1
|
Googins MR, An P, Gauthier CH, Pipas JM. Polyomavirus large T antigens: Unraveling a complex interactome. Tumour Virus Res 2024; 19:200306. [PMID: 39675526 PMCID: PMC11720896 DOI: 10.1016/j.tvr.2024.200306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024] Open
Abstract
All members of the polyomavirus family encode a large T antigen (LT) protein that plays essential roles in viral DNA replication, regulation of viral gene expression, and the manipulation of numerous cellular pathways. Over 100 polyomaviruses have been discovered in hosts ranging from arthropods and fish to mammals, including fourteen that infect humans. LT is among the most studied viral proteins with thousands of articles describing its functions in viral productive infection and tumorigenesis. However, nearly all knowledge of LT activities is based on the studies of simian virus 40 (SV40) and a few other viruses. Comparative studies of LT proteins of different polyomaviruses have revealed a remarkable diversity in the mechanisms by which LT proteins function across different polyomavirus species. This review focuses on human polyomaviruses highlights the similarities and differences between polyomavirus LTs and highlights gaps in our understanding of this protein family. The concentration of knowledge around SV40 LT and the corresponding lack of mechanistic studies on LT proteins encoded by other human and animal polyomaviruses severely constrains our understanding of the biology of this important virus family.
Collapse
Affiliation(s)
- Matthew R Googins
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| | - Ping An
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| | - Christian H Gauthier
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| | - James M Pipas
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
2
|
Myrda J, Bremm F, Schaft N, Dörrie J. The Role of the Large T Antigen in the Molecular Pathogenesis of Merkel Cell Carcinoma. Genes (Basel) 2024; 15:1127. [PMID: 39336718 PMCID: PMC11431464 DOI: 10.3390/genes15091127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
The large T antigen (LT) of the Merkel cell polyomavirus (MCPyV) is crucial for Merkel cell carcinoma (MCC), a rare but very aggressive form of neuroendocrine skin cancer. The clonal integration of MCPyV DNA into the host genome is a signature event of this malignancy. The resulting expression of oncogenes, including the small T (sT) antigen and a truncated form of the LT (truncLT), directly contribute to carcinogenesis. The truncation of the C-terminus of LT prevents the virus from replicating due to the loss of the origin binding domain (OBD) and the helicase domain. This precludes cytopathic effects that would lead to DNA damage and ultimately cell death. At the same time, the LxCxE motif in the N-terminus is retained, allowing truncLT to bind the retinoblastoma protein (pRb), a cellular tumor suppressor. The continuously inactivated pRb promotes cell proliferation and tumor development. truncLT exerts several classical functions of an oncogene: altering the host cell cycle, suppressing innate immune responses to viral DNA, causing immune escape, and shifting metabolism in favor of cancer cells. Given its central role in MCC, the LT is a major target for therapeutic interventions with novel approaches, such as immune checkpoint inhibition, T cell-based immunotherapy, and cancer vaccines.
Collapse
Affiliation(s)
- Julia Myrda
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Franziska Bremm
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Niels Schaft
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Jan Dörrie
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| |
Collapse
|
3
|
Sainova I, Kolyovska V, Ilieva I, Markova T, Dimitrova-Dikanarova D, Hadjiolova R. The Development of Methods for the Production of New Molecular Vaccines and Appropriate RNA Fragments to Counteract Unwanted Genes: A Pilot Study. Vaccines (Basel) 2023; 11:1226. [PMID: 37515042 PMCID: PMC10386085 DOI: 10.3390/vaccines11071226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/22/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
The potential of viruses as appropriate vectors for the development of new therapeutic strategies, as well as for the design of molecular (DNA, RNA, and/or protein) vaccines via substitution of nucleotide sequences, has been proven. Among the most appropriate DNA and/or RNA fragments, members belonging to families Parvoviridae (particularly adeno-associated virus, AAV) and Poxviridae have frequently been suggested for this purpose. In previous studies, the vaccine avipoxvirus strains FK (fowl) and Dessau (pigeon) have been proven able to infect mammalian cells (as well as avian cells), and to replicate productively in a small number of them; thus, we may be able to adapt them using incubation, and in these conditions. Additionally, we have previously proved, based on AAV recombinant DNA vectors, that it is possible to transfer appropriate genes of interest via mouse embryonic stem cells (mESCs). In the current study, we develop methods for the application of the same vaccine avipoxviral strains, based on the AAV DNA genome recombinant constructs, to be used for gene transfer in cells, for the transfer of DNA and/or RNA fragments (for the suppression of unwanted viral and/or cellular genes), and for the production of molecular (DNA, RNA, and/or protein) anti-cancer and anti-viral vaccines. To this end, sub-populations of embryonic mammalian cells infected with the two forms of both vaccine avipoxviral strains were frozen in the presence of cryo-protector dimethylsulfoxide (DMSO), subsequently thawed, and re-incubated. In most cases, the titers of the intra-cellular forms of the two strains were higher than those of their extra-cellular forms. These data were explained by the probable existence of the intra-cellular forms as different sub-forms, including those integrated in the cellular genome proviruses at a given stage of the cellular infection, and suggest the possibility of transferring nucleotide (DNA and/or RNA) fragments between cellular and viral genomes; this is due to the influence of activated fusion processes on DMSO, as well as drastic temperature variations.
Collapse
Affiliation(s)
- Iskra Sainova
- Institute of Experimental Morphology, Pathology and Anthropology with Museum (IEMPAM) to Bulgarian Academy of Sciences (BAS), 1113 Sofia, Bulgaria
| | - Vera Kolyovska
- Institute of Experimental Morphology, Pathology and Anthropology with Museum (IEMPAM) to Bulgarian Academy of Sciences (BAS), 1113 Sofia, Bulgaria
| | - Iliana Ilieva
- Institute of Experimental Morphology, Pathology and Anthropology with Museum (IEMPAM) to Bulgarian Academy of Sciences (BAS), 1113 Sofia, Bulgaria
| | - Tzvetanka Markova
- Department of Pharmacology and Toxicology, Medical University of Sofia, 1431 Sofia, Bulgaria
| | | | - Radka Hadjiolova
- Department of Pathophysiology, Medical University of Sofia, 1431 Sofia, Bulgaria
| |
Collapse
|
4
|
Wang C, Zhao Z, Zhang Y, Liang W, Zhou C, Lin W, He Y, Wu M, Meng Z, Liao Y, Li M, El Akkawi M, Zhao J, He Y. Identification and verification of the prognostic value of CUL7 in colon adenocarcinoma. Front Immunol 2022; 13:1043512. [PMID: 36304472 PMCID: PMC9592904 DOI: 10.3389/fimmu.2022.1043512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 09/27/2022] [Indexed: 12/04/2022] Open
Abstract
CUL7, a gene composed of 26 exons associated with cullin 7 protein, is also an E3 ligase that is closely related to cell senescence, apoptosis, and cell transformation and also plays an important role in human cancer. However, there is no systematic pan-cancer analysis has been performed to explore its role in prognosis and immune prediction. In this study, the expression of CUL7 in colon adenocarcinoma (COAD) was investigated to determine its prognosis value. First, based on the Cancer Genome Atlas (TCGA), Genotypic-Tissue Expression Project(GTEx), Cancer Cell Line Encyclopedias(CCLE), and TISIDB database, the potential role of CUL7 in different tumors was explored. Subsequently, the expression of CUL7 in COAD was explored and verified by Immunohistochemistry (IHC). Furthermore, the mutation frequency of CUL7 in COAD was analyzed, and the prognostic value of CUL7 in COAD was discussed. In addition, the nomogram was constructed, and its prognostic value was verified by follow-up data from Jiangmen Central Hospital. Finally, PPI network analysis explored the potential biological function of CUL7 in COAD. The results show that CUL7 is upregulated in most tumors, which is significantly associated with poor survival. At the same time, CUL7 is correlated with the clinical stage and immune landscape of various tumors. In colorectal cancer, CUL7 was overexpressed in tumor tissues by IHC with a mutation frequency of about 4%. CUL7 is an independent prognostic factor for colorectal cancer. The nomogram constructed has effective predictive performance, and external databases proved the prognostic value of CUL7. In addition, PPI network analysis showed that CUL7 was closely related to FBXW8, and further pathway enrichment analysis showed that CUL7 was mainly involved in ubiquitin-mediated proteolysis. Therefore, our study provides a comprehensive understanding of the potential role of CUL7 in different tumors, and CUL7 might be a prognostic marker for COAD.
Collapse
Affiliation(s)
- Chengxing Wang
- Department of Gastrointestinal Surgery, Jiangmen Central Hospital, Jiangmen, China
- The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Zhenyu Zhao
- The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yuhao Zhang
- Department of Gastrointestinal Surgery, Jiangmen Central Hospital, Jiangmen, China
| | - Weijun Liang
- Department of Gastrointestinal Surgery, Jiangmen Central Hospital, Jiangmen, China
| | - Chaorong Zhou
- Department of Gastrointestinal Surgery, Jiangmen Central Hospital, Jiangmen, China
| | - Weixing Lin
- Department of Gastrointestinal Surgery, Jiangmen Central Hospital, Jiangmen, China
| | - Yu He
- National Drug Clinical Trial Institution, Jiangmen Central Hospital, Jiangmen, China
| | - Meimei Wu
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Jiangmen, China
| | - Zijie Meng
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Jiangmen, China
| | - Yuehua Liao
- Department of Pathology, Jiangmen Central Hospital, Jiangmen, China
| | - Min Li
- The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Mariya El Akkawi
- Department of Plastic and Aesthetic Surgery, Zhujiang hospital of Southern Medical University, Guangzhou, China
- *Correspondence: Yaoming He, ; Jinglin Zhao, ; Mariya El Akkawi,
| | - Jinglin Zhao
- Department of Gastrointestinal Surgery, Jiangmen Central Hospital, Jiangmen, China
- *Correspondence: Yaoming He, ; Jinglin Zhao, ; Mariya El Akkawi,
| | - Yaoming He
- Department of Gastrointestinal Surgery, Jiangmen Central Hospital, Jiangmen, China
- *Correspondence: Yaoming He, ; Jinglin Zhao, ; Mariya El Akkawi,
| |
Collapse
|
5
|
Hopf LVM, Baek K, Klügel M, von Gronau S, Xiong Y, Schulman BA. Structure of CRL7 FBXW8 reveals coupling with CUL1-RBX1/ROC1 for multi-cullin-RING E3-catalyzed ubiquitin ligation. Nat Struct Mol Biol 2022; 29:854-862. [PMID: 35982156 PMCID: PMC9507964 DOI: 10.1038/s41594-022-00815-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/28/2022] [Indexed: 11/27/2022]
Abstract
Most cullin-RING ubiquitin ligases (CRLs) form homologous assemblies between a neddylated cullin-RING catalytic module and a variable substrate-binding receptor (for example, an F-box protein). However, the vertebrate-specific CRL7FBXW8 is of interest because it eludes existing models, yet its constituent cullin CUL7 and F-box protein FBXW8 are essential for development, and CUL7 mutations cause 3M syndrome. In this study, cryo-EM and biochemical analyses reveal the CRL7FBXW8 assembly. CUL7’s exclusivity for FBXW8 among all F-box proteins is explained by its unique F-box-independent binding mode. In CRL7FBXW8, the RBX1 (also known as ROC1) RING domain is constrained in an orientation incompatible with binding E2~NEDD8 or E2~ubiquitin intermediates. Accordingly, purified recombinant CRL7FBXW8 lacks auto-neddylation and ubiquitination activities. Instead, our data indicate that CRL7 serves as a substrate receptor linked via SKP1–FBXW8 to a neddylated CUL1–RBX1 catalytic module mediating ubiquitination. The structure reveals a distinctive CRL–CRL partnership, and provides a framework for understanding CUL7 assemblies safeguarding human health. The cryo-EM structure of CRL7FBXW8 shows that CUL7–RBX1 binds FBXW8–SKP1 in an F-box-independent manner. Bridged by FBXW8–SKP1, CRL7FBXW8 forms a multi-cullin E3 ligase complex with neddylated CUL1–RBX1, which ubiquitinates a substrate recruited to CUL7.
