1
|
Saddoris SM, Schang LM. The opportunities and challenges of epigenetic approaches to manage herpes simplex infections. Expert Rev Anti Infect Ther 2024; 22:1123-1142. [PMID: 39466139 PMCID: PMC11634640 DOI: 10.1080/14787210.2024.2420329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/24/2024] [Accepted: 10/20/2024] [Indexed: 10/29/2024]
Abstract
INTRODUCTION Despite the existence of antivirals that potently and efficiently inhibit the replication of herpes simplex virus 1 and 2 (HSV-1, -2), their ability to establish and maintain, and reactivate from, latency has precluded the development of curative therapies. Several groups are exploring the opportunities of targeting epigenetic regulation to permanently silence latent HSV genomes or induce their simultaneous reactivation in the presence of antivirals to flush the latent reservoirs, as has been explored for HIV. AREAS COVERED This review covers the basic principles of epigenetic regulation with an emphasis on those mechanisms relevant to the regulation of herpes simplex viruses, as well as the current knowledge on the regulation of lytic infections and the establishment and maintenance of, and reactivation from, latency, with an emphasis on epigenetic regulation. The differences with the epigenetic regulation of viral and cellular gene expression are highlighted as are the effects of known epigenetic regulators on herpes simplex viruses. The major limitations of current models to the development of novel antiviral strategies targeting latency are highlighted. EXPERT OPINION We provide an update on the epigenetic regulation during lytic and latent HSV-1 infection, highlighting the commonalities and differences with cellular gene expression and the potential of epigenetic drugs as antivirals, including the opportunities, challenges, and potential future directions.
Collapse
Affiliation(s)
- Sarah M Saddoris
- Department of Microbiology and Immunology and Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University. 235 Hungerford Hill Road, Ithaca, NY, 14850-USA
| | - Luis M Schang
- Department of Microbiology and Immunology and Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University. 235 Hungerford Hill Road, Ithaca, NY, 14850-USA
| |
Collapse
|
2
|
Whisnant AW, Dyck Dionisi O, Salazar Sanchez V, Rappold JM, Djakovic L, Grothey A, Marante AL, Fischer P, Peng S, Wolf K, Hennig T, Dölken L. Herpes simplex virus 1 inhibits phosphorylation of RNA polymerase II CTD serine-7. J Virol 2024; 98:e0117824. [PMID: 39316591 PMCID: PMC11494995 DOI: 10.1128/jvi.01178-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/28/2024] [Indexed: 09/26/2024] Open
Abstract
Transcriptional activity of RNA polymerase II (Pol II) is influenced by post-translational modifications of the C-terminal domain (CTD) of the largest Pol II subunit, RPB1. Herpes simplex virus type 1 (HSV-1) usurps the cellular transcriptional machinery during lytic infection to efficiently express viral mRNA and shut down host gene expression. The viral immediate-early protein ICP22 interferes with serine 2 phosphorylation (pS2) by targeting CDK9 and other CDKs, but the full functional implications of this are not well understood. Using Western blotting, we report that HSV-1 also induces a loss of serine 7 phosphorylation (pS7) of the CTD during lytic infection, requiring expression of the two immediate-early proteins ICP22 and ICP27. ICP27 has also been proposed to target RPB1 for degradation, but we show that pS2/S7 loss precedes the drop in total protein levels. Cells with the RPB1 polyubiquitination site mutation K1268R, preventing proteasomal degradation during transcription-coupled DNA repair, displayed loss of pS2/S7 but retained higher overall RPB1 protein levels later in infection, indicating this pathway is not involved in early CTD dysregulation but may mediate bulk protein loss later. Using α-amanitin-resistant CTD mutants, we observed differential requirements for Ser2 and Ser7 for the production of viral proteins, with Ser2 facilitating viral immediate-early genes and Ser7 appearing dispensable. Despite dysregulation of CTD phosphorylation and different requirements for Ser2/7, all CTD modifications tested could be visualized in viral replication compartments with immunofluorescence. These data expand the known means that HSV employs to create pro-viral transcriptional environments at the expense of host responses.IMPORTANCECells rapidly induce changes in the transcription of RNA in response to stress and pathogens. Herpes simplex virus (HSV) disrupts many processes of host mRNA transcription, and it is necessary to separate the actions of viral proteins from cellular responses. Here, we demonstrate that viral proteins inhibit two key phosphorylation patterns on the C-terminal domain (CTD) of cellular RNA polymerase II and that this is separate from the degradation of polymerases later in infection. Furthermore, we show that viral genes do not require the full "CTD code." Together, these data distinguish multiple steps in the remodeling of RNA polymerase during infection and suggest that shared transcriptional phenotypes during stress responses do not revolve around a core disruption of CTD modifications.
Collapse
Affiliation(s)
- Adam W Whisnant
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
- Hannover Medical School, Institute of Virology, Hannover, Germany
| | - Oliver Dyck Dionisi
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Valeria Salazar Sanchez
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Julia M Rappold
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Lara Djakovic
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Arnhild Grothey
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
- Hannover Medical School, Institute of Virology, Hannover, Germany
| | - Ana Luiza Marante
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Patrick Fischer
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Shitao Peng
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Katharina Wolf
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Thomas Hennig
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
- Hannover Medical School, Institute of Virology, Hannover, Germany
| | - Lars Dölken
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
- Hannover Medical School, Institute of Virology, Hannover, Germany
| |
Collapse
|
3
|
Qi H, Yin M, Xiong F, Ren X, Chen K, Qin HB, Wang E, Chen G, Yang L, Liu LD, Zhang H, Cao X, Fraser NW, Luo MH, Zeng WB, Zhou J. ICP22-defined condensates mediate RNAPII deubiquitylation by UL36 and promote HSV-1 transcription. Cell Rep 2024; 43:114792. [PMID: 39383039 DOI: 10.1016/j.celrep.2024.114792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 07/29/2024] [Accepted: 09/07/2024] [Indexed: 10/11/2024] Open
Abstract
Herpes simplex virus type I (HSV-1) infection leads to RNA polymerase II (RNAPII) degradation and host transcription shutdown. We show that ICP22 defines the virus-induced chaperone-enriched (VICE) domain through liquid-liquid phase separation. Condensate-disrupting point mutations of ICP22 increase ubiquitin modification of RNAPII Ser-2P; reduce its level and occupancy on viral genes; impair viral gene expression, particularly late genes; and severely reduce viral titers. When proteasome activity is blocked, ubiquitinated RNAPII Ser-2P and the viral UL36 begin to accumulate in the ICP22 condensates. The ubiquitin-specific protease (USP) deubiquitinase domain of UL36 interacts with and erases ubiquitin modification from RNAPII Ser-2P, protecting it from degradation in infected cells. A virus carrying a catalytic mutant of the UL36 USP diminishes cellular RNAPII Ser-2P levels, viral transcription, and growth. Thus, ICP22 condensates are processing centers where RNAPII Ser-2P is recruited to be deubiquitinated to ensure viral transcription when host transcription is disrupted following infection.
Collapse
Affiliation(s)
- Hansong Qi
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Yunnan 650201, China
| | - Mengqiu Yin
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Yunnan 650201, China
| | - Feng Xiong
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xiaoli Ren
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Kangning Chen
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Yunnan 650201, China
| | - Hai-Bin Qin
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Erlin Wang
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Guijun Chen
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Liping Yang
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Long-Ding Liu
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming 650118, China
| | - Hui Zhang
- Department of Ophthalmology, The First Affiliated Hospital Kunming Medical University, Kunming 650032, China
| | - Xia Cao
- Key Laboratory of Second Affiliated Hospital of Kunming Medical University, Kunming 650000, China
| | - Nigel W Fraser
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Min-Hua Luo
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Wen-Bo Zeng
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Jumin Zhou
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming 650223, China.
| |
Collapse
|
4
|
Dunn LEM, Birkenheuer CH, Baines JD. A Revision of Herpes Simplex Virus Type 1 Transcription: First, Repress; Then, Express. Microorganisms 2024; 12:262. [PMID: 38399666 PMCID: PMC10892140 DOI: 10.3390/microorganisms12020262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
The herpes virus genome bears more than 80 strong transcriptional promoters. Upon entry into the host cell nucleus, these genes are transcribed in an orderly manner, producing five immediate-early (IE) gene products, including ICP0, ICP4, and ICP22, while non-IE genes are mostly silent. The IE gene products are necessary for the transcription of temporal classes following sequentially as early, leaky late, and true late. A recent analysis using precision nuclear run-on followed by deep sequencing (PRO-seq) has revealed an important step preceding all HSV-1 transcription. Specifically, the immediate-early proteins ICP4 and ICP0 enter the cell with the incoming genome to help preclude the nascent antisense, intergenic, and sense transcription of all viral genes. VP16, which is also delivered into the nucleus upon entry, almost immediately reverses this repression on IE genes. The resulting de novo expression of ICP4 and ICP22 further repress antisense, intergenic, and early and late viral gene transcription through different mechanisms before the sequential de-repression of these gene classes later in infection. This early repression, termed transient immediate-early protein-mediated repression (TIEMR), precludes unproductive, antisense, intergenic, and late gene transcription early in infection to ensure the efficient and orderly progression of the viral cascade.
Collapse
Affiliation(s)
- Laura E M Dunn
- Baker Institute for Animal Health, Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14850, USA
| | - Claire H Birkenheuer
- Baker Institute for Animal Health, Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14850, USA
| | - Joel D Baines
- Baker Institute for Animal Health, Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
5
|
Djakovic L, Hennig T, Reinisch K, Milić A, Whisnant AW, Wolf K, Weiß E, Haas T, Grothey A, Jürges CS, Kluge M, Wolf E, Erhard F, Friedel CC, Dölken L. The HSV-1 ICP22 protein selectively impairs histone repositioning upon Pol II transcription downstream of genes. Nat Commun 2023; 14:4591. [PMID: 37524699 PMCID: PMC10390501 DOI: 10.1038/s41467-023-40217-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 07/19/2023] [Indexed: 08/02/2023] Open
Abstract
Herpes simplex virus 1 (HSV-1) infection and stress responses disrupt transcription termination by RNA Polymerase II (Pol II). In HSV-1 infection, but not upon salt or heat stress, this is accompanied by a dramatic increase in chromatin accessibility downstream of genes. Here, we show that the HSV-1 immediate-early protein ICP22 is both necessary and sufficient to induce downstream open chromatin regions (dOCRs) when transcription termination is disrupted by the viral ICP27 protein. This is accompanied by a marked ICP22-dependent loss of histones downstream of affected genes consistent with impaired histone repositioning in the wake of Pol II. Efficient knock-down of the ICP22-interacting histone chaperone FACT is not sufficient to induce dOCRs in ΔICP22 infection but increases dOCR induction in wild-type HSV-1 infection. Interestingly, this is accompanied by a marked increase in chromatin accessibility within gene bodies. We propose a model in which allosteric changes in Pol II composition downstream of genes and ICP22-mediated interference with FACT activity explain the differential impairment of histone repositioning downstream of genes in the wake of Pol II in HSV-1 infection.
