1
|
Burgos M, Pérez-Ramos A, Mulot B, Sanz-Prieto D, Esteban F, Bastir M. Advancements in veterinary medicine: the use of Flowgy for nasal airflow simulation and surgical predictions in big felids (a case study in lions). Front Vet Sci 2024; 10:1181036. [PMID: 38327815 PMCID: PMC10847520 DOI: 10.3389/fvets.2023.1181036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 12/26/2023] [Indexed: 02/09/2024] Open
Abstract
Flowgy is a semi-automated tool designed to simulate airflow across the nasal passage and detect airflow alterations in humans. In this study, we tested the use and accuracy of Flowgy in non-human vertebrates, using large felids as the study group. Understanding the dynamics of nasal airflow in large felids such as lions (Panthera leo) is crucial for their health and conservation. Therefore, we simulated airflow during inspiration through the nasal passage in three lions (Panthera leo), two of which were siblings (specimens ZPB_PL_002 and ZPB_PL_003), without breathing obstructions. However, one of the specimens (ZPB_PL_001) exhibited a slight obstruction in the nasal vestibule, which precluded the specimen from breathing efficiently. Computed tomography (CT) scans of each specimen were obtained to create detailed three-dimensional models of the nasal passage. These models were then imported into Flowgy to simulate the airflow dynamics. Virtual surgery was performed on ZPB_PL_001 to remove the obstruction and re-simulate the airflow. In parallel, we simulated the respiration of the two sibling specimens and performed an obstructive operation followed by an operation to remove the obstruction at the same level and under the same conditions as the original specimen (ZPB_PL_001). Thus, we obtained a pattern of precision for the operation by having two comparable replicas with the obstructed and operated specimens. The simulations revealed consistent airflow patterns in the healthy specimens, demonstrating the accuracy of Flowgy. The originally obstructed specimen and two artificially obstructed specimens showed a significant reduction in airflow through the right nostril, which was restored after virtual surgery. Postoperative simulation indicated an improvement of >100% in respiratory function. Additionally, the temperature and humidity profiles within the nostrils showed marked improvements after surgery. These findings underscore the potential of Flowgy in simulating nasal airflow and predicting the outcomes of surgical interventions in large felids. This could aid in the early detection of respiratory diseases and inform clinical decision-making, contributing to improved veterinary care and conservation efforts. However, further research is needed to validate these findings in other species and explore the potential of integrating Flowgy with other diagnostic and treatment tools in veterinary medicine.
Collapse
Affiliation(s)
- Manuel Burgos
- Dpto. de Ingeniería Térmica y de Fluidos, Universidad Politécnica de Cartagena, Murcia, Spain
| | - Alejandro Pérez-Ramos
- Dpto. de Ecología y Geología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Baptiste Mulot
- ZooParc de Beauval and Beauval Nature, Saint-Aignan, France
| | - Daniel Sanz-Prieto
- Department of Paleobiology, Museo Nacional de Ciencias Naturales, Madrid, Spain
| | - Francisco Esteban
- Servicio Andaluz de Salud, Hospital Universitario Virgen del Rocío, Servicio de Otorrinolaringología, Sevilla, Spain
| | - Markus Bastir
- Department of Paleobiology, Museo Nacional de Ciencias Naturales, Madrid, Spain
| |
Collapse
|
2
|
Gilbertson MLJ, Fountain-Jones NM, Malmberg JL, Gagne RB, Lee JS, Kraberger S, Kechejian S, Petch R, Chiu ES, Onorato D, Cunningham MW, Crooks KR, Funk WC, Carver S, VandeWoude S, VanderWaal K, Craft ME. Apathogenic proxies for transmission dynamics of a fatal virus. Front Vet Sci 2022; 9:940007. [PMID: 36157183 PMCID: PMC9493079 DOI: 10.3389/fvets.2022.940007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Identifying drivers of transmission-especially of emerging pathogens-is a formidable challenge for proactive disease management efforts. While close social interactions can be associated with microbial sharing between individuals, and thereby imply dynamics important for transmission, such associations can be obscured by the influences of factors such as shared diets or environments. Directly-transmitted viral agents, specifically those that are rapidly evolving such as many RNA viruses, can allow for high-resolution inference of transmission, and therefore hold promise for elucidating not only which individuals transmit to each other, but also drivers of those transmission events. Here, we tested a novel approach in the Florida panther, which is affected by several directly-transmitted feline retroviruses. We first inferred the transmission network for an apathogenic, directly-transmitted retrovirus, feline immunodeficiency virus (FIV), and then used exponential random graph models to determine drivers structuring this network. We then evaluated the utility of these drivers in predicting transmission of the analogously transmitted, pathogenic agent, feline leukemia virus (FeLV), and compared FIV-based predictions of outbreak dynamics against empirical FeLV outbreak data. FIV transmission was primarily driven by panther age class and distances between panther home range centroids. FIV-based modeling predicted FeLV dynamics similarly to common modeling approaches, but with evidence that FIV-based predictions captured the spatial structuring of the observed FeLV outbreak. While FIV-based predictions of FeLV transmission performed only marginally better than standard approaches, our results highlight the value of proactively identifying drivers of transmission-even based on analogously-transmitted, apathogenic agents-in order to predict transmission of emerging infectious agents. The identification of underlying drivers of transmission, such as through our workflow here, therefore holds promise for improving predictions of pathogen transmission in novel host populations, and could provide new strategies for proactive pathogen management in human and animal systems.
Collapse
Affiliation(s)
- Marie L. J. Gilbertson
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, United States
| | | | - Jennifer L. Malmberg
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
- Department of Veterinary Sciences, University of Wyoming, Laramie, WY, United States
| | - Roderick B. Gagne
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
- Wildlife Futures Program, Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Kennett Square, PA, United States
| | - Justin S. Lee
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, United States
| | - Sarah Kechejian
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Raegan Petch
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Elliott S. Chiu
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Dave Onorato
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, Naples, FL, United States
| | - Mark W. Cunningham
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, Gainesville, FL, United States
| | - Kevin R. Crooks
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO, United States
| | - W. Chris Funk
- Department of Biology, Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, United States
| | - Scott Carver
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Sue VandeWoude
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Kimberly VanderWaal
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, United States
| | - Meggan E. Craft
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, United States
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN, United States
| |
Collapse
|
3
|
Liu E, Ma L, Huang S, You D, Guo L, Li X, Xu H, Liu D, Chai H, Wang Y. The first feline immunodeficiency virus from Siberian tigers (Panthera tigris altaica) in northeastern China. Arch Virol 2022; 167:545-551. [DOI: 10.1007/s00705-022-05370-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 12/13/2021] [Indexed: 12/21/2022]
|
4
|
Okano M, Miyamae J, Suzuki S, Nishiya K, Katakura F, Kulski JK, Moritomo T, Shiina T. Identification of Novel Alleles and Structural Haplotypes of Major Histocompatibility Complex Class I and DRB Genes in Domestic Cat ( Felis catus) by a Newly Developed NGS-Based Genotyping Method. Front Genet 2020; 11:750. [PMID: 32760428 PMCID: PMC7375346 DOI: 10.3389/fgene.2020.00750] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/23/2020] [Indexed: 12/24/2022] Open
Abstract
The major histocompatibility complex (MHC) is a highly polymorphic and duplicated genomic region that encodes transplantation and immune regulatory molecules. Although it is well-known that particular MHC allelic polymorphisms and haplotypes are genetically relate to immune-mediated diseases detailed information of the cat MHC (Feline Leukocyte Antigen; FLA) genetic and haplotypic structure and diversity is limited in comparison to humans and many other species. In this study, to better understand the degree and types of allele and allelic haplotype diversity of FLA-class I (FLA-I) and FLA-DRB loci in domestic cats, we identified six expressible FLA-I loci in peripheral white blood cells by in silico estimation of the coding exons and NGS-based amplicon sequencing using five unrelated cats. We then used a newly developed NGS-based genotyping method to genotype and annotate 32 FLA-I and 16 FLA-DRB sequences in two families of 20 domestic cats. A total of 14 FLA-I and seven FLA-DRB were identified as novel polymorphic sequences. Phylogenetic analyses grouped the sequences into six FLA-I (FLA-E/H/K, FLA-A, FLA-J, FLA-L, FLA-O and a tentatively named FLA-E/H/K_Rec) and four FLA-DRB (FLA-DRB1, FLA-DRB3, FLA-DRB4, and FLA-DRB5) lineages. Pedigree analysis of two cat families revealed eight distinct FLA structural haplotypes (Class I - DRB) with five to eight FLA-I and two to three FLA-DRB transcribed loci per haplotype. It is evident that the eight FLA haplotypes were generated by gene duplications and deletions, and rearrangements by genetic recombination with the accumulation and/or inheritance of novel polymorphisms. These findings are useful for further genetic diversity analysis and disease association studies among cat breeds and in veterinary medicine.
Collapse
Affiliation(s)
- Masaharu Okano
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Jiro Miyamae
- Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Japan
| | - Shingo Suzuki
- Division of Basic Medical Science and Molecular Medicine, Department of Molecular Life Science, Tokai University, Isehara, Japan
| | - Kohei Nishiya
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Fumihiko Katakura
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Jerzy K Kulski
- Division of Basic Medical Science and Molecular Medicine, Department of Molecular Life Science, Tokai University, Isehara, Japan.,Faculty of Health and Medical Sciences, UWA Medical School, The University of Western Australia, Perth, WA, Australia
| | - Tadaaki Moritomo
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Takashi Shiina
- Division of Basic Medical Science and Molecular Medicine, Department of Molecular Life Science, Tokai University, Isehara, Japan
| |
Collapse
|
5
|
Fountain-Jones NM, Packer C, Jacquot M, Blanchet FG, Terio K, Craft ME. Endemic infection can shape exposure to novel pathogens: Pathogen co-occurrence networks in the Serengeti lions. Ecol Lett 2019; 22:904-913. [PMID: 30861289 PMCID: PMC7163671 DOI: 10.1111/ele.13250] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/12/2018] [Accepted: 02/11/2019] [Indexed: 11/30/2022]
Abstract
Pathogens are embedded in a complex network of microparasites that can collectively or individually alter disease dynamics and outcomes. Endemic pathogens that infect an individual in the first years of life, for example, can either facilitate or compete with subsequent pathogens thereby exacerbating or ameliorating morbidity and mortality. Pathogen associations are ubiquitous but poorly understood, particularly in wild populations. We report here on 10 years of serological and molecular data in African lions, leveraging comprehensive demographic and behavioural data to test if endemic pathogens shape subsequent infection by epidemic pathogens. We combine network and community ecology approaches to assess broad network structure and characterise associations between pathogens across spatial and temporal scales. We found significant non‐random structure in the lion‐pathogen co‐occurrence network and identified both positive and negative associations between endemic and epidemic pathogens. Our results provide novel insights on the complex associations underlying pathogen co‐occurrence networks.