Collapse
Affiliation(s)
- Linus V M Hopf
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Kheewoong Baek
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Maren Klügel
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Susanne von Gronau
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Yue Xiong
- Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Cullgen Inc., San Diego, CA, USA
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
6
|
Moens U, Prezioso C, Pietropaolo V. Functional Domains of the Early Proteins and Experimental and Epidemiological Studies Suggest a Role for the Novel Human Polyomaviruses in Cancer. Front Microbiol 2022; 13:834368. [PMID: 35250950 PMCID: PMC8894888 DOI: 10.3389/fmicb.2022.834368] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
As their name indicates, polyomaviruses (PyVs) can induce tumors. Mouse PyV, hamster PyV and raccoon PyV have been shown to cause tumors in their natural host. During the last 30 years, 15 PyVs have been isolated from humans. From these, Merkel cell PyV is classified as a Group 2A carcinogenic pathogen (probably carcinogenic to humans), whereas BKPyV and JCPyV are class 2B (possibly carcinogenic to humans) by the International Agency for Research on Cancer. Although the other PyVs recently detected in humans (referred to here as novel HPyV; nHPyV) share many common features with PyVs, including the viral oncoproteins large tumor antigen and small tumor antigen, as their role in cancer is questioned. This review discusses whether the nHPyVs may play a role in cancer based on predicted and experimentally proven functions of their early proteins in oncogenic processes. The functional domains that mediate the oncogenic properties of early proteins of known PyVs, that can cause cancer in their natural host or animal models, have been well characterized and we examined whether these functional domains are conserved in the early proteins of the nHPyVs and presented experimental evidence that these conserved domains are functional. Furthermore, we reviewed the literature describing the detection of nHPyV in human tumors.
Collapse
Affiliation(s)
- Ugo Moens
- Faculty of Health Sciences, Department of Medical Biology, University of Tromsø – The Arctic University of Norway, Tromsø, Norway
- *Correspondence: Ugo Moens,
| | - Carla Prezioso
- Microbiology of Chronic Neuro-Degenerative Pathologies, IRCSS San Raffaele Roma, Rome, Italy
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Valeria Pietropaolo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
- Valeria Pietropaolo,
| |
Collapse
|
7
|
Duan S, Pagano M. Ubiquitin ligases in cancer: Functions and clinical potentials. Cell Chem Biol 2021; 28:918-933. [PMID: 33974914 PMCID: PMC8286310 DOI: 10.1016/j.chembiol.2021.04.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/23/2021] [Accepted: 04/08/2021] [Indexed: 02/07/2023]
Abstract
Ubiquitylation, a highly regulated post-translational modification, controls many cellular pathways that are critical to cell homeostasis. Ubiquitin ligases recruit substrates and promote ubiquitin transfer onto targets, inducing proteasomal degradation or non-degradative signaling. Accumulating evidence highlights the critical role of dysregulated ubiquitin ligases in processes associated with the initiation and progression of cancer. Depending on the substrate specificity and biological context, a ubiquitin ligase can act either as a tumor promoter or as a tumor suppressor. In this review, we focus on the regulatory roles of ubiquitin ligases and how perturbations of their functions contribute to cancer pathogenesis. We also briefly discuss current strategies for targeting or exploiting ubiquitin ligases for cancer therapy.
Collapse
Affiliation(s)
- Shanshan Duan
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA; Howard Hughes Medical Institute, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
8
|
Merkel cell polyomavirus small tumour antigen activates the p38 MAPK pathway to enhance cellular motility. Biochem J 2021; 477:2721-2733. [PMID: 32639530 PMCID: PMC7398664 DOI: 10.1042/bcj20200399] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 12/26/2022]
Abstract
Merkel cell carcinoma (MCC) is an aggressive skin cancer with high rates of recurrence and metastasis. Merkel cell polyomavirus (MCPyV) is associated with the majority of MCC cases. MCPyV-induced tumourigenesis is largely dependent on the expression of the small tumour antigen (ST). Recent findings implicate MCPyV ST expression in the highly metastatic nature of MCC by promoting cell motility and migration, through differential expression of cellular proteins that lead to microtubule destabilisation, filopodium formation and breakdown of cell-cell junctions. However, the molecular mechanisms which dysregulate these cellular processes are yet to be fully elucidated. Here, we demonstrate that MCPyV ST expression activates p38 MAPK signalling to drive cell migration and motility. Notably, MCPyV ST-mediated p38 MAPK signalling occurs through MKK4, as opposed to the canonical MKK3/6 signalling pathway. In addition, our results indicate that an interaction between MCPyV ST and the cellular phospatase subunit PP4C is essential for its effect on p38 MAPK signalling. These results provide novel opportunities for the treatment of metastatic MCC given the intense interest in p38 MAPK inhibitors as therapeutic agents.
Collapse
|
9
|
Seridi N, Hamidouche M, Belmessabih N, El Kennani S, Gagnon J, Martinez G, Coutton C, Marchal T, Chebloune Y. Immortalization of primary sheep embryo kidney cells. In Vitro Cell Dev Biol Anim 2021; 57:76-85. [PMID: 33415664 DOI: 10.1007/s11626-020-00520-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 10/13/2020] [Indexed: 10/22/2022]
Abstract
Sheep primary epithelial cells are short-lived in cell culture systems. For long-term in vitro studies, primary cells need to be immortalized. This study aims to establish and characterize T immortalized sheep embryo kidney cells (TISEKC). In this study, we used fetal lamb kidneys to derive primary cultures of epithelial cells. We subsequently immortalized these cells using the large T SV40 antigen to generate crude TISEKC and isolate TISEKC clones. Among numerous clones of immortalized cells, the selected TISEKC-5 maintained active division and cell growth over 20 passages but lacked expression of the oncogenic large T SV40 antigen. Morphologically, TISEKC-5 maintained their epithelial aspect similar to the parental primary epithelial cells. However, their growth properties showed quite different patterns. Crude TISEKC, as well as the clones of TISEKC proliferated highly in culture compared to the parental primary cells. In the early passages, immortalized cells showed heterogeneous polyploidy but in the late passages the karyotype of immortalized cells became progressively stable, identical to that of the primary cells, because the TISEKC-5 cell line has lost the large SV40 T antigen expression, this cell line is a valuable tool for veterinary sciences and biotechnological productions.
Collapse
Affiliation(s)
- N Seridi
- Laboratory of Molecular and Cellular Biology, Unit of Genetics, Faculty of Biological Sciences, University of Sciences and Technology "Houari Boumediene", Algiers, Algeria
| | - M Hamidouche
- Laboratory of Production and Development of Viral Veterinary Vaccines, Pasteur Institute of Algeria, Algiers, Algeria
| | - N Belmessabih
- Laboratory of Production and Development of Viral Veterinary Vaccines, Pasteur Institute of Algeria, Algiers, Algeria
| | - S El Kennani
- INRAE/UGA USC 1450, Pathogenesis and Lentivirus Vaccination Laboratory, PAVAL Lab, Université Grenoble Alpes, 38041, Grenoble Cedex 9, France
| | - J Gagnon
- INRAE/UGA USC 1450, Pathogenesis and Lentivirus Vaccination Laboratory, PAVAL Lab, Université Grenoble Alpes, 38041, Grenoble Cedex 9, France
| | - G Martinez
- CHU Grenoble Alpes, UM de Génétique Chromosomique, Grenoble, France.,INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Université Grenoble Alpes, 38000, Grenoble, France
| | - C Coutton
- CHU Grenoble Alpes, UM de Génétique Chromosomique, Grenoble, France.,INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Université Grenoble Alpes, 38000, Grenoble, France
| | - T Marchal
- VetAgro Sup, UPSP ICE 2011.03.101, Laboratoire d'Histopathologie, Université de Lyon, Marcy-l'Etoile, France
| | - Y Chebloune
- INRAE/UGA USC 1450, Pathogenesis and Lentivirus Vaccination Laboratory, PAVAL Lab, Université Grenoble Alpes, 38041, Grenoble Cedex 9, France.
| |
Collapse
|
10
|
A Comprehensive Proteomics Analysis of the JC Virus (JCV) Large and Small Tumor Antigen Interacting Proteins: Large T Primarily Targets the Host Protein Complexes with V-ATPase and Ubiquitin Ligase Activities While Small t Mostly Associates with Those Having Phosphatase and Chromatin-Remodeling Functions. Viruses 2020; 12:v12101192. [PMID: 33092197 PMCID: PMC7594058 DOI: 10.3390/v12101192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
The oncogenic potential of both the polyomavirus large (LT-Ag) and small (Sm t-Ag) tumor antigens has been previously demonstrated in both tissue culture and animal models. Even the contribution of the MCPyV tumor antigens to the development of an aggressive human skin cancer, Merkel cell carcinoma, has been recently established. To date, the known primary targets of these tumor antigens include several tumor suppressors such as pRb, p53, and PP2A. However, a comprehensive list of the host proteins targeted by these proteins remains largely unknown. Here, we report the first interactome of JCV LT-Ag and Sm t-Ag by employing two independent “affinity purification/mass spectroscopy” (AP/MS) assays. The proteomics data identified novel targets for both tumor antigens while confirming some of the previously reported interactions. LT-Ag was found to primarily target the protein complexes with ATPase (v-ATPase and Smc5/6 complex), phosphatase (PP4 and PP1), and ligase (E3-ubiquitin) activities. In contrast, the major targets of Sm t-Ag were identified as Smarca1/6, AIFM1, SdhA/B, PP2A, and p53. The interactions between “LT-Ag and SdhB”, “Sm t-Ag and Smarca5”, and “Sm t-Ag and SDH” were further validated by biochemical assays. Interestingly, perturbations in some of the LT-Ag and Sm t-Ag targets identified in this study were previously shown to be associated with oncogenesis, suggesting new roles for both tumor antigens in novel oncogenic pathways. This comprehensive data establishes new foundations to further unravel the new roles for JCV tumor antigens in oncogenesis and the viral life cycle.