Collapse
Affiliation(s)
- Lara Djakovic
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Versbacher Straße 7, 97078, Würzburg, Germany
| | - Thomas Hennig
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Versbacher Straße 7, 97078, Würzburg, Germany
| | - Katharina Reinisch
- Institute of Informatics, Ludwig-Maximilians-Universität München, Amalienstr. 17, 80333, Munich, Germany
| | - Andrea Milić
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Versbacher Straße 7, 97078, Würzburg, Germany
| | - Adam W Whisnant
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Versbacher Straße 7, 97078, Würzburg, Germany
| | - Katharina Wolf
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Versbacher Straße 7, 97078, Würzburg, Germany
| | - Elena Weiß
- Institute of Informatics, Ludwig-Maximilians-Universität München, Amalienstr. 17, 80333, Munich, Germany
| | - Tobias Haas
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Versbacher Straße 7, 97078, Würzburg, Germany
| | - Arnhild Grothey
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Versbacher Straße 7, 97078, Würzburg, Germany
| | - Christopher S Jürges
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Versbacher Straße 7, 97078, Würzburg, Germany
| | - Michael Kluge
- Institute of Informatics, Ludwig-Maximilians-Universität München, Amalienstr. 17, 80333, Munich, Germany
| | - Elmar Wolf
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
- Mildred Scheel Early Career Center, University of Würzburg, Beethovenstraße 1A, 97080, Würzburg, Germany
| | - Florian Erhard
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Versbacher Straße 7, 97078, Würzburg, Germany
| | - Caroline C Friedel
- Institute of Informatics, Ludwig-Maximilians-Universität München, Amalienstr. 17, 80333, Munich, Germany.
| | - Lars Dölken
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Versbacher Straße 7, 97078, Würzburg, Germany.
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), 97080, Würzburg, Germany.
| |
Collapse
|
6
|
Wu Y, Tan S, He Q, Wang M, Chen S, Jia R, Yang Q, Zhu D, Liu M, Zhao X, Zhang S, Huang J, Ou X, Mao S, Gao Q, Sun D, Tian B, Cheng A. Deletion of Double Copies of the US1 Gene Reduces the Infectivity of Recombinant Duck Plague Virus In Vitro and In Vivo. Microbiol Spectr 2022; 10:e0114022. [PMID: 36377937 PMCID: PMC9784771 DOI: 10.1128/spectrum.01140-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Abstract
Duck plague caused by duck plague virus (DPV) is one of the main diseases that seriously endangers the production of waterfowl. DPV possesses a large genome consisting of 78 open reading frames (ORFs), and understanding the function and mechanism of each encoded protein in viral replication and pathogenesis is the key to controlling duck plague outbreaks. US1 is one of the two genes located in the repeat regions of the DPV genome, but the function of its encoded protein in DPV replication and pathogenesis remains unclear. Previous studies found that the US1 gene or its homologs exist in almost all alphaherpesviruses, but the loci, functions, and pathogenesis of their encoded proteins vary among different viruses. Here, we aimed to define the roles of US1 genes in DPV infection and pathogenesis by generating a double US1 gene deletion mutant and its revertant without any mini-F cassette retention. In vitro and in vivo studies found that deletion of both copies of the US1 gene significantly impaired the replication, gene expression, and virulence of DPV, which could represent a potential candidate vaccine strain for the prevention of duck plague. IMPORTANCE Duck plague virus contains nearly 80 genes, but the functions and mechanisms of most of the genes have not yet been elucidated, including those of the newly identified immediate early gene US1. Here, we found that US1 deletion reduces viral gene expression, replication, and virus production both in vitro and in vivo. This insight defines a fundamental role of the US1 gene in DPV infection and indicates its involvement in DPV transcription. These results provide clues for the study of the pathogenesis of the US1 gene and the development of attenuated vaccines targeting this gene.
Collapse
Affiliation(s)
- Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Silun Tan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Qing He
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Dekang Zhu
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| |
Collapse
|
7
|
Zhou L, Cheng A, Wang M, Wu Y, Yang Q, Tian B, Ou X, Sun D, Zhang S, Mao S, Zhao XX, Huang J, Gao Q, Zhu D, Jia R, Liu M, Chen S. Mechanism of herpesvirus protein kinase UL13 in immune escape and viral replication. Front Immunol 2022; 13:1088690. [PMID: 36531988 PMCID: PMC9749954 DOI: 10.3389/fimmu.2022.1088690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/15/2022] [Indexed: 12/05/2022] Open
Abstract
Upon infection, the herpes viruses create a cellular environment suitable for survival, but innate immunity plays a vital role in cellular resistance to viral infection. The UL13 protein of herpesviruses is conserved among all herpesviruses and is a serine/threonine protein kinase, which plays a vital role in escaping innate immunity and promoting viral replication. On the one hand, it can target various immune signaling pathways in vivo, such as the cGAS-STING pathway and the NF-κB pathway. On the other hand, it phosphorylates regulatory many cellular and viral proteins for promoting the lytic cycle. This paper reviews the research progress of the conserved herpesvirus protein kinase UL13 in immune escape and viral replication to provide a basis for elucidating the pathogenic mechanism of herpesviruses, as well as providing insights into the potential means of immune escape and viral replication of other herpesviruses that have not yet resolved the function of it.
Collapse
Affiliation(s)
- Lin Zhou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,*Correspondence: Mingshu Wang,
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xin-Xin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Abstract
To determine the role of ICP22 in transcription, we performed precise nuclear run-on followed by deep sequencing (PRO-seq) and global nuclear run-on with sequencing (GRO-seq) in cells infected with a viral mutant lacking the entire ICP22-encoding α22 (US1/US1.5) gene and a virus derived from this mutant bearing a restored α22 gene. At 3 h postinfection (hpi), the lack of ICP22 reduced RNA polymerase (Pol) promoter proximal pausing (PPP) on the immediate early α4, α0, and α27 genes. Diminished PPP at these sites accompanied increased Pol processivity across the entire herpes simplex virus 1 (HSV-1) genome in GRO-seq assays, resulting in substantial increases in antisense and intergenic transcription. The diminished PPP on α gene promoters at 3 hpi was distinguishable from effects caused by treatment with a viral DNA polymerase inhibitor at this time. The ICP22 mutant had multiple defects at 6 hpi, including lower viral DNA replication, reduced Pol activity on viral genes, and increased Pol activity on cellular genes. The lack of ICP22 also increased PPP release from most cellular genes, while a minority of cellular genes exhibited decreased PPP release. Taken together, these data indicate that ICP22 acts to negatively regulate transcriptional elongation on viral genes in part to limit antisense and intergenic transcription on the highly compact viral genome. This regulatory function directly or indirectly helps to retain Pol activity on the viral genome later in infection. IMPORTANCE The longstanding observation that ICP22 reduces RNA polymerase II (Pol II) serine 2 phosphorylation, which initiates transcriptional elongation, is puzzling because this phosphorylation is essential for viral replication. The current study helps explain this apparent paradox because it demonstrates significant advantages in negatively regulating transcriptional elongation, including the reduction of antisense and intergenic transcription. Delays in elongation would be expected to facilitate the ordered assembly and functions of transcriptional initiation, elongation, and termination complexes. Such limiting functions are likely to be important in herpesvirus genomes that are otherwise highly transcriptionally active and compact, comprising mostly short, intronless genes near neighboring genes of opposite sense and containing numerous 3'-nested sets of genes that share transcriptional termination signals but differ at transcriptional start sites on the same template strand.
Collapse
|
9
|
He Q, Wu Y, Wang M, Chen S, Jia R, Yang Q, Zhu D, Liu M, Zhao X, Zhang S, Huang J, Ou X, Mao S, Gao Q, Sun D, Tian B, Cheng A. ICP22/IE63 Mediated Transcriptional Regulation and Immune Evasion: Two Important Survival Strategies for Alphaherpesviruses. Front Immunol 2021; 12:743466. [PMID: 34925320 PMCID: PMC8674840 DOI: 10.3389/fimmu.2021.743466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
In the process of infecting the host, alphaherpesviruses have derived a series of adaptation and survival strategies, such as latent infection, autophagy and immune evasion, to survive in the host environment. Infected cell protein 22 (ICP22) or its homologue immediate early protein 63 (IE63) is a posttranslationally modified multifunctional viral regulatory protein encoded by all alphaherpesviruses. In addition to playing an important role in the efficient use of host cell RNA polymerase II, it also plays an important role in the defense process of the virus overcoming the host immune system. These two effects of ICP22/IE63 are important survival strategies for alphaherpesviruses. In this review, we summarize the complex mechanism by which the ICP22 protein regulates the transcription of alphaherpesviruses and their host genes and the mechanism by which ICP22/IE63 participates in immune escape. Reviewing these mechanisms will also help us understand the pathogenesis of alphaherpesvirus infections and provide new strategies to combat these viral infections.
Collapse
Affiliation(s)
- Qing He
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
10
|
Isa NF, Bensaude O, Aziz NC, Murphy S. HSV-1 ICP22 Is a Selective Viral Repressor of Cellular RNA Polymerase II-Mediated Transcription Elongation. Vaccines (Basel) 2021; 9:1054. [PMID: 34696162 PMCID: PMC8539892 DOI: 10.3390/vaccines9101054] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022] Open
Abstract
The Herpes Simplex Virus (HSV-1) immediate-early protein ICP22 interacts with cellular proteins to inhibit host cell gene expression and promote viral gene expression. ICP22 inhibits phosphorylation of Ser2 of the RNA polymerase II (pol II) carboxyl-terminal domain (CTD) and productive elongation of pol II. Here we show that ICP22 affects elongation of pol II through both the early-elongation checkpoint and the poly(A)-associated elongation checkpoint of a protein-coding gene model. Coimmunoprecipitation assays using tagged ICP22 expressed in human cells and pulldown assays with recombinant ICP22 in vitro coupled with mass spectrometry identify transcription elongation factors, including P-TEFb, additional CTD kinases and the FACT complex as interacting cellular factors. Using a photoreactive amino acid incorporated into ICP22, we found that L191, Y230 and C225 crosslink to both subunits of the FACT complex in cells. Our findings indicate that ICP22 interacts with critical elongation regulators to inhibit transcription elongation of cellular genes, which may be vital for HSV-1 pathogenesis. We also show that the HSV viral activator, VP16, has a region of structural similarity to the ICP22 region that interacts with elongation factors, suggesting a model where VP16 competes with ICP22 to deliver elongation factors to viral genes.