Collapse
Affiliation(s)
- Nicholas M Fountain-Jones
- Department of Veterinary Population Medicine, University of Minnesota, 1365 Gortner Avenue, St Paul, MN, 55108, USA
| | - Craig Packer
- Department of Ecology Evolution and Behavior, University of Minnesota, St Paul, MN, 55408, USA
| | - Maude Jacquot
- INRA, UMR346 EPIA, Epidémiologie des maladies Animales et zoonotiques, 63122, Saint-Genès-Champanelle, France
| | - F Guillaume Blanchet
- Département de biologie, Université de Sherbrooke, 2500 Boulevard Université, Sherbrooke, QC, Canada, J1K 2R1
| | - Karen Terio
- Zoological Pathology Program, University of Illinois, Urbana-Champaign, IL, USA
| | - Meggan E Craft
- Department of Veterinary Population Medicine, University of Minnesota, 1365 Gortner Avenue, St Paul, MN, 55108, USA
| |
Collapse
|
6
|
Halo JV, Pendleton AL, Jarosz AS, Gifford RJ, Day ML, Kidd JM. Origin and recent expansion of an endogenous gammaretroviral lineage in domestic and wild canids. Retrovirology 2019; 16:6. [PMID: 30845962 PMCID: PMC6407205 DOI: 10.1186/s12977-019-0468-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 02/28/2019] [Indexed: 01/20/2023] Open
Abstract
Background Vertebrate genomes contain a record of retroviruses that invaded the germlines of ancestral hosts and are passed to offspring as endogenous retroviruses (ERVs). ERVs can impact host function since they contain the necessary sequences for expression within the host. Dogs are an important system for the study of disease and evolution, yet no substantiated reports of infectious retroviruses in dogs exist. Here, we utilized Illumina whole genome sequence data to assess the origin and evolution of a recently active gammaretroviral lineage in domestic and wild canids. Results We identified numerous recently integrated loci of a canid-specific ERV-Fc sublineage within Canis, including 58 insertions that were absent from the reference assembly. Insertions were found throughout the dog genome including within and near gene models. By comparison of orthologous occupied sites, we characterized element prevalence across 332 genomes including all nine extant canid species, revealing evolutionary patterns of ERV-Fc segregation among species as well as subpopulations. Conclusions Sequence analysis revealed common disruptive mutations, suggesting a predominant form of ERV-Fc spread by trans complementation of defective proviruses. ERV-Fc activity included multiple circulating variants that infected canid ancestors from the last 20 million to within 1.6 million years, with recent bursts of germline invasion in the sublineage leading to wolves and dogs. Electronic supplementary material The online version of this article (10.1186/s12977-019-0468-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Julia V Halo
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, 43403, USA.
| | - Amanda L Pendleton
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Abigail S Jarosz
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, 43403, USA
| | - Robert J Gifford
- Centre for Virus Research, University of Glasgow, Glasgow, G12 8QQ, Scotland, UK
| | - Malika L Day
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, 43403, USA
| | - Jeffrey M Kidd
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.,Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, 100 Washtenaw Ave., Ann Arbor, MI, 48109, USA
| |
Collapse
|
7
|
Kerr TJ, Matthee S, Govender D, Tromp G, Engelbrecht S, Matthee CA. Viruses as indicators of contemporary host dispersal and phylogeography: an example of feline immunodeficiency virus (FIV P le ) in free-ranging African lion (Panthera leo). J Evol Biol 2018; 31:1529-1543. [PMID: 29964350 DOI: 10.1111/jeb.13348] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 06/13/2018] [Accepted: 06/18/2018] [Indexed: 11/30/2022]
Abstract
Measuring contemporary dispersal in highly mobile terrestrial species is challenging, especially when species are characterized by low levels of population differentiation. Directly transmitted viruses can be used as a surrogate for traditional methods of tracking host movement. Feline immunodeficiency virus (FIV) is a species-specific lentivirus, which has an exceptionally high mutation rate and circulates naturally in wild felids. Using samples derived from 35 lion (Panthera leo) prides, we tested the prediction that FIV in lions (FIVP le ) can be used to track the dispersal of individuals between prides. As FIVP le subtypes are geographically structured throughout Africa, we predicted that this marker could be used to detect phylogeographic structure of lions at smaller spatial scales. Phylogenetic analyses of FIVP le pol-RT sequences showed that core pride members (females and subadults) shared evolutionary close viral lineages which differed from neighbouring core prides, whereas sequences from sexually mature males associated with the same pride were always the most divergent. In six instances, natal pride associations of divergent male lions could be inferred, on the assumption that FIVP le infections are acquired during early life stages. Congruence between the genetic pattern of FIV and pride structure suggests that vertical transmission plays an important role in lion FIV dynamics. At a fine spatial scale, significant viral geographic structuring was also detected between lions occurring north of the Olifants River within the Kruger National Park (KNP) and those occupying the southern and central regions. This pattern was further supported by phylogenetic analyses and the confinement of FIVP le subtype E to the northern region of KNP. The study provides new insights into the use of retroviral sequences to predict host dispersal and fine-scale contemporary geographic structure in a social felid species.
Collapse
Affiliation(s)
- Tanya J Kerr
- Department of Conservation Ecology and Entomology, Faculty of AgriScience, Stellenbosch University, Stellenbosch, South Africa.,Division of Medical Virology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,Evolutionary Genomics Group, Department of Botany and Zoology, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Sonja Matthee
- Department of Conservation Ecology and Entomology, Faculty of AgriScience, Stellenbosch University, Stellenbosch, South Africa
| | - Danny Govender
- Scientific Services, SANParks, Skukuza, South Africa.,Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Gerard Tromp
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, SAMRC-SHIP South African Tuberculosis Bioinformatics Initiative (SATBBI), Center for Bioinformatics and Computational Biology, Stellenbosch University, Cape Town, South Africa.,Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, NRF/DST Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa.,Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Susan Engelbrecht
- Division of Medical Virology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,National Health Laboratory Service (NHLS), Tygerberg Coastal, Cape Town, South Africa
| | - Conrad A Matthee
- Evolutionary Genomics Group, Department of Botany and Zoology, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
8
|
Fountain-Jones NM, Packer C, Troyer JL, VanderWaal K, Robinson S, Jacquot M, Craft ME. Linking social and spatial networks to viral community phylogenetics reveals subtype-specific transmission dynamics in African lions. J Anim Ecol 2017; 86:1469-1482. [PMID: 28884827 DOI: 10.1111/1365-2656.12751] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 08/14/2017] [Indexed: 11/29/2022]
Abstract
Heterogeneity within pathogen species can have important consequences for how pathogens transmit across landscapes; however, discerning different transmission routes is challenging. Here, we apply both phylodynamic and phylogenetic community ecology techniques to examine the consequences of pathogen heterogeneity on transmission by assessing subtype-specific transmission pathways in a social carnivore. We use comprehensive social and spatial network data to examine transmission pathways for three subtypes of feline immunodeficiency virus (FIVPle ) in African lions (Panthera leo) at multiple scales in the Serengeti National Park, Tanzania. We used FIVPle molecular data to examine the role of social organization and lion density in shaping transmission pathways and tested to what extent vertical (i.e., father- and/or mother-offspring relationships) or horizontal (between unrelated individuals) transmission underpinned these patterns for each subtype. Using the same data, we constructed subtype-specific FIVPle co-occurrence networks and assessed what combination of social networks, spatial networks or co-infection best structured the FIVPle network. While social organization (i.e., pride) was an important component of FIVPle transmission pathways at all scales, we find that FIVPle subtypes exhibited different transmission pathways at within- and between-pride scales. A combination of social and spatial networks, coupled with consideration of subtype co-infection, was likely to be important for FIVPle transmission for the two major subtypes, but the relative contribution of each factor was strongly subtype-specific. Our study provides evidence that pathogen heterogeneity is important in understanding pathogen transmission, which could have consequences for how endemic pathogens are managed. Furthermore, we demonstrate that community phylogenetic ecology coupled with phylodynamic techniques can reveal insights into the differential evolutionary pressures acting on virus subtypes, which can manifest into landscape-level effects.