Collapse
|
11
|
Merkel cell polyomavirus Tumor antigens expressed in Merkel cell carcinoma function independently of the ubiquitin ligases Fbw7 and β-TrCP. PLoS Pathog 2019; 15:e1007543. [PMID: 30689667 PMCID: PMC6366716 DOI: 10.1371/journal.ppat.1007543] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 02/07/2019] [Accepted: 12/19/2018] [Indexed: 02/01/2023] Open
Abstract
Merkel cell polyomavirus (MCPyV) accounts for 80% of all Merkel cell carcinoma (MCC) cases through expression of two viral oncoproteins: the truncated large T antigen (LT-t) and small T antigen (ST). MCPyV ST is thought to be the main driver of cellular transformation and has also been shown to increase LT protein levels through the activity of its Large-T Stabilization Domain (LSD). The ST LSD was reported to bind and sequester several ubiquitin ligases, including Fbw7 and β-TrCP, and thereby stabilize LT-t and several other Fbw7 targets including c-Myc and cyclin E. Therefore, the ST LSD is thought to contribute to transformation by promoting the accumulation of these oncoproteins. Targets of Fbw7 and β-TrCP contain well-defined, conserved, phospho-degrons. However, as neither MCPyV LT, LT-t nor ST contain the canonical Fbw7 phospho-degron, we sought to further investigate the proposed model of ST stabilization of LT-t and transformation. In this study, we provide several lines of evidence that fail to support a specific interaction between MCPyV T antigens and Fbw7 or β-TrCP by co-immunoprecipitation or functional consequence. Although MCPyV ST does indeed increase LT protein levels through its Large-T Stabilization domain (LSD), this is accomplished independently of Fbw7. Therefore, our study indicates a need for further investigation into the role and mechanism(s) of MCPyV T antigens in viral replication, latency, transformation, and tumorigenesis. Merkel cell carcinoma (MCC) is a very aggressive and deadly neuroendocrine skin cancer. Merkel cell polyomavirus (MCPyV) contributes to the development and maintenance of 80% of MCCs through the expression of its truncated large tumor antigen (LT-t) and small tumor antigen (ST). MCPyV ST is thought to be primarily responsible for transformation and tumorigenesis through many mechanisms including stabilization of MCPyV LT-t and other cellular proteins involved in proliferation such as c-Myc. As c-Myc is a known target substrate, and MCPyV LT-t is a proposed target substrate, of the ubiquitin ligase Fbw7, it is currently thought that ST stabilizes these proteins and transforms cells through binding and perturbing the function of Fbw7. However, neither MCPyV LT-t nor ST contain a canonical Fbw7 degron sequence necessary for this interaction. MCPyV LT-t, found in MCCs, does not bind to, nor is targeted by, Fbw7. However, an ill-defined, unidirectional interaction between MCPyV LT, ST, and Fbw7 was observed, but had no functional consequence. Therefore, this study calls for further investigation into the mechanism(s) by which MCPyV ST leads to the development and maintenance of MCC.
Collapse
|
12
|
Nguyen KD, Chamseddin BH, Cockerell CJ, Wang RC. The Biology and Clinical Features of Cutaneous Polyomaviruses. J Invest Dermatol 2018; 139:285-292. [PMID: 30470393 DOI: 10.1016/j.jid.2018.09.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/07/2018] [Accepted: 09/12/2018] [Indexed: 12/11/2022]
Abstract
Human polyomaviruses are double-stand DNA viruses with a conserved genomic structure, yet they present with diverse tissue tropisms and disease presentations. Merkel cell polyomavirus, trichodysplasia spinulosa polyomavirus, human polyomavirus 6 and 7, and Malawi polyomavirus are shed from the skin, and Merkel cell polyomavirus, trichodysplasia spinulosa polyomavirus, human polyomavirus 6 and 7 have been linked to specific skin diseases. We present an update on the genomic and clinical features of these cutaneous polyomaviruses.
Collapse
Affiliation(s)
- Khang D Nguyen
- Department of Dermatology, The University of Texas Southwestern Medical Center, Department of Dermatology, Dallas, Texas, USA
| | - Bahir H Chamseddin
- Department of Dermatology, The University of Texas Southwestern Medical Center, Department of Dermatology, Dallas, Texas, USA
| | - Clay J Cockerell
- Department of Dermatology, The University of Texas Southwestern Medical Center, Department of Dermatology, Dallas, Texas, USA
| | - Richard C Wang
- Department of Dermatology, The University of Texas Southwestern Medical Center, Department of Dermatology, Dallas, Texas, USA.
| |
Collapse
|
13
|
Cavender JF, Tevethia MJ. SV40 T-Antigen Amino Acid Changes that Disrupt Cul-7 or Bub-1 Binding Do Not Globally Distort the T-Common Region. Intervirology 2016; 59:30-5. [PMID: 27376672 DOI: 10.1159/000446777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 05/08/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Amino acids 1-107 of the SV40 T antigen constitute a functionally important and complex region. Cellular proteins, Hsc70, Bub-1, Cul-7, and Rb, each of which is involved in cell growth control or genomic stability, bind within this portion of the T antigen. Mutational analysis has mapped the J domain/Hsc70, Bub-1, and the Rb binding motifs. Two regions of the T antigen have been implicated in Cul-7 binding. Mutation of F98A diminished Cul-7 binding, and deletion of amino acids 68-83 abolished it. The authors suggest, based on T-antigen structure, that F98 is inaccessible and that the F98A change altered the configuration of the upstream region, preventing Cul-7 binding. Our objective was to determine, by using monoclonal T-antigen antibodies, whether F98 is accessible and whether F98A substitution globally distorted the T-common region. METHODS Cell-expressing T antigens, immunoprecipitation, and immunoblot were used to determine the accessibility of amino acids. CONCLUSION Full-length T-antigen and N-terminal fragments containing F98A were immunoprecipitated by monoclonal antibody PAb902, which recognizes a conformation-dependent epitope within the first 82 amino acids. Therefore, this alteration does not globally distort the entire T-common region. Additionally, PAb416, which displaces Cul-7 from the T antigen and immunoprecipitates bound pRb peptides, depends on F98 for binding, implying that amino acid 98 is part of the epitope and accessible in the native T antigen.
Collapse
Affiliation(s)
- Jane F Cavender
- Department of Biology, Elizabethtown College, Elizabethtown, Pa., USA
| | | |
Collapse
|
14
|
Activation of the DNA Damage Response by RNA Viruses. Biomolecules 2016; 6:2. [PMID: 26751489 PMCID: PMC4808796 DOI: 10.3390/biom6010002] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/17/2015] [Accepted: 11/24/2015] [Indexed: 12/11/2022] Open
Abstract
RNA viruses are a genetically diverse group of pathogens that are responsible for some of the most prevalent and lethal human diseases. Numerous viruses introduce DNA damage and genetic instability in host cells during their lifecycles and some species also manipulate components of the DNA damage response (DDR), a complex and sophisticated series of cellular pathways that have evolved to detect and repair DNA lesions. Activation and manipulation of the DDR by DNA viruses has been extensively studied. It is apparent, however, that many RNA viruses can also induce significant DNA damage, even in cases where viral replication takes place exclusively in the cytoplasm. DNA damage can contribute to the pathogenesis of RNA viruses through the triggering of apoptosis, stimulation of inflammatory immune responses and the introduction of deleterious mutations that can increase the risk of tumorigenesis. In addition, activation of DDR pathways can contribute positively to replication of viral RNA genomes. Elucidation of the interactions between RNA viruses and the DDR has provided important insights into modulation of host cell functions by these pathogens. This review summarises the current literature regarding activation and manipulation of the DDR by several medically important RNA viruses.
Collapse
|
15
|
Abidi N, Xirodimas DP. Regulation of cancer-related pathways by protein NEDDylation and strategies for the use of NEDD8 inhibitors in the clinic. Endocr Relat Cancer 2015; 22:T55-70. [PMID: 25504797 DOI: 10.1530/erc-14-0315] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Post-translational modification of proteins with ubiquitin and ubiquitin-like molecules (UBLs) controls a vast if not every biological process in the cell. It is not surprising that deregulation in ubiquitin and UBL signalling has been implicated in the pathogenesis of many diseases and that these pathways are considered as major targets for therapeutic intervention. In this review, we summarise recent advances in our understanding of the role of the UBL neural precursor cell expressed developmentally downregulated-8 (NEDD8) in cancer-related processes and potential strategies for the use of NEDD8 inhibitors as chemotherapeutics.
Collapse
Affiliation(s)
- Naima Abidi
- Centre de Recherche de Biochimie MacromoléculaireUMR5235, 1919 Route de Mende, Montpellier 34293, France
| | - Dimitris P Xirodimas
- Centre de Recherche de Biochimie MacromoléculaireUMR5235, 1919 Route de Mende, Montpellier 34293, France
| |
Collapse
|
16
|
Wong SP, Argyros O, Harbottle RP. Sustained expression from DNA vectors. ADVANCES IN GENETICS 2014; 89:113-152. [PMID: 25620010 DOI: 10.1016/bs.adgen.2014.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
DNA vectors have the potential to become powerful medical tools for treatment of human disease. The human body has, however, developed a range of defensive strategies to detect and silence foreign or misplaced DNA, which is more typically encountered during infection or chromosomal damage. A clinically relevant human gene therapy vector must overcome or avoid these protections whilst delivering sustained levels of therapeutic gene product without compromising the vitality of the recipient host. Many non-viral DNA vectors trigger these defense mechanisms and are subsequently destroyed or rendered silent. Thus, without modification or considered design, the clinical utility of a typical DNA vector is fundamentally limited due to the transient nature of its transgene expression. The development of safe and persistently expressing DNA vectors is a crucial prerequisite for its successful clinical application and subsequently remains, therefore, one of the main strategic tasks of non-viral gene therapy research. In this chapter we will describe our current understanding of the mechanisms that can destroy or silence DNA vectors and discuss strategies, which have been utilized to improve their sustenance and the level and duration of their transgene expression.
Collapse
Affiliation(s)
- Suet Ping Wong
- Leukocyte Biology Section, National Heart & Lung Institute, Imperial College London, London, UK
| | - Orestis Argyros
- Division of Pharmacology-Pharmacotechnology, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Richard P Harbottle
- DNA Vector Research, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| |
Collapse
|
17
|
Stakaitytė G, Wood JJ, Knight LM, Abdul-Sada H, Adzahar NS, Nwogu N, Macdonald A, Whitehouse A. Merkel cell polyomavirus: molecular insights into the most recently discovered human tumour virus. Cancers (Basel) 2014; 6:1267-97. [PMID: 24978434 PMCID: PMC4190541 DOI: 10.3390/cancers6031267] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/01/2014] [Accepted: 06/09/2014] [Indexed: 12/21/2022] Open
Abstract
A fifth of worldwide cancer cases have an infectious origin, with viral infection being the foremost. One such cancer is Merkel cell carcinoma (MCC), a rare but aggressive skin malignancy. In 2008, Merkel cell polyomavirus (MCPyV) was discovered as the causative agent of MCC. It is found clonally integrated into the majority of MCC tumours, which require MCPyV oncoproteins to survive. Since its discovery, research has begun to reveal the molecular virology of MCPyV, as well as how it induces tumourigenesis. It is thought to be a common skin commensal, found at low levels in healthy individuals. Upon loss of immunosurveillance, MCPyV reactivates, and a heavy viral load is associated with MCC pathogenesis. Although MCPyV is in many ways similar to classical oncogenic polyomaviruses, such as SV40, subtle differences are beginning to emerge. These unique features highlight the singular position MCPyV has as the only human oncogenic polyomavirus, and open up new avenues for therapies against MCC.
