not clear. Also, it remains to be determined whether a specific pathogen gene in the context of an infection in vivo is capable of modulating levels of TNFα production. In this study we disclose a virus-mediated moderation of TNFα production, dependent on the ie1 gene of murine cytomegalovirus (MCMV). The ie1 gene product IE1 is a well-characterized nuclear protein capable of altering levels of host and viral gene expression although its biological role in the context of a natural infection is to date unknown. We provide evidence showing that ie1 is associated with a moderated pro-inflammatory cytokine response, in particular with TNFα production. Further, we show that the viral moderation of this cytokine is not only readily apparent in vitro but also in the natural host. The identification of a viral gene responsible for this mode of regulation in vivo may have therapeutic potential in the future in both anti-viral and anti-inflammatory strategies.
Collapse
Affiliation(s)
- Sara Rodríguez-Martín
- Division of Pathway Medicine and Centre for Infectious Diseases, University of Edinburgh, Edinburgh, United Kingdom
| | - Kai Alexander Kropp
- Division of Pathway Medicine and Centre for Infectious Diseases, University of Edinburgh, Edinburgh, United Kingdom
| | - Vanessa Wilhelmi
- Institute for Virology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Vanda Juranic Lisnic
- Department of Histology and Embryology/Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Wei Yuan Hsieh
- Division of Pathway Medicine and Centre for Infectious Diseases, University of Edinburgh, Edinburgh, United Kingdom
| | - Mathieu Blanc
- Division of Pathway Medicine and Centre for Infectious Diseases, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew Livingston
- Division of Pathway Medicine and Centre for Infectious Diseases, University of Edinburgh, Edinburgh, United Kingdom
| | - Andreas Busche
- Department of Virology, Hannover Medical School, Hannover, Germany
| | - Hille Tekotte
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Martin Messerle
- Department of Virology, Hannover Medical School, Hannover, Germany
| | - Manfred Auer
- University of Edinburgh, School of Biological Sciences (CSE) and School of Biomedical Sciences (CMVM), Edinburgh, United Kingdom
| | - Iain Fraser
- Laboratory of Systems Biology, National Institution of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Stipan Jonjic
- Department of Histology and Embryology/Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Ana Angulo
- Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Spain
| | - Matthias J. Reddehase
- Institute for Virology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Peter Ghazal
- Division of Pathway Medicine and Centre for Infectious Diseases, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
4
|
The cytomegaloviral protein pUL138 acts as potentiator of tumor necrosis factor (TNF) receptor 1 surface density to enhance ULb'-encoded modulation of TNF-α signaling. J Virol 2011; 85:13260-70. [PMID: 21976655 DOI: 10.1128/jvi.06005-11] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Human cytomegalovirus is a ubiquitous herpesvirus that establishes lifelong latent infection. Changes in immune homeostasis induce the reactivation of lytic infection, which is mostly inapparent in healthy individuals but often causes overt disease in immunocompromised hosts. Based on discrepant tumor necrosis factor receptor 1 surface disposition between human cytomegalovirus AD169 variants differing in the ULb' region, we identified the latency-associated gene product pUL138, which also is expressed during productive infection, as a selective potentiator of tumor necrosis factor receptor 1, one of the key receptors of innate immunity. Ectopically expressed pUL138 coprecipitated with tumor necrosis factor receptor 1, extended the protein half-life, and enhanced its signaling responses, thus leading to tumor necrosis factor receptor 1 hyperresponsiveness. Conversely, the targeted deletion of UL138 from the human cytomegaloviral genome strongly reduced tumor necrosis factor receptor 1 surface densities of infected cells. Remarkably, the comparison of UL138 deficiency to ULb' deficiency revealed the presence of further positive modulators of tumor necrosis factor alpha signal transduction encoded within the human cytomegalovirus ULb' region, identifying this region as a hub for multilayered tumor necrosis factor alpha signaling regulation.
