1
|
Xu X, Zhou S, Huang J, Geng F, Zhu X, Abou-Shaara HF. Influence of Hyperthermia Treatment on Varroa Infestation, Viral Infections, and Honey Bee Health in Beehives. INSECTS 2025; 16:168. [PMID: 40003798 PMCID: PMC11856441 DOI: 10.3390/insects16020168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/02/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025]
Abstract
The mite Varroa destructor is widely acknowledged as the most destructive threat to honey bee (Apis mellifera) colonies on a global scale. Varroa mite infestations in bee colonies are intricately linked with viral infections, collaboratively leading to diminished bee populations and accelerated colony losses. Extensive research has firmly established the correlation between varroa mites and viruses, underscoring the mite's efficiency in spreading viruses among bees and colonies. The effective control of varroa mites is expected to result in a decrease in viral infections within bee colonies. Research suggests that thermal treatments (hyperthermia) present a viable approach to combat varroa mites, with studies demonstrating the role of heat stress in reducing viral infections in affected bees. This article examines the extant literature surrounding the utilization of hyperthermia as a potential method to ameliorate the adverse impacts of varroa mites and their associated viral infections on honey bee colonies. It also outlines the thermal characteristics of these stressors. Diverse devices can be used for subjecting colonies to hyperthermia treatment, targeting mites both within and outside of brood cells. The application of thermal treatments, typically ranging between 40 and 42 °C for 1.5-3 h, as a method to reduce varroa mites and viral infections, has shown promise. Notably, the precise effectiveness of hyperthermia treatment in comparison with alternative varroa mite control measures remains uncertain within the available literature. The potential deleterious repercussions of this control mechanism on immature and mature honey bees are evaluated. Concurrently, the detrimental implications of prolonged treatment durations on colonies are discussed. Regarding viral infections, hyperthermia treatment can impact them negatively by either reducing varroa mite infestations or by inducing the production of heat shock proteins that possess potential antiviral properties. Various factors are identified as influential on hyperthermia treatment efficacy within bee colonies, including the device type and treatment duration, necessitating further empirical investigations. Additionally, this article highlights the existing gaps in the knowledge and provides insights into the prospective directions of research concerning this control method.
Collapse
Affiliation(s)
- Xinjian Xu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.X.); (S.Z.); (J.H.); (F.G.)
| | - Shujing Zhou
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.X.); (S.Z.); (J.H.); (F.G.)
| | - Jinrong Huang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.X.); (S.Z.); (J.H.); (F.G.)
| | - Fa Geng
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.X.); (S.Z.); (J.H.); (F.G.)
| | - Xiangjie Zhu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.X.); (S.Z.); (J.H.); (F.G.)
| | - Hossam F. Abou-Shaara
- Department of Plant Protection, Faculty of Agriculture, Damanhour University, Damanhour 22516, Egypt
| |
Collapse
|
2
|
Alem F, Brahms A, Tarasaki K, Omole S, Kehn-Hall K, Schmaljohn CS, Bavari S, Makino S, Hakami RM. HSP90 is part of a protein complex with the L polymerase of Rift Valley fever phlebovirus and prevents its degradation by the proteasome during the viral genome replication/transcription stage. Front Cell Infect Microbiol 2024; 14:1331755. [PMID: 38800833 PMCID: PMC11127626 DOI: 10.3389/fcimb.2024.1331755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/08/2024] [Indexed: 05/29/2024] Open
Abstract
The mosquito-borne Rift Valley fever virus (RVFV) from the Phenuiviridae family is a single-stranded RNA virus that causes the re-emerging zoonotic disease Rift Valley fever (RVF). Classified as a Category A agent by the NIH, RVFV infection can cause debilitating disease or death in humans and lead to devastating economic impacts by causing abortion storms in pregnant cattle. In a previous study, we showed that the host chaperone protein HSP90 is an RVFV-associated host factor that plays a critical role post viral entry, during the active phase of viral genome replication/transcription. In this study, we have elucidated the molecular mechanisms behind the regulatory effect of HSP90 during infection with RVFV. Our results demonstrate that during the early infection phase, host HSP90 associates with the viral RNA-dependent RNA polymerase (L protein) and prevents its degradation through the proteasome, resulting in increased viral replication.