Collapse
Affiliation(s)
| | - Craig Packer
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St Paul, MN, USA
| | | | - Kimberly VanderWaal
- Department of Veterinary Population Medicine, University of Minnesota, St Paul, MN, USA
| | - Stacie Robinson
- National Oceanic and Atmospheric Administration, Honolulu, HI, USA
| | - Maude Jacquot
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Meggan E Craft
- Department of Veterinary Population Medicine, University of Minnesota, St Paul, MN, USA
| |
Collapse
|
9
|
Kerr TJ, Matthee C, Matthee S, Govender D, Engelbrecht S. Evaluating the Diversity of the Feline Immunodeficiency Virus (FIV): A Leopard Perspective. AFRICAN JOURNAL OF WILDLIFE RESEARCH 2017. [DOI: 10.3957/056.047.0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Tanya J. Kerr
- Department of Conservation Ecology and Entomology, Faculty of AgriScience, Stellenbosch University, Private Bag X1, Stellenbosch, 7602 South Africa
- Division of Medical Virology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Campus, P.O. Box 241, Cape Town, 8000 South Africa
| | - Conrad Matthee
- Evolutionary Genomics Group, Department of Botany and Zoology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch, 7602 South Africa
| | - Sonja Matthee
- Department of Conservation Ecology and Entomology, Faculty of AgriScience, Stellenbosch University, Private Bag X1, Stellenbosch, 7602 South Africa
| | - Danny Govender
- Scientific Services, SANParks, Private Bag X402, Skukuza, 1350 South Africa
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110 South Africa
| | - Susan Engelbrecht
- Division of Medical Virology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Campus, P.O. Box 241, Cape Town, 8000 South Africa
- National Health Laboratory Service (NHLS), Tygerberg Coastal, Cape Town, 8000 South Africa
| |
Collapse
|
10
|
Wang W, Wang J, Qu M, Li X, Zhang J, Zhang H, Wu J, Yu B, Wu H, Kong W, Yu X. Viral Restriction Activity of Feline BST2 Is Independent of Its N-Glycosylation and Induction of NF-κB Activation. PLoS One 2015; 10:e0138190. [PMID: 26379128 PMCID: PMC4574558 DOI: 10.1371/journal.pone.0138190] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 08/26/2015] [Indexed: 11/18/2022] Open
Abstract
BST2 (CD317, tetherin, HM1.24) is an interferon-inducible transmembrane protein which can directly inhibit the release of enveloped virus particles from infected cells, and its anti-viral activity is reported to be related to the specific topological arrangement of its four structural domains. The N-terminal cytoplasmic tail of feline BST2 (fBST2) is characterized by a shorter N-terminal region compared to those of other known homologs. In this study, we investigated the functional impact of modifying the cytoplasmic tail region of fBST2 and its molecular mechanism. The fBST2 protein with the addition of a peptide at the N-terminus retained anti-release activity against human immunodeficiency virus type-1 and pseudovirus based on feline immunodeficiency virus at a weaker level compared with the wild-type fBST2. However, the fBST2 protein with addition of a peptide internally in the ectodomain proximal to the GPI anchor still retained its anti-viral activity well. Notably, the N-glycosylation state and the cell surface level of the N-terminally modified variants were unlike those of the wild-type protein, while no difference was observed in their intracellular localizations. However, in contrast to human BST2, the wild-type fBST2 did not show the ability to activate NF-κB. Consistent with previous reports, our findings showed that adding a peptide in the cytoplasmic tail region of fBST2 may influence its anti-viral activity. The shorter N-terminal cytoplasmic region of fBST2 compared with human BST2 did not apparently affect its anti-viral activity, which is independent of its N-glycosylation and ability to activate NF-κB.
Collapse
Affiliation(s)
- Weiran Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Jiawen Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, Jilin Province, People’s Republic of China
- Center for New Medicine Research, Changchun University of Chinese Medicine, Changchun, Jilin Province, People’s Republic of China
| | - Meng Qu
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Xiaojun Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Jingyao Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Haihong Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Jiaxin Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Bin Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Hui Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, Jilin Province, People’s Republic of China
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun, Jilin Province, People’s Republic of China
- * E-mail: (WK); (XHY)
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, Jilin Province, People’s Republic of China
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun, Jilin Province, People’s Republic of China
- * E-mail: (WK); (XHY)
| |
Collapse
|
11
|
Miller S, Bissett C, Burger A, Courtenay B, Dickerson T, Druce D, Ferreira S, Funston P, Hofmeyr D, Kilian P, Matthews W, Naylor S, Parker D, Slotow R, Toft M, Zimmermann D. Management of Reintroduced Lions in Small, Fenced Reserves in South Africa: An Assessment and Guidelines. ACTA ACUST UNITED AC 2013. [DOI: 10.3957/056.043.0202] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
12
|
Walking with lions: why there is no role for captive-origin lions Panthera leo in species restoration. ORYX 2012. [DOI: 10.1017/s0030605312000695] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
AbstractDespite formidable challenges and few successes in reintroducing large cats from captivity to the wild, the release of captives has widespread support from the general public and local governments, and continues to occur ad hoc. Commercial so-called lion Panthera leo encounter operations in Africa exemplify the issue, in which the captive breeding of the lion is linked to claims of reintroduction and broader conservation outcomes. In this article we assess the capacity of such programmes to contribute to in situ lion conservation. By highlighting the availability of wild founders, the unsuitability of captive lions for release and the evidence-based success of wild–wild lion translocations, we show that captive-origin lions have no role in species restoration. We also argue that approaches to reintroduction exemplified by the lion encounter industry do not address the reasons for the decline of lions in situ, nor do they represent a model that can be widely applied to restoration of threatened felids elsewhere.
Collapse
|
13
|
Feline tetherin is characterized by a short N-terminal region and is counteracted by the feline immunodeficiency virus envelope glycoprotein. J Virol 2012; 86:6688-700. [PMID: 22514338 DOI: 10.1128/jvi.07037-11] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Tetherin (BST2) is the host cell factor that blocks the particle release of some enveloped viruses. Two putative feline tetherin proteins differing at the level of the N-terminal coding region have recently been described and tested for their antiviral activity. By cloning and comparing the two reported feline tetherins (called here cBST2(504) and cBST2*) and generating specific derivative mutants, this study provides evidence that feline tetherin has a shorter intracytoplasmic domain than those of other known homologues. The minimal tetherin promoter was identified and assayed for its ability to drive tetherin expression in an alpha interferon-inducible manner. We also demonstrated that cBST2(504) is able to dimerize, is localized at the cellular membrane, and impairs human immunodeficiency virus type 1 (HIV-1) particle release, regardless of the presence of the Vpu antagonist accessory protein. While cBST2(504) failed to restrict wild-type feline immunodeficiency virus (FIV) egress, FIV mutants, bearing a frameshift at the level of the envelope-encoding region, were potently blocked. The transient expression of the FIV envelope glycoprotein was able to rescue mutant particle release from feline tetherin-positive cells but did not antagonize human BST2 activity. Moreover, cBST2(504) was capable of specifically immunoprecipitating the FIV envelope glycoprotein. Finally, cBST2(504) also exerted its function on HIV-2 ROD10 and on the simian immunodeficiency virus SIVmac239. Taken together, these results show that feline tetherin does indeed have a short N-terminal region and that the FIV envelope glycoprotein is the predominant factor counteracting tetherin restriction.
Collapse
|
14
|
Emerging viruses in the Felidae: shifting paradigms. Viruses 2012; 4:236-57. [PMID: 22470834 PMCID: PMC3315214 DOI: 10.3390/v4020236] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 12/21/2011] [Accepted: 01/11/2012] [Indexed: 12/20/2022] Open
Abstract
The domestic cat is afflicted with multiple viruses that serve as powerful models for human disease including cancers, SARS and HIV/AIDS. Cat viruses that cause these diseases have been studied for decades revealing detailed insight concerning transmission, virulence, origins and pathogenesis. Here we review recent genetic advances that have questioned traditional wisdom regarding the origins of virulent Feline infectious peritonitis (FIP) diseases, the pathogenic potential of Feline Immunodeficiency Virus (FIV) in wild non-domestic Felidae species, and the restriction of Feline Leukemia Virus (FeLV) mediated immune impairment to domestic cats rather than other Felidae species. The most recent interpretations indicate important new evolutionary conclusions implicating these deadly infectious agents in domestic and non-domestic felids.
Collapse
|
15
|
Troyer JL, Roelke ME, Jespersen JM, Baggett N, Buckley-Beason V, MacNulty D, Craft M, Packer C, Pecon-Slattery J, O'Brien SJ. FIV diversity: FIV Ple subtype composition may influence disease outcome in African lions. Vet Immunol Immunopathol 2011; 143:338-46. [PMID: 21723622 PMCID: PMC3168974 DOI: 10.1016/j.vetimm.2011.06.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Feline immunodeficiency virus (FIV) infects domestic cats and at least 20 additional species of non-domestic felids throughout the world. Strains specific to domestic cat (FIV(Fca)) produce AIDS-like disease progression, sequelae and pathology providing an informative model for HIV infection in humans. Less is known about the immunological and pathological influence of FIV in other felid species although multiple distinct strains of FIV circulate in natural populations. As in HIV-1 and HIV-2, multiple diverse cross-species infections may have occurred. In the Serengeti National Park, Tanzania, three divergent subtypes of lion FIV (FIV(Ple)) are endemic, whereby 100% of adult lions are infected with one or more of these strains. Herein, the relative distribution of these subtypes in the population are surveyed and, combined with observed differences in lion mortality due to secondary infections based on FIV(Ple) subtypes, the data suggest that FIV(Ple) subtypes may have different patterns of pathogenicity and transmissibility among wild lion populations.
Collapse
Affiliation(s)
- Jennifer L Troyer
- Laboratory of Genomic Diversity, SAIC-Frederick, National Cancer Institute, Frederick, MD, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Adams HR, Vuuren MV, Bosman AM, Kania S, Kennedy MA. Detection and Genetic Analysis of Feline Immunodeficiency Virus (FIVple) in Southern African Lions (Panthera leo). ACTA ACUST UNITED AC 2011. [DOI: 10.3957/056.041.0204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
17
|
Dietrich I, Hosie MJ, Willett BJ. The role of BST2/tetherin in feline retrovirus infection. Vet Immunol Immunopathol 2011; 143:255-64. [PMID: 21715020 DOI: 10.1016/j.vetimm.2011.06.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Pathogenic retroviral infections of mammals have induced the evolution of cellular anti-viral restriction factors and have shaped their biological activities. This intrinsic immunity plays an important role in controlling viral replication and imposes a barrier to viral cross-species transmission. Well-studied examples of such host restriction factors are TRIM5α, an E3 ubiquitin ligase that binds incoming retroviral capsids in the cytoplasm via its C-terminal PRY/SPRY (B30.2) domain and targets them for proteasomal degradation, and APOBEC3 proteins, cytidine deaminases that induce hypermutation and impair viral reverse transcription. Tetherin (BST-2, CD317) is an interferon-inducible transmembrane protein that potently inhibits the release of nascent retrovirus particles in single-cycle replication assays. However, whether the primary biological activity of tetherin in vivo is that of a restriction factor remains uncertain as recent studies on human tetherin suggest that it is unable to prevent spreading infection of human immunodeficiency virus type 1 (HIV-1). The feline tetherin homologue resembles human tetherin in amino acid sequence, protein topology and anti-viral activity. Transiently expressed feline tetherin displays potent inhibition of feline immunodeficiency virus (FIV) and HIV-1 particle release. However, stable ectopic expression of feline tetherin in a range of feline cell lines has no inhibitory effect on the growth of either primary or cell culture-adapted strains of FIV. By comparing and contrasting the activities of the felid and primate tetherins against their respective immunodeficiency-causing lentiviruses we may gain insight into the contribution of tetherins to the control of lentiviral replication and the evolution of lentiviral virulence.