Collapse
Affiliation(s)
- Gabrielė Stakaitytė
- School of Molecular and Cellular Biology and Astbury Centre of Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| | - Jennifer J Wood
- School of Molecular and Cellular Biology and Astbury Centre of Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| | - Laura M Knight
- School of Molecular and Cellular Biology and Astbury Centre of Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| | - Hussein Abdul-Sada
- School of Molecular and Cellular Biology and Astbury Centre of Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| | - Noor Suhana Adzahar
- School of Molecular and Cellular Biology and Astbury Centre of Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| | - Nnenna Nwogu
- School of Molecular and Cellular Biology and Astbury Centre of Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| | - Andrew Macdonald
- School of Molecular and Cellular Biology and Astbury Centre of Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| | - Adrian Whitehouse
- School of Molecular and Cellular Biology and Astbury Centre of Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
18
|
Holcakova J, Muller P, Tomasec P, Hrstka R, Nekulova M, Krystof V, Strnad M, Wilkinson GWG, Vojtesek B. Inhibition of post-transcriptional RNA processing by CDK inhibitors and its implication in anti-viral therapy. PLoS One 2014; 9:e89228. [PMID: 24586613 PMCID: PMC3931720 DOI: 10.1371/journal.pone.0089228] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 01/17/2014] [Indexed: 01/31/2023] Open
Abstract
Cyclin-dependent kinases (CDKs) are key regulators of the cell cycle and RNA polymerase II mediated transcription. Several pharmacological CDK inhibitors are currently in clinical trials as potential cancer therapeutics and some of them also exhibit antiviral effects. Olomoucine II and roscovitine, purine-based inhibitors of CDKs, were described as effective antiviral agents that inhibit replication of a broad range of wild type human viruses. Olomoucine II and roscovitine show high selectivity for CDK7 and CDK9, with important functions in the regulation of RNA polymerase II transcription. RNA polymerase II is necessary for viral transcription and following replication in cells. We analyzed the effect of inhibition of CDKs by olomoucine II on gene expression from viral promoters and compared its effect to widely-used roscovitine. We found that both roscovitine and olomoucine II blocked the phosphorylation of RNA polymerase II C-terminal domain. However the repression of genes regulated by viral promoters was strongly dependent on gene localization. Both roscovitine and olomoucine II inhibited expression only when the viral promoter was not integrated into chromosomal DNA. In contrast, treatment of cells with genome-integrated viral promoters increased their expression even though there was decreased phosphorylation of the C-terminal domain of RNA polymerase II. To define the mechanism responsible for decreased gene expression after pharmacological CDK inhibitor treatment, the level of mRNA transcription from extrachromosomal DNA was determined. Interestingly, our results showed that inhibition of RNA polymerase II C-terminal domain phosphorylation increased the number of transcribed mRNAs. However, some of these mRNAs were truncated and lacked polyadenylation, which resulted in decreased translation. These results suggest that phosphorylation of RNA polymerase II C-terminal domain is critical for linking transcription and posttrancriptional processing of mRNA expressed from extrachromosomal DNA.
Collapse
Affiliation(s)
- Jitka Holcakova
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Petr Muller
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Peter Tomasec
- School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Roman Hrstka
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Marta Nekulova
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Vladimir Krystof
- Laboratory of Growth Regulators, Faculty of Science, Palacky University, Olomouc, Czech Republic
- Institute of Experimental Botany AS CR, Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Faculty of Science, Palacky University, Olomouc, Czech Republic
- Institute of Experimental Botany AS CR, Olomouc, Czech Republic
| | | | - Borivoj Vojtesek
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
- * E-mail:
| |
Collapse
|
19
|
Inhibition of Cullin-RING E3 ubiquitin ligase 7 by simian virus 40 large T antigen. Proc Natl Acad Sci U S A 2014; 111:3371-6. [PMID: 24550499 DOI: 10.1073/pnas.1401556111] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Simian virus 40 (SV40) large tumor antigen (LT) triggers oncogenic transformation by inhibition of key tumor suppressor proteins, including p53 and members of the retinoblastoma family. In addition, SV40 transformation requires binding of LT to Cullin 7 (CUL7), a core component of Cullin-RING E3 ubiquitin ligase 7 (CRL7). However, the pathomechanistic effects of LT-CUL7 interaction are mostly unknown. Here we report both in vitro and in vivo experimental evidence that SV40 LT suppresses the ubiquitin ligase function of CRL7. We show that SV40 LT, but not a CUL7 binding-deficient mutant (LT(Δ69-83)), impaired 26S proteasome-dependent proteolysis of the CRL7 target protein insulin receptor substrate 1 (IRS1), a component of the insulin and insulin-like growth factor 1 signaling pathway. SV40 LT expression resulted in the accumulation and prolonged half-life of IRS1. In vitro, purified SV40 LT reduced CRL7-dependent IRS1 ubiquitination in a concentration-dependent manner. Expression of SV40 LT, or depletion of CUL7 by RNA interference, resulted in the enhanced activation of IRS1 downstream signaling pathways phosphatidylinositol-3-kinase/AKT and Erk mitogen-activated pathway kinase, as well as up-regulation of the downstream target gene c-fos. Finally, SV40 LT-positive carcinoma of carcinoembryonic antigen 424/SV40 LT transgenic mice displayed elevated IRS1 protein levels and activation of downstream signaling. Taken together, these data suggest that SV40 LT protects IRS1 from CRL7-mediated degradation, thereby sustaining high levels of promitogenic IRS1 downstream signaling pathways.
Collapse
|
20
|
Two independent regions of simian virus 40 T antigen increase CBP/p300 levels, alter patterns of cellular histone acetylation, and immortalize primary cells. J Virol 2013; 87:13499-509. [PMID: 24089570 DOI: 10.1128/jvi.02658-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Simian virus 40 (SV40) large T antigen (SVT) interferes with normal cell regulation and thus has been used to identify cellular components controlling proliferation and homeostasis. We have previously shown that SVT-mediated transformation requires interaction with the histone acetyltransferases (HATs) CBP/p300 and now report that the ectopic expression of SVT in several cell types in vivo and in vitro results in a significant increase in the steady-state levels of CBP/p300. Furthermore, SVT-expressing cells contain higher levels of acetylated CBP/p300, a modification that has been linked to increased HAT activity. Concomitantly, the acetylation levels of histone residues H3K56 and H4K12 are markedly increased in SVT-expressing cells. Other polyomavirus-encoded large T antigens also increase the levels of CBP/p300 and sustain a rise in the acetylation levels of H3K56 and H4K12. SVT does not affect the transcription of CBP/p300, but rather, alters their overall levels through increasing the loading of CBP/p300 mRNAs onto polysomes. Two distinct regions within SVT, one located in the amino terminus and one in the carboxy terminus, can independently alter both the levels of CBP/p300 and the loading of CBP/p300 transcripts onto polysomes. Within the amino-terminal fragment, a functional J domain is necessary for increasing CBP/p300 and specific histone acetylation levels, as well as for immortalizing primary cells. These studies uncover the action of polyomavirus T antigens on cellular CBP/p300 and suggest that additional mechanisms are used by T antigens to induce cell immortalization and transformation.
Collapse
|
21
|
An P, Sáenz Robles MT, Pipas JM. Large T antigens of polyomaviruses: amazing molecular machines. Annu Rev Microbiol 2013; 66:213-36. [PMID: 22994493 DOI: 10.1146/annurev-micro-092611-150154] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The large tumor antigen (T antigen) encoded by simian virus 40 is an amazing molecular machine because it orchestrates viral infection by modulating multiple fundamental viral and cellular processes. T antigen is required for viral DNA replication, transcription, and virion assembly. In addition, T antigen targets multiple cellular pathways, including those that regulate cell proliferation, cell death, and the inflammatory response. Ectopic T antigen expression results in the immortalization and transformation of many cell types in culture and T antigen induces neoplasia when expressed in rodents. The analysis of the mechanisms by which T antigen carries out its many functions has proved to be a powerful way of gaining insights into cell biology. The accelerating pace at which new polyomaviruses are being discovered provides a collection of novel T antigens that, like simian virus 40, can be used to discover and study key cellular regulatory systems.
Collapse
Affiliation(s)
- Ping An
- Department of Biological Sciences, University of Pittsburgh, Pennsylvania 15260, USA
| | | | | |
Collapse
|
22
|
Chiaravalli AM, Longhi E, Vigetti D, De Stefano FI, Deleonibus S, Capella C, Solcia E, Parravicini C. Gastrointestinal cancers reactive for the PAb416 antibody against JCV/SV40 T-Ag lack JCV DNA sequences while showing a distinctive pathologic profile. J Clin Pathol 2012; 66:44-9. [PMID: 23012397 DOI: 10.1136/jclinpath-2012-200963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AIM Immunohistochemical and molecular studies have suggested an oncogenic role for JCV in gastrointestinal carcinomas, but at least in colorectal cancers, the data are far from being unambiguous. METHODS Two large series of formalin-fixed paraffin-embedded gastric and colorectal cancers were analysed for the expression of JCV large T Antigen (T-Ag) with a panel of five antibodies, and for the presence of T-Ag DNA sequences using two PCR systems. RESULTS Intense nuclear staining was observed in 54/116 (46%) colorectal, and in 92/234 (39%) gastric cancers, using the PAb416 monoclonal antibody against large T-Ag. In colorectal cancers, PAb416-positivity was directly related to the presence of chromosomal instability, lymph node metastases and a more advanced tumour stage, and inversely related to proximal tumour site and the presence of microsatellite instability (MSI). In gastric cancers, the glandular histotype, the presence of lymph node metastases, a low frequency of MSI and EBV infection, and a worse prognosis were significantly associated with PAb416 immunoreactivity. Moreover, at both these sites, PAb416 expression was significantly associated with p53 nuclear accumulation. No positivity was obtained with all the other four anti-T-Ag-antibodies, and molecular analysis failed to demonstrate the presence of JCV DNA sequences in tested cases. CONCLUSIONS Our immunohistochemical and molecular results do not support the idea that JCV T-Ag has a role in gastrointestinal carcinogenesis. It is possible that PAb416, besides binding the viral protein, may cross-react with a hitherto undefined protein whose expression is associated with a distinct pathological profile and, at least in gastric cancers, with worse prognosis.