Collapse
Affiliation(s)
- Nur Firdaus Isa
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
- Research Unit for Bioinformatics and Computational Biology, Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia;
| | - Olivier Bensaude
- Ecole Normale Supérieure, Institut de Biologie de l’Ecole Normale Supérieure, PSL Research University, CNRS UMR 8197, INSERM U 1024, F-75005 Paris, France;
| | - Nadiah C. Aziz
- Research Unit for Bioinformatics and Computational Biology, Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia;
| | - Shona Murphy
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| |
Collapse
|
11
|
Hennig T, Djakovic L, Dölken L, Whisnant AW. A Review of the Multipronged Attack of Herpes Simplex Virus 1 on the Host Transcriptional Machinery. Viruses 2021; 13:1836. [PMID: 34578417 PMCID: PMC8473234 DOI: 10.3390/v13091836] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 12/31/2022] Open
Abstract
During lytic infection, herpes simplex virus (HSV) 1 induces a rapid shutoff of host RNA synthesis while redirecting transcriptional machinery to viral genes. In addition to being a major human pathogen, there is burgeoning clinical interest in HSV as a vector in gene delivery and oncolytic therapies, necessitating research into transcriptional control. This review summarizes the array of impacts that HSV has on RNA Polymerase (Pol) II, which transcribes all mRNA in infected cells. We discuss alterations in Pol II holoenzymes, post-translational modifications, and how viral proteins regulate specific activities such as promoter-proximal pausing, splicing, histone repositioning, and termination with respect to host genes. Recent technological innovations that have reshaped our understanding of previous observations are summarized in detail, along with specific research directions and technical considerations for future studies.
Collapse
Affiliation(s)
- Thomas Hennig
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, 97078 Würzburg, Germany; (T.H.); (L.D.)
| | - Lara Djakovic
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, 97078 Würzburg, Germany; (T.H.); (L.D.)
| | - Lars Dölken
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, 97078 Würzburg, Germany; (T.H.); (L.D.)
- Helmholtz Center for Infection Research (HZI), Helmholtz Institute for RNA-Based Infection Research (HIRI), 97080 Würzburg, Germany
| | - Adam W. Whisnant
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, 97078 Würzburg, Germany; (T.H.); (L.D.)
| |
Collapse
|
12
|
The herpes simplex virus 1 protein ICP4 acts as both an activator and repressor of host genome transcription during infection. Mol Cell Biol 2021; 41:e0017121. [PMID: 34251885 DOI: 10.1128/mcb.00171-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection by herpes simplex virus 1 (HSV-1) impacts nearly all steps of host cell gene expression. The regulatory mechanisms by which this occurs, and the interplay between host and viral factors, have yet to be fully elucidated. We investigated how the occupancy of RNA polymerase II (Pol II) on the host genome changes during HSV-1 infection and is impacted by the viral immediate early protein ICP4. Pol II ChIP-seq experiments revealed ICP4-dependent decreases and increases in Pol II levels across the bodies of hundreds of genes. Our data suggest ICP4 represses host transcription by inhibiting recruitment of Pol II and activates host genes by promoting release of Pol II from promoter proximal pausing into productive elongation. Consistent with this, ICP4 was required for the decrease in levels of the pausing factor NELF-A on several HSV-1 activated genes after infection. In the absence of infection, exogenous expression of ICP4 activated, but did not repress, transcription of some genes in a chromatin-dependent context. Our data support the model that ICP4 decreases promoter proximal pausing on host genes activated by infection, and ICP4 is necessary, but not sufficient, to repress transcription of host genes during viral infection.
Collapse
|
13
|
Wu Y, Yang Q, Wang M, Chen S, Jia R, Yang Q, Zhu D, Liu M, Zhao X, Zhang S, Huang J, Ou X, Mao S, Gao Q, Sun D, Tian B, Cheng A. Multifaceted Roles of ICP22/ORF63 Proteins in the Life Cycle of Human Herpesviruses. Front Microbiol 2021; 12:668461. [PMID: 34163446 PMCID: PMC8215345 DOI: 10.3389/fmicb.2021.668461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/05/2021] [Indexed: 01/03/2023] Open
Abstract
Herpesviruses are extremely successful parasites that have evolved over millions of years to develop a variety of mechanisms to coexist with their hosts and to maintain host-to-host transmission and lifelong infection by regulating their life cycles. The life cycle of herpesviruses consists of two phases: lytic infection and latent infection. During lytic infection, active replication and the production of numerous progeny virions occur. Subsequent suppression of the host immune response leads to a lifetime latent infection of the host. During latent infection, the viral genome remains in an inactive state in the host cell to avoid host immune surveillance, but the virus can be reactivated and reenter the lytic cycle. The balance between these two phases of the herpesvirus life cycle is controlled by broad interactions among numerous viral and cellular factors. ICP22/ORF63 proteins are among these factors and are involved in transcription, nuclear budding, latency establishment, and reactivation. In this review, we summarized the various roles and complex mechanisms by which ICP22/ORF63 proteins regulate the life cycle of human herpesviruses and the complex relationships among host and viral factors. Elucidating the role and mechanism of ICP22/ORF63 in virus-host interactions will deepen our understanding of the viral life cycle. In addition, it will also help us to understand the pathogenesis of herpesvirus infections and provide new strategies for combating these infections.
Collapse
Affiliation(s)
- Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qiqi Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
14
|
Inhibition of the Super Elongation Complex Suppresses Herpes Simplex Virus Immediate Early Gene Expression, Lytic Infection, and Reactivation from Latency. mBio 2020; 11:mBio.01216-20. [PMID: 32518191 PMCID: PMC7373197 DOI: 10.1128/mbio.01216-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
HSV infections can cause pathologies ranging from recurrent lesions to significant ocular disease. Initiation of lytic infection and reactivation from latency in sensory neurons are dependent on the induced expression of the viral immediate early genes. Transcription of these genes is controlled at multiple levels, including modulation of the chromatin state of the viral genome and appropriate recruitment of transcription factors and coactivators. Following initiation of transcription, IE genes are subject to a key regulatory stage in which transcriptional elongation rates are controlled by the activity of the super elongation complex. Inhibition of the SEC blocks both lytic infection and reactivation from latency in sensory neurons. In addition to providing insights into the mechanisms controlling viral infection and reactivation, inhibitors of critical components such as the SEC may represent novel antivirals. Induction of herpes simplex virus (HSV) immediate early (IE) gene transcription promotes the initiation of lytic infection and reactivation from latency in sensory neurons. IE genes are transcribed by the cellular RNA polymerase II (RNAPII) and regulated by multiple transcription factors and coactivators. The HCF-1 cellular coactivator plays a central role in driving IE expression at multiple stages through interactions with transcription factors, chromatin modulation complexes, and transcription elongation components, including the active super elongation complex/P-TEFb (SEC-P-TEFb). Here, we demonstrate that the SEC occupies the promoters of HSV IE genes during the initiation of lytic infection and during reactivation from latency. Specific inhibitors of the SEC suppress viral IE expression and block the spread of HSV infection. Significantly, these inhibitors also block the initiation of viral reactivation from latency in sensory ganglia. The potent suppression of IE gene expression by SEC inhibitors indicates that transcriptional elongation represents a determining rate-limiting stage in HSV IE gene transcription and that the SEC plays a critical role in driving productive elongation during both phases of the viral life cycle. Most importantly, this supports the model that signal-mediated induction of SEC-P-TEFb levels can promote reactivation of a population of poised latent genomes.
Collapse
|
15
|
Abstract
Herpes simplex virus 1 (HSV-1) genes are transcribed by cellular RNA polymerase II (RNA Pol II). While four viral immediate early proteins (ICP4, ICP0, ICP27, and ICP22) function in some capacity in viral transcription, the mechanism by which ICP22 functions remains unclear. We observed that the FACT complex (comprised of SSRP1 and Spt16) was relocalized in infected cells as a function of ICP22. ICP22 was also required for the association of FACT and the transcription elongation factors SPT5 and SPT6 with viral genomes. We further demonstrated that the FACT complex interacts with ICP22 throughout infection. We therefore hypothesized that ICP22 recruits cellular transcription elongation factors to viral genomes for efficient transcription elongation of viral genes. We reevaluated the phenotype of an ICP22 mutant virus by determining the abundance of all viral mRNAs throughout infection by transcriptome sequencing (RNA-seq). The accumulation of almost all viral mRNAs late in infection was reduced compared to the wild type, regardless of kinetic class. Using chromatin immunoprecipitation sequencing (ChIP-seq), we mapped the location of RNA Pol II on viral genes and found that RNA Pol II levels on the bodies of viral genes were reduced in the ICP22 mutant compared to wild-type virus. In contrast, the association of RNA Pol II with transcription start sites in the mutant was not reduced. Taken together, our results indicate that ICP22 plays a role in recruiting elongation factors like the FACT complex to the HSV-1 genome to allow for efficient viral transcription elongation late in viral infection and ultimately infectious virion production. HSV-1 interacts with many cellular proteins throughout productive infection. Here, we demonstrate the interaction of a viral protein, ICP22, with a subset of cellular proteins known to be involved in transcription elongation. We determined that ICP22 is required to recruit the FACT complex and other transcription elongation factors to viral genomes and that in the absence of ICP22 viral transcription is globally reduced late in productive infection, due to an elongation defect. This insight defines a fundamental role of ICP22 in HSV-1 infection and elucidates the involvement of cellular factors in HSV-1 transcription.
Collapse
|
16
|
Ren K, Zhang W, Chen X, Ma Y, Dai Y, Fan Y, Hou Y, Tan RX, Li E. An Epigenetic Compound Library Screen Identifies BET Inhibitors That Promote HSV-1 and -2 Replication by Bridging P-TEFb to Viral Gene Promoters through BRD4. PLoS Pathog 2016; 12:e1005950. [PMID: 27764245 PMCID: PMC5072739 DOI: 10.1371/journal.ppat.1005950] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/22/2016] [Indexed: 12/22/2022] Open
Abstract
The human HSV-1 and -2 are common pathogens of human diseases. Both host and viral factors are involved in HSV lytic infection, although detailed mechanisms remain elusive. By screening a chemical library of epigenetic regulation, we identified bromodomain-containing protein 4 (BRD4) as a critical player in HSV infection. We show that treatment with pan BD domain inhibitor enhanced both HSV infection. Using JQ1 as a probe, we found that JQ1, a defined BD1 inhibitor, acts through BRD4 protein since knockdown of BRD4 expression ablated JQ1 effect on HSV infection. BRD4 regulates HSV replication through complex formation involving CDK9 and RNAP II; whereas, JQ1 promotes HSV-1 infection by allocating the complex to HSV gene promoters. Therefore, suppression of BRD4 expression or inhibition of CDK9 activity impeded HSV infection. Our data support a model that JQ1 enhances HSV infection by switching BRD4 to transcription regulation of viral gene expression from chromatin targeting since transient expression of BRD4 BD1 or BD1/2 domain had similar effect to that by JQ1 treatment. In addition to the identification that BRD4 is a modulator for JQ1 action on HSV infection, this study demonstrates BRD4 has an essential role in HSV infection.