Collapse
Affiliation(s)
- Farhang Alem
- School of Systems Biology, George Mason University, Manassas, VA, United States
| | - Ashwini Brahms
- School of Systems Biology, George Mason University, Manassas, VA, United States
| | - Kaori Tarasaki
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX, United States
| | - Samson Omole
- School of Systems Biology, George Mason University, Manassas, VA, United States
| | - Kylene Kehn-Hall
- School of Systems Biology, George Mason University, Manassas, VA, United States
| | - Connie S. Schmaljohn
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, United States
| | - Sina Bavari
- Tonix Pharmaceuticals, Frederick, MD, United States
| | - Shinji Makino
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX, United States
| | - Ramin M. Hakami
- School of Systems Biology, George Mason University, Manassas, VA, United States
- Center for Infectious Disease Research, George Mason University, Manassas, VA, United States
| |
Collapse
|
3
|
Abou-Shaara HF. The response of heat shock proteins in honey bees to abiotic and biotic stressors. J Therm Biol 2024; 119:103784. [PMID: 38232472 DOI: 10.1016/j.jtherbio.2024.103784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/19/2024]
Abstract
Honey bees, Apis mellifera, are the most important managed pollinators worldwide. They are highly impacted by various abiotic and biotic stressors, especially temperature extremes, which can lead to cellular damage and death. The induction of heat shock proteins (HSPs) has been recorded in honey bees as a response to various types of stressors. HSPs are classified into different gene families according to their molecular weights. HSPs play an important role in maintaining cellular protein homeostasis due to their contribution as molecular chaperones or co-chaperones. HSPs in honey bees have complex functions with induction even under normal colony conditions. Previous studies have suggested various functions of HSPs to protect cells from damage under exposure to environmental stressors, pollutants, and pathogens. Surprisingly, HSPs have also been found to play roles in larval development and age-related tasks. The expression of HSPs varies depending on tissue type, developmental stage, age, and stress period. This article reviews studies on HSPs (sHSPs, HSP40, HSP60, HSP70, and HSP90) in honey bees and highlights gaps in the available knowledge. This review is crucial for honey bee research, particularly in the face of climate change challenges.
Collapse
Affiliation(s)
- Hossam F Abou-Shaara
- Department of Plant Protection, Faculty of Agriculture, Damanhour University, Damanhour, 22516, Egypt.
| |
Collapse
|
4
|
Wu S, Zhao Y, Wang D, Chen Z. Mode of Action of Heat Shock Protein (HSP) Inhibitors against Viruses through Host HSP and Virus Interactions. Genes (Basel) 2023; 14:genes14040792. [PMID: 37107550 PMCID: PMC10138296 DOI: 10.3390/genes14040792] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
Misfolded proteins after stress-induced denaturation can regain their functions through correct re-folding with the aid of molecular chaperones. As a molecular chaperone, heat shock proteins (HSPs) can help client proteins fold correctly. During viral infection, HSPs are involved with replication, movement, assembly, disassembly, subcellular localization, and transport of the virus via the formation of macromolecular protein complexes, such as the viral replicase complex. Recent studies have indicated that HSP inhibitors can inhibit viral replication by interfering with the interaction of the virus with the HSP. In this review, we describe the function and classification of HSPs, the transcriptional mechanism of HSPs promoted by heat shock factors (HSFs), discuss the interaction between HSPs and viruses, and the mode of action of HSP inhibitors at two aspects of inhibiting the expression of HSPs and targeting the HSPs, and elaborate their potential use as antiviral agents.