Collapse
|
23
|
Turnell AS, Grand RJ. DNA viruses and the cellular DNA-damage response. J Gen Virol 2012; 93:2076-2097. [PMID: 22855786 DOI: 10.1099/vir.0.044412-0] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
It is clear that a number of host-cell factors facilitate virus replication and, conversely, a number of other factors possess inherent antiviral activity. Research, particularly over the last decade or so, has revealed that there is a complex inter-relationship between viral infection and the host-cell DNA-damage response and repair pathways. There is now a realization that viruses can selectively activate and/or repress specific components of these host-cell pathways in a temporally coordinated manner, in order to promote virus replication. Thus, some viruses, such as simian virus 40, require active DNA-repair pathways for optimal virus replication, whereas others, such as adenovirus, go to considerable lengths to inactivate some pathways. Although there is ever-increasing molecular insight into how viruses interact with host-cell damage pathways, the precise molecular roles of these pathways in virus life cycles is not well understood. The object of this review is to consider how DNA viruses have evolved to manage the function of three principal DNA damage-response pathways controlled by the three phosphoinositide 3-kinase (PI3K)-related protein kinases ATM, ATR and DNA-PK and to explore further how virus interactions with these pathways promote virus replication.
Collapse
Affiliation(s)
- Andrew S Turnell
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Roger J Grand
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
24
|
Ou HD, May AP, O'Shea CC. The critical protein interactions and structures that elicit growth deregulation in cancer and viral replication. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 3:48-73. [PMID: 21061422 DOI: 10.1002/wsbm.88] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
One of the greatest challenges in biomedicine is to define the critical targets and network interactions that are subverted to elicit growth deregulation in human cells. Understanding and developing rational treatments for cancer requires a definition of the key molecular targets and how they interact to elicit the complex growth deregulation phenotype. Viral proteins provide discerning and powerful probes to understand both how cells work and how they can be manipulated using a minimal number of components. The small DNA viruses have evolved to target inherent weaknesses in cellular protein interaction networks to hijack the cellular DNA and protein replication machinery. In the battle to escape the inevitability of senescence and programmed cell death, cancers have converged on similar mechanisms, through the acquisition and selection of somatic mutations that drive unchecked cellular replication in tumors. Understanding the dynamic mechanisms through which a minimal number of viral proteins promote host cells to undergo unscheduled and pathological replication is a powerful strategy to identify critical targets that are also disrupted in cancer. Viruses can therefore be used as tools to probe the system-wide protein-protein interactions and structures that drive growth deregulation in human cells. Ultimately this can provide a path for developing system context-dependent therapeutics. This review will describe ongoing experimental approaches using viruses to study pathways deregulated in cancer, with a particular focus on viral cellular protein-protein interactions and structures.
Collapse
Affiliation(s)
- Horng D Ou
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | | |
Collapse
|
25
|
Liu X, Hein J, Richardson SCW, Basse PH, Toptan T, Moore PS, Gjoerup OV, Chang Y. Merkel cell polyomavirus large T antigen disrupts lysosome clustering by translocating human Vam6p from the cytoplasm to the nucleus. J Biol Chem 2011; 286:17079-90. [PMID: 21454559 PMCID: PMC3089552 DOI: 10.1074/jbc.m110.192856] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Merkel cell polyomavirus (MCV) has been recently described as the cause for most human Merkel cell carcinomas. MCV is similar to simian virus 40 (SV40) and encodes a nuclear large T (LT) oncoprotein that is usually mutated to eliminate viral replication among tumor-derived MCV. We identified the hVam6p cytoplasmic protein involved in lysosomal processing as a novel interactor with MCV LT but not SV40 LT. hVam6p binds through its clathrin heavy chain homology domain to a unique region of MCV LT adjacent to the retinoblastoma binding site. MCV LT translocates hVam6p to the nucleus, sequestering it from involvement in lysosomal trafficking. A naturally occurring, tumor-derived mutant LT (MCV350) lacking a nuclear localization signal binds hVam6p but fails to inhibit hVam6p-induced lysosomal clustering. MCV has evolved a novel mechanism to target hVam6p that may contribute to viral uncoating or egress through lysosomal processing during virus replication.
Collapse
Affiliation(s)
- Xi Liu
- Cancer Virology Program, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Interaction and co-localization of JC virus large T antigen and the F-box protein β-transducin-repeat containing protein. Virology 2010; 410:119-28. [PMID: 21106215 DOI: 10.1016/j.virol.2010.10.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 09/29/2010] [Accepted: 10/29/2010] [Indexed: 11/24/2022]
Abstract
Lytic infection and transformation of cultured cells by JC virus (JCV) require five tumor proteins, which interact with factors regulating critical cellular processes. We demonstrate that JCV large T antigen (TAg) binds the F-box proteins β-transducin-repeat containing protein-1 and 2 (βTrCP1/2). These interactions involve a phosphodegron (DpSGX(2-4)pS) found in βTrCP substrates. TAg stability is unaltered, suggesting TAg is a pseudo-substrate. βTrCP and TAg co-localize in the cytoplasm, and a functional SCF complex is required. We examined whether TAg influences the levels of β-catenin, a βTrCP substrate. We were unable to demonstrate that TAg elevates β-catenin as previously reported, and a mutant TAg unable to bind βTrCP also had no detectable effect on β-catenin stability. Results presented in this study link JCV TAg to the cellular degradation complex, SCF(βTrCP1/2). Proteasomal degradation is essential for proper regulation of cellular functions, and interference with proteasomal pathways highlights possible JCV pathogenic and oncogenic mechanisms.
Collapse
|
27
|
Abstract
Over 50 years of polyomavirus research has produced a wealth of insights into not only general biologic processes in mammalian cells, but also, how conditions can be altered and signaling systems tweaked to produce transformation phenotypes. In the past few years three new members (KIV, WUV, and MCV) have joined two previously known (JCV and BKV) human polyomaviruses. In this review, we present updated information on general virologic features of these polyomaviruses in their natural host, concentrating on the association of MCV with human Merkel cell carcinoma. We further present a discussion on advances made in SV40 as the prototypic model, which has and will continue to inform our understanding about viruses and cancer.
Collapse
Affiliation(s)
- Ole Gjoerup
- Cancer Virology Program, Hillman Cancer Research Pavilion, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | | |
Collapse
|
28
|
Multiple DNA damage signaling and repair pathways deregulated by simian virus 40 large T antigen. J Virol 2010; 84:8007-20. [PMID: 20519379 DOI: 10.1128/jvi.00334-10] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We demonstrated previously that expression of simian virus 40 (SV40) large T antigen (LT), without a viral origin, is sufficient to induce the hallmarks of a cellular DNA damage response (DDR), such as focal accumulation of gamma-H2AX and 53BP1, via Bub1 binding. Here we expand our characterization of LT effects on the DDR. Using comet assays, we demonstrate that LT induces overt DNA damage. The Fanconi anemia pathway, associated with replication stress, becomes activated, since FancD2 accumulates in foci, and monoubiquitinated FancD2 is detected on chromatin. LT also induces a distinct set of foci of the homologous recombination repair protein Rad51 that are colocalized with Nbs1 and PML. The FancD2 and Rad51 foci require neither Bub1 nor retinoblastoma protein binding. Strikingly, wild-type LT is localized on chromatin at, or near, the Rad51/PML foci, but the LT mutant in Bub1 binding is not localized there. SV40 infection was previously shown to trigger ATM activation, which facilitates viral replication. We demonstrate that productive infection also triggers ATR-dependent Chk1 activation and that Rad51 and FancD2 colocalize with LT in viral replication centers. Using small interfering RNA (siRNA)-mediated knockdown, we demonstrate that Rad51 and, to a lesser extent, FancD2 are required for efficient viral replication in vivo, suggesting that homologous recombination is important for high-level extrachromosomal replication. Taken together, the interplay of LT with the DDR is more complex than anticipated, with individual domains of LT being connected to different subcomponents of the DDR and repair machinery.
Collapse
|
29
|
Fu J, Lv X, Lin H, Wu L, Wang R, Zhou Z, Zhang B, Wang YL, Tsang BK, Zhu C, Wang H. Ubiquitin ligase cullin 7 induces epithelial-mesenchymal transition in human choriocarcinoma cells. J Biol Chem 2010; 285:10870-9. [PMID: 20139075 DOI: 10.1074/jbc.m109.004200] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Germ line mutations of the ubiquitin ligase cullin 7 (CUL7) are linked to 3-M syndrome and Yakuts short stature syndrome, both of which are characterized by pre- and post-natal growth retardation. CUL7 knock-out mice show placental and embryonic defects similar to intrauterine growth retardation, suggesting a role of CUL7 in placentation. CUL7 was found in this study to be highly expressed in first trimester invasive human placental villi as well as in HTR8/SVneo and B6Tert cells, two cell lines derived from human first trimester trophoblast cells. However, CUL7 levels in term trophoblast cells or JEG-3 cells, which are derived from human choriocarcinoma but exhibit weak invasion capacity, were low or undetectable. Forced expression of CUL7 in JEG-3 cells induced cell morphological changes characteristic of epithelial-mesenchymal transition, which was accompanied by a complete loss of the epithelial markers E-cadherin and P-cadherin and a significant elevation of mesenchymal markers Vimentin and N-cadherin. JEG-3 cells expressing CUL7 exhibited enhanced cell migration and invasion. Conversely, CUL7-specific RNA interference in HTR8/SVneo cells resulted in increased E-cadherin expression and reduced cell migration and invasion. Furthermore, CUL7 expression down-regulated E-cadherin mRNA expression by up-regulating ZEB1 and Slug, two transcriptional repressors of E-cadherin. Finally, CUL7-induced loss of E-cadherin expression was partially reversed by treatment of CUL7-expressing cells with the proteasome inhibitor MG-132. These results suggest that the CUL7 E3 ligase is a key regulator in trophoblast cell epithelial-mesenchymal transition and placental development.
Collapse
Affiliation(s)
- Jiejun Fu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Cheng J, DeCaprio JA, Fluck MM, Schaffhausen BS. Cellular transformation by Simian Virus 40 and Murine Polyoma Virus T antigens. Semin Cancer Biol 2009; 19:218-28. [PMID: 19505649 PMCID: PMC2694755 DOI: 10.1016/j.semcancer.2009.03.002] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 03/19/2009] [Accepted: 03/20/2009] [Indexed: 01/09/2023]
Abstract
Simian Virus 40 (SV40) and Mouse Polyoma Virus (PY) are small DNA tumor viruses that have been used extensively to study cellular transformation. The SV40 early region encodes three tumor antigens, large T (LT), small T (ST) and 17KT that contribute to cellular transformation. While PY also encodes LT and ST, the unique middle T (MT) generates most of the transforming activity. SV40 LT mediated transformation requires binding to the tumor suppressor proteins Rb and p53 in the nucleus and ST binding to the protein phosphatase PP2A in the cytoplasm. SV40 LT also binds to several additional cellular proteins including p300, CBP, Cul7, IRS1, Bub1, Nbs1 and Fbxw7 that contribute to viral transformation. PY MT transformation is dependent on binding to PP2A and the Src family protein tyrosine kinases (PTK) and assembly of a signaling complex on cell membranes that leads to transformation in a manner similar to Her2/neu. Phosphorylation of MT tyrosine residues activates key signaling molecules including Shc/Grb2, PI3K and PLCgamma1. The unique contributions of SV40 LT and ST and PY MT to cellular transformation have provided significant insights into our understanding of tumor suppressors, oncogenes and the process of oncogenesis.