Collapse
Affiliation(s)
- Ke Ren
- Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
- Jiangsu Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Wei Zhang
- Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
- Jiangsu Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Xiaoqing Chen
- The Hoffmann Institute of Immunology, Guangzhou Medical University, Guangzhou, China
| | - Yingyu Ma
- Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
- Jiangsu Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Yue Dai
- Jiangsu Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Yimei Fan
- Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Yayi Hou
- Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Ren Xiang Tan
- Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
- Jiangsu Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
- Nanjing University of Chinese Medicine, Nanjing, China
- * E-mail: ;
| | - Erguang Li
- Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
- Jiangsu Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
- * E-mail: ;
| |
Collapse
|
17
|
Shutoff of Host Gene Expression in Influenza A Virus and Herpesviruses: Similar Mechanisms and Common Themes. Viruses 2016; 8:102. [PMID: 27092522 PMCID: PMC4848596 DOI: 10.3390/v8040102] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/04/2016] [Accepted: 04/09/2016] [Indexed: 12/14/2022] Open
Abstract
The ability to shut off host gene expression is a shared feature of many viral infections, and it is thought to promote viral replication by freeing host cell machinery and blocking immune responses. Despite the molecular differences between viruses, an emerging theme in the study of host shutoff is that divergent viruses use similar mechanisms to enact host shutoff. Moreover, even viruses that encode few proteins often have multiple mechanisms to affect host gene expression, and we are only starting to understand how these mechanisms are integrated. In this review we discuss the multiplicity of host shutoff mechanisms used by the orthomyxovirus influenza A virus and members of the alpha- and gamma-herpesvirus subfamilies. We highlight the surprising similarities in their mechanisms of host shutoff and discuss how the different mechanisms they use may play a coordinated role in gene regulation.
Collapse
|
18
|
The Smad3/Smad4/CDK9 complex promotes renal fibrosis in mice with unilateral ureteral obstruction. Kidney Int 2015. [DOI: 10.1038/ki.2015.235] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Yoon WJ, Islam R, Cho YD, Ryu KM, Shin HR, Woo KM, Baek JH, Ryoo HM. Pin1 plays a critical role as a molecular switch in canonical BMP signaling. J Cell Physiol 2015; 230:640-7. [PMID: 25187260 DOI: 10.1002/jcp.24787] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 08/29/2014] [Indexed: 12/30/2022]
Abstract
Pin1 is a peptidyl prolyl cis-trans isomerase that specifically binds to the phosphoserine-proline or phosphothreonine-proline motifs of numerous proteins. Previously, we reported that Pin1 deficiency resulted in defects in osteoblast differentiation during early bone development. In this study, we found that adult Pin1-deficient mice developed osteoporotic phenotypes compared to age-matched controls. Since BMP2 stored in the bone matrix plays a critical role in adult bone maintenance, we suspected that BMP R-Smads (Smad1 and Smad5) could be critical targets for Pin1 action. Pin1 specifically binds to the phosphorylated linker region of Smad1, which leads to structural modification and stabilization of the Smad1 protein. In this process, Pin1-mediated conformational modification of Smad1 directly suppresses the Smurf1 interaction with Smad1, thereby promoting sustained activation of the Smad1 molecule. Our data demonstrate that post-phosphorylational prolyl isomerization of Smad1 is a converging signal to stabilize the Smad1 molecule against the ubiquitination process mediated by Smurf1. Therefore, Pin1 is a critical molecular switch in the determination of Smad1 fate, opposing the death signal transmitted to the Smad1 linker region by phosphorylation cascades after its nuclear localization and transcriptional activation. Thus, Pin1 could be developed as a major therapeutic target in many skeletal diseases.
Collapse
Affiliation(s)
- Won-Joon Yoon
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Zaborowska J, Baumli S, Laitem C, O'Reilly D, Thomas PH, O'Hare P, Murphy S. Herpes Simplex Virus 1 (HSV-1) ICP22 protein directly interacts with cyclin-dependent kinase (CDK)9 to inhibit RNA polymerase II transcription elongation. PLoS One 2014; 9:e107654. [PMID: 25233083 PMCID: PMC4169428 DOI: 10.1371/journal.pone.0107654] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 08/13/2014] [Indexed: 11/18/2022] Open
Abstract
The Herpes Simplex Virus 1 (HSV-1)-encoded ICP22 protein plays an important role in viral infection and affects expression of host cell genes. ICP22 is known to reduce the global level of serine (Ser)2 phosphorylation of the Tyr1Ser2Pro3Thr4Ser5Pro6Ser7 heptapeptide repeats comprising the carboxy-terminal domain (CTD) of the large subunit of RNA polymerase (pol) II. Accordingly, ICP22 is thought to associate with and inhibit the activity of the positive-transcription elongation factor b (P-TEFb) pol II CTD Ser2 kinase. We show here that ICP22 causes loss of CTD Ser2 phosphorylation from pol II engaged in transcription of protein-coding genes following ectopic expression in HeLa cells and that recombinant ICP22 interacts with the CDK9 subunit of recombinant P-TEFb. ICP22 also interacts with pol II in vitro. Residues 193 to 256 of ICP22 are sufficient for interaction with CDK9 and inhibition of pol II CTD Ser2 phosphorylation but do not interact with pol II. These results indicate that discrete regions of ICP22 interact with either CDK9 or pol II and that ICP22 interacts directly with CDK9 to inhibit expression of host cell genes.
Collapse
Affiliation(s)
- Justyna Zaborowska
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Sonja Baumli
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Clelia Laitem
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Dawn O'Reilly
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Peter H. Thomas
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Peter O'Hare
- Section of Virology, Faculty of Medicine, Imperial College, St Mary's Medical School, London, United Kingdom
| | - Shona Murphy
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
21
|
Role of herpes simplex virus 1 immediate early protein ICP22 in viral nuclear egress. J Virol 2014; 88:7445-54. [PMID: 24741100 DOI: 10.1128/jvi.01057-14] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED In order to investigate the novel function(s) of the herpes simplex virus 1 (HSV-1) immediate early protein ICP22, we screened for ICP22-binding proteins in HSV-1-infected cells. Our results were as follows. (i) Tandem affinity purification of ICP22 from infected cells, coupled with mass spectrometry-based proteomics and subsequent analyses, demonstrates that ICP22 forms a complex(es) with the HSV-1 proteins UL31, UL34, UL47 (or VP13/14), and/or Us3. All these proteins were previously reported to be important for viral egress through the nuclear membrane. (ii) ICP22 colocalizes with UL31 and UL34 at the nuclear membrane in wild-type HSV-1-infected cells. (iii) The UL31-null mutation prevents the targeting of ICP22 to the nuclear membrane. (iv) The ICP22-null mutation resulted in UL31 and UL34 being mislocalized in the endoplasmic reticulum (in addition to the nuclear membrane) and significantly reduced numbers of primary enveloped virions in the perinuclear space, although capsids accumulated in the nuclei. Collectively, these results suggest that (i) ICP22 interacts with HSV-1 regulators of nuclear egress, including UL31, UL34, UL47, and Us3 in HSV-1-infected cells; (ii) UL31 mediates the recruitment and anchorage of ICP22 at the nuclear membrane; and (iii) ICP22 plays a regulatory role in HSV-1 primary envelopment, probably by interacting with and regulating UL31 and UL34. Here we report a previously unknown function for ICP22 in the regulation of HSV-1 nuclear egress. IMPORTANCE The herpes simplex virus 1 (HSV-1) immediate early protein ICP22 is recognized primarily as a regulator of viral gene expression. In this study, we show that ICP22 interacts with the HSV-1 proteins UL31 and UL34, which play crucial roles at the nuclear membrane in HSV-1 primary envelopment during viral nuclear egress. We also demonstrate that UL31 is required for the targeting of ICP22 to the nuclear membrane and that ICP22 is required for the correct localization of UL31 and/or UL34. Furthermore, we confirm that ICP22 is required for efficient HSV-1 primary envelopment during viral nuclear egress. Thus, we report, for the first time, that ICP22 plays a regulatory role in HSV-1 nuclear egress.
Collapse
|
22
|
Ou M, Sandri-Goldin RM. Inhibition of cdk9 during herpes simplex virus 1 infection impedes viral transcription. PLoS One 2013; 8:e79007. [PMID: 24205359 PMCID: PMC3799718 DOI: 10.1371/journal.pone.0079007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 09/26/2013] [Indexed: 01/01/2023] Open
Abstract
During herpes simplex virus 1 (HSV-1) infection there is a loss of the serine-2 phosphorylated form of RNA polymerase II (RNAP II) found in elongation complexes. This occurs in part because RNAP II undergoes ubiquitination and proteasomal degradation during times of highly active viral transcription, which may result from stalled elongating complexes. In addition, a viral protein, ICP22, was reported to trigger a loss of serine-2 RNAP II. These findings have led to some speculation that the serine-2 phosphorylated form of RNAP II may not be required for HSV-1 transcription, although this form is required for cellular transcription elongation and RNA processing. Cellular kinase cdk9 phosphorylates serine-2 in the C-terminal domain (CTD) of RNAP II. To determine if serine-2 phosphorylated RNAP II is required for HSV-1 transcription, we inhibited cdk9 during HSV-1 infection and measured viral gene expression. Inhibition was achieved by adding cdk9 inhibitors 5,6-dichlorobenzimidazone-1-β-D-ribofuranoside (DRB) or flavopiridol (FVP) or by expression of a dominant–negative cdk9 or HEXIM1, which in conjunction with 7SK snRNA inhibits cdk9 in complex with cyclin 1. Here we report that inhibition of cdk9 resulted in decreased viral yields and levels of late proteins, poor formation of viral transcription-replication compartments, reduced levels of poly(A)+ mRNA and decreased RNA synthesis as measured by uptake of 5-bromouridine into nascent RNA. Importantly, a global reduction in viral mRNAs was seen as determined by microarray analysis. We conclude that serine-2 phosphorylation of the CTD of RNAP II is required for HSV-1 transcription.
Collapse
Affiliation(s)
- Mark Ou
- Department of Microbiology and Molecular Genetics, University of California, Irvine, California, United States of America
| | - Rozanne M. Sandri-Goldin
- Department of Microbiology and Molecular Genetics, University of California, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
23
|
Herpes simplex virus 1 ICP22 but not US 1.5 is required for efficient acute replication in mice and VICE domain formation. J Virol 2013; 87:13510-9. [PMID: 24089574 DOI: 10.1128/jvi.02424-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The herpes simplex virus 1 (HSV-1) immediate-early protein, infected cell protein 22 (ICP22), is required for efficient replication in restrictive cells, for virus-induced chaperone-enriched (VICE) domain formation, and for normal expression of a subset of viral late proteins. Additionally, ICP22 is important for optimal acute viral replication in vivo. Previous studies have shown that the US1 gene that encodes ICP22, produces an in-frame, N-terminally truncated form of ICP22, known as US1.5. To date, studies conducted to characterize the functions of ICP22 have not separated its functions from those of US1.5. To determine the individual roles of ICP22 and US1.5, we made viral mutants that express either ICP22 with an M90A mutation in the US1.5 initiation codon (M90A) or US1.5 with three stop codons introduced upstream of the US1.5 start codon (3×stop). Our studies showed that, in contrast to M90A, 3×stop was unable to replicate efficiently in the eyes and trigeminal ganglia of mice during acute infection, to efficiently establish a latent infection, or to induce VICE domain formation and was only mildly reduced in its replication in restrictive HEL-299 cells and murine embryonic fibroblasts (MEFs). Both mutants enhanced the expression of the late viral proteins virion host shutoff (vhs) and glycoprotein C (gC) and inhibited viral gene expression mediated by HSV-1 infected cell protein 0 (ICP0). When we tested our mutants' sensitivity to type I interferon (beta interferon [IFN-β]) in restrictive cells, we noticed that the plating of the ICP22 null (d22) and 3×stop mutants was reduced by the addition of IFN-β. Overall, our data suggest that US1.5 partially complements the functions of ICP22.