Collapse
|
5
|
The latency-associated UL138 gene product of human cytomegalovirus sensitizes cells to tumor necrosis factor alpha (TNF-alpha) signaling by upregulating TNF-alpha receptor 1 cell surface expression. J Virol 2011; 85:11409-21. [PMID: 21880774 DOI: 10.1128/jvi.05028-11] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Many viruses antagonize tumor necrosis factor alpha (TNF-α) signaling in order to counteract its antiviral properties. One way viruses achieve this goal is to reduce TNF-α receptor 1 (TNFR1) on the surface of infected cells. Such a mechanism is also employed by human cytomegalovirus (HCMV), as recently reported by others and us. On the other hand, TNF-α has also been shown to foster reactivation of HCMV from latency. By characterizing a new variant of HCMV AD169, we show here that TNFR1 downregulation by HCMV only becomes apparent upon infection of cells with HCMV strains lacking the so-called ULb' region. This region contains genes involved in regulating viral immune escape, cell tropism, or latency and is typically lost from laboratory strains but present in low-passage strains and clinical isolates. We further show that although ULb'-positive viruses also contain the TNFR1-antagonizing function, this activity is masked by a dominant TNFR1 upregulation mediated by the ULb' gene product UL138. Isolated expression of UL138 in the absence of viral infection upregulates TNFR1 surface expression and can rescue both TNFR1 reexpression and TNF-α responsiveness of cells infected with an HCMV mutant lacking the UL138-containing transcription unit. Given that the UL138 gene product is one of the few genes recognized to be expressed during HCMV latency and the known positive effects of TNF-α on viral reactivation, we suggest that via upregulating TNFR1 surface expression UL138 may sensitize latently infected cells to TNF-α-mediated reactivation of HCMV.
Collapse
|
6
|
Schütze S, Schneider-Brachert W. Impact of TNF-R1 and CD95 internalization on apoptotic and antiapoptotic signaling. Results Probl Cell Differ 2009; 49:63-85. [PMID: 19132322 DOI: 10.1007/400_2008_23] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Internalization of cell surface receptors has long been regarded as a pure means to terminate signaling via receptor degradation. A growing body of information points to the fact that many internalized receptors are still in their active state and that signaling continues along the endocytic pathway. Thus endocytosis orchestrates cell signaling by coupling and integrating different cascades on the surface of endocytic vesicles to control the quality, duration, intensity, and distribution of signaling events. The death receptors tumor necrosis factor-receptor 1 (TNF-R1) and CD95 (Fas, APO-1) are known not only to signal for cell death via apoptosis but are also capable of inducing antiapoptotic signals via transcription factor NF-kappaB induction or activation of the proliferative mitogen-activated protein kinase (MAPK)/ERK (extracellular signal-regulated kinase) protein kinase cascades, resulting in cell protection and tissue regeneration. A clue to the understanding of these contradictory biological phenomena may arise from recent findings which reveal a regulatory role of receptor internalization and intracellular receptor trafficking in selectively transmitting signals, which lead either to apoptosis or to the survival of the cell. In this chapter, we discuss the dichotomy of pro- and antiapoptotic signaling of the death receptors TNF-R1 and CD95. First, we will address the role of lipid rafts and post-translational modifications of death receptors in regulating the formation of receptor complexes. Then, we will discuss the role of internalization in determining the fate of the receptors and subsequently the specificity of signaling events. We propose that fusion of internalized TNF-receptosomes with trans-Golgi vesicles should be recognized as a novel mechanism to transduce death signals along the endocytic route. Finally, the lessons learnt from the strategy of adenovirus to escape apoptosis by targeting death receptor internalization demonstrate the biological significance of TNF receptor compartmentalization for immunosurveillance.
Collapse
Affiliation(s)
- Stefan Schütze
- Institute of Immunology, University Hospital of Schleswig-Holstein, Campus Kiel, Michaelisstr. 5, D-24105, Kiel, Germany.
| | | |
Collapse
|
7
|
Rahman MM, Lucas AR, McFadden G. Viral TNF inhibitors as potential therapeutics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 666:64-77. [PMID: 20054975 DOI: 10.1007/978-1-4419-1601-3_5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The immune system functions by maintaining a delicate balance between the activities of pro-inflammatory and anti-inflammatory pathways. Unbalanced activation of these pathways often leads to the development of serious inflammatory diseases. TNF (Tumor Necrosis Factor) is a key pro-inflammatory cytokine, which can cause several inflammatory diseases when inappropriately up-regulated. Inhibition of TNF activities by using modulatory recombinant proteins has become a successful therapeutic approach to control TNF activity levels but these anti-TNF reagents also have risks and certain limitations. Biological molecules with a different mode of action in regulating TNF biology might provide a clinically useful alternative to the current therapeutics or in some cases might be efficacious in combination with existinganti-TNF therapies. TNF is also a powerful host defense cytokine commonly induced in the host response against various invading pathogens. Many viral pathogens can block TNF function by encoding modulators of TNF, its receptors or downstream signaling pathways. Here, we review the known virus-encoded TNF inhibitors and evaluate their potential as alternative future anti-TNF therapies.