Collapse
Affiliation(s)
- Jingwei Cheng
- Department of Medical Oncology, Dana-Farber Cancer Institute; Department of Medicine, Brigham and Women’s Hospital; and Harvard Medical School, Boston, MA 02115
| | - James A. DeCaprio
- Department of Medical Oncology, Dana-Farber Cancer Institute; Department of Medicine, Brigham and Women’s Hospital; and Harvard Medical School, Boston, MA 02115
- Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA 02115
| | - Michele M. Fluck
- Department of Microbiology and Molecular Genetics, Interdepartmental Program in Cell and Molecular Biology, Michigan State University, East Lansing, MI 48824
| | | |
Collapse
|
31
|
Simian virus 40 T-antigen-mediated gene regulation in enterocytes is controlled primarily by the Rb-E2F pathway. J Virol 2009; 83:9521-31. [PMID: 19570859 DOI: 10.1128/jvi.00583-09] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Simian virus 40 large T antigen (TAg) contributes to cell transformation, in part, by targeting two well-characterized tumor suppressors, pRb and p53. TAg expression affects the transcriptional circuits controlled by Rb and by p53. We have performed a microarray analysis to examine the global change in gene expression induced by wild-type TAg (TAg(wt)) and TAg mutants, in an effort to link changes in gene expression to specific transforming functions. For this analysis we have used enterocytes from the mouse small intestine expressing TAg. Expression of TAg(wt) in the mouse intestine results in hyperplasia and dysplasia. Our analysis indicates that practically all gene expression regulated by TAg in enterocytes is dependent upon its binding and inactivation of the Rb family proteins. To further dissect the role of the Rb family in the induction of intestinal hyperplasia, we have screened several lines of transgenic mice expressing a truncated TAg (TAg(N136)), which is able to interfere with the Rb pathway but lacks the functions associated with the carboxy terminus of the protein. This analysis confirmed the pivotal association between the Rb pathway and the induction of intestinal hyperplasia and revealed that upregulation of p53 target genes is not associated with the tumorigenic phenotype. Furthermore, we found that TAg(N136) was sufficient to induce intestinal hyperplasia, although the appearance of dysplasia was significantly delayed.
Collapse
|
32
|
Abend JR, Joseph AE, Das D, Campbell-Cecen DB, Imperiale MJ. A truncated T antigen expressed from an alternatively spliced BK virus early mRNA. J Gen Virol 2009; 90:1238-1245. [PMID: 19264611 DOI: 10.1099/vir.0.009159-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The early region of BK virus (BKV) is known to encode two well-characterized tumour (T) antigens, large T antigen (TAg) and small T antigen (tAg). In this study, we provide evidence of a third early BKV mRNA that codes for an additional early region product with an apparent molecular mass of 17-20 kDa. This truncated form of TAg (truncTAg) is expressed from an alternatively spliced mRNA that is derived from the excision of a second intron from the mRNA encoding TAg. The first 133 aa of truncTAg are identical to those of TAg but the additional splice results in translation from a different reading frame, adding three new amino acids before reaching a stop codon. TruncTAg is expressed in both BKV-transformed and lytically infected cells and it is found to be primarily localized to the nucleus. The function of BKV truncTAg is likely to be relevant to transformation, similar to the additional T antigens of simian virus 40, JC virus and mouse polyomavirus.
Collapse
Affiliation(s)
- Johanna R Abend
- Department of Microbiology and Immunology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109-5942, USA
| | - Amy E Joseph
- Department of Microbiology and Immunology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109-5942, USA
| | - Dweepanita Das
- Department of Microbiology and Immunology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109-5942, USA
| | - Deniz B Campbell-Cecen
- Department of Microbiology and Immunology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109-5942, USA
| | - Michael J Imperiale
- Department of Microbiology and Immunology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109-5942, USA
| |
Collapse
|
33
|
Sáenz Robles MT, Pipas JM. T antigen transgenic mouse models. Semin Cancer Biol 2009; 19:229-35. [PMID: 19505650 DOI: 10.1016/j.semcancer.2009.02.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 02/03/2009] [Accepted: 02/06/2009] [Indexed: 01/12/2023]
Abstract
The study of polyomavirus has benefited immensely from two scientific methodologies, cell culture and in vitro studies on one side and the use of transgenic mice as experimental models on the other. Both approaches allowed us to identify cellular products targeted by the viruses, the consequences of these interactions at the phenotypic and molecular level, and thus the potential roles of the targets within their normal cellular context. In particular, cell culture and in vitro reports suggest a model explaining partially how SV40 large T antigen contributes to oncogenic transformation. In most cases, T antigen induces cell cycle entry by inactivation of the Rb proteins (pRb, p130, and p107), thus activating E2F-dependent transcription and subsequent S-phase entry. Simultaneously, T antigen blocks p53 activity and therefore prevents the ensuing cell-cycle arrest and apoptosis. For the most part, studies of T antigen expression in transgenic mice support this model, but the use of T antigen mutants and their expression in different tissue and cell type settings have expanded our knowledge of the model system and raised important questions regarding tumorigenic mechanisms functioning in vivo.
Collapse
|
34
|
Cantalupo PG, Sáenz-Robles MT, Rathi AV, Beerman RW, Patterson WH, Whitehead RH, Pipas JM. Cell-type specific regulation of gene expression by simian virus 40 T antigens. Virology 2009; 386:183-91. [PMID: 19201438 DOI: 10.1016/j.virol.2008.12.038] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 12/02/2008] [Accepted: 12/26/2008] [Indexed: 10/21/2022]
Abstract
SV40 transforms cells through the action of two oncoproteins, large T antigen and small t antigen. Small t antigen targets phosphatase PP2A, while large T antigen stimulates cell proliferation and survival by action on multiple proteins, including the tumor suppressors Rb and p53. Large T antigen also binds components of the transcription initiation complex and several transcription factors. We examined global gene expression in SV40-transformed mouse embryo fibroblasts, and in enterocytes obtained from transgenic mice. SV40 transformation alters the expression of approximately 800 cellular genes in both systems. Much of this regulation is observed in both MEFs and enterocytes and is consistent with T antigen action on the Rb-E2F pathway. However, the regulation of many genes is cell-type specific, suggesting that unique signaling pathways are activated in different cell types upon transformation, and that the consequences of SV40 transformation depends on the type of cell targeted.
Collapse
Affiliation(s)
- Paul G Cantalupo
- Department of Biological Sciences, 559 Crawford Hall, University of Pittsburgh Pittsburgh, Pennsylvania 15260, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Pipas JM. SV40: Cell transformation and tumorigenesis. Virology 2008; 384:294-303. [PMID: 19070883 DOI: 10.1016/j.virol.2008.11.024] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Accepted: 11/18/2008] [Indexed: 10/21/2022]
Abstract
The story of SV40-induced tumorigenesis and cellular transformation is intimately entwined with the development of modern molecular biology. Because SV40 and other viruses have small genomes and are relatively easy to manipulate in the laboratory, they offered tractable systems for molecular analysis. Thus, many of the early efforts to understand how eukaryotes replicate their DNA, regulate expression of their genes, and translate mRNA were focused on viral systems. The discovery that SV40 induces tumors in certain laboratory animals and transforms many types of cultured cells offered the first opportunity to explore the molecular basis for cancer. The goal of this article is to highlight some of the experiments that have led to our current view of SV40-induced transformation and to provide some context as to how they contributed to basic research in molecular biology and to our understanding of cancer.
Collapse
Affiliation(s)
- James M Pipas
- Department of Biological Sciences, University of Pittsburgh, PA 15260, USA.
| |
Collapse
|
36
|
Blanchette P, Branton PE. Manipulation of the ubiquitin-proteasome pathway by small DNA tumor viruses. Virology 2008; 384:317-23. [PMID: 19013629 DOI: 10.1016/j.virol.2008.10.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Accepted: 10/03/2008] [Indexed: 10/21/2022]
Abstract
Viruses have evolved to use cellular pathways to their advantage, including the ubiquitin-proteasome pathway of protein degradation. In several cases, viruses produce proteins that highjack cellular E3 ligases to modify their substrate specificity in order to eliminate unwanted cellular proteins, in particular inhibitors of the cell cycle. They can also inhibit E3 ligase to prevent specific protein degradation or even use the system to control the level of expression of their own proteins. In this review we explore the specific ways that small DNA tumor viruses exploit the ubiquitin-proteasome pathway for their own benefit.
Collapse
|
37
|
Simian virus 40 large T antigen disrupts genome integrity and activates a DNA damage response via Bub1 binding. J Virol 2008; 83:117-27. [PMID: 18922873 DOI: 10.1128/jvi.01515-08] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Simian virus 40 (SV40) large T antigen (LT) is a multifunctional protein that is important for viral replication and oncogenic transformation. Previously, infection of monkey or human cells with SV40 was shown to lead to the induction of DNA damage response signaling, which is required for efficient viral replication. However, it was not clear if LT is sufficient to induce the damage response and, if so, what the genetic requirements and functional consequences might be. Here, we show that the expression of LT alone, without a replication origin, can induce key DNA damage response markers including the accumulation of gamma-H2AX and 53BP1 in nuclear foci. Other DNA damage-signaling components downstream of ATM/ATR kinases were induced, including chk1 and chk2. LT also bound the Claspin mediator protein, which normally facilitates the ATR activation of chk1 and monitors cellular replication origins. Stimulation of the damage response by LT depends mainly on binding to Bub1 rather than to the retinoblastoma protein. LT has long been known to stabilize p53 despite functionally inactivating it. We show that the activation of a DNA damage response by LT via Bub1 appears to play a major role in p53 stabilization by promoting the phosphorylation of p53 at Ser15. Accompanying the DNA damage response, LT induces tetraploidy, which is also dependent on Bub1 binding. Taken together, our data suggest that LT, via Bub1 binding, breaches genome integrity mechanisms, leading to DNA damage responses, p53 stabilization, and tetraploidy.