Collapse
|
5
|
Zenke K, Okinaka Y. Multiple isoforms of HSP70 and HSP90 required for betanodavirus multiplication in medaka cells. Arch Virol 2022; 167:1961-1975. [PMID: 35752988 DOI: 10.1007/s00705-022-05489-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/18/2022] [Indexed: 11/28/2022]
Abstract
Heat shock proteins (HSPs) are molecular chaperones that have recently been shown to function as host factors (HFs) for virus multiplication in fish as well as in mammals, plants, and insects. HSPs are classified into families, and each family has multiple isoforms. However, no comprehensive studies have been performed to clarify the biological importance of these multiple isoforms for fish virus multiplication. Betanodaviruses are the causative agents of viral nervous necrosis in cultured marine fish and cause very high mortality. Although the viral genome and encoded proteins have been characterized extensively, information on HFs for these viruses is limited. In this study, therefore, we focused on the HSP70 and HSP90 families to examine the importance of their isoforms for betanodavirus multiplication. We found that HSP inhibitors (17-AAG, radicicol, and quercetin) suppressed viral RNA replication and production of progeny virus in infected medaka (Oryzias latipes) cells. Thermal stress or virus infection resulted in increased expression of some isoform genes and facilitated virus multiplication. Furthermore, overexpression and knockdown of some isoform genes revealed that the isoforms HSP70-1, HSP70-2, HSP70-5, HSP90-α1, HSP90-α2, and HSP90-β play positive roles in virus multiplication in medaka. Collectively, these results suggest that multiple isoforms of fish HPSs serve as HFs for betanodavirus multiplication.
Collapse
Affiliation(s)
- Kosuke Zenke
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan.,Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo, 202-8585, Japan
| | - Yasushi Okinaka
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan.
| |
Collapse
|
6
|
Parekh F, Daughenbaugh KF, Flenniken ML. Chemical Stimulants and Stressors Impact the Outcome of Virus Infection and Immune Gene Expression in Honey Bees ( Apis mellifera). Front Immunol 2021; 12:747848. [PMID: 34804032 PMCID: PMC8596368 DOI: 10.3389/fimmu.2021.747848] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/11/2021] [Indexed: 11/24/2022] Open
Abstract
Western honey bees (Apis mellifera) are ecologically, agriculturally, and economically important plant pollinators. High average annual losses of honey bee colonies in the US have been partially attributed to agrochemical exposure and virus infections. To examine the potential negative synergistic impacts of agrochemical exposure and virus infection, as well as the potential promise of phytochemicals to ameliorate the impact of pathogenic infections on honey bees, we infected bees with a panel of viruses (i.e., Flock House virus, deformed wing virus, or Sindbis virus) and exposed to one of three chemical compounds. Specifically, honey bees were fed sucrose syrup containing: (1) thyme oil, a phytochemical and putative immune stimulant, (2) fumagillin, a beekeeper applied fungicide, or (3) clothianidin, a grower-applied insecticide. We determined that virus abundance was lower in honey bees fed 0.16 ppb thyme oil augmented sucrose syrup, compared to bees fed sucrose syrup alone. Parallel analysis of honey bee gene expression revealed that honey bees fed thyme oil augmented sucrose syrup had higher expression of key RNAi genes (argonaute-2 and dicer-like), antimicrobial peptide expressing genes (abaecin and hymenoptaecin), and vitellogenin, a putative honey bee health and age indicator, compared to bees fed only sucrose syrup. Virus abundance was higher in bees fed fumagillin (25 ppm or 75 ppm) or 1 ppb clothianidin containing sucrose syrup relative to levels in bees fed only sucrose syrup. Whereas, honey bees fed 10 ppb clothianidin had lower virus levels, likely because consuming a near lethal dose of insecticide made them poor hosts for virus infection. The negative impact of fumagillin and clothianidin on honey bee health was indicated by the lower expression of argonaute-2, dicer-like, abaecin, and hymenoptaecin, and vitellogenin. Together, these results indicate that chemical stimulants and stressors impact the outcome of virus infection and immune gene expression in honey bees.