Collapse
|
24
|
Rice SA, Davido DJ. HSV-1 ICP22: hijacking host nuclear functions to enhance viral infection. Future Microbiol 2013; 8:311-21. [PMID: 23464370 DOI: 10.2217/fmb.13.4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
During its productive infection, HSV-1 dramatically remodels the architecture and physiology of the host cell nucleus. The immediate-early proteins, the first viral proteins to be expressed during infection, are key players in this process. Here, we review the known properties and functions of immediate-early protein ICP22. Although this polypeptide has received less attention than other immediate-early proteins, the published evidence indicates that it mediates several striking changes to important host nuclear systems, including those involved in RNA polymerase II transcription, cell cycle regulation and protein quality control. Recent genetic analyses suggest that these alterations can promote HSV-1 productive infection. Thus, future work on ICP22 is likely to reveal novel mechanisms by which herpesviruses, and possibly other DNA viruses, manipulate the host cell nucleus to enhance their replication.
Collapse
Affiliation(s)
- Stephen A Rice
- Department of Microbiology, University of Minnesota, MMC 196, 420 Delaware Avenue S, Minneapolis, MN 55455, USA.
| | | |
Collapse
|
25
|
Abstract
p53 is a critical factor in the cellular response to a broad range of stress factors through its ability to regulate various cellular pathways. In this study, tandem affinity purification of transiently expressed herpes simplex virus 1 (HSV-1) regulatory protein ICP22 coupled with mass spectrometry-based proteomics technology and subsequent analyses showed that ICP22 interacted with p53 in HSV-1-infected cells. In p53(-/-) cells, replication of wild-type HSV-1 was reduced compared to that in parental p53(+/+) cells, indicating that p53 had a positive effect on HSV-1 replication. In contrast, the levels of viral replication of an ICP22-null mutant virus were similar in both p53(-/-) and p53(+/+) cells. At 2 h postinfection, the level of expression of ICP27, an essential viral regulatory protein, in p53(-/-) cells infected with wild-type HSV-1 or the ICP22-null mutant virus was lower than in p53(+/+) cells. In contrast, at 18 h postinfection, the level of expression of ICP0, a critical viral regulatory protein, in p53(-/-) cells infected with the ICP22-null mutant virus was higher than in p53(+/+) cells, although the levels of ICP0 expression in p53(-/-) and p53(+/+) cells infected with wild-type HSV-1 were almost identical. These results suggested that p53 overall promoted HSV-1 replication and that p53 played both positive and negative roles in HSV-1 replication: upregulating ICP27 expression very early in infection and downregulating ICP0 expression later in infection, which was antagonized by ICP22.
Collapse
|
26
|
Guo L, Wu WJ, Liu LD, Wang LC, Zhang Y, Wu LQ, Guan Y, Li QH. Herpes simplex virus 1 ICP22 inhibits the transcription of viral gene promoters by binding to and blocking the recruitment of P-TEFb. PLoS One 2012; 7:e45749. [PMID: 23029222 PMCID: PMC3454370 DOI: 10.1371/journal.pone.0045749] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 08/24/2012] [Indexed: 11/18/2022] Open
Abstract
ICP22 is a multifunctional herpes simplex virus 1 (HSV-1) immediate early protein that functions as a general repressor of a subset of cellular and viral promoters in transient expression systems. Although the exact mechanism of repression remains unclear, this protein induces a decrease in RNA polymerase II Serine 2 (RNAPII Ser-2) phosphorylation, which is critical for transcription elongation. To characterize the mechanism of transcriptional repression by ICP22, we established an in vivo transient expression reporter system. We found that ICP22 inhibits transcription of the HSV-1 α, β and γ gene promoters. The viral tegument protein VP16, which plays vital roles in initiation of viral gene expression and viral proliferation, can overcome the inhibitory effect of ICP22 on α-gene transcription. Further immunoprecipitation studies indicated that both ICP22 and VP16 bind to positive transcription elongation factor b (P-TEFb) and form a complex with it in vivo. We extended this to show that P-TEFb regulates transcription of the viral α-gene promoters and affects transcriptional regulation of ICP22 and VP16 on the α-genes. Additionally, ChIP assays demonstrated that ICP22 blocks the recruitment of P-TEFb to the viral promoters, while VP16 reverses this blocking effect by recruiting P-TEFb to the viral α-gene promoters through recognition of the TAATGARAT motif. Taken together, our results suggest that ICP22 interacts with and blocks the recruitment of P-TEFb to viral promoter regions, which inhibits transcription of the viral gene promoters. The transactivator VP16 binds to and induces the recruitment of P-TEFb to viral α-gene promoters, which counteracts the transcriptional repression of ICP22 on α-genes by recruiting p-TEFb to the promoter region.
Collapse
Affiliation(s)
- Lei Guo
- Institute of Medical Biology, Chinese Academy of Medicine Science, Peking Union Medical College, Kunming, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Zhou Q, Zhu M, Zhang H, Yi T, Klena JD, Peng Y. Disruption of the p53-p21 pathway inhibits efficiency of the lytic-replication cycle of herpes simplex virus type 2 (HSV-2). Virus Res 2012; 169:91-7. [PMID: 22820403 DOI: 10.1016/j.virusres.2012.07.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 07/11/2012] [Accepted: 07/12/2012] [Indexed: 11/26/2022]
Abstract
Cellular p53 and its downstream mediator p21, the major cellular growth suppression and DNA repair markers, have recently been implicated in viral amplification. Here, we show that herpes simplex virus type 2 (HSV-2) infection of both HCT116 p53(+/+)and NIH3T3 cells resulted in sustained increases of p21. HSV-2 infection did not increase cellular p53 expression, but led to phosphorylation of this protein at Ser20. This phosphorylation was accompanied by the increase of p21 protein levels. Furthermore, specific knockdown of endogenous p21 by siRNAs severely impaired virus production represented by HSV envelope glycoprotein B (gB) expression and progeny virus titers. Disruption of the p53-p21 pathway by either knocking down p53 in HCT116 p53(+/+) and NIH3T3 cells or using p53-deficient HCT116 p53(-/-) cells, led to a significant reduction of HSV-2 production. Together, these results suggest that the p53-p21 pathway is required for efficient HSV-2 lytic replication cycle. Because HSV infection induces the G0/G1 phase arrest at the early step of lytic-replication cycle, we propose that HSV-2 might hijack the cellular p53-p21 pathway to arrest the host cell cycle at G0/G1 phase, blocking cellular DNA synthesis, for its own benefit, i.e., to favor its own viral replication by avoiding competition in generating viral nucleotide pools.
Collapse
Affiliation(s)
- Qi Zhou
- Department of Microbiology, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, PR China
| | | | | | | | | | | |
Collapse
|
28
|
Negative elongation factor-mediated suppression of RNA polymerase II elongation of Kaposi's sarcoma-associated herpesvirus lytic gene expression. J Virol 2012; 86:9696-707. [PMID: 22740393 DOI: 10.1128/jvi.01012-12] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Genome-wide chromatin immunoprecipitation assays indicate that the promoter-proximal pausing of RNA polymerase II (RNAPII) is an important postinitiation step for gene regulation. During latent infection, the majority of Kaposi's sarcoma-associated herpesvirus (KSHV) genes is silenced via repressive histone marks on their promoters. Despite the absence of their expression during latency, however, several lytic promoters are enriched with activating histone marks, suggesting that mechanisms other than heterochromatin-mediated suppression contribute to preventing lytic gene expression. Here, we show that the RNAPII-mediated transcription of the KSHV OriLytL, K5, K6, and K7 (OriLytL-K7) lytic genes is paused at the elongation step during latency. Specifically, the RNAPII-mediated transcription is stalled by the host's negative elongation factor (NELF) at the promoter regions of OriLytL-K7 lytic genes during latency, leading to the hyperphosphorylation of the serine 5 residue and the hypophosphorylation of the serine 2 of the C-terminal domain of the RNAPII large subunit, a hallmark of stalled RNAPII. Consequently, depletion of NELF expression induced transition of stalled RNAPII into a productive transcription elongation at the promoter-proximal regions of OriLytL-K7 lytic genes, leading to their RTA-independent expression. Using an RTA-deficient recombinant KSHV, we also showed that expression of the K5, K6, and K7 lytic genes was highly inducible upon external stimuli compared to other lytic genes that lack RNAPII on their promoters during latency. These results indicate that the transcription elongation of KSHV OriLytL-K7 lytic genes is inhibited by NELF during latency, but can also be promptly reactivated in an RTA-independent manner upon external stimuli.
Collapse
|
29
|
Bowles RN, Blaho JA. A truncation mutation of the neurovirulence ICP22 protein produced by a recombinant HSV-1 generated by bacterial artificial chromosome technology targets infected cell nuclei. J Neurovirol 2011; 17:559-69. [DOI: 10.1007/s13365-011-0064-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 11/15/2011] [Accepted: 11/17/2011] [Indexed: 11/24/2022]
|
30
|
Kolb AW, Schmidt TR, Dyer DW, Brandt CR. Sequence variation in the herpes simplex virus U(S)1 ocular virulence determinant. Invest Ophthalmol Vis Sci 2011; 52:4630-8. [PMID: 21519032 DOI: 10.1167/iovs.10-7032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
PURPOSE The herpes simplex virus type 1 (HSV-1) U(S)1 gene encodes host-range and ocular virulence determinants. Mutations in U(S)1 affecting virulence are known in strain OD4, but the genomic variation across several strains is not known. The goal was to determine the degree of sequence variation in the gene from several ocular HSV isolates. METHODS The U(S)1 gene from six ocular HSV-1 isolates, as well as strains KOS and F, were sequenced, and bioinformatics analyses were applied to the data. RESULTS Strains 17, F, CJ394, and CJ311 had identical amino acid sequences. With the other strains, most of the variability was concentrated in the amino-terminal third of the protein. MEME analysis identified a 63-residue core sequence (motif 1) present in all α-herpesvirus U(S)1 homologs that were located in a region identified as structured. Ten amino acids were absolutely conserved in all the α-herpesvirus U(S)1 homologs and were all located in the central core. Consensus-binding motifs for cyclin-dependent kinases and pocket proteins were also identified. CONCLUSIONS These results suggest that significant sequence variation exists in the U(S)1 gene, that the α22 protein contains a conserved central core region with structurally variable regions at the amino- and carboxyl termini, that 10 amino acids are conserved in α-herpes U(S)1 homologs, and that additional host proteins may interact with the HSV-1 U(S)1 and U(S)1.5 proteins. This information will be valuable in designing further studies on structure-function relationships and on the role these play in host-range determination and keratitis.