Collapse
Affiliation(s)
- Isabelle Dietrich
- Retrovirus Research Laboratory, MRC - University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow G611QH, United Kingdom.
| | | | | |
Collapse
|
18
|
Magden E, Quackenbush SL, VandeWoude S. FIV associated neoplasms--a mini-review. Vet Immunol Immunopathol 2011; 143:227-34. [PMID: 21722968 DOI: 10.1016/j.vetimm.2011.06.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Retroviral induced neoplasms have been key to understanding oncogenesis and are important etiologic agents associated with cancer formation. Cats infected with feline immunodeficiency virus (FIV), the feline analogue to human immunodeficiency virus (HIV), are reported to be at increased incidence of neoplasia. This review highlights reported risk factors and tumor cell phenotypes associated with neoplasias arising in FIV-infected animals, differences in oncogenic disease in natural versus experimental FIV infections, and similarities between FIV- and HIV-related malignancies. The most common type of FIV-associated neoplasm reported in the literature is lymphoma, specifically of B-cell origin, with experimentally infected cats developing neoplastic lesions at an earlier age than their naturally infected cohorts. The mechanism of FIV-induced lymphoma has not been completely ascertained, though the majority of published studies addressing this issue suggest oncogenesis arises via indirect mechanisms. HIV-infected individuals have increased risk of neoplasia, specifically B cell lymphoma, in comparison with uninfected individuals. Additional similarities between FIV- and HIV-associated neoplasms include the presence of extranodal lymphoma, a synergism with other oncogenic viruses, and an apparent indirect mechanism of induced oncogenesis. This literature supports study of FIV-associated neoplasms to further characterize this lentiviral-neoplasia association for the benefit of both human and animal disease, and to advance our general knowledge of mechanisms for viral-induced oncogenesis.
Collapse
Affiliation(s)
- Elizabeth Magden
- Colorado State University, Department of Microbiology, Immunology, and Pathology, 1619 Campus Delivery, Fort Collins, CO 80523, USA
| | | | | |
Collapse
|
19
|
Sensitivity and specificity of a nested polymerase chain reaction for detection of lentivirus infection in lions (Panthera leo). J Zoo Wildl Med 2011; 41:608-15. [PMID: 21370640 DOI: 10.1638/2009-0137.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Feline immunodeficiency virus (FIV) is a lentivirus in the Retroviridae family that causes lifelong infection in domestic cats. The lentivirus of African lions (Panthera leo), referred to as FIVple, is endemic in certain lion populations in eastern and southern Africa. Lentivirus infection leads to immunologic dysfunction and immunosuppressive disease in domestic cats; however, little is known about the pathogenic effects of infection in lions, nor about the epidemiologic impact on free-ranging and captive populations. Whole blood and serum samples were collected opportunistically from free-ranging lions in Kruger National Park, Republic of South Africa (RSA). Whole blood and serum samples were also collected from captive wild lions in the RSA. A nested polymerase chain reaction (PCR) assay for detection of FIV was performed on all whole blood samples. In addition, serum samples were tested for cross-reactive antibodies to domestic feline lentivirus antigens and puma lentivirus synthetic envelope peptide antigen. The PCR assay successfully amplified the lion lentivirus from African lions. The relative sensitivity and relative specificity were 79% and 100%, respectively, and the positive and negative predictive values were 100% and 67%, respectively. This research represents the first study to compare genetic material with antibody-based methods of lentivirus detection on lions in RSA. Using PCR as an additional diagnostic test for FIV in lions will increase screening sensitivity and will allow viral characterization among circulating isolates and monitoring of changes in the viral epidemiology within geographic regions and populations over time.
Collapse
|
20
|
Harrison TM, McKnight CA, Sikarskie JG, Kitchell BE, Garner MM, Raymond JT, Fitzgerald SD, Valli VE, Agnew D, Kiupel M. Malignant lymphoma in african lions (panthera leo). Vet Pathol 2010; 47:952-7. [PMID: 20610770 DOI: 10.1177/0300985810375054] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Malignant lymphoma has become an increasingly recognized problem in African lions (Panthera leo). Eleven African lions (9 male and 2 female) with clinical signs and gross and microscopic lesions of malignant lymphoma were evaluated in this study. All animals were older adults, ranging in age from 14 to 19 years. Immunohistochemically, 10 of the 11 lions had T-cell lymphomas (CD3(+), CD79a(-)), and 1 lion was diagnosed with a B-cell lymphoma (CD3(-), CD79a(+)). The spleen appeared to be the primary site of neoplastic growth in all T-cell lymphomas, with involvement of the liver (6/11) and regional lymph nodes (5/11) also commonly observed. The B-cell lymphoma affected the peripheral lymph nodes, liver, and spleen. According to the current veterinary and human World Health Organization classification of hematopoietic neoplasms, T-cell lymphoma subtypes included peripheral T-cell lymphoma (4/11), precursor (acute) T-cell lymphoblastic lymphoma/leukemia (2/11), chronic T-cell lymphocytic lymphoma/leukemia (3/11), and T-zone lymphoma (1/11). The single B-cell lymphoma subtype was consistent with diffuse large B-cell lymphoma. Feline leukemia virus (FeLV) and feline immunodeficiency virus (FIV) testing by immunohistochemistry on sections of malignant lymphoma was negative for all 11 lions. One lion was seropositive for FeLV. In contrast to domestic and exotic cats, in which B-cell lymphomas are more common than T-cell lymphomas, African lions in this study had malignant lymphomas that were primarily of T-cell origin. Neither FeLV nor FIV, important causes of malignant lymphoma in domestic cats, seems to be significant in the pathogenesis of malignant lymphoma in African lions.
Collapse
|
21
|
Brown MA, Munkhtsog B, Troyer JL, Ross S, Sellers R, Fine AE, Swanson WF, Roelke ME, O'Brien SJ. Feline immunodeficiency virus (FIV) in wild Pallas' cats. Vet Immunol Immunopathol 2009; 134:90-5. [PMID: 19926144 DOI: 10.1016/j.vetimm.2009.10.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Feline immunodeficiency virus (FIV), a feline lentivirus related to HIV, causes immune dysfunction in domestic and wild cats. The Pallas' cat is the only species from Asia known to harbor a species-specific strain of FIV designated FIV(Oma) in natural populations. Here, a 25% seroprevalence of FIV is reported from 28 wild Mongolian Pallas' cats sampled from 2000 to 2008. Phylogenetic analysis of proviral RT-Pol from eight FIV(Oma) isolates from Mongolia, Russia, China and Kazakhstan reveals a unique monophyletic lineage of the virus within the Pallas' cat population, most closely related to the African cheetah and leopard FIV strains. Histopathological examination of lymph node and spleen from infected and uninfected Pallas' cats suggests that FIV(Oma) causes immune depletion in its' native host.
Collapse
Affiliation(s)
- Meredith A Brown
- Laboratory of Genomic Diversity, National Cancer Institute-Frederick, Frederick, MD 21702, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Roelke ME, Brown MA, Troyer JL, Winterbach H, Winterbach C, Hemson G, Smith D, Johnson RC, Pecon-Slattery J, Roca AL, Alexander KA, Klein L, Martelli P, Krishnasamy K, O'Brien SJ. Pathological manifestations of feline immunodeficiency virus (FIV) infection in wild African lions. Virology 2009; 390:1-12. [PMID: 19464039 PMCID: PMC2771374 DOI: 10.1016/j.virol.2009.04.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 02/17/2009] [Accepted: 04/08/2009] [Indexed: 01/09/2023]
Abstract
Feline immunodeficiency virus (FIV) causes AIDS in the domestic cat (Felis catus) but has not been explicitly associated with AIDS pathology in any of the eight free-ranging species of Felidae that are endemic with circulating FIV strains. African lion (Panthera leo) populations are infected with lion-specific FIV strains (FIVple), yet there remains uncertainty about the degree to which FIV infection impacts their health. Reported CD4+ T-lymphocyte depletion in FIVple-infected lions and anecdotal reports of lion morbidity associated with FIV seroprevalence emphasize the concern as to whether FIVple is innocuous or pathogenic. Here we monitored clinical, biochemical, histological and serological parameters among FIVple-positive (N=47) as compared to FIVple-negative (N=17) lions anesthetized and sampled on multiple occasions between 1999 and 2006 in Botswana. Relative to uninfected lions, FIVple-infected lions displayed a significant elevation in the prevalence of AIDS-defining conditions: lymphadenopathy, gingivitis, tongue papillomas, dehydration, and poor coat condition, as well as displaying abnormal red blood cell parameters, depressed serum albumin, and elevated liver enzymes and gamma globulin. Spleen and lymph node biopsies from free-ranging FIVple-infected lions (N=9) revealed evidence of lymphoid depletion, the hallmark pathology documented in immunodeficiency virus infections of humans (HIV-1), macaques, and domestic cats. We conclude that over time FIVple infections in free-ranging lions can lead to adverse clinical, immunological, and pathological outcomes in some individuals that parallel sequelae caused by lentivirus infection in humans (HIV), Asian macaques (SIV) and domestic cats (FIVfca).