Collapse
Affiliation(s)
- Masmudur M Rahman
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | | | | |
Collapse
|
8
|
Cook EB, Stahl JL, Graziano FM, Barney NP. Regulation of the receptor for TNFalpha, TNFR1, in human conjunctival epithelial cells. Invest Ophthalmol Vis Sci 2008; 49:3992-8. [PMID: 18487372 DOI: 10.1167/iovs.08-1873] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Previous studies demonstrated that mast cell-derived TNFalpha stimulation is critical to the upregulation of intercellular adhesion molecule (ICAM)-1 on human conjunctival epithelial cells (HCECs), which is an important feature of ocular allergic inflammation. Shedding of TNFR1 by TNFalpha-converting enzyme (TACE) is a primary mechanism for the regulation of TNFalpha-mediated events. This process has not been examined in HCECs. In this study, the authors examined the regulation of TNFR1 expression and shedding by TACE on primary HCECs and the IOBA-NHC conjunctival epithelial cell line. METHODS Primary human conjunctival mast cells and epithelial cells were obtained from cadaveric conjunctival tissue. HCECs were incubated with and without activators (IgE-activated mast cell supernates, phorbol myristate acetate [PMA; to activate TACE], TNFalpha, and IFNgamma [to upregulate TNFR1]) for 24 hours. Pretreatment with the TACE inhibitor TAPI-2 was used to inhibit shedding of TNFR1. Supernates collected from the incubations were analyzed with ELISA for soluble TNFR1 (sTNFR1). With the use of flow cytometry, cells were harvested from these experiments for analysis of TNFR1 and ICAM-1 receptor expression. RESULTS IgE-activated conjunctival mast cell supernates upregulated the expression of TNFR1. TAPI-2 inhibited the PMA-induced release of sTNFR1 receptor and enhanced the surface expression of TNFR1 in HCECs in a dose-dependent manner. Upregulation of TNFR1 expression by priming with TAPI-2 and IFNgamma resulted in enhanced ICAM-1 expression in response to TNFalpha stimulation (significant change in the slope of the dose-response curve). CONCLUSIONS These results demonstrate that TACE promotes TNFR1 shedding in HCECs and that TNFR1 expression may be a more significant target than TNFalpha for intervention in ocular inflammation.
Collapse
Affiliation(s)
- Ellen B Cook
- Departments of Medicine, Visual Sciences, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin, USA
| | | | | | | |
Collapse
|
9
|
Shah AH, Cianciola NL, Mills JL, Sönnichsen FD, Carlin C. Adenovirus RIDalpha regulates endosome maturation by mimicking GTP-Rab7. ACTA ACUST UNITED AC 2007; 179:965-80. [PMID: 18039930 PMCID: PMC2099200 DOI: 10.1083/jcb.200702187] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The small guanosine triphosphatase Rab7 regulates late endocytic trafficking. Rab7-interacting lysosomal protein (RILP) and oxysterol-binding protein-related protein 1L (ORP1L) are guanosine triphosphate (GTP)-Rab7 effectors that instigate minus end-directed microtubule transport. We demonstrate that RILP and ORP1L both interact with the group C adenovirus protein known as receptor internalization and degradation alpha (RIDalpha), which was previously shown to clear the cell surface of several membrane proteins, including the epidermal growth factor receptor and Fas (Carlin, C.R., A.E. Tollefson, H.A. Brady, B.L. Hoffman, and W.S. Wold. 1989. Cell. 57:135-144; Shisler, J., C. Yang, B. Walter, C.F. Ware, and L.R. Gooding. 1997. J. Virol. 71:8299-8306). RIDalpha localizes to endocytic vesicles but is not homologous to Rab7 and is not catalytically active. We show that RIDalpha compensates for reduced Rab7 or dominant-negative (DN) Rab7(T22N) expression. In vitro, Cu(2+) binding to RIDalpha residues His75 and His76 facilitates the RILP interaction. Site-directed mutagenesis of these His residues results in the loss of RIDalpha-RILP interaction and RIDalpha activity in cells. Additionally, expression of the RILP DN C-terminal region hinders RIDalpha activity during an acute adenovirus infection. We conclude that RIDalpha coordinates recruitment of these GTP-Rab7 effectors to compartments that would ordinarily be perceived as early endosomes, thereby promoting the degradation of selected cargo.