Collapse
Affiliation(s)
- Fenali Parekh
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States.,Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States.,Pollinator Health Center, Montana State University, Bozeman, MT, United States
| | - Katie F Daughenbaugh
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States.,Pollinator Health Center, Montana State University, Bozeman, MT, United States
| | - Michelle L Flenniken
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States.,Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States.,Pollinator Health Center, Montana State University, Bozeman, MT, United States
| |
Collapse
|
7
|
Zhang Q, Wu YF, Chen P, Liu TH, Dong ZQ, Lu C, Pan MH. Bombyx mori cell division cycle protein 37 promotes the proliferation of BmNPV. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 178:104923. [PMID: 34446199 DOI: 10.1016/j.pestbp.2021.104923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/06/2021] [Accepted: 07/11/2021] [Indexed: 06/13/2023]
Abstract
Cell division cycle protein 37 (Cdc37) is a molecular chaperone that actively participates in many intracellular physiological and biochemical processes as well as pathogen infection. However, the function of Cdc37 in silkworm cells under Bombyx mori nucleopolyhedrovirus (BmNPV) infection is unknown. We cloned and identified BmCdc37, a Cdc37 gene from B. mori, which is highly conserved among other species. After BmNPV infection, the expression level of the BmCdc37 gene was up-regulated and showed an expression pattern similar to the BmHsp90 gene, which relies on Cdc37 to stabilize and activate specific protein kinases. The immunofluorescence, bimolecular fluorescence complementation (BiFC), and co-immunoprecipitation (Co-IP) assays all indicated that BmCdc37 interacts with BmHsp90 in silkworm cells. Both BmCdc37 and BmHsp90 promote the reproduction of BmNPV. Co-expression of BmCdc37 and BmHsp90 was better at promoting virus proliferation than overexpression alone. These findings all indicate that BmCdc37 plays an active role in the proliferation of BmNPV.
Collapse
Affiliation(s)
- Qian Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China
| | - Yun-Fei Wu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China
| | - Peng Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China
| | - Tai-Hang Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Zhan-Qi Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China.
| | - Min-Hui Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China.
| |
Collapse
|
8
|
Foong SL, Paek KH. Capsicum annum Hsp26.5 promotes defense responses against RNA viruses via ATAF2 but is hijacked as a chaperone for tobamovirus movement protein. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6142-6158. [PMID: 32640023 DOI: 10.1093/jxb/eraa320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
The expression of Capsicum annuum HEAT SHOCK PROTEIN 26.5 (CaHsp26.5) was triggered by the inoculation of Tobacco mosaic virus pathotype P0 (TMV-P0) but its function in the defense response of plants is unknown. We used gene silencing and overexpression approaches to investigate the effect of CaHsp26.5 expression on different plant RNA viruses. Moreover, we performed protein-protein and protein-RNA interaction assays to study the mechanism of CaHsp26.5 function. CaHsp26.5 binding to a short poly-cytosine motif in the 3'-untranslated region of the genome of some viruses triggers the expression of several defense-related genes such as PATHOGENESIS-RELATED GENE 1 with the help of a transcription factor, NAC DOMAIN-CONTAINING PROTEIN 81 (ATAF2). Thus, an elevated CaHsp26.5 level was accompanied by increased plant resistance against plant viruses such as Cucumber mosaic virus strain Korea. However, the movement proteins of Pepper mild mottle virus pathotype P1,2,3 and TMV-P0 were shown to be able to interact with CaHsp26.5 to maintain the integrity of their proteins. Our work shows CaHsp26.5 as a positive player in the plant defense response against several plant RNA viruses. However, some tobamoviruses can hijack CaHsp26.5's chaperone activity for their own benefit.