Collapse
Affiliation(s)
- Melody E Roelke
- Laboratory of Genomic Diversity, SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Antunes A, Troyer JL, Roelke ME, Pecon-Slattery J, Packer C, Winterbach C, Winterbach H, Hemson G, Frank L, Stander P, Siefert L, Driciru M, Funston PJ, Alexander KA, Prager KC, Mills G, Wildt D, Bush M, O'Brien SJ, Johnson WE. The evolutionary dynamics of the lion Panthera leo revealed by host and viral population genomics. PLoS Genet 2008; 4:e1000251. [PMID: 18989457 PMCID: PMC2572142 DOI: 10.1371/journal.pgen.1000251] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Accepted: 10/02/2008] [Indexed: 12/02/2022] Open
Abstract
The lion Panthera leo is one of the world's most charismatic carnivores and is one of Africa's key predators. Here, we used a large dataset from 357 lions comprehending 1.13 megabases of sequence data and genotypes from 22 microsatellite loci to characterize its recent evolutionary history. Patterns of molecular genetic variation in multiple maternal (mtDNA), paternal (Y-chromosome), and biparental nuclear (nDNA) genetic markers were compared with patterns of sequence and subtype variation of the lion feline immunodeficiency virus (FIVPle), a lentivirus analogous to human immunodeficiency virus (HIV). In spite of the ability of lions to disperse long distances, patterns of lion genetic diversity suggest substantial population subdivision (mtDNA ΦST = 0.92; nDNA FST = 0.18), and reduced gene flow, which, along with large differences in sero-prevalence of six distinct FIVPle subtypes among lion populations, refute the hypothesis that African lions consist of a single panmictic population. Our results suggest that extant lion populations derive from several Pleistocene refugia in East and Southern Africa (∼324,000–169,000 years ago), which expanded during the Late Pleistocene (∼100,000 years ago) into Central and North Africa and into Asia. During the Pleistocene/Holocene transition (∼14,000–7,000 years), another expansion occurred from southern refugia northwards towards East Africa, causing population interbreeding. In particular, lion and FIVPle variation affirms that the large, well-studied lion population occupying the greater Serengeti Ecosystem is derived from three distinct populations that admixed recently. The lion Panthera leo, a formidable carnivore with a complex cooperative social system, has fascinated humanity since pre-historical times, inspiring hundreds of religious and cultural allusions. Here, we use a comprehensive sample of 357 individuals from most of the major lion populations in Africa and Asia. We assayed appropriately informative autosomal, Y-chromosome, and mitochondrial genetic markers, and assessed the prevalence and genetic variation of the lion-specific feline immunodeficiency virus (FIVPle), a lentivirus analogous to human immunodeficiency virus (HIV) that causes AIDS-like immunodeficiency disease in domestic cats. We compare the large multigenic dataset from lions with patterns of genetic variation of the FIVPle to characterize the population-genomic legacy of lions. We refute the hypothesis that African lions consist of a single panmictic population, highlighting the importance of preserving populations in decline rather than prioritizing larger-scale conservation efforts. Interestingly, lion and FIVPle variation revealed evidence of unsuspected genetic diversity even in the well-studied lion population of the Serengeti Ecosystem, which consists of recently admixed animals derived from three distinct genetic groups.
Collapse
Affiliation(s)
- Agostinho Antunes
- Laboratory of Genomic Diversity, National Cancer Institute, Frederick, Maryland, United States of America
- CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Porto, Portugal
- * E-mail: (AA); (WEJ)
| | - Jennifer L. Troyer
- Laboratory of Genomic Diversity, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland, United States of America
| | - Melody E. Roelke
- Laboratory of Genomic Diversity, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland, United States of America
| | - Jill Pecon-Slattery
- Laboratory of Genomic Diversity, National Cancer Institute, Frederick, Maryland, United States of America
| | - Craig Packer
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, United States of America
| | | | | | - Graham Hemson
- Wildlife Conservation Research Unit, Tubney, Oxon, United Kingdom
| | - Laurence Frank
- Laikipia Predator Project, Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, California, United States of America
| | | | - Ludwig Siefert
- Department of Wildlife and Animal Resources Management, Makerere University, Kampala, Uganda
| | | | - Paul J. Funston
- Department of Nature Conservation, Tshwane University of Technology, Pretoria, South Africa
| | - Kathy A. Alexander
- Wildlife Veterinary Unit, Department of Wildlife and National Parks, Kasane, Botswana
| | - Katherine C. Prager
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Gus Mills
- SANParks, Endangered Wildlife Trust and Mammal Research Institute, University of Pretoria, Skukuza, South Africa
| | - David Wildt
- Smithsonian's National Zoological Park, Conservation & Research Center, Front Royal, Virginia, United States of America
| | - Mitch Bush
- Smithsonian's National Zoological Park, Conservation & Research Center, Front Royal, Virginia, United States of America
| | - Stephen J. O'Brien
- Laboratory of Genomic Diversity, National Cancer Institute, Frederick, Maryland, United States of America
| | - Warren E. Johnson
- Laboratory of Genomic Diversity, National Cancer Institute, Frederick, Maryland, United States of America
- * E-mail: (AA); (WEJ)
| |
Collapse
|
24
|
Faure E. Could FIV zoonosis responsible of the breakdown of the pathocenosis which has reduced the European CCR5-Delta32 allele frequencies? Virol J 2008; 5:119. [PMID: 18925940 PMCID: PMC2575341 DOI: 10.1186/1743-422x-5-119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 10/16/2008] [Indexed: 02/04/2023] Open
Abstract
Background In Europe, the north-south downhill cline frequency of the chemokine receptor CCR5 allele with a 32-bp deletion (CCR5-Δ32) raises interesting questions for evolutionary biologists. We had suggested first that, in the past, the European colonizers, principally Romans, might have been instrumental of a progressively decrease of the frequencies southwards. Indeed, statistical analyses suggested strong negative correlations between the allele frequency and historical parameters including the colonization dates by Mediterranean civilisations. The gene flows from colonizers to native populations were extremely low but colonizers are responsible of the spread of several diseases suggesting that the dissemination of parasites in naive populations could have induced a breakdown rupture of the fragile pathocenosis changing the balance among diseases. The new equilibrium state has been reached through a negative selection of the null allele. Results Most of the human diseases are zoonoses and cat might have been instrumental in the decrease of the allele frequency, because its diffusion through Europe was a gradual process, due principally to Romans; and that several cat zoonoses could be transmitted to man. The possible implication of a feline lentivirus (FIV) which does not use CCR5 as co-receptor is discussed. This virus can infect primate cells in vitro and induces clinical signs in macaque. Moreover, most of the historical regions with null or low frequency of CCR5-Δ32 allele coincide with historical range of the wild felid species which harbor species-specific FIVs. Conclusion We proposed the hypothesis that the actual European CCR5 allelic frequencies are the result of a negative selection due to a disease spreading. A cat zoonosis, could be the most plausible hypothesis. Future studies could provide if CCR5 can play an antimicrobial role in FIV pathogenesis. Moreover, studies of ancient DNA could provide more evidences regarding the implications of zoonoses in the actual CCR5-Δ32 distribution.
Collapse
Affiliation(s)
- Eric Faure
- LATP, CNRS-UMR 6632, IFR48 Infectiopole, Evolution biologique et modélisation, Université de Provence, Marseille, France.
| |
Collapse
|
25
|
Germain K, Croise B, Valas S. Field evaluation of a gag/env heteroduplex mobility assay for genetic subtyping of small-ruminant lentiviruses. J Gen Virol 2008; 89:2020-2028. [PMID: 18632974 DOI: 10.1099/vir.0.2008/000851-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Small-ruminant lentiviruses (SRLVs) display a high genetic diversity and are currently classified into five genotypes and an increasing number of subtypes. The co-circulation of subtypes in restricted geographical regions, combined with the occurrence of cross-species infection, suggests the need for development of a large-scale screening methodology for rapid monitoring of the prevalence of the various genetic subtypes and their genetic evolution. Here, a heteroduplex mobility assay (HMA) was developed for the rapid identification of group B subtypes. The assay was validated for both the p14 nucleocapsid-coding region of the gag gene and the V1-V2 region of the env gene using a panel of reference standards and was applied to the genetic subtyping of SRLV field isolates from five mixed flocks in France. Subtyping of 75 blood samples using the env HMA revealed a preferential distribution of subtypes B1 and B2 in sheep and goats, despite direct evidence for interspecies transmission of both subtypes. Adding the gag HMA to the env HMA provided evidence for dual infection and putative recombination between subtypes B1 and B2 in five goats, and between groups A and B in one sheep. Phylogenetic analysis revealed that 100 % (23/23) and 96.7 % (30/31) of samples were correctly classified using the gag and env HMAs, respectively. These results indicate that dual infection and recombination may be a significant source of new variation in SRLV and provide a useful tool for the rapid genetic subtyping of SRLV isolates, which could be relevant for the development of more accurate diagnosis of prevalent SRLV strains in different countries.
Collapse
Affiliation(s)
- Karine Germain
- Agence Française de Securite Sanitaire des Aliments (AFSSA), Laboratoire d'Etudes et de Recherches Caprines, Niort, France
| | - Benoit Croise
- Agence Française de Securite Sanitaire des Aliments (AFSSA), Laboratoire d'Etudes et de Recherches Caprines, Niort, France
| | - Stephen Valas
- Agence Française de Securite Sanitaire des Aliments (AFSSA), Laboratoire d'Etudes et de Recherches Caprines, Niort, France
| |
Collapse
|
26
|
Genetically divergent strains of feline immunodeficiency virus from the domestic cat (Felis catus) and the African lion (Panthera leo) share usage of CD134 and CXCR4 as entry receptors. J Virol 2008; 82:10953-8. [PMID: 18715917 DOI: 10.1128/jvi.01312-08] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The env open reading frames of African lion (Panthera leo) lentivirus (feline immunodeficiency virus [FIV(Ple)]) subtypes B and E from geographically distinct regions of Africa suggest two distinct ancestries, with FIV(Ple)-E sharing a common ancestor with the domestic cat (Felis catus) lentivirus (FIV(Fca)). Here we demonstrate that FIV(Ple)-E and FIV(Fca) share the use of CD134 (OX40) and CXCR4 as a primary receptor and coreceptor, respectively, and that both lion CD134 and CXCR4 are functional receptors for FIV(Ple)-E. The shared usage of CD134 and CXCR4 by FIV(Fca) and FIV(Ple)-E may have implications for in vivo cell tropism and the pathogenicity of the E subtype among free-ranging lion populations.
Collapse
|
27
|
Yuhki N, Mullikin JC, Beck T, Stephens R, O'Brien SJ. Sequences, annotation and single nucleotide polymorphism of the major histocompatibility complex in the domestic cat. PLoS One 2008; 3:e2674. [PMID: 18629345 PMCID: PMC2453318 DOI: 10.1371/journal.pone.0002674] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Accepted: 06/12/2008] [Indexed: 11/19/2022] Open
Abstract
Two sequences of major histocompatibility complex (MHC) regions in the domestic cat, 2.976 and 0.362 Mbps, which were separated by an ancient chromosome break (55-80 MYA) and followed by a chromosomal inversion were annotated in detail. Gene annotation of this MHC was completed and identified 183 possible coding regions, 147 human homologues, possible functional genes and 36 pseudo/unidentified genes) by GENSCAN and BLASTN, BLASTP RepeatMasker programs. The first region spans 2.976 Mbp sequence, which encodes six classical class II antigens (three DRA and three DRB antigens) lacking the functional DP, DQ regions, nine antigen processing molecules (DOA/DOB, DMA/DMB, TAPASIN, and LMP2/LMP7,TAP1/TAP2), 52 class III genes, nineteen class I genes/gene fragments (FLAI-A to FLAI-S). Three class I genes (FLAI-H, I-K, I-E) may encode functional classical class I antigens based on deduced amino acid sequence and promoter structure. The second region spans 0.362 Mbp sequence encoding no class I genes and 18 cross-species conserved genes, excluding class I, II and their functionally related/associated genes, namely framework genes, including three olfactory receptor genes. One previously identified feline endogenous retrovirus, a baboon retrovirus derived sequence (ECE1) and two new endogenous retrovirus sequences, similar to brown bat endogenous retrovirus (FERVmlu1, FERVmlu2) were found within a 140 Kbp interval in the middle of class I region. MHC SNPs were examined based on comparisons of this BAC sequence and MHC homozygous 1.9x WGS sequences and found that 11,654 SNPs in 2.84 Mbp (0.00411 SNP per bp), which is 2.4 times higher rate than average heterozygous region in the WGS (0.0017 SNP per bp genome), and slightly higher than the SNP rate observed in human MHC (0.00337 SNP per bp).