Collapse
Affiliation(s)
- Ankur H Shah
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | |
Collapse
|
10
|
Grant JR, Moise AR, Jefferies WA. Identification of a novel immunosubversion mechanism mediated by a virologue of the B-lymphocyte receptor TACI. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2007; 14:907-17. [PMID: 17538121 PMCID: PMC1951057 DOI: 10.1128/cvi.00058-07] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
TACI (transmembrane activator and calcium modulator and cyclophilin ligand [CAML] interactor) is a part of a novel network of ligands and receptors involved in B-cell survival and isotype switching. The TACI protein mediates its effects through CAML, an endoplasmic reticulum (ER)-localized protein that controls Ca(2+) efflux. The adenovirus E3-6.7K protein prevents inflammatory responses and also confers resistance from a variety of apoptotic stimuli and maintains ER Ca(2+) homeostasis; however, the mechanism of action is unknown. Here, we provide evidence that E3-6.7K shares sequence homology with TACI and inhibits apoptosis and ER Ca(2+) efflux through an interaction with CAML, a Ca(2+)-modulating protein. We demonstrate a direct interaction between E3-6.7K and CAML and reveal that the two proteins colocalize in an ER-like compartment. Furthermore, the interaction between the two proteins is localized to the N-terminal domain of CAML and to a 22-amino-acid region near the C terminus of E3-6.7K termed the CAML-binding domain (CBD). Mutational analysis of the CBD showed that an interaction with CAML is required for E3-6.7K to inhibit thapsigargin-induced apoptosis and ER Ca(2+) efflux. E3-6.7K appears to be the first virologue of TACI to be identified. It targets CAML in a novel immunosubversive mechanism to alter ER Ca(2+) homeostasis, which consequently inhibits inflammation and protects infected cells from apoptosis.
Collapse
Affiliation(s)
- Jason R Grant
- The Michael Smith Laboratories, The Biomedical Research Centre, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.
| | | | | |
Collapse
|
11
|
Mashalova EV, Guha C, Roy-Chowdhury N, Liu L, Fox IJ, Roy-Chowdhury J, Horwitz MS. Prevention of hepatocyte allograft rejection in rats by transferring adenoviral early region 3 genes into donor cells. Hepatology 2007; 45:755-66. [PMID: 17326202 DOI: 10.1002/hep.21525] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
UNLABELLED Hepatocyte transplantation is being evaluated as an alternative to liver transplantation for metabolic support during liver failure and for definitive treatment of inherited liver diseases. However, as with liver transplantation, transplantation of allogeneic hepatocytes requires prolonged immunosuppression with its associated untoward effects. Therefore, we explored strategies for the genetic modification of donor hepatocytes that could eliminate allograft rejection, obviating the need for immunosuppression. Products of early region 3 (AdE3) of the adenoviral genome are known to protect infected cells from immune recognition and destruction. In the present study we showed that immortalized rat hepatocytes that had been stably transduced with AdE3 before transplantation into fully MHC-mismatched rats are protected from allograft rejection. Quantitative real-time PCR analysis showed that a similar number of engrafted AdE3-transfected hepatocytes had survived in syngeneic and allogeneic recipients. AdE3 expression did not reduce expression of MHC class I on the surfaces of donor hepatocytes. Consistent with this, the in vivo cytotoxic cell-mediated alloresponse was attenuated but not abolished in recipients of AdE3-transfected allogeneic hepatocytes. In contrast, graft survival correlated with a marked reduction in cell-surface localization of Fas receptor in the transplanted cells and inhibition of Fas-mediated apoptosis, which are related to the antiapoptotic functions of the AdE3 proteins. CONCLUSION AdE3 gene products prevent hepatocyte allograft rejection mainly by protecting the cells from the effector limb of the host immune response and could be used as a tool to facilitate allogeneic hepatocyte transplantation.