Collapse
|
38
|
Ataxia telangiectasia-mutated damage-signaling kinase- and proteasome-dependent destruction of Mre11-Rad50-Nbs1 subunits in Simian virus 40-infected primate cells. J Virol 2008; 82:5316-28. [PMID: 18353955 DOI: 10.1128/jvi.02677-07] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Although the mechanism of simian virus 40 (SV40) DNA replication has been extensively investigated with cell extracts, viral DNA replication in productively infected cells utilizes additional viral and host functions whose interplay remains poorly understood. We show here that in SV40-infected primate cells, the activated ataxia telangiectasia-mutated (ATM) damage-signaling kinase, gamma-H2AX, and Mre11-Rad50-Nbs1 (MRN) assemble with T antigen and other viral DNA replication proteins in large nuclear foci. During infection, steady-state levels of MRN subunits decline, although the corresponding mRNA levels remain unchanged. A proteasome inhibitor stabilizes the MRN complex, suggesting that MRN may undergo proteasome-dependent degradation. Analysis of mutant T antigens with disrupted binding to the ubiquitin ligase CUL7 revealed that MRN subunits are stable in cells infected with mutant virus or transfected with mutant viral DNA, implicating CUL7 association with T antigen in MRN proteolysis. The mutant genomes produce fewer virus progeny than the wild type, suggesting that T antigen-CUL7-directed proteolysis facilitates virus propagation. Use of a specific ATM kinase inhibitor showed that ATM kinase signaling is a prerequisite for proteasome-dependent degradation of MRN subunits as well as for the localization of T antigen and damage-signaling proteins to viral replication foci and optimal viral DNA replication. Taken together, the results indicate that SV40 infection manipulates host DNA damage-signaling to reprogram the cell for viral replication, perhaps through mechanisms related to host recovery from DNA damage.
Collapse
|
39
|
Disruption of the Fbxw8 gene results in pre- and postnatal growth retardation in mice. Mol Cell Biol 2007; 28:743-51. [PMID: 17998335 DOI: 10.1128/mcb.01665-07] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CUL7 binds to SKP1, RBX1, and FBXW8 to form a cullin-RING ligase, or an SKP1-cullin-F box protein complex. The targeted disruption of the Cul7 gene in mice results in significant reduction in embryo size and neonatal lethality. In humans, CUL7 was found to be mutated in the 3-M dwarfism syndrome characterized by severe pre- and postnatal growth retardation, indicating that CUL7 is closely associated with human and mouse growth. We generated mice lacking Fbxw8 by gene trapping. Similar to Cul7(-/-) animals, Fbxw8(-/-) embryos and placentas were smaller than wild-type and heterozygous littermates and placentas. Approximately 30% of the expected number of Fbxw8(-/-) mice survived birth, but these mice remained smaller than their wild-type and heterozygous littermates throughout postnatal development. FBXW8 expression was detected in most organs of wild-type mice examined, and the organs in Fbxw8(-/-) mice were smaller than those in wild-type mice. Fbxw8 expression levels were highest in skeletal muscle, cartilage, and lung tissue. Expression profiling revealed elevated levels of insulin-like growth factor binding protein 1 (IGFBP1) transcripts in Fbxw8(-/-) embryos. Furthermore, we observed increased levels of IGFBP2 in Cul7(-/-) as well as Fbxw8(-/-) fibroblasts. These results demonstrate that the FBXW8-CUL7 complex plays a significant role in growth control.
Collapse
|
40
|
Kim SS, Shago M, Kaustov L, Boutros PC, Clendening JW, Sheng Y, Trentin GA, Barsyte-Lovejoy D, Mao DY, Kay R, Jurisica I, Arrowsmith CH, Penn LZ. CUL7 Is a Novel Antiapoptotic Oncogene. Cancer Res 2007; 67:9616-22. [DOI: 10.1158/0008-5472.can-07-0644] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
41
|
Huh K, Zhou X, Hayakawa H, Cho JY, Libermann TA, Jin J, Harper JW, Munger K. Human papillomavirus type 16 E7 oncoprotein associates with the cullin 2 ubiquitin ligase complex, which contributes to degradation of the retinoblastoma tumor suppressor. J Virol 2007; 81:9737-47. [PMID: 17609271 PMCID: PMC2045412 DOI: 10.1128/jvi.00881-07] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human papillomavirus type 16 (HPV16) and other high-risk HPVs are etiologically linked to the development of cervical carcinomas and contribute to a number of other tumors of the anogenital tract, as well as oral cancers. The high-risk HPV E6 and E7 oncoproteins are consistently expressed in cervical cancer cells and are necessary for the induction and maintenance of the transformed phenotype. An important aspect of HPV16 E7's oncogenic activities is destabilization of the retinoblastoma tumor suppressor (pRB) through a ubiquitin/proteasome-dependent mechanism, although the exact molecular mechanism is unknown. Here, we report that HPV16 E7 is associated with an enzymatically active cullin 2 ubiquitin ligase complex and that the HPV16 E7/pRB complex contains cullin 2. Depletion of cullin 2 by RNA interference causes increased steady-state levels and stability of pRB in HPV16 E7-expressing cells, and ectopic expression of HPV16 E7 and the cullin 2 complex leads to pRB ubiquitination in vivo. Hence, we propose that the HPV16 E7-associated cullin 2 ubiquitin ligase complex contributes to aberrant degradation of the pRB tumor suppressor in HPV16 E7-expressing cells.
Collapse
Affiliation(s)
- KyungWon Huh
- The Channing Laboratory 861, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Jung P, Verdoodt B, Bailey A, Yates JR, Menssen A, Hermeking H. Induction of cullin 7 by DNA damage attenuates p53 function. Proc Natl Acad Sci U S A 2007; 104:11388-93. [PMID: 17586686 PMCID: PMC2040908 DOI: 10.1073/pnas.0609467104] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The p53 tumor suppressor gene encodes a transcription factor, which is translationally and posttranslationally activated after DNA damage. In a proteomic screen for p53 interactors, we found that the cullin protein Cul7 efficiently associates with p53. After DNA damage, the level of Cul7 protein increased in a caffeine-sensitive, but p53-independent, manner. Down-regulation of Cul7 by conditional microRNA expression augmented p53-mediated inhibition of cell cycle progression. Ectopic expression of Cul7 inhibited activation of p53 by DNA damaging agents and sensitized cells to adriamycin. Although Cul7 recruited the F-box protein FBX29 to p53, the combined expression of Cul7/FBX29 did not promote ubiquitination and degradation of p53 in vivo. Therefore, the inhibition of p53 activity by Cul7 is presumably mediated by alternative mechanisms. The interplay between p53 and Cul7 resembles the negative feedback loop described for p53 and Mdm2. Pharmacological modulation of Cul7 function may allow the sensitization of cancer cells expressing wild-type p53 to genotoxic agents used in cancer therapy.
Collapse
Affiliation(s)
- Peter Jung
- *Molecular Oncology, Max-Planck-Institute of Biochemistry, D-82152 Martinsried, Germany; and
| | - Berlinda Verdoodt
- *Molecular Oncology, Max-Planck-Institute of Biochemistry, D-82152 Martinsried, Germany; and
| | - Aaron Bailey
- Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - John R. Yates
- Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - Antje Menssen
- *Molecular Oncology, Max-Planck-Institute of Biochemistry, D-82152 Martinsried, Germany; and
| | - Heiko Hermeking
- *Molecular Oncology, Max-Planck-Institute of Biochemistry, D-82152 Martinsried, Germany; and
- To whom correspondence should be addressed at:
Max-Planck-Institute of Biochemistry, Molecular Oncology, Am Klopferspitz 18A, D-82152 Martinsried/Munich, Germany. E-mail:
| |
Collapse
|
43
|
Wright CM, Fewell SW, Sullivan ML, Pipas JM, Watkins SC, Brodsky JL. The Hsp40 molecular chaperone Ydj1p, along with the protein kinase C pathway, affects cell-wall integrity in the yeast Saccharomyces cerevisiae. Genetics 2007; 175:1649-64. [PMID: 17237519 PMCID: PMC1855118 DOI: 10.1534/genetics.106.066274] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Molecular chaperones, such as Hsp40, regulate cellular processes by aiding in the folding, localization, and activation of multi-protein machines. To identify new targets of chaperone action, we performed a multi-copy suppressor screen for genes that improved the slow-growth defect of yeast lacking the YDJ1 chromosomal locus and expressing a defective Hsp40 chimera. Among the genes identified were MID2, which regulates cell-wall integrity, and PKC1, which encodes protein kinase C and is linked to cell-wall biogenesis. We found that ydj1delta yeast exhibit phenotypes consistent with cell-wall defects and that these phenotypes were improved by Mid2p or Pkc1p overexpression or by overexpression of activated downstream components in the PKC pathway. Yeast containing a thermosensitive allele in the gene encoding Hsp90 also exhibited cell-wall defects, and Mid2p or Pkc1p overexpression improved the growth of these cells at elevated temperatures. To determine the physiological basis for suppression of the ydj1delta growth defect, wild-type and ydj1delta yeast were examined by electron microscopy and we found that Mid2p overexpression thickened the mutant's cell wall. Together, these data provide the first direct link between cytoplasmic chaperone function and cell-wall integrity and suggest that chaperones orchestrate the complex biogenesis of this structure.
Collapse
Affiliation(s)
- Christine M Wright
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | | | | | |
Collapse
|
44
|
Chen M, Gerlier D. Viral hijacking of cellular ubiquitination pathways as an anti-innate immunity strategy. Viral Immunol 2006; 19:349-62. [PMID: 16987055 DOI: 10.1089/vim.2006.19.349] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Viruses are obligate parasites of host cells. Virus-host coevolution has selected virus for growth despite antiviral defenses set up by hosting cells and organisms. Ubiquitin conjugation onto proteins, through a cascade of reactions mediated by E1 (ubiquitin-activating enzyme) and E2 and E3 (ubiquitin- conjugating ligases), is one of the major regulatory systems that, in particular, tightly controls the concentration of cellular proteins by sorting them for degradation. The combined diversity of E2 and E3 ligases ensures the selective/specific ubiquitination of a large number of protein substrates within the cell interior. Therefore it is not surprising that several viruses encode proteins with E3 ubiquitin ligase activities that target cellular proteins playing a key role in innate antiviral mechanisms.
Collapse
Affiliation(s)
- Mingzhou Chen
- CNRS, Université de Lyon, UMR5537, Laboratoire de Virologie et Pathogenèse Virale, IFR Laennec, Lyon, France
| | | |
Collapse
|
45
|
Bollag B, Kilpatrick LH, Tyagarajan SK, Tevethia MJ, Frisque RJ. JC virus T'135, T'136 and T'165 proteins interact with cellular p107 and p130 in vivo and influence viral transformation potential. J Neurovirol 2006; 12:428-42. [PMID: 17162659 DOI: 10.1080/13550280601009553] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The JC virus (JCV) regulatory proteins, large T antigen, small t antigen, T'135, T'136, and T'165, are encoded by five transcripts alternatively spliced from the viral early precursor mRNA. T antigen and the T' proteins share N-terminal amino acid sequences that include the L x CxE and J domains, motifs in SV40 T antigen known to mediate binding to the retinoblastoma (Rb) proteins and Hsc70, respectively. In this study, G418-resistant cell lines were created that express wild-type or mutant JCV T antigen and T' proteins individually or in combination. These cell lines were used to evaluate the ability of each viral protein to bind p107 and p130 in vivo, and to influence cellular growth characteristics. Differences were observed in the abilities of individual T' proteins to bind p107 and p130 and to alter their phosphorylation status. The T' proteins were also found to localize to the cell's nucleus and to be phosphorylated in a cell cycle-dependent manner. JCV T antigen and T' proteins expressed from a cytomegalovirus promoter failed to induce dense focus formation in Rat2 cells, but they did cooperate with a mutant Ras protein to overcome cellular senescence and immortalize rat embryo fibroblasts. These data indicate that, despite their sequence similarities, JCV early proteins exhibit unique activities that, in combination, effect the inactivation of cell cycle regulators, a requirement for polyomavirus-induced transformation.