Collapse
Affiliation(s)
- Siew-Liang Foong
- Department of Life Sciences, Korea University, Seoul, Republic of Korea
| | | |
Collapse
|
9
|
Yin H, Shang Q, Zhang S, Shen M, Huang H, Zhao W, Xijie G, Wu P. Comprehensive analysis of lncRNA-mRNA regulatory network in BmNPV infected cells treated with Hsp90 inhibitor. Mol Immunol 2020; 127:230-237. [PMID: 33022580 DOI: 10.1016/j.molimm.2020.09.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/16/2020] [Accepted: 09/21/2020] [Indexed: 11/16/2022]
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) is one of the main pathogens that seriously affect the sustainable development of sericulture industry. Inhibition of Hsp90 by Hsp90 inhibitor, geldanamycin (GA) significantly suppresses BmNPV proliferation in Bombyx mori, while the functional mechanism is not clear. LncRNA has been widely reported to play an important role in immune responses and host-virus interactions in mammalian. However, related research has been rarely reported on silkworm. In this study, firstly, we confirmed the decrease of BmNPV ORF75 protein in the BmNPV-infected BmN cells treated with GA. Next, by using a genome-wide transcriptome analysis, we compared the lncRNA and mRNA expression profiles in BmNPV infected BmN cells treated with or without GA and identified a total of 282 differentially expressed lncRNAs (DElncRNAs) and 523 DEmRNAs. KEGG pathway analysis revealed DEmRNA were mainly involved in ubiquitin mediated proteolysis, spliceosome, RNA transport and oxidative phosphorylation. Further, we selected 27 immune-related DEmRNAs, which displayed the similar changes of expression patterns on both protein level and transcript level to construct DElncRNA-DEmRNA network. In addition, based on the DElncRNA-bmo-miR-278-3p-BmHSC70 regulatory network, we explored the potential function of several lncRNAs as sponges to inhibit the regulatory effect of bmo-278-3p on Bombyx mori heat shock protein cognate 70 (BmHSC70). Our finding suggests that lncRNAs play a role in the regulation of BmNPV proliferation by Hsp90.
Collapse
Affiliation(s)
- Haotong Yin
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China
| | - Qi Shang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China
| | - Shaolun Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China
| | - Manman Shen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China
| | - Haoling Huang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China
| | - Weiguo Zhao
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212018, China
| | - Guo Xijie
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212018, China
| | - Ping Wu
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212018, China.
| |
Collapse
|
10
|
Tang ZZ, Wang TY, Chen YM, Chen TY. Cloning and characterisation of type I interferon receptor 1 in orange-spotted grouper (Epinephelus coioides) for response to nodavirus infection. FISH & SHELLFISH IMMUNOLOGY 2020; 101:302-311. [PMID: 32335315 DOI: 10.1016/j.fsi.2020.04.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 03/23/2020] [Accepted: 04/19/2020] [Indexed: 06/11/2023]
Abstract
Grouper is known as a highly economical teleost species in the Asian aquaculture industry; however, intensive culture activities easily cause disease outbreak, especially viral disease. For the prevention of viral outbreaks, interferon (IFN) is among the major defence systems being studied in different species. Fish type I IFNs are known to possess antiviral properties similar to mammalian type I IFNs. In order to stimulate antiviral function, IFN will bind to its cognate receptor, the type I interferon receptor (IFNAR), composed of heterodimeric receptor subunits known as IFNAR1 and IFNΑR2. The binding of type I interferon to receptors assists in the transduction of signals from the external to internal environments of cells to activate biological responses. In order to study the function of IFN, we first need to understand IFN receptors. In this study, we cloned and identified IFNAR1 in orange-spotted grouper (osgIFNAR1) and noted the up-regulated mRNA expression of the receptor and downstream effectors in the head kidney cells with cytokine treatment. The transcriptional expression of osgIFNAR1, which is characterised using polyinosinic-polycytidylic acid (poly[I:C]) and lipopolysaccharide (LPS) treatments, indicated the involvement of osgIFNAR1 in the immune response of grouper. The subcellular localisation of osgIFNAR1 demonstrated scattering across the grouper cell. Viral infection showed the negative feedback regulation of osgIFNAR1 in grouper larvae. Further loss of function of IFNAR1 showed a decreased expression of the virus. This study reported the identification of osgIFNAR1 and characterisation of receptor sensitivity towards immunostimulants, cytokine response, and viral challenge in the interferon pathway of orange-spotted grouper and possible different role of the receptor in viral production. Together, these results provide a frontline report of the potential function of osgIFNAR1 in the innate immunity of teleost.