Collapse
Affiliation(s)
- Elena V Mashalova
- Department of Microbiology and Immunology, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Benihoud K, Esselin S, Descamps D, Jullienne B, Salone B, Bobé P, Bonardelle D, Connault E, Opolon P, Saggio I, Perricaudet M. Respective roles of TNF-alpha and IL-6 in the immune response-elicited by adenovirus-mediated gene transfer in mice. Gene Ther 2006; 14:533-44. [PMID: 17109009 DOI: 10.1038/sj.gt.3302885] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The immunogenicity of recombinant adenoviruses (Ad) constitutes a major concern for their use in gene therapy. Antibody- and cell-mediated immune responses triggered by adenoviral vectors hamper long-term transgene expression and efficient viral readministration. We previously reported that interleukin (IL)-6 and tumor necrosis factor (TNF)-alpha play an essential role in both the acute phase and antibody response against Ad, respectively. As TNF-alpha controls the immune response and the development of the immune system, we examined here the consequence of blockade of TNF-alpha activity through Ad-mediated gene delivery of a dimeric mouse TNFR1-IgG fusion protein on transgene expression from a second Ad. Ad encoding TNFR1-IgG (AdTNFR1-Ig) was injected intravenously along with Ad encoding beta-galactosidase or alpha1-antitrypsin transgene in wild-type (IL-6(+/+)) but also in IL-6-deficient mice (IL-6(-/-)) to analyze how TNF-alpha and IL-6 diminish liver gene transfer efficacy. Blockade of TNF-alpha leads to increased transgene expression in both wild-type and IL-6(-/-) mice due to a reduced inflammatory response and to diminished recruitment of macrophages and NK cells towards the liver. Antibody responses against adenoviral particles and expressed transgenes were only delayed in AdTNFR1-Ig-treated wild-type mice, but were markedly reduced in AdTNFR1-Ig-treated IL-6(-/-) mice. Finally, treatment of mice with etanercept, a clinically approved anti-TNF-alpha drug, confirmed the importance of controlling proinflammatory cytokines during gene therapy by adenoviral vectors.
Collapse
Affiliation(s)
- K Benihoud
- Univ Paris-Sud, Faculté des Sciences, Orsay, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Chin YR, Horwitz MS. Adenovirus RID complex enhances degradation of internalized tumour necrosis factor receptor 1 without affecting its rate of endocytosis. J Gen Virol 2006; 87:3161-3167. [PMID: 17030848 DOI: 10.1099/vir.0.82001-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The receptor internalization and degradation (RID) complex of adenovirus plays an important role in modulating the immune response by downregulating the surface levels of tumour necrosis factor receptor 1 (TNFR1), thereby inhibiting NF-κB activation. Total cellular content of TNFR1 is also reduced in the presence of RID, which can be inhibited by treatment with lysosomotropic agents. In this report, surface biotinylation experiments revealed that, although RID and TNFR1 were able to form a complex on the cell surface, the rate of TNFR1 endocytosis was not affected by RID. However, the degradation of internalized TNFR1 was enhanced significantly in the presence of RID. Therefore, these data suggest that RID downregulates TNFR1 levels by altering the fate of internalized TNFR1 that becomes associated with RID at the plasma membrane, probably by promoting its sorting into endosomal/lysosomal degradation compartments.