Collapse
Affiliation(s)
- Aaron W Kolb
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
31
|
Aragón E, Goerner N, Zaromytidou AI, Xi Q, Escobedo A, Massagué J, Macias MJ. A Smad action turnover switch operated by WW domain readers of a phosphoserine code. Genes Dev 2011; 25:1275-88. [PMID: 21685363 PMCID: PMC3127429 DOI: 10.1101/gad.2060811] [Citation(s) in RCA: 206] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 05/16/2011] [Indexed: 02/04/2023]
Abstract
When directed to the nucleus by TGF-β or BMP signals, Smad proteins undergo cyclin-dependent kinase 8/9 (CDK8/9) and glycogen synthase kinase-3 (GSK3) phosphorylations that mediate the binding of YAP and Pin1 for transcriptional action, and of ubiquitin ligases Smurf1 and Nedd4L for Smad destruction. Here we demonstrate that there is an order of events-Smad activation first and destruction later-and that it is controlled by a switch in the recognition of Smad phosphoserines by WW domains in their binding partners. In the BMP pathway, Smad1 phosphorylation by CDK8/9 creates binding sites for the WW domains of YAP, and subsequent phosphorylation by GSK3 switches off YAP binding and adds binding sites for Smurf1 WW domains. Similarly, in the TGF-β pathway, Smad3 phosphorylation by CDK8/9 creates binding sites for Pin1 and GSK3, then adds sites to enhance Nedd4L binding. Thus, a Smad phosphoserine code and a set of WW domain code readers provide an efficient solution to the problem of coupling TGF-β signal delivery to turnover of the Smad signal transducers.
Collapse
Affiliation(s)
- Eric Aragón
- Structural and Computational Biology Programme, Institute for Research in Biomedicine, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
32
|
Glauser DL, Fraefel C. Interactions between AAV-2 and HSV-1: implications for hybrid vector design. Future Virol 2011. [DOI: 10.2217/fvl.11.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herpes simplex virus type 1 (HSV-1)-based amplicon vectors have a transgene capacity of up to 150 kbp and can efficiently transduce many different cell types in culture and in vivo without causing cytopathic effects. However, these vectors do not support long-term transgene expression. Adeno-associated virus type 2 (AAV-2) has the capacity to integrate its genome into a specific site on human chromosome 19, but AAV-2-derived gene therapy vectors have a transgene capacity of only 4.5 kb. To combine the large transgene capacity of HSV-1 with the potential for site-specific genomic integration and long-term transgene expression of AAV-2, HSV/AAV hybrid vectors have been developed. This review describes the design, applications and limitations of these hybrid vectors. However, as HSV-1 is a full helper virus for AAV-2 replication, the main focus is the analysis of the molecular mechanisms of interaction between the two viruses. The knowledge of these interactions will have direct implications on the design of novel HSV/AAV hybrid vectors.
Collapse
Affiliation(s)
- Daniel L Glauser
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Cornel Fraefel
- Institute of Virology, University of Zurich, Winterthurerstr. 266a, 8057 Zurich, Switzerland
| |
Collapse
|
33
|
Herpes simplex virus 1 ICP4 forms complexes with TFIID and mediator in virus-infected cells. J Virol 2011; 85:5733-44. [PMID: 21450820 DOI: 10.1128/jvi.00385-11] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The infected cell polypeptide 4 (ICP4) of herpes simplex virus 1 (HSV-1) is a regulator of viral transcription that is required for productive infection. Since viral genes are transcribed by cellular RNA polymerase II (RNA pol II), ICP4 must interact with components of the pol II machinery to regulate viral gene expression. It has been shown previously that ICP4 interacts with TATA box-binding protein (TBP), TFIIB, and the TBP-associated factor 1 (TAF1) in vitro. In this study, ICP4-containing complexes were isolated from infected cells by tandem affinity purification (TAP). Forty-six proteins that copurified with ICP4 were identified by mass spectrometry. Additional copurifying proteins were identified by Western blot analysis. These included 11 components of TFIID and 4 components of the Mediator complex. The significance of the ICP4-Mediator interaction was further investigated using immunofluorescence and chromatin immunoprecipitation. Mediator was found to colocalize with ICP4 starting at early and continuing into late times of infection. In addition, Mediator was recruited to viral promoters in an ICP4-dependent manner. Taken together, the data suggest that ICP4 interacts with components of TFIID and Mediator in the context of viral infection, and this may explain the broad transactivation properties of ICP4.
Collapse
|
34
|
The herpes simplex virus type 1 infected cell protein 22. Virol Sin 2010; 25:1-7. [PMID: 20960278 DOI: 10.1007/s12250-010-3080-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2009] [Accepted: 07/16/2009] [Indexed: 10/19/2022] Open
Abstract
As one of the immediate-early (IE) proteins of herpes simplex virus type 1 (HSV-1), ICP22 is a multifunctional viral regulator that localizes in the nucleus of infected cells. It is required in experimental animal systems and some nonhuman cell lines, but not in Vero or HEp-2 cells. ICP22 is extensively phosphorylated by viral and cellular kinases and nucleotidylylated by casein kinase II. It has been shown to be required for efficient expression of early (E) genes and a subset of late (L) genes. ICP22, in conjunction with the UL13 kinase, mediates the phosphorylation of RNA polymerase II. Both ICP22 and UL13 are required for the activation of cdc2, the degradation of cyclins A and B and the acquisition of a new cdc2 partner, the UL42 DNA polymerase processivity factor. The cdc2-UL42 complex mediates postranscriptional modification of topoisomerase IIα in an ICP22-dependent manner to promote L gene expression. In addition, ICP22 interacts with cdk9 in a Us3 kinase dependent fashion to phosphorylate RNA polymerase II.
Collapse
|
35
|
Alarcón C, Zaromytidou AI, Xi Q, Gao S, Yu J, Fujisawa S, Barlas A, Miller AN, Manova-Todorova K, Macias MJ, Sapkota G, Pan D, Massagué J. Nuclear CDKs drive Smad transcriptional activation and turnover in BMP and TGF-beta pathways. Cell 2009; 139:757-69. [PMID: 19914168 DOI: 10.1016/j.cell.2009.09.035] [Citation(s) in RCA: 610] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 07/02/2009] [Accepted: 09/23/2009] [Indexed: 12/15/2022]
Abstract
TGF-beta and BMP receptor kinases activate Smad transcription factors by C-terminal phosphorylation. We have identified a subsequent agonist-induced phosphorylation that plays a central dual role in Smad transcriptional activation and turnover. As receptor-activated Smads form transcriptional complexes, they are phosphorylated at an interdomain linker region by CDK8 and CDK9, which are components of transcriptional mediator and elongation complexes. These phosphorylations promote Smad transcriptional action, which in the case of Smad1 is mediated by the recruitment of YAP to the phosphorylated linker sites. An effector of the highly conserved Hippo organ size control pathway, YAP supports Smad1-dependent transcription and is required for BMP suppression of neural differentiation of mouse embryonic stem cells. The phosphorylated linker is ultimately recognized by specific ubiquitin ligases, leading to proteasome-mediated turnover of activated Smad proteins. Thus, nuclear CDK8/9 drive a cycle of Smad utilization and disposal that is an integral part of canonical BMP and TGF-beta pathways.
Collapse
Affiliation(s)
- Claudio Alarcón
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Prichard MN. Function of human cytomegalovirus UL97 kinase in viral infection and its inhibition by maribavir. Rev Med Virol 2009; 19:215-29. [PMID: 19434630 DOI: 10.1002/rmv.615] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The serine/threonine kinase expressed by human cytomegalovirus from gene UL97 phosphorylates the antiviral drug ganciclovir, but its biological function is the phosphorylation of its natural viral and cellular protein substrates which affect viral replication at many levels. The UL97 kinase null phenotype is therefore complex, as is the mechanism of action of maribavir, a highly specific inhibitor of its enzymatic activity. Studies that utilise the drug corroborate results from genetic approaches and together have elucidated many functions of the UL97 kinase that are critical for viral replication. The kinase phosphorylates eukaryotic elongation factor 1delta, the carboxyl terminal domain of the large subunit of RNA polymerase II, the retinoblastoma tumour suppressor and lamins A and C. Each of these is also phosphorylated and regulated by cdc2/cyclin-dependent kinase 1, suggesting that the viral kinase may perform a similar function. These and other activities of the UL97 kinase appear to stimulate the cell cycle to support viral DNA synthesis, enhance the expression of viral genes, promote virion morphogenesis and facilitate the egress of mature capsids from the nucleus. In the absence of UL97 kinase activity, viral DNA synthesis is inefficient and structural proteins are sequestered in nuclear aggresomes, reducing the efficiency of virion morphogenesis. Mature capsids that do form fail to egress the nucleus as the nuclear lamina are not dispersed by the kinase. The critical functions performed by the UL97 kinase illustrate its importance in viral replication and confirm that the kinase is a target for the development of antiviral therapies.
Collapse
Affiliation(s)
- Mark N Prichard
- Department of Pediatrics, University of Alabama School of Medicine, Birmingham, Alabama 35233, USA.
| |
Collapse
|
37
|
Cun W, Guo L, Zhang Y, Liu L, Wang L, Li J, Dong C, Wang J, Li Q. Transcriptional regulation of the Herpes Simplex Virus 1alpha-gene by the viral immediate-early protein ICP22 in association with VP16. ACTA ACUST UNITED AC 2009; 52:344-51. [PMID: 19381460 DOI: 10.1007/s11427-009-0051-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Accepted: 06/21/2008] [Indexed: 11/27/2022]
Abstract
Herpes Simplex Virus 1 (HSV1) is capable of inducing two forms of infection in individuals, and the establishment of which type of infection occurs is linked to the transcriptional activation of viral alpha genes. One of the HSV1 alpha genes, ICP22, is known to have multiple functions during virus replication, but its distinct roles are still unclear. This study showed that ICP22 functions as a general repressor for certain viral and cellular promoters, and this transcriptional repression by ICP22 is independent of the specific upstream promoter element, as shown using the CAT enzyme assay system. Further work also found that VP16 interfered with ICP22 mediated transcriptional repression of the viral alpha4 gene, through interactions with specific elements upstream of the alpha4 gene promoter. These findings support the possibility that ICP22 and VP16 control transcription of HSV1alpha genes in a common pathway for the establishment of either viral lytic or latent infections.