Collapse
Affiliation(s)
- Zhi Zhuang Tang
- Laboratory of Molecular Genetics, Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan; Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan; Translational Center for Marine Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan; Agriculture Biotechnology Research Center, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Ting-Yu Wang
- Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan; Translational Center for Marine Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan; Agriculture Biotechnology Research Center, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Young-Mao Chen
- Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan; Translational Center for Marine Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan; Agriculture Biotechnology Research Center, National Cheng Kung University, Tainan, 70101, Taiwan; University Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan; Bachelor Degree Program in Marine Biotechnology, College of Life Sciences, National Taiwan Ocean University, Keelung, 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Tzong-Yueh Chen
- Laboratory of Molecular Genetics, Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan; Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan; Translational Center for Marine Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan; Agriculture Biotechnology Research Center, National Cheng Kung University, Tainan, 70101, Taiwan; University Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan.
| |
Collapse
|
11
|
Shang Q, Wu P, Huang HL, Zhang SL, Tang XD, Guo XJ. Inhibition of heat shock protein 90 suppresses Bombyx mori nucleopolyhedrovirus replication in B. mori. INSECT MOLECULAR BIOLOGY 2020; 29:205-213. [PMID: 31621968 DOI: 10.1111/imb.12625] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/02/2019] [Accepted: 10/03/2019] [Indexed: 06/10/2023]
Abstract
Heat shock protein 90 (Hsp90) plays a very important role in facilitating the replication of many viruses. Until now, little has been known about the role of Hsp90 in Bombyx mori virus infection. In this study, we explored the role of BmHsp90 in B. mori nucleopolyhedrovirus (BmNPV) replication. We found that BmHsp90 inhibition by geldanamycin (GA) significantly reduced the BmNPV titre, the protein expression level of BmNPV nucleocapsid protein 39 (VP39) and the transcript level of BmNPV genes. Silencing the hsp90 gene in BmN cells by small interfering RNA suppressed BmNPV replication whereas overexpression of hsp90 promoted the replication of BmNPV. After inhibition of Hsp90, the expression of three key genes [signal transducing activator of transcription (stat), suppressor of cytokine signalling protein 2 (socs2), socs6] involved in the Janus kinase/STAT pathway significantly changed, with up-regulation of stat and down-regulation of socs2 and socs6. In addition, the expression of two antiapoptosis genes, BmNPV inhibitor of apoptosis protein1 (BmNPV-iap1) and Bmiap2, was greatly decreased in GA-treated cells, whereas their expression was significantly increased in hsp90-overexpressed silkworm larvae. Our results indicated that inhibition of Hsp90 can suppress BmNPV proliferation in B. mori. Our findings may provide new clues to elucidate the molecular mechanisms of silkworm-virus interactions.
Collapse
Affiliation(s)
- Q Shang
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, China
| | - P Wu
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, China
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
- Quality inspection center for sericultural products, Ministry of Agriculture and Rural Affairs, Zhenjiang, China
| | - H L Huang
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, China
| | - S L Zhang
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, China
| | - X D Tang
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, China
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - X J Guo
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, China
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| |
Collapse
|
12
|
McMenamin AJ, Daughenbaugh KF, Flenniken ML. The Heat Shock Response in the Western Honey Bee (Apis mellifera) is Antiviral. Viruses 2020; 12:E245. [PMID: 32098425 PMCID: PMC7077298 DOI: 10.3390/v12020245] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 12/22/2022] Open
Abstract
Honey bees (Apismellifera) are an agriculturally important pollinator species that live in easily managed social groups (i.e., colonies). Unfortunately, annual losses of honey bee colonies in many parts of the world have reached unsustainable levels. Multiple abiotic and biotic stressors, including viruses, are associated with individual honey bee and colony mortality. Honey bees have evolved several antiviral defense mechanisms including conserved immune pathways (e.g., Toll, Imd, JAK/STAT) and dsRNA-triggered responses including RNA interference and a non-sequence specific dsRNA-mediated response. In addition, transcriptome analyses of virus-infected honey bees implicate an antiviral role of stress response pathways, including the heat shock response. Herein, we demonstrate that the heat shock response is antiviral in honey bees. Specifically, heat-shocked honey bees (i.e., 42 °C for 4 h) had reduced levels of the model virus, Sindbis-GFP, compared with bees maintained at a constant temperature. Virus-infection and/or heat shock resulted in differential expression of six heat shock protein encoding genes and three immune genes, many of which are positively correlated. The heat shock protein encoding and immune gene transcriptional responses observed in virus-infected bees were not completely recapitulated by administration of double stranded RNA (dsRNA), a virus-associated molecular pattern, indicating that additional virus-host interactions are involved in triggering antiviral stress response pathways.