Collapse
Affiliation(s)
- Y Rebecca Chin
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Forchheimer Building, Room 411, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Marshall S Horwitz
- Division of Infectious Diseases, Department of Pediatrics, Albert Einstein College of Medicine, Forchheimer Building, Room 411, 1300 Morris Park Avenue, Bronx, NY 10461, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Forchheimer Building, Room 411, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| |
Collapse
|
14
|
Schneider-Brachert W, Tchikov V, Merkel O, Jakob M, Hallas C, Kruse ML, Groitl P, Lehn A, Hildt E, Held-Feindt J, Dobner T, Kabelitz D, Krönke M, Schütze S. Inhibition of TNF receptor 1 internalization by adenovirus 14.7K as a novel immune escape mechanism. J Clin Invest 2006; 116:2901-13. [PMID: 17024246 PMCID: PMC1590267 DOI: 10.1172/jci23771] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2004] [Accepted: 08/15/2006] [Indexed: 01/08/2023] Open
Abstract
The adenoviral protein E3-14.7K (14.7K) is an inhibitor of TNF-induced apoptosis, but the molecular mechanism underlying this protective effect has not yet been explained exhaustively. TNF-mediated apoptosis is initiated by ligand-induced recruitment of TNF receptor-associated death domain (TRADD), Fas-associated death domain (FADD), and caspase-8 to the death domain of TNF receptor 1 (TNFR1), thereby establishing the death-inducing signaling complex (DISC). Here we report that adenovirus 14.7K protein inhibits ligand-induced TNFR1 internalization. Analysis of purified magnetically labeled TNFR1 complexes from murine and human cells stably transduced with 14.7K revealed that prevention of TNFR1 internalization resulted in inhibition of DISC formation. In contrast, 14.7K did not affect TNF-induced NF-kappaB activation via recruitment of receptor-interacting protein 1 (RIP-1) and TNF receptor-associated factor 2 (TRAF-2). Inhibition of endocytosis by 14.7K was effected by failure of coordinated temporal and spatial assembly of essential components of the endocytic machinery such as Rab5 and dynamin 2 at the site of the activated TNFR1. Furthermore, we found that the same TNF defense mechanisms were instrumental in protecting wild-type adenovirus-infected human cells expressing 14.7K. This study describes a new molecular mechanism implemented by a virus to escape immunosurveillance by selectively targeting TNFR1 endocytosis to prevent TNF-induced DISC formation.
Collapse
Affiliation(s)
- Wulf Schneider-Brachert
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany.
Institute of Immunology and
Department of Internal Medicine, University Hospital of Schleswig-Holstein, Campus Kiel, Kiel, Germany.
Department of Medicine II, University of Freiburg, Freiburg, Germany.
Department of Neurosurgery, University Hospital of Schleswig-Holstein, Campus Kiel, Kiel, Germany.
Institute for Medical Microbiology, Immunology, and Hygiene, Center of Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Vladimir Tchikov
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany.
Institute of Immunology and
Department of Internal Medicine, University Hospital of Schleswig-Holstein, Campus Kiel, Kiel, Germany.
Department of Medicine II, University of Freiburg, Freiburg, Germany.
Department of Neurosurgery, University Hospital of Schleswig-Holstein, Campus Kiel, Kiel, Germany.
Institute for Medical Microbiology, Immunology, and Hygiene, Center of Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Oliver Merkel
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany.
Institute of Immunology and
Department of Internal Medicine, University Hospital of Schleswig-Holstein, Campus Kiel, Kiel, Germany.
Department of Medicine II, University of Freiburg, Freiburg, Germany.
Department of Neurosurgery, University Hospital of Schleswig-Holstein, Campus Kiel, Kiel, Germany.
Institute for Medical Microbiology, Immunology, and Hygiene, Center of Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Marten Jakob
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany.
Institute of Immunology and
Department of Internal Medicine, University Hospital of Schleswig-Holstein, Campus Kiel, Kiel, Germany.
Department of Medicine II, University of Freiburg, Freiburg, Germany.
Department of Neurosurgery, University Hospital of Schleswig-Holstein, Campus Kiel, Kiel, Germany.
Institute for Medical Microbiology, Immunology, and Hygiene, Center of Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Cora Hallas
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany.
Institute of Immunology and
Department of Internal Medicine, University Hospital of Schleswig-Holstein, Campus Kiel, Kiel, Germany.
Department of Medicine II, University of Freiburg, Freiburg, Germany.
Department of Neurosurgery, University Hospital of Schleswig-Holstein, Campus Kiel, Kiel, Germany.
Institute for Medical Microbiology, Immunology, and Hygiene, Center of Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Marie-Luise Kruse
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany.
Institute of Immunology and
Department of Internal Medicine, University Hospital of Schleswig-Holstein, Campus Kiel, Kiel, Germany.
Department of Medicine II, University of Freiburg, Freiburg, Germany.
Department of Neurosurgery, University Hospital of Schleswig-Holstein, Campus Kiel, Kiel, Germany.