Collapse
Affiliation(s)
- Naoya Yuhki
- Laboratory of Genomic Diversity, National Cancer Institute at Frederick, Frederick, Maryland, United States of America.
| | | | | | | | | |
Collapse
|
28
|
Pecon-Slattery J, Troyer JL, Johnson WE, O'Brien SJ. Evolution of feline immunodeficiency virus in Felidae: implications for human health and wildlife ecology. Vet Immunol Immunopathol 2008; 123:32-44. [PMID: 18359092 PMCID: PMC2774529 DOI: 10.1016/j.vetimm.2008.01.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Genetic analyses of feline immunodeficiency viruses provide significant insights on the worldwide distribution and evolutionary history of this emerging pathogen. Large-scale screening of over 3000 samples from all species of Felidae indicates that at least some individuals from most species possess antibodies that cross react to FIV. Phylogenetic analyses of genetic variation in the pol-RT gene demonstrate that FIV lineages are species-specific and suggest that there has been a prolonged period of viral-host co-evolution. The clinical effects of FIV specific to species other than domestic cat are controversial. Comparative genomic analyses of all full-length FIV genomes confirmed that FIV is host specific. Recently sequenced lion subtype E is marginally more similar to Pallas cat FIV though env is more similar to that of domestic cat FIV, indicating a possible recombination between two divergent strains in the wild. Here we review global patterns of FIV seroprevalence and endemnicity, assess genetic differences within and between species-specific FIV strains, and interpret these with patterns of felid speciation to propose an ancestral origin of FIV in Africa followed by interspecies transmission and global dissemination to Eurasia and the Americas. Continued comparative genomic analyses of full-length FIV from all seropositive animals, along with whole genome sequence of host species, will greatly advance our understanding of the role of recombination, selection and adaptation in retroviral emergence.
Collapse
Affiliation(s)
- Jill Pecon-Slattery
- Laboratory of Genomic Diversity, National Cancer Institute-Frederick, Frederick, MD 21702, United States.
| | | | | | | |
Collapse
|
29
|
Pecon-Slattery J, McCracken CL, Troyer JL, VandeWoude S, Roelke M, Sondgeroth K, Winterbach C, Winterbach H, O'Brien SJ. Genomic organization, sequence divergence, and recombination of feline immunodeficiency virus from lions in the wild. BMC Genomics 2008; 9:66. [PMID: 18251995 PMCID: PMC2270836 DOI: 10.1186/1471-2164-9-66] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Accepted: 02/05/2008] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Feline immunodeficiency virus (FIV) naturally infects multiple species of cat and is related to human immunodeficiency virus in humans. FIV infection causes AIDS-like disease and mortality in the domestic cat (Felis catus) and serves as a natural model for HIV infection in humans. In African lions (Panthera leo) and other exotic felid species, disease etiology introduced by FIV infection are less clear, but recent studies indicate that FIV causes moderate to severe CD4 depletion. RESULTS In this study, comparative genomic methods are used to evaluate the full proviral genome of two geographically distinct FIV subtypes isolated from free-ranging lions. Genome organization of FIVPle subtype B (9891 bp) from lions in the Serengeti National Park in Tanzania and FIVPle subtype E (9899 bp) isolated from lions in the Okavango Delta in Botswana, both resemble FIV genome sequence from puma, Pallas cat and domestic cat across 5' LTR, gag, pol, vif, orfA, env, rev and 3'LTR regions. Comparative analyses of available full-length FIV consisting of subtypes A, B and C from FIVFca, Pallas cat FIVOma and two puma FIVPco subtypes A and B recapitulate the species-specific monophyly of FIV marked by high levels of genetic diversity both within and between species. Across all FIVPle gene regions except env, lion subtypes B and E are monophyletic, and marginally more similar to Pallas cat FIVOma than to other FIV. Sequence analyses indicate the SU and TM regions of env vary substantially between subtypes, with FIVPle subtype E more related to domestic cat FIVFca than to FIVPle subtype B and FIVOma likely reflecting recombination between strains in the wild. CONCLUSION This study demonstrates the necessity of whole-genome analysis to complement population/gene-based studies, which are of limited utility in uncovering complex events such as recombination that may lead to functional differences in virulence and pathogenicity. These full-length lion lentiviruses are integral to the advancement of comparative genomics of human pathogens, as well as emerging disease in wild populations of endangered species.
Collapse
Affiliation(s)
- Jill Pecon-Slattery
- Laboratory of Genomic Diversity, National Cancer Institute-Frederick, Frederick MD 21702 USA
| | - Carrie L McCracken
- Laboratory of Genomic Diversity, Basic Research Program-SAIC Frederick – National Cancer Institute, Frederick, MD 21702 USA
| | - Jennifer L Troyer
- Laboratory of Genomic Diversity, Basic Research Program-SAIC Frederick – National Cancer Institute, Frederick, MD 21702 USA
| | - Sue VandeWoude
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins CO 80532 USA
| | - Melody Roelke
- Laboratory of Genomic Diversity, Basic Research Program-SAIC Frederick – National Cancer Institute, Frederick, MD 21702 USA
| | - Kerry Sondgeroth
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman WA 99164 USA
| | | | | | - Stephen J O'Brien
- Laboratory of Genomic Diversity, National Cancer Institute-Frederick, Frederick MD 21702 USA
| |
Collapse
|
30
|
Troyer JL, Vandewoude S, Pecon-Slattery J, McIntosh C, Franklin S, Antunes A, Johnson W, O'Brien SJ. FIV cross-species transmission: an evolutionary prospective. Vet Immunol Immunopathol 2008; 123:159-66. [PMID: 18299153 PMCID: PMC2442884 DOI: 10.1016/j.vetimm.2008.01.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Feline and primate immunodeficiency viruses (FIVs, SIVs, and HIV) are transmitted via direct contact (e.g. fighting, sexual contact, and mother–offspring transmission). This dynamic likely poses a behavioral barrier to cross-species transmission in the wild. Recently, several host intracellular anti-viral proteins that contribute to species-specificity of primate lentiviruses have been identified revealing adaptive mechanisms that further limit spread of lentiviruses between species. Consistent with these inter-species transmission barriers, phylogenetic evidence supports the prediction that FIV transmission is an exceedingly rare event between free-ranging cat species, though it has occurred occasionally in captive settings. Recently we documented that puma and bobcats in Southern California share an FIV strain, providing an opportunity to evaluate evolution of both viral strains and host intracellular restriction proteins. These studies are facilitated by the availability of the 2× cat genome sequence annotation. In addition, concurrent viral and host genetic analyses have been used to track patterns of migration of the host species and barriers to transmission of the virus within the African lion. These studies illustrate the utility of FIV as a model to discover the variables necessary for establishment and control of lentiviral infections in new species.
Collapse
Affiliation(s)
- Jennifer L Troyer
- Laboratory of Genomic Diversity, SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD 21702, United States.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Harrison TM, Sikarskie J, Kitchell B, Rosenstein DS, Flaherty H, Fitzgerald SD, Kiupel M. Treatment of malignant lymphoma in an African lion (Panthera leo). J Zoo Wildl Med 2007; 38:333-6. [PMID: 17679520 DOI: 10.1638/1042-7260(2007)038[0333:tomlia]2.0.co;2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A 14 yr-old male, vasectomized African lion (Panthera leo) exhibited mild weight loss despite adequate appetite. Splenomegaly was diagnosed on physical examination. On the basis of hematology and clinical pathology, malignant lymphoma with chronic lymphocytic leukemia was diagnosed. Abdominal exploratory surgery and splenectomy were performed. Histologic examination and immunohistochemistry confirmed a small cell peripheral T-cell lymphoma. Initial treatments consisted of doxorubicin and prednisone, with later addition of lomustine. The lion remained in clinical remission at 2 mo, 6 mo, and 12 mo postchemotherapy physical examinations. The lion survived 504 days from initial diagnosis. At necropsy, the only lesions consistent with lymphoma were localized epitheliotrophic infiltrates of small neoplastic T lymphocytes within the nasopharyngeal epithelium and the underlying submucosa observed on microscopic examination.
Collapse
Affiliation(s)
- Tara M Harrison
- Potter Park Zoo, 1301 South Pennsylvania, Lansing, Michigan 48912, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Vàzquez-Salat N, Yuhki N, Beck T, O'Brien SJ, Murphy WJ. Gene conversion between mammalian CCR2 and CCR5 chemokine receptor genes: A potential mechanism for receptor dimerization. Genomics 2007; 90:213-24. [PMID: 17544254 DOI: 10.1016/j.ygeno.2007.04.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Revised: 04/24/2007] [Accepted: 04/26/2007] [Indexed: 01/06/2023]
Abstract
The chemokine receptor genes of the CCR cluster on human chromosome 3p21 play important roles in humoral and cellular immune responses. Several of these receptors have been shown to influence human immunodeficiency virus infection and progression to AIDS, and their homologues may play a role in feline immunodeficiency virus infection. We report the isolation and sequencing of a 150-kb domestic cat BAC clone containing the feline CCR genes CCR1, CCR2, CCR3, and CCR5 to further analyze these four receptor genes within the family Felidae. Comparative and phylogenetic analyses reveal evidence for historic gene conversion between the adjacent CCR2 and CCR5 genes in the Felidae and in three independent mammalian orders (Primates, Cetartiodactyla, and Rodentia), resulting in higher than expected levels of sequence similarity between the two paralogous genes within each order. The gene conversion was restricted to the structural (transmembrane) domains of the CCR2 and CCR5 genes. We also discovered a recent gene conversion event between the third extracellular loop of CCR2 and CCR5 genes that was fixed in Asian lions and found at low frequency in African lions (Panthera leo), suggesting that this domain may have an important functional role. Our results suggest that ongoing parallel gene conversion between CCR2 and CCR5 promotes receptor heterodimerization in independent evolutionary lineages and offers an effective adaptive strategy for gene editing and coevolution among interactive immune response genes in mammals.