Collapse
Affiliation(s)
- Alexander J. McMenamin
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA; (A.J.M.); (K.F.D.)
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA
| | - Katie F. Daughenbaugh
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA; (A.J.M.); (K.F.D.)
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA
| | - Michelle L. Flenniken
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA; (A.J.M.); (K.F.D.)
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
13
|
Quantitative proteomics analysis provides insight into the biological role of Hsp90 in BmNPV infection in Bombyx mori. J Proteomics 2019; 203:103379. [PMID: 31102755 DOI: 10.1016/j.jprot.2019.103379] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/14/2019] [Accepted: 05/06/2019] [Indexed: 12/14/2022]
Abstract
Heat shock protein 90, an essential chaperone responsible for the correct maturation of key proteins, has been confirmed to facilitate Bombyx mori nucleopolyhedrovirus (BmNPV) proliferation but the mechanism is not clear. In this study, we use quantitative proteomics analysis to investigate the mechanism of Hsp90 in BmNPV replication. In total, 195 differentially expressed proteins (DEPs) were identified with 136 up-regulated proteins and 59 down-regulated proteins. The protein expression level of small heat shock proteins, immune-related proteins, cellular DNA repair-related proteins and zinc finger proteins is significantly enhanced while that of protein kinases is declined. KEGG pathway analysis reveals that DEPs are involved in longevity regulating pathway, mTOR signaling pathway, FoxO signaling pathway and Toll and Imd signaling pathway. Based on the DEPs results, we speculate that inhibition of Hsp90 suppresses the BmNPV infection may because it could not only stimulate the host innate immune, induce small heat shock proteins expression to maintain the cellular proteostasis but activate host transcription factors to bind to virus DNA or protein and subsequently hinder virus replication. The results will help understand the roles of Hsp90 in BmNPV infection and shed light on new clue to illustrate the molecular mechanism of silkworm-virus interaction. SIGNIFICANCE: This is the first report on Hsp90 roles in BmNPV infection based on proteomic analysis. Our findings may provide new clue and research orientation to illustrate the molecular mechanism of silkworm-virus interaction and a set of BmHsp90 candidate clients, which may involve in BmNPV infection in BmN cells.
Collapse
|
14
|
Fernández-Oliva A, Ortega-González P, Risco C. Targeting host lipid flows: Exploring new antiviral and antibiotic strategies. Cell Microbiol 2019; 21:e12996. [PMID: 30585688 PMCID: PMC7162424 DOI: 10.1111/cmi.12996] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/04/2018] [Accepted: 12/17/2018] [Indexed: 12/28/2022]
Abstract
Bacteria and viruses pose serious challenges for humans because they evolve continuously. Despite ongoing efforts, antiviral drugs to treat many of the most troubling viruses have not been approved yet. The recent launch of new antimicrobials is generating hope as more and more pathogens around the world become resistant to available drugs. But extra effort is still needed. One of the current strategies for antiviral and antibiotic drug development is the search for host cellular pathways used by many different pathogens. For example, many viruses and bacteria alter lipid synthesis and transport to build their own organelles inside infected cells. The characterization of these interactions will be fundamental to identify new targets for antiviral and antibiotic drug development. This review discusses how viruses and bacteria subvert cell machineries for lipid synthesis and transport and summarises the most promising compounds that interfere with these pathways.