Institute for Medical Microbiology, Immunology, and Hygiene, Center of Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Peter Groitl
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany.
Institute of Immunology and
Department of Internal Medicine, University Hospital of Schleswig-Holstein, Campus Kiel, Kiel, Germany.
Department of Medicine II, University of Freiburg, Freiburg, Germany.
Department of Neurosurgery, University Hospital of Schleswig-Holstein, Campus Kiel, Kiel, Germany.
Institute for Medical Microbiology, Immunology, and Hygiene, Center of Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Alexander Lehn
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany.
Institute of Immunology and
Department of Internal Medicine, University Hospital of Schleswig-Holstein, Campus Kiel, Kiel, Germany.
Department of Medicine II, University of Freiburg, Freiburg, Germany.
Department of Neurosurgery, University Hospital of Schleswig-Holstein, Campus Kiel, Kiel, Germany.
Institute for Medical Microbiology, Immunology, and Hygiene, Center of Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Eberhard Hildt
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany.
Institute of Immunology and
Department of Internal Medicine, University Hospital of Schleswig-Holstein, Campus Kiel, Kiel, Germany.
Department of Medicine II, University of Freiburg, Freiburg, Germany.
Department of Neurosurgery, University Hospital of Schleswig-Holstein, Campus Kiel, Kiel, Germany.
Institute for Medical Microbiology, Immunology, and Hygiene, Center of Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Janka Held-Feindt
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany.
Institute of Immunology and
Department of Internal Medicine, University Hospital of Schleswig-Holstein, Campus Kiel, Kiel, Germany.
Department of Medicine II, University of Freiburg, Freiburg, Germany.
Department of Neurosurgery, University Hospital of Schleswig-Holstein, Campus Kiel, Kiel, Germany.
Institute for Medical Microbiology, Immunology, and Hygiene, Center of Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Thomas Dobner
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany.
Institute of Immunology and
Department of Internal Medicine, University Hospital of Schleswig-Holstein, Campus Kiel, Kiel, Germany.
Department of Medicine II, University of Freiburg, Freiburg, Germany.
Department of Neurosurgery, University Hospital of Schleswig-Holstein, Campus Kiel, Kiel, Germany.
Institute for Medical Microbiology, Immunology, and Hygiene, Center of Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Dieter Kabelitz
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany.
Institute of Immunology and
Department of Internal Medicine, University Hospital of Schleswig-Holstein, Campus Kiel, Kiel, Germany.
Department of Medicine II, University of Freiburg, Freiburg, Germany.
Department of Neurosurgery, University Hospital of Schleswig-Holstein, Campus Kiel, Kiel, Germany.
Institute for Medical Microbiology, Immunology, and Hygiene, Center of Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Martin Krönke
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany.
Institute of Immunology and
Department of Internal Medicine, University Hospital of Schleswig-Holstein, Campus Kiel, Kiel, Germany.
Department of Medicine II, University of Freiburg, Freiburg, Germany.
Department of Neurosurgery, University Hospital of Schleswig-Holstein, Campus Kiel, Kiel, Germany.
Institute for Medical Microbiology, Immunology, and Hygiene, Center of Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Stefan Schütze
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany.
Institute of Immunology and
Department of Internal Medicine, University Hospital of Schleswig-Holstein, Campus Kiel, Kiel, Germany.
Department of Medicine II, University of Freiburg, Freiburg, Germany.
Department of Neurosurgery, University Hospital of Schleswig-Holstein, Campus Kiel, Kiel, Germany.