Collapse
Affiliation(s)
- Wei Cun
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Recruitment of cdk9 to the immediate-early viral transcriptosomes during human cytomegalovirus infection requires efficient binding to cyclin T1, a threshold level of IE2 86, and active transcription. J Virol 2009; 83:5904-17. [PMID: 19297489 DOI: 10.1128/jvi.02651-08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Human cytomegalovirus (HCMV) infection results in the formation of nuclear viral transcriptosomes, which are sites dedicated to viral immediate-early (IE) transcription. At IE times of the infection, viral and cellular factors, including several components of transcription such as cyclin-dependent kinase 9 (cdk9), localize at these sites. To determine the mechanism and requirements of specific recruitment of cdk9 to the viral transcriptosomes, infection in the presence of inhibitor drugs and infection of cell lines expressing exogenous mutant cdk9 were performed. We found that cdk9 localization to the viral transcriptosomes requires de novo protein synthesis. In addition, active transcription is required for recruitment and maintenance of cdk9 at the viral transcriptosomes. In cells infected with a recombinant IE2 HCMV (IE2 86 DeltaSX virus) in which IE2 gene expression is greatly reduced, cdk9 localization at the transcriptosome is delayed and corresponds to the kinetics of accumulation of the IE2 protein at these sites. Infection in the presence of the cdk9 inhibitors Flavopiridol and DRB (5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole) allowed cdk9 localization to the viral transcriptosomes. A kinase-inactive cdk9 (D167N) expressed during the infection also localizes to the viral transcriptosomes, indicating that kinase activity of cdk9 is not a requirement for its localization to the sites of IE transcription. Exogenous expression of additional cdk9 mutants indicates that binding of Brd4 to the cdk9 complex is not required but that efficient binding to cyclin T1 is essential.
Collapse
|
39
|
Alazard-Dany N, Nicolas A, Ploquin A, Strasser R, Greco A, Epstein AL, Fraefel C, Salvetti A. Definition of herpes simplex virus type 1 helper activities for adeno-associated virus early replication events. PLoS Pathog 2009; 5:e1000340. [PMID: 19282980 PMCID: PMC2650098 DOI: 10.1371/journal.ppat.1000340] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Accepted: 02/12/2009] [Indexed: 01/29/2023] Open
Abstract
The human parvovirus Adeno-Associated Virus (AAV) type 2 can only replicate in cells co-infected with a helper virus, such as Adenovirus or Herpes Simplex Virus type 1 (HSV-1); whereas, in the absence of a helper virus, it establishes a latent infection. Previous studies demonstrated that the ternary HSV-1 helicase/primase (HP) complex (UL5/8/52) and the single-stranded DNA-Binding Protein (ICP8) were sufficient to induce AAV-2 replication in transfected cells. We independently showed that, in the context of a latent AAV-2 infection, the HSV-1 ICP0 protein was able to activate rep gene expression. The present study was conducted to integrate these observations and to further explore the requirement of other HSV-1 proteins during early AAV replication steps, i.e. rep gene expression and AAV DNA replication. Using a cellular model that mimics AAV latency and composite constructs coding for various sets of HSV-1 genes, we first confirmed the role of ICP0 for rep gene expression and demonstrated a synergistic effect of ICP4 and, to a lesser extent, ICP22. Conversely, ICP27 displayed an inhibitory effect. Second, our analyses showed that the effect of ICP0, ICP4, and ICP22 on rep gene expression was essential for the onset of AAV DNA replication in conjunction with the HP complex and ICP8. Third, and most importantly, we demonstrated that the HSV-1 DNA polymerase complex (UL30/UL42) was critical to enhance AAV DNA replication to a significant level in transfected cells and that its catalytic activity was involved in this process. Altogether, this work represents the first comprehensive study recapitulating the series of early events taking place during HSV-1-induced AAV replication.
Collapse
Affiliation(s)
- Nathalie Alazard-Dany
- INSERM U758, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- IFR128 BioSciences Lyon-Gerland, Lyon, France
- Université de Lyon, UCB-Lyon 1, Lyon, France
| | - Armel Nicolas
- INSERM U758, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- IFR128 BioSciences Lyon-Gerland, Lyon, France
- Université de Lyon, UCB-Lyon 1, Lyon, France
| | - Aurélie Ploquin
- INSERM U758, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- IFR128 BioSciences Lyon-Gerland, Lyon, France
- Université de Lyon, UCB-Lyon 1, Lyon, France
| | - Regina Strasser
- Institute of Virology, University of Zurich, Zurich, Switzerland
| | - Anna Greco
- Université de Lyon, Lyon, France; Université Lyon 1, Lyon, France; CNRS UMR5534, Centre de Génétique Moléculaire et Cellulaire, Villeurbanne, France
| | - Alberto L. Epstein
- Université de Lyon, Lyon, France; Université Lyon 1, Lyon, France; CNRS UMR5534, Centre de Génétique Moléculaire et Cellulaire, Villeurbanne, France
| | - Cornel Fraefel
- Institute of Virology, University of Zurich, Zurich, Switzerland
| | - Anna Salvetti
- INSERM U758, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- IFR128 BioSciences Lyon-Gerland, Lyon, France
- Université de Lyon, UCB-Lyon 1, Lyon, France
- * E-mail:
| |
Collapse
|
40
|
Identification of sequences in herpes simplex virus type 1 ICP22 that influence RNA polymerase II modification and viral late gene expression. J Virol 2008; 83:128-39. [PMID: 18971282 DOI: 10.1128/jvi.01954-08] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Previous studies have shown that the herpes simplex virus type 1 (HSV-1) immediate-early protein ICP22 alters the phosphorylation of the host cell RNA polymerase II (Pol II) during viral infection. In this study, we have engineered several ICP22 plasmid and virus mutants in order to map the ICP22 sequences that are involved in this function. We identify a region in the C-terminal half of ICP22 (residues 240 to 340) that is critical for Pol II modification and further show that the N-terminal half of the protein (residues 1 to 239) is not required. However, immunofluorescence analysis indicates that the N-terminal half of ICP22 is needed for its localization to nuclear body structures. These results demonstrate that ICP22's effects on Pol II do not require that it accumulate in nuclear bodies. As ICP22 is known to enhance viral late gene expression during infection of certain cultured cells, including human embryonic lung (HEL) cells, we used our engineered viral mutants to map this function of ICP22. It was found that mutations in both the N- and C-terminal halves of ICP22 result in similar defects in viral late gene expression and growth in HEL cells, despite having distinctly different effects on Pol II. Thus, our results genetically uncouple ICP22's effects on Pol II from its effects on viral late gene expression. This suggests that these two functions of ICP22 may be due to distinct activities of the protein.
Collapse
|
41
|
Role of cdk9 in the optimization of expression of the genes regulated by ICP22 of herpes simplex virus 1. J Virol 2008; 82:10591-9. [PMID: 18753202 DOI: 10.1128/jvi.01242-08] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ICP22 is a multifunctional herpes simplex virus 1 (HSV-1) regulatory protein that regulates the accumulation of a subset of late (gamma(2)) proteins exemplified by U(L)38, U(L)41, and U(S)11. ICP22 binds the cyclin-dependent kinase 9 (cdk9) but not cdk7, and this complex in conjunction with viral protein kinases phosphorylates the carboxyl terminus of RNA polymerase II (Pol II) in vitro. The primary function of cdk9 and its partners, the cyclin T variants, is in the elongation of RNA transcripts, although functions related to the initiation and processing of transcripts have also been reported. We report two series of experiments designed to probe the role of cdk9 in infected cells. In the first, infected cells were treated with 5,6-dichloro-1-beta-d-ribofuranosylbenzimidazole (DRB), a specific inhibitor of cdk9. In cells treated with DRB, the major effect was in the accumulation of viral RNAs and proteins regulated by ICP22. The accumulation of alpha, beta, or gamma proteins not regulated by ICP22 was not affected by the drug. The results obtained with DRB were duplicated in cells transfected with small interfering RNA (siRNA) targeting cdk9 mRNAs. Interestingly, DRB and siRNA reduced the levels of ICP22 but not those of other alpha gene products. In addition, cdk9 and ICP22 appeared to colocalize with RNA Pol II in wild-type-virus-infected cells but not in DeltaU(L)13-infected cells. We conclude that cdk9 plays a critical role in the optimization of expression of genes regulated by ICP22 and that one function of cdk9 in HSV-1-infected cells may be to bring ICP22 into the RNA Pol II transcriptional complex.
Collapse
|
42
|
Prichard MN, Sztul E, Daily SL, Perry AL, Frederick SL, Gill RB, Hartline CB, Streblow DN, Varnum SM, Smith RD, Kern ER. Human cytomegalovirus UL97 kinase activity is required for the hyperphosphorylation of retinoblastoma protein and inhibits the formation of nuclear aggresomes. J Virol 2008; 82:5054-67. [PMID: 18321963 PMCID: PMC2346732 DOI: 10.1128/jvi.02174-07] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Accepted: 02/28/2008] [Indexed: 11/20/2022] Open
Abstract
Cells infected with human cytomegalovirus in the absence of UL97 kinase activity produce large nuclear aggregates that sequester considerable quantities of viral proteins. A transient expression assay suggested that pp71 and IE1 were also involved in this process, and this suggestion was significant, since both proteins have been reported to interact with components of promyelocytic leukemia (PML) bodies (ND10) and also interact functionally with retinoblastoma pocket proteins (RB). PML bodies have been linked to the formation of nuclear aggresomes, and colocalization studies suggested that viral proteins were recruited to these structures and that UL97 kinase activity inhibited their formation. Proteins associated with PML bodies were examined by Western blot analysis, and pUL97 appeared to specifically affect the phosphorylation of RB in a kinase-dependent manner. Three consensus RB binding motifs were identified in the UL97 kinase, and recombinant viruses were constructed in which each was mutated to assess a potential role in the phosphorylation of RB and the inhibition of nuclear aggresome formation. The mutation of either the conserved LxCxE RB binding motif or the lysine required for kinase activity impaired the ability of the virus to stabilize and phosphorylate RB. We concluded from these studies that both UL97 kinase activity and the LxCxE RB binding motif are required for the phosphorylation and stabilization of RB in infected cells and that this effect can be antagonized by the antiviral drug maribavir. These data also suggest a potential link between RB function and the formation of aggresomes.