Collapse
Affiliation(s)
| | | | - Cristina Risco
- Cell Structure Lab, National Centre for Biotechnology, CNB-CSIC, Madrid, Spain
| |
Collapse
|
15
|
Song JH, Shim A, Kim YJ, Ahn JH, Kwon BE, Pham TT, Lee J, Chang SY, Ko HJ. Antiviral and Anti-Inflammatory Activities of Pochonin D, a Heat Shock Protein 90 Inhibitor, against Rhinovirus Infection. Biomol Ther (Seoul) 2018; 26:576-583. [PMID: 29715717 PMCID: PMC6254639 DOI: 10.4062/biomolther.2017.233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/08/2018] [Accepted: 02/01/2018] [Indexed: 01/05/2023] Open
Abstract
Human rhinoviruses (HRV) are one of the major causes of common cold in humans and are also associated with acute asthma and bronchial illness. Heat-shock protein 90 (Hsp90), a molecular chaperone, is an important host factor for the replication of single-strand RNA viruses. In the current study, we examined the effect of the Hsp90 inhibitor pochonin D, in vitro and in vivo, using a murine model of human rhinovirus type 1B (HRV1B) infection. Our data suggested that Hsp90 inhibition significantly reduced the inflammatory cytokine production and lung damage caused by HRV1B infection. The viral titer was significantly lowered in HRV1B-infected lungs and in Hela cells upon treatment with pochonin D. Infiltration of innate immune cells including granulocytes and monocytes was also reduced in the bronchoalveolar lavage (BAL) by pochonin D treatment after HRV1B infection. Histological analysis of the lung and respiratory tract showed that pochonin D protected the mice from HRV1B infection. Collectively, our results suggest that the Hsp90 inhibitor, pochonin D, could be an attractive antiviral therapeutic for treating HRV infection.
Collapse
Affiliation(s)
- Jae-Hyoung Song
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Aeri Shim
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Yeon-Jeong Kim
- College of Pharmacy, Inje University, Gimhae 50834, Republic of Korea
| | - Jae-Hee Ahn
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Bo-Eun Kwon
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Thuy Trang Pham
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jongkook Lee
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sun-Young Chang
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
| | - Hyun-Jeong Ko
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
16
|
Swevers L, Liu J, Smagghe G. Defense Mechanisms against Viral Infection in Drosophila: RNAi and Non-RNAi. Viruses 2018; 10:E230. [PMID: 29723993 PMCID: PMC5977223 DOI: 10.3390/v10050230] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 04/20/2018] [Accepted: 04/27/2018] [Indexed: 12/20/2022] Open
Abstract
RNAi is considered a major antiviral defense mechanism in insects, but its relative importance as compared to other antiviral pathways has not been evaluated comprehensively. Here, it is attempted to give an overview of the antiviral defense mechanisms in Drosophila that involve both RNAi and non-RNAi. While RNAi is considered important in most viral infections, many other pathways can exist that confer antiviral resistance. It is noted that very few direct recognition mechanisms of virus infections have been identified in Drosophila and that the activation of immune pathways may be accomplished indirectly through cell damage incurred by viral replication. In several cases, protection against viral infection can be obtained in RNAi mutants by non-RNAi mechanisms, confirming the variability of the RNAi defense mechanism according to the type of infection and the physiological status of the host. This analysis is aimed at more systematically investigating the relative contribution of RNAi in the antiviral response and more specifically, to ask whether RNAi efficiency is affected when other defense mechanisms predominate. While Drosophila can function as a useful model, this issue may be more critical for economically important insects that are either controlled (agricultural pests and vectors of diseases) or protected from parasite infection (beneficial insects as bees) by RNAi products