Collapse
Affiliation(s)
- Brigitte Bollag
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | |
Collapse
|
46
|
Manzini S, Vargiolu A, Stehle IM, Bacci ML, Cerrito MG, Giovannoni R, Zannoni A, Bianco MR, Forni M, Donini P, Papa M, Lipps HJ, Lavitrano M. Genetically modified pigs produced with a nonviral episomal vector. Proc Natl Acad Sci U S A 2006; 103:17672-7. [PMID: 17101993 PMCID: PMC1635978 DOI: 10.1073/pnas.0604938103] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Genetic modification of cells and animals is an invaluable tool for biotechnology and biomedicine. Currently, integrating vectors are used for this purpose. These vectors, however, may lead to insertional mutagenesis and variable transgene expression and can undergo silencing. Scaffold/matrix attachment region-based vectors are nonviral expression systems that replicate autonomously in mammalian cells, thereby making possible safe and reliable genetic modification of higher eukaryotic cells and organisms. In this study, genetically modified pig fetuses were produced with the scaffold/matrix attachment region-based vector pEPI, delivered to embryos by the sperm-mediated gene transfer method. The pEPI vector was detected in 12 of 18 fetuses in the different tissues analyzed and was shown to be retained as an episome. The reporter gene encoded by the pEPI vector was expressed in 9 of 12 genetically modified fetuses. In positive animals, all tissues analyzed expressed the reporter gene; moreover in these tissues, the positive cells were on the average 79%. The high percentage of EGFP-expressing cells and the absence of mosaicism have important implications for biotechnological and biomedical applications. These results are an important step forward in animal transgenesis and can provide the basis for the future development of germ-line gene therapy.
Collapse
Affiliation(s)
- Stefano Manzini
- *Department of Surgical Sciences, University of Milano-Bicocca, 20052 Milan,Italy
| | - Alessia Vargiolu
- *Department of Surgical Sciences, University of Milano-Bicocca, 20052 Milan,Italy
| | - Isa M Stehle
- Institute of Cell Biology, Witten/Herdecke University, 58448 Witten, Germany
| | - Maria Laura Bacci
- Department of Veterinary Morphophysiology and Animal Production, University of Bologna, 40064 Bologna, Italy
| | - Maria Grazia Cerrito
- *Department of Surgical Sciences, University of Milano-Bicocca, 20052 Milan,Italy
| | - Roberto Giovannoni
- *Department of Surgical Sciences, University of Milano-Bicocca, 20052 Milan,Italy
| | - Augusta Zannoni
- Department of Veterinary Morphophysiology and Animal Production, University of Bologna, 40064 Bologna, Italy
| | - Maria Rosaria Bianco
- Centro Regionale di Competenza Applicazioni Tecnologico-Industriali di Biomolecole e Biosistemi-BioTekNet-Seconda Università di Napoli, 80138 Naples, Italy; and
| | - Monica Forni
- Department of Veterinary Morphophysiology and Animal Production, University of Bologna, 40064 Bologna, Italy
| | - Pierluigi Donini
- Department of Cellular and Developmental Biology, La Sapienza University, 00185 Rome, Italy
| | - Michele Papa
- Centro Regionale di Competenza Applicazioni Tecnologico-Industriali di Biomolecole e Biosistemi-BioTekNet-Seconda Università di Napoli, 80138 Naples, Italy; and
| | - Hans J Lipps
- Institute of Cell Biology, Witten/Herdecke University, 58448 Witten, Germany
| | - Marialuisa Lavitrano
- *Department of Surgical Sciences, University of Milano-Bicocca, 20052 Milan,Italy
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
47
|
Tsunematsu R, Nishiyama M, Kotoshiba S, Saiga T, Kamura T, Nakayama KI. Fbxw8 is essential for Cul1-Cul7 complex formation and for placental development. Mol Cell Biol 2006; 26:6157-69. [PMID: 16880526 PMCID: PMC1592786 DOI: 10.1128/mcb.00595-06] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cullin-based ubiquitin ligases (E3s) constitute one of the largest E3 families. Fbxw8 (also known as Fbw6 or Fbx29) is an F-box protein that is assembled with Cul7 in an SCF-like E3 complex. Here we show that Cul7 forms a heterodimeric complex with Cul1 in a manner dependent on Fbxw8. We generated mice deficient in Fbxw8 and found that Cul7 did not associate with Cul1 in cells of these mice. Two-thirds of Fbxw8-/- embryos die in utero, whereas the remaining one-third are born alive and grow to adulthood. Fbxw8-/- embryos show intrauterine growth retardation and abnormal development of the placenta, characterized by both a reduced thickness of the spongiotrophoblast layer and abnormal vessel structure in the labyrinth layer. Although the placental phenotype of Fbxw8-/- mice resembles that of Cul7-/- mice, other abnormalities of Cul7-/- mice are not apparent in Fbxw8-/- mice. These results suggest that the Cul7-based SCF-like E3 complex has both Fbxw8-dependent and Fbxw8-independent functions.
Collapse
Affiliation(s)
- Ryosuke Tsunematsu
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Kasper JS, Arai T, DeCaprio JA. A novel p53-binding domain in CUL7. Biochem Biophys Res Commun 2006; 348:132-8. [PMID: 16875676 DOI: 10.1016/j.bbrc.2006.07.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Accepted: 07/01/2006] [Indexed: 11/21/2022]
Abstract
CUL7 is a member of the cullin RING ligase family and forms an SCF-like complex with SKP1 and FBXW8. CUL7 is required for normal mouse embryonic development and cellular proliferation, and is highly homologous to PARC, a p53-associated, parkin-like cytoplasmic protein. We determined that CUL7, in a manner similar to PARC, can bind directly to p53 but does not affect p53 expression. We identified a discrete, co-linear domain in CUL7 that is conserved in PARC and HERC2, and is necessary and sufficient for p53-binding. The presence of p53 stabilized expression of this domain and we demonstrate that this p53-binding domain of CUL7 contributes to the cytoplasmic localization of CUL7. The results support the model that p53 plays a role in regulation of CUL7 activity.
Collapse
Affiliation(s)
- Jocelyn S Kasper
- Department of Medical Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA
| | | | | |
Collapse
|
49
|
Mehle A, Thomas ER, Rajendran KS, Gabuzda D. A zinc-binding region in Vif binds Cul5 and determines cullin selection. J Biol Chem 2006; 281:17259-17265. [PMID: 16636053 DOI: 10.1074/jbc.m602413200] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human immunodeficiency virus-1 (HIV-1) Vif overcomes the anti-viral activity of APOBEC3G by targeting it for ubiquitination via a Cullin 5-ElonginB-ElonginC (Cul5-EloBC) E3 ligase. Vif associates with Cul5-EloBC through a BC-box motif that binds EloC, but the mechanism by which Vif selectively recruits Cul5 is poorly understood. Here we report that a region of Vif (residues 100-142) upstream of the BC-box binds selectively to Cul5 in the absence of EloC. This region contains a zinc coordination site HX5CX17-18CX3-5H (HCCH), with His/Cys residues at positions 108, 114, 133, and 139 coordinating one zinc ion. The HCCH zinc coordination site, which is conserved among primate lentivirus Vif proteins, does not correspond to any known class of zinc-binding motif. Mutations of His/Cys residues in the HCCH motif impair zinc coordination, Cul5 binding, and APOBEC3G degradation. Mutations of conserved hydrophobic residues (Ile-120, Ala-123, and Leu-124) located between the two Cys residues in the HCCH motif disrupt binding of the zinc-coordinating region to Cul5 and inhibit APOBEC3G degradation. The Vif binding site maps to the first cullin repeat in the N terminus of Cul5. These data suggest that the zinc-binding region in Vif is a novel cullin interaction domain that mediates selective binding to Cul5. We propose that the HCCH zinc-binding motif facilitates Vif-Cul5 binding by playing a structural role in positioning hydrophobic residues for direct contact with Cul5.
Collapse
Affiliation(s)
- Andrew Mehle
- Department of Cancer Immunology and AIDS, Dana Farber Cancer Institute, Boston, Massachusetts 02115; Departments of Pathology, Harvard Medical School, Boston, Massachusetts 02115
| | - Elaine R Thomas
- Department of Cancer Immunology and AIDS, Dana Farber Cancer Institute, Boston, Massachusetts 02115; Departments of Pathology, Harvard Medical School, Boston, Massachusetts 02115
| | - Kottampatty S Rajendran
- Department of Cancer Immunology and AIDS, Dana Farber Cancer Institute, Boston, Massachusetts 02115; Departments of Pathology, Harvard Medical School, Boston, Massachusetts 02115
| | - Dana Gabuzda
- Department of Cancer Immunology and AIDS, Dana Farber Cancer Institute, Boston, Massachusetts 02115; Departments of Neurology, Harvard Medical School, Boston, Massachusetts 02115.
| |
Collapse
|
50
|
Borger DR, DeCaprio JA. Targeting of p300/CREB binding protein coactivators by simian virus 40 is mediated through p53. J Virol 2006; 80:4292-303. [PMID: 16611888 PMCID: PMC1472010 DOI: 10.1128/jvi.80.9.4292-4303.2006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The primary transforming functions of simian virus 40 large T antigen (SV40 LT) are conferred primarily through the binding and inactivation of p53 and the retinoblastoma family members. Normal p53 function requires an association with the CREB binding protein (CBP)/p300 coactivators, and a ternary complex containing SV40 LT, p53, and CBP/p300 has been identified previously. In this report, we have evaluated a secondary function of p53 bound to the SV40 LT complex in mediating the binding of human CBP/p300. We demonstrate that p53 associated with SV40 LT was posttranslationally modified in a manner consistent with the binding of CBP/p300. Furthermore, expression of SV40 LT induced the proportion of p53 phosphorylated on S15. An essential function for p53 in bridging the interaction between SV40 LT and CBP/p300 was identified through the reconstitution of the SV40 LT-CBP/p300 complex upon p53 reexpression in p53-null cells. In addition, the SV40 LT-CBP/p300 complex was disrupted through RNA interference-mediated depletion of endogenous p53. We also demonstrate that SV40 LT was acetylated in a p300- and p53-dependent manner, at least in part through the CH3 domain of p300. Therefore, the binding of p53 serves to modify SV40 LT by targeting CBP and p300 binding to direct the acetylation of SV40 LT.
Collapse
Affiliation(s)
- Darrell R Borger
- Dana-Farber Cancer Institute, Department of Medical Oncology, Harvard Medical School, Mayer Building 457, 44 Binney Street, Boston, Massachusetts 02115, USA
| | | |
Collapse
|