Institute for Medical Microbiology, Immunology, and Hygiene, Center of Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
15
|
Delgado-Lopez F, Horwitz MS. Adenovirus RIDalphabeta complex inhibits lipopolysaccharide signaling without altering TLR4 cell surface expression. J Virol 2006; 80:6378-86. [PMID: 16775326 PMCID: PMC1488987 DOI: 10.1128/jvi.02350-05] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The transmembrane heterotrimer complex 10.4K/14.5K, also known as RID (for "receptor internalization and degradation"), is encoded by the adenovirus E3 region, and it down-regulates the cell surface expression of several unrelated receptors. We recently showed that RID expression correlates with down-regulation of the cell surface expression of the tumor necrosis factor (TNF) receptor 1 in several human cells. This observation provided the first mechanistic explanation for the inhibition of TNF alpha-induced chemokines by RID. Here we analyze the immunoregulatory activities of RID on lipopolysaccharide (LPS) and interleukin-1 beta (IL-1beta)-mediated responses. Although both signaling pathways are strongly inhibited by RID, the chemokines up-regulated by IL-1beta stimulation are only marginally inhibited. In addition, RID inhibits signaling induced by LPS without affecting the expression of the LPS receptor Toll-like receptor 4, demonstrating that RID need not target degradation of the receptor to alter signal transduction. Taken together, our data demonstrate the inhibitory effect of RID on two additional cell surface receptor-mediated signaling pathways involved in inflammatory processes. The data suggest that RID has intracellular targets that impair signal transduction and chemokine expression without evidence of receptor down-regulation.
Collapse
Affiliation(s)
- Fernando Delgado-Lopez
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Forchheimer Building, Room 411, Bronx, NY 10461, USA.
| | | |
Collapse
|
16
|
Abstract
In response to invasion by microbial pathogens, host defense mechanisms get activated by both the innate and adaptive arms of the immune responses. TNF (tumor necrosis factor) is a potent proinflammatory cytokine expressed by activated macrophages and lymphocytes that induces diverse cellular responses that can vary from apoptosis to the expression of genes involved in both early inflammatory and acquired immune responses. A wide spectrum of microbes has acquired elegant mechanisms to overcome or deflect the host responses mediated by TNF. For example, modulatory proteins encoded by multiple families of viruses can block TNF and TNF-mediated responses at multiple levels, such as the inhibition of the TNF ligand or its receptors, or by modulating key transduction molecules of the TNF signaling pathway. Bacteria, on the other hand, tend to modify TNF-mediated responses specifically by regulating components of the TNF signaling pathway. Investigation of these diverse strategies employed by viral and bacterial pathogens has significantly advanced our understanding of both host TNF responses and microbial pathogenesis. This review summarizes the diverse microbial strategies to regulate TNF and how such insights into TNF modulation could benefit the treatment of inflammatory or autoimmune diseases.
Collapse
|
17
|
Chin YR, Horwitz MS. Mechanism for removal of tumor necrosis factor receptor 1 from the cell surface by the adenovirus RIDalpha/beta complex. J Virol 2005; 79:13606-17. [PMID: 16227281 PMCID: PMC1262606 DOI: 10.1128/jvi.79.21.13606-13617.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Proteins encoded in adenovirus early region 3 have important immunoregulatory properties. We have recently shown that the E3-10.4K/14.5K (RIDalpha/beta) complex downregulates tumor necrosis factor receptor 1 (TNFR1) expression at the plasma membrane. To study the role of the RIDbeta tyrosine sorting motif in the removal of surface TNFR1, tyrosine 122 on RIDbeta was mutated to alanine or phenylalanine. Both RIDbeta mutations not only abolished the downregulation of surface TNFR1 but paradoxically increased surface TNFR1 levels. RID also downregulates other death receptors, such as FAS; however, surface FAS expression was not increased by RIDbeta mutants, suggesting that regulation of TNFR1 and that of FAS by RID are mechanistically different. In the mixing experiments, the wild-type (WT) RID-mediated TNFR1 downregulation was partially inhibited in the presence of RIDbeta mutants, indicating that the mutants compete for TNFR1 access. Indeed, an association between RIDbeta and TNFR1 was shown by coimmunoprecipitation. In contrast, the mutants did not affect the WT RID-induced downregulation of FAS. These differential effects support a model in which RID associates with TNFR1 on the plasma membrane, whereas RID probably associates with FAS in a cytoplasmic compartment. By using small interfering RNA against the mu2 subunit of adaptor protein 2, dominant negative dynamin construct K44A, and the lysosomotropic agents bafilomycin A1 and ammonium chloride, we also demonstrated that surface TNFR1 was internalized by RID by a clathrin-dependent process involving mu2 and dynamin, followed by degradation of TNFR1 via an endosomal/lysosomal pathway.
Collapse
Affiliation(s)
- Y Rebecca Chin
- Department of Microbiology and Immunology, Forchheimer Building, Room 411, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA.
| | | |
Collapse
|