Collapse
Affiliation(s)
- Núria Vàzquez-Salat
- Laboratory of Genomic Diversity, National Cancer Institute, Frederick, MD 21702, USA
| | | | | | | | | |
Collapse
|
33
|
Franklin SP, Troyer JL, Terwee JA, Lyren LM, Boyce WM, Riley SPD, Roelke ME, Crooks KR, Vandewoude S. Frequent transmission of immunodeficiency viruses among bobcats and pumas. J Virol 2007; 81:10961-9. [PMID: 17670835 PMCID: PMC2045550 DOI: 10.1128/jvi.00997-07] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
With the exception of human immunodeficiency virus (HIV), which emerged in humans after cross-species transmissions of simian immunodeficiency viruses from nonhuman primates, immunodeficiency viruses of the family Lentiviridae represent species-specific viruses that rarely cross species barriers to infect new hosts. Among the Felidae, numerous immunodeficiency-like lentiviruses have been documented, but only a few cross-species transmissions have been recorded, and these have not been perpetuated in the recipient species. Lentivirus seroprevalence was determined for 79 bobcats (Lynx rufus) and 31 pumas (Puma concolor) from well-defined populations in Southern California. Partial genomic sequences were subsequently obtained from 18 and 12 seropositive bobcats and pumas, respectively. Genotypes were analyzed for phylogenic relatedness and genotypic composition among the study set and archived feline lentivirus sequences. This investigation of feline immunodeficiency virus infection in bobcats and pumas of Southern California provides evidence that cross-species infection has occurred frequently among these animals. The data suggest that transmission has occurred in multiple locations and are most consistent with the spread of the virus from bobcats to pumas. Although the ultimate causes remain unknown, these transmission events may occur as a result of puma predation on bobcats, a situation similar to that which fostered transmission of HIV to humans, and likely represent the emergence of a lentivirus with relaxed barriers to cross-species transmission. This unusual observation provides a valuable opportunity to evaluate the ecological, behavioral, and molecular conditions that favor repeated transmissions and persistence of lentivirus between species.
Collapse
Affiliation(s)
- S P Franklin
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Animal models for human immunodeficiency virus (HIV) infection play a key role in understanding the pathogenesis of AIDS and the development of therapeutic agents and vaccines. As the only lentivirus that causes an immunodeficiency resembling that of HIV infection, in its natural host, feline immunodeficiency virus (FIV) has been a unique and powerful model for AIDS research. FIV was first described in 1987 by Niels Pedersen and co-workers as the causative agent for a fatal immunodeficiency syndrome observed in cats housed in a cattery in Petaluma, California. Since this landmark observation, multiple studies have shown that natural and experimental infection of cats with biological isolates of FIV produces an AIDS syndrome very similar in pathogenesis to that observed for human AIDS. FIV infection induces an acute viremia associated with Tcell alterations including depressed CD4 :CD8 T-cell ratios and CD4 T-cell depletion, peripheral lymphadenopathy, and neutropenia. In later stages of FIV infection, the host suffers from chronic persistent infections that are typically self-limiting in an immunocompetent host, as well as opportunistic infections, chronic diarrhea and wasting, blood dyscracias, significant CD4 T-cell depletion, neurologic disorders, and B-cell lymphomas. Importantly, chronic FIV infection induces a progressive lymphoid and CD4 T-cell depletion in the infected cat. The primary mode of natural FIV transmission appears to be blood-borne facilitated by fighting and biting. However, experimental infection through transmucosal routes (rectal and vaginal mucosa and perinatal) have been well documented for specific FIV isolates. Accordingly, FIV disease pathogenesis exhibits striking similarities to that described for HIV-1 infection.
Collapse
|
35
|
Burkala E, Poss M. Evolution of feline immunodeficiency virus Gag proteins. Virus Genes 2007; 35:251-64. [PMID: 17265140 DOI: 10.1007/s11262-006-0058-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Accepted: 11/13/2006] [Indexed: 01/23/2023]
Abstract
We evaluated the predicted biochemical properties of Gag proteins from a diverse group of feline immunodeficiency viruses (FIV) to determine how different evolutionary histories of virus and host have changed or constrained these important structural proteins. Our data are based on FIV sequences derived from domestic cat (FIVfca), cougar (FIVpco), and lions (FIVple). Analyses consisted of determining the selective forces acting at each position in the protein and the comparing predictions for secondary structure, charge, hydrophobicity and flexibility for matrix, capsid and nucleocapsid, and the C-terminal peptide, which comprise the Gag proteins. We demonstrate that differences among the FIV Gag proteins have largely arisen by neutral evolution, although many neutrally evolving regions have maintained biochemical features. Regions with predicted differences in biochemical features appear to involve intramolecular interactions and structural elements that undergo conformational changes during particle maturation. In contrast, the majority of sites involved in intermolecular contacts on the protein surface are constrained by purifying selection. There is also conservation of sites that interact with host proteins associated with cellular trafficking and particle budding. NC is the only protein with evidence of positive selection, two of which occur in the N-terminal region responsible for RNA binding and interaction with host proteins.
Collapse
Affiliation(s)
- Evan Burkala
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA
| | | |
Collapse
|
36
|
VandeWoude S, Apetrei C. Going wild: lessons from naturally occurring T-lymphotropic lentiviruses. Clin Microbiol Rev 2006; 19:728-62. [PMID: 17041142 PMCID: PMC1592692 DOI: 10.1128/cmr.00009-06] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Over 40 nonhuman primate (NHP) species harbor species-specific simian immunodeficiency viruses (SIVs). Similarly, more than 20 species of nondomestic felids and African hyenids demonstrate seroreactivity against feline immunodeficiency virus (FIV) antigens. While it has been challenging to study the biological implications of nonfatal infections in natural populations, epidemiologic and clinical studies performed thus far have only rarely detected increased morbidity or impaired fecundity/survival of naturally infected SIV- or FIV-seropositive versus -seronegative animals. Cross-species transmissions of these agents are rare in nature but have been used to develop experimental systems to evaluate mechanisms of pathogenicity and to develop animal models of HIV/AIDS. Given that felids and primates are substantially evolutionarily removed yet demonstrate the same pattern of apparently nonpathogenic lentiviral infections, comparison of the biological behaviors of these viruses can yield important implications for host-lentiviral adaptation which are relevant to human HIV/AIDS infection. This review therefore evaluates similarities in epidemiology, lentiviral genotyping, pathogenicity, host immune responses, and cross-species transmission of FIVs and factors associated with the establishment of lentiviral infections in new species. This comparison of consistent patterns in lentivirus biology will expose new directions for scientific inquiry for understanding the basis for virulence versus avirulence.
Collapse
Affiliation(s)
- Sue VandeWoude
- Department of Microbiology, Immunology and Pathology, College of Veterinary and Biomedical Sciences, Colorado State University, Fort Collins, CO 80538-1619, USA
| | | |
Collapse
|
37
|
Brennan G, Podell MD, Wack R, Kraft S, Troyer JL, Bielefeldt-Ohmann H, VandeWoude S. Neurologic disease in captive lions (Panthera leo) with low-titer lion lentivirus infection. J Clin Microbiol 2006; 44:4345-52. [PMID: 17005739 PMCID: PMC1698403 DOI: 10.1128/jcm.00577-06] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Lion lentivirus (LLV; also known as feline immunodeficiency virus of lion, Panthera leo [FIVPle]) is present in free-ranging and captive lion populations at a seroprevalence of up to 100%; however, clinical signs are rarely reported. LLV displays up to 25% interclade sequence diversity, suggesting that it has been in the lion population for some time and may be significantly host adapted. Three captive lions diagnosed with LLV infection displayed lymphocyte subset alterations and progressive behavioral, locomotor, and neuroanatomic abnormalities. No evidence of infection with other potential neuropathogens was found. Antemortem electrodiagnostics and radiologic imaging indicated a diagnosis consistent with lentiviral neuropathy. PCR was used to determine a partial lentiviral genomic sequence and to quantify the proviral burden in eight postmortem tissue specimens. Phylogenetic analysis demonstrated that the virus was consistent with the LLV detected in other captive and free-ranging lions. Despite progressive neurologic signs, the proviral load in tissues, including several regions of the brain, was low; furthermore, gross and histopathologic changes in the brain were minimal. These findings suggest that the symptoms in these animals resulted from nonspecific encephalopathy, similar to human immunodeficiency virus, FIV, and simian immunodeficiency virus (SIV) neuropathies, rather than a direct effect of active viral replication. The association of neuropathy and lymphocyte subset alterations with chronic LLV infection suggests that long-term LLV infection can have detrimental effects for the host, including death. This is similar to reports of aged sootey mangabeys dying from diseases typically associated with end-stage SIV infection and indicates areas for further research of lentiviral infections of seemingly adapted natural hosts, including mechanisms of host control and viral adaptation.