Collapse
Affiliation(s)
- Mark N Prichard
- Department of Pediatrics, University of Alabama School of Medicine, Birmingham, Alabama 35233, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
|
44
|
The interaction of herpes simplex virus 1 regulatory protein ICP22 with the cdc25C phosphatase is enabled in vitro by viral protein kinases US3 and UL13. J Virol 2008; 82:4533-43. [PMID: 18272572 DOI: 10.1128/jvi.02022-07] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Earlier studies have shown that ICP22 and the U(L)13 protein kinase but not the U(S)3 kinase are required for optimal expression of a subset of late (gamma(2)) genes exemplified by U(L)38, U(L)41, and U(S)11. In primate cells, ICP22 mediates the disappearance of inactive isoforms of cdc2 and degradation of cyclins A and B1. Active cdc2 acquires a new partner, the viral DNA synthesis processivity factor U(L)42. The cdc2-U(L)42 complex recruits and phosphorylates topoisomerase IIalpha for efficient expression of the gamma(2) genes listed above. In uninfected cells, the cdc25C phosphatase activates cdc2 by removing two inhibitory phosphates. The accompanying report shows that in the absence of cdc25C, the rate of degradation of cyclin B1 is similar to that occurring in infected wild-type mouse embryo fibroblast cells but the levels of cdc2 increase, and the accumulation of a subset of late proteins and virus yields are reduced. This report links ICP22 with cdc25C. We show that in infected cells, ICP22 and U(S)3 protein kinase mediate the phosphorylation of cdc25C at its C-terminal domain. In in vitro assays with purified components, both U(L)13 and U(S)3 viral kinases phosphorylate cdc25C and ICP22. cdc25C also interacts with cdc2. However, in infected cells, the ability of cdc25C to activate cdc2 by dephosphorylation of the inactive cdc2 protein is reduced. Coupled with the phosphorylation of cdc25C by the U(S)3 kinase, the results raise the possibility that herpes simplex virus 1 diverts cdc25C to perform functions other than those performed in uninfected cells.
Collapse
|
45
|
Chang PC, Li M. Kaposi's sarcoma-associated herpesvirus K-cyclin interacts with Cdk9 and stimulates Cdk9-mediated phosphorylation of p53 tumor suppressor. J Virol 2008; 82:278-90. [PMID: 17942552 PMCID: PMC2224387 DOI: 10.1128/jvi.01552-07] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Accepted: 10/09/2007] [Indexed: 01/12/2023] Open
Abstract
K-cyclin, encoded by Kaposi's sarcoma-associated herpesvirus, has previously been demonstrated to activate cyclin-dependent kinase 6 (Cdk6) to induce the phosphorylation of various cell cycle regulators. In this study, we identified Cdk9 as a new K-cyclin-associated Cdk and showed that K-cyclin interacted with Cdk9 through its basic domain. We hypothesized that K-cyclin served as a regulatory subunit for the activity of Cdk9. Recent reports show that Cdk9 phosphorylates tumor suppressor p53, and we found that the K-cyclin/Cdk9 interaction greatly enhanced the kinase activity of Cdk9 toward p53. The phosphorylation site(s) of K-cyclin/Cdk9 kinase complexes was mapped in the transactivation domain of p53. We showed that the ectopic expression of K-cyclin led to a sustained increase of p53 phosphorylation on Ser(33) in vivo, and the phosphorylation could be inhibited by a dominant negative Cdk9 mutant, dn-Cdk9. Using p53-positive U2OS and p53-null SaOS2 cells, we demonstrated that K-cyclin-induced growth arrest was associated with the presence of p53. In addition, K-cyclin-induced p53-dependent growth arrest was rescued by the dn-Cdk9- or Cdk9-specific short hairpin RNA in SaOS2 cells. Together, our findings for the first time demonstrated the interaction of K-cyclin and Cdk9 and revealed a new molecular link between K-cyclin and p53.
Collapse
Affiliation(s)
- Pei-Ching Chang
- Center for Oral Health Research, University of Kentucky College of Dentistry, Lexington, Kentucky 40536, USA
| | | |
Collapse
|
46
|
Asai R, Ohno T, Kato A, Kawaguchi Y. Identification of proteins directly phosphorylated by UL13 protein kinase from herpes simplex virus 1. Microbes Infect 2007; 9:1434-8. [PMID: 17913541 DOI: 10.1016/j.micinf.2007.07.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Revised: 07/20/2007] [Accepted: 07/25/2007] [Indexed: 11/17/2022]
Abstract
Herpes simplex virus 1 (HSV-1) UL13 is a viral protein kinase that regulates optimal viral replication in cell cultures. Identification of substrates of protein kinases is a crucial step to elucidate the mechanism by which they function. Using our developed system to analyze the specific protein kinase activity of UL13, we have shown that UL13 protein kinase directly phosphorylates the viral proteins ICP22 and UL49 previously reported to be putative substrates. We also identified UL41 as a previously unreported and novel substrate of UL13. These data will serve as a basis to clarify the mechanism by which UL13 influences viral replication.
Collapse
Affiliation(s)
- Risa Asai
- Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | |
Collapse
|
47
|
Leisenfelder SA, Moffat JF. Varicella-zoster virus infection of human foreskin fibroblast cells results in atypical cyclin expression and cyclin-dependent kinase activity. J Virol 2007; 80:5577-87. [PMID: 16699039 PMCID: PMC1472175 DOI: 10.1128/jvi.00163-06] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In its course of human infection, varicella-zoster virus (VZV) infects rarely dividing cells such as dermal fibroblasts, differentiated keratinocytes, mature T cells, and neurons, none of which are actively synthesizing DNA; however, VZV is able to productively infect them and use their machinery to replicate the viral genome. We hypothesized that VZV alters the intracellular environment to favor viral replication by dysregulating cell cycle proteins and kinases. Cyclin-dependent kinases (CDKs) and cyclins displayed a highly unusual profile in VZV-infected confluent fibroblasts: total amounts of CDK1, CDK2, cyclin B1, cyclin D3, and cyclin A protein increased, and kinase activities of CDK2, CDK4, and cyclin B1 were strongly and simultaneously induced. Cyclins B1 and D3 increased as early as 24 h after infection, concurrent with VZV protein synthesis. Confocal microscopy indicated that cyclin D3 overexpression was limited to areas of IE62 production, whereas cyclin B1 expression was irregular across the VZV plaque. Downstream substrates of CDKs, including pRb, p107, and GM130, did not show phosphorylation by immunoblotting, and p21 and p27 protein levels were increased following infection. Finally, although the complement of cyclin expression and high CDK activity indicated a progression through the S and G(2) phases of the cell cycle, DNA staining and flow cytometry indicated a possible G(1)/S blockade in infected cells. These data support earlier studies showing that pharmacological CDK inhibitors can inhibit VZV replication in cultured cells.
Collapse
Affiliation(s)
- Stacey A Leisenfelder
- Department of Microbiology and Immunology, State University of New York-Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | | |
Collapse
|
48
|
Rodriguez A, Pérez-González A, Nieto A. Influenza virus infection causes specific degradation of the largest subunit of cellular RNA polymerase II. J Virol 2007; 81:5315-24. [PMID: 17344288 PMCID: PMC1900203 DOI: 10.1128/jvi.02129-06] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It has been described that influenza virus polymerase associates with RNA polymerase II (RNAP II). To gain information about the role of this interaction, we explored if changes in RNAP II occur during infection. Here we show that influenza virus causes the specific degradation of the hypophosphorylated form of the largest subunit of RNAP II without affecting the accumulation of its hyperphosphorylated forms. This effect is independent of the viral strain and the origin of the cells used. Analysis of synthesized mRNAs in isolated nuclei of infected cells indicated that transcription decreases concomitantly with RNAP II degradation. Moreover, this degradation correlated with the onset of viral transcription and replication. The ubiquitin-mediated proteasome pathway is not involved in virally induced RNAP II proteolysis. The expression of viral polymerase from its cloned cDNAs was sufficient to cause the degradation. Since the PA polymerase subunit has proteolytic activity, we tested its participation in the process. A recombinant virus that encodes a PA point mutant with decreased proteolytic activity and that has defects in replication delayed the effect, suggesting that PA's contribution to RNAP II degradation occurs during infection.
Collapse
Affiliation(s)
- A Rodriguez
- Centro Nacional de Biotecnología, CSIC, Cantoblanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
49
|
Fraser KA, Rice SA. Herpes simplex virus immediate-early protein ICP22 triggers loss of serine 2-phosphorylated RNA polymerase II. J Virol 2007; 81:5091-101. [PMID: 17344289 PMCID: PMC1900222 DOI: 10.1128/jvi.00184-07] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During eukaryotic mRNA transcription, the synthetic activity and mRNA processing factor interactions of RNA polymerase II (RNAP II) are regulated by phosphorylation of its carboxyl-terminal domain (CTD), with modification occurring primarily on serines 2 and 5 of the CTD. We previously showed that herpes simplex virus type 1 (HSV-1) infection rapidly triggers the loss of RNAP II forms bearing serine 2 phosphorylation (Ser-2P RNAP II). Here we show that the HSV-1 immediate-early (IE) protein ICP22 is responsible for this effect during the IE phase of infection. This activity does not require the viral UL13 protein kinase, which is required for several other regulatory functions of ICP22. Additionally, we show that transient expression of ICP22 can trigger the loss of Ser-2P RNAP II in transfected cells. Thus, the ability of ICP22 to cause the loss of Ser-2 RNAP II does not require other viral factors or the context of the infected cell. Expression of the HSV-1 ICP22-related protein US1.5, which corresponds to residues 147 to 420 of ICP22, also triggers a loss of Ser-2P RNAP II in transfected cells, whereas expression of the varicella-zoster virus ICP22 homolog, ORF63, does not. Our study also provides evidence for a second, viral late gene-dependent pathway that triggers loss of Ser-2P RNAP II in infected cells, consistent with the recent work of Dai-Ju et al. (J. Q. Dai-Ju, L. Li, L. A. Johnson, and R. M. Sandri-Goldin, J. Virol. 80:3567-3581, 2006). Therefore, it appears that HSV-1 has evolved redundant mechanisms for triggering the loss of a specific phosphorylated form of RNAP II.
Collapse
Affiliation(s)
- Kathryn A Fraser
- Department of Microbiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | |
Collapse
|
50
|
Cun W, Hong M, Liu LD, Dong CH, Luo J, Li QH. Structural and functional characterization of herpes simplex virus 1 immediate-early protein infected-cell protein 22. J Biochem 2006; 140:67-73. [PMID: 16877770 DOI: 10.1093/jb/mvj135] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Of the five HSV1 immediate-early proteins, infected-cell protein 22 (ICP22), the product of the Us1 gene, is a member whose function is less understood. In order to promote better understanding of the role of ICP22 in viral replication, mutation and fluorescence techniques were used to investigate the biochemical relationship between ICP22's structure and nuclear localization, and the CAT assay was used to analyze the relationship between ICP22's structure and its transcriptional repression. The results of these experiments implied (i) ICP22 is localized to small dense nuclear bodies and is paired with the SC-35 domain in the nucleus, (ii) ICP22 localization in a punctate state requires completion of the main sequence which includes the 1-320th amino acids, (iii) a conservative mutation in the nucleotidylylation site is important for its nuclear localization and transcriptional repression, and (4) despite possessing the same amino acid sequence as the ICP22 carboxyl-terminal, Us1.5 was distinct from ICP22 in location and function.
Collapse
Affiliation(s)
- Wei Cun
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, P.R. China
| | | | | | | | | | | |
Collapse
|