Collapse
MESH Headings
- Animals
- Brain/diagnostic imaging
- Brain/pathology
- Brain/virology
- Central Nervous System Viral Diseases/pathology
- Central Nervous System Viral Diseases/physiopathology
- Central Nervous System Viral Diseases/veterinary
- Central Nervous System Viral Diseases/virology
- DNA, Viral/analysis
- DNA, Viral/genetics
- Electroencephalography
- Evoked Potentials, Auditory
- Genes, pol
- Genome, Viral
- Histocytochemistry
- Immunodeficiency Virus, Feline/classification
- Immunodeficiency Virus, Feline/genetics
- Immunodeficiency Virus, Feline/isolation & purification
- Immunodeficiency Virus, Feline/physiology
- Lentivirus Infections/pathology
- Lentivirus Infections/physiopathology
- Lentivirus Infections/veterinary
- Lentivirus Infections/virology
- Lions
- Lymphocyte Subsets/immunology
- Molecular Sequence Data
- Phylogeny
- Polymerase Chain Reaction
- Proviruses/genetics
- Radiography
- Sequence Analysis, DNA
- Viral Load
Collapse
Affiliation(s)
- Greg Brennan
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1619 Campus Delivery, Fort Collins, CO 80523-1619, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
O’Brien SJ, Troyer JL, Roelke M, Marker L, Pecon-Slattery J. Plagues and adaptation: Lessons from the Felidae models for SARS and AIDS. BIOLOGICAL CONSERVATION 2006; 131:255-267. [PMID: 32226081 PMCID: PMC7096731 DOI: 10.1016/j.biocon.2006.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Research studies of infectious disease outbreaks in wild species of the cat family Felidae have revealed unusual details regarding forces that shape population survival and genetic resistance in these species. A highly virulent feline coronavirus epidemic in African cheetahs, a disease model for human SARS, illustrates the critical role of ancestral population genetic variation. Widespread prevalence of species specific feline immunodeficiency virus (FIV), a relative of HIV-AIDS, occurs with little pathogenesis in felid species, except in domestic cats, suggesting immunological adaptation in species where FIV is endemic. Resolving the interaction of host and pathogen genomes can shed new light on the process of disease outbreak in wildlife and in humankind. The role of disease in endangered populations and species is difficult to access as opportunities to monitor outbreaks in natural populations are limited. Conservation management may benefit greatly from advances in molecular genetic tools developed for human biomedical research to assay the biodiversity of both host species and emerging pathogen. As these examples illustrate, strong parallels exist between disease in human and endangered wildlife and argue for an integration of the research fields of comparative genomics, infectious disease, epidemiology, molecular genetics and population biology for an effective proactive conservation approach.
Collapse
Affiliation(s)
- Stephen J. O’Brien
- Laboratory of Genomic Diversity, National Cancer Institute, Building 560, Room 21-105, Frederick, MD 21702, USA
| | - Jennifer L. Troyer
- Laboratory of Genomic Diversity, SAIC-Frederick, NCI-Frederick, Frederick MD USA
| | - Melody Roelke
- Laboratory of Genomic Diversity, SAIC-Frederick, NCI-Frederick, Frederick MD USA
| | - Laurie Marker
- Cheetah Conservation Fund, Namibia, Southwest Africa
| | - Jill Pecon-Slattery
- Laboratory of Genomic Diversity, National Cancer Institute, Building 560, Room 21-105, Frederick, MD 21702, USA
| |
Collapse
|
39
|
Smirnova N, Troyer JL, Schissler J, Terwee J, Poss M, VandeWoude S. Feline lentiviruses demonstrate differences in receptor repertoire and envelope structural elements. Virology 2005; 342:60-76. [PMID: 16120451 DOI: 10.1016/j.virol.2005.07.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Revised: 06/09/2005] [Accepted: 07/20/2005] [Indexed: 11/15/2022]
Abstract
Feline immunodeficiency virus (FIV) causes fatal disease in domestic cats via T cell depletion-mediated immunodeficiency. Pumas and lions are hosts for apparently apathogenic lentiviruses (PLV, LLV) distinct from FIV. We compared receptor use among these viruses by: (1) evaluating target cell susceptibility; (2) measuring viral replication following exposure to specific and non-specific receptor antagonists; and (3) comparing Env sequence and structural motifs. Most isolates of LLV and PLV productively infected domestic feline T cells, but differed from domestic cat FIV by infecting cells independent of CXCR4, demonstrating equivalent or enhanced replication following heparin exposure, and demonstrating substantial divergence in amino acid sequence and secondary structure in Env receptor binding domains. PLV infection was, however, inhibited by CD134/OX40 antibody. Thus, although PLV and LLV infection interfere with FIV superinfection, we conclude that LLV and PLV utilize novel, more promiscuous mechanisms for cell entry than FIV, underlying divergent tropism and biological properties of these viruses.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Cats
- Cell Line
- DNA, Viral/genetics
- Glycosylation
- Immunodeficiency Virus, Feline/genetics
- Immunodeficiency Virus, Feline/immunology
- Immunodeficiency Virus, Feline/pathogenicity
- Immunodeficiency Virus, Feline/physiology
- Lentiviruses, Feline/genetics
- Lentiviruses, Feline/immunology
- Lentiviruses, Feline/pathogenicity
- Lentiviruses, Feline/physiology
- Lions
- Molecular Sequence Data
- Puma
- Receptors, CXCR4/antagonists & inhibitors
- Receptors, CXCR4/physiology
- Receptors, OX40
- Receptors, Tumor Necrosis Factor/antagonists & inhibitors
- Receptors, Virus/antagonists & inhibitors
- Receptors, Virus/physiology
- Sequence Homology, Amino Acid
- T-Lymphocytes/immunology
- T-Lymphocytes/virology
- Viral Envelope Proteins/chemistry
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/physiology
- Virulence
- Virus Replication
Collapse
Affiliation(s)
- Natalia Smirnova
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1619 Campus Delivery, Fort Collins, CO 80523-1619, USA
| | | | | | | | | | | |
Collapse
|
40
|
Troyer JL, Pecon-Slattery J, Roelke ME, Johnson W, VandeWoude S, Vazquez-Salat N, Brown M, Frank L, Woodroffe R, Winterbach C, Winterbach H, Hemson G, Bush M, Alexander KA, Revilla E, O'Brien SJ. Seroprevalence and genomic divergence of circulating strains of feline immunodeficiency virus among Felidae and Hyaenidae species. J Virol 2005; 79:8282-94. [PMID: 15956574 PMCID: PMC1143723 DOI: 10.1128/jvi.79.13.8282-8294.2005] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Feline immunodeficiency virus (FIV) infects numerous wild and domestic feline species and is closely related to human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV). Species-specific strains of FIV have been described for domestic cat (Felis catus), puma (Puma concolor), lion (Panthera leo), leopard (Panthera pardus), and Pallas' cat (Otocolobus manul). Here, we employ a three-antigen Western blot screening (domestic cat, puma, and lion FIV antigens) and PCR analysis to survey worldwide prevalence, distribution, and genomic differentiation of FIV based on 3,055 specimens from 35 Felidae and 3 Hyaenidae species. Although FIV infects a wide variety of host species, it is confirmed to be endemic in free-ranging populations of nine Felidae and one Hyaenidae species. These include the large African carnivores (lion, leopard, cheetah, and spotted hyena), where FIV is widely distributed in multiple populations; most of the South American felids (puma, jaguar, ocelot, margay, Geoffroy's cat, and tigrina), which maintain a lower FIV-positive level throughout their range; and two Asian species, the Pallas' cat, which has a species-specific strain of FIV, and the leopard cat, which has a domestic cat FIV strain in one population. Phylogenetic analysis of FIV proviral sequence demonstrates that most species for which FIV is endemic harbor monophyletic, genetically distinct species-specific FIV strains, suggesting that FIV transfer between cat species has occurred in the past but is quite infrequent today.
Collapse
Affiliation(s)
- Jennifer L Troyer
- Laboratory of Genomic Diversity, National Cancer Institute-Frederick, Maryland 21702-1201, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Sondgeroth K, Leutenegger C, Vandewoude S. Development and validation of puma (Felis concolor) cytokine and lentivirus real-time PCR detection systems. Vet Immunol Immunopathol 2005; 104:205-13. [PMID: 15734541 DOI: 10.1016/j.vetimm.2004.11.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2004] [Indexed: 11/17/2022]
Abstract
Studies of immune correlates of disease outcome associate humoral immune response mediated by T-helper 2 cytokines (IL-4, IL-10) with more virulent disease relative to a cell-mediated response driven by T-helper 1 cytokines (IL-2, IFN-gamma), particularly in viral and other intra-cellular infections. Specifically, the kinetics of both human immunodeficiency virus (HIV) and feline immunodeficiency virus (FIV) infection are closely associated with Type 1 versus Type 2 cytokine profiles. Puma (Felis concolor) lentivirus (PLV) is closely related to FIV, but based on phylogenetic and clinical studies, is more ancient and less pathogenic. The aims of this study were to validate feline real-time PCR primer/probe systems for puma cytokines and PLV as sensitive, quantitative assays for use in investigations of PLV pathogenicity. We demonstrate that primer/probe systems for IL-4, IL-10, IFN-gamma, TNF-alpha, GAPDH, and the pol region of PLV-1695 amplify puma cytokines and PLV-1695 with high amplification efficiency and sensitivity. Detection of PLV-1695 provirus in experimentally inoculated domestic cats proved to be of equivalent sensitivity, specificity, and positive and negative predictive value to co-culture of one million peripheral blood mononuclear cells (PBMC). Evaluation of cytokine induction during naturally occurring PLV infection will allow insight into mechanisms of host control associated with apathogenic infection. In addition, determination of viral loads during different stages of PLV infection or in different tissues from domestic cats or pumas will further elucidate capacity of these viruses to replicate and establish infection.
Collapse
Affiliation(s)
- Kerry Sondgeroth
- Department of Microbiology, Immunology and Pathology, 1619 Campus Delivery, Colorado State University, Fort Collins, CO 8052-1619, USA
| | | | | |
Collapse
|
42
|
Sutton CA, Gordnier PM, Avery RJ, Casey JW. Comparative replication kinetics of two cytopathic feline lentiviruses ex vivo. Virology 2005; 332:519-28. [PMID: 15680417 DOI: 10.1016/j.virol.2004.11.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2004] [Revised: 09/23/2004] [Accepted: 11/30/2004] [Indexed: 10/26/2022]
Abstract
Feline immunodeficiency virus infection of cats provides a model to elucidate mechanisms of lentiviral pathogenesis. We isolated a non-domestic FIV from a Pallas' cat, FIV-Oma, which replicates in feline PBMCs and CRFK cells. To gain insights into FIV pathogenesis, we compared rates of viral replication and apoptosis of FIV-Oma with FIV-PPR in the MYA-1 T-cell line. To minimize heterogeneity of virus, infections were initiated with virus derived from molecular clones. Viral DNA and RNA levels, assessed by qPCR and qRT-PCR, apoptosis, and supernatant reverse transcriptase were slower in FIV-Oma infections. Immunostaining for cellular Gag showed that few cells were productively infected. The majority of cells infected with either virus instead became apoptotic. Apoptosis was detectable within 6 h PI, suggesting activation of a signaling pathway. We propose that apoptosis is due to interaction of virus with cells, and is the usual outcome of infection by cytopathic FIVs in these cells.
Collapse
Affiliation(s)
- Claudia A Sutton
- Department of Microbiology and Immunology, Veterinary Medical Center, College of Veterinary Medicine, Cornell University, C5-153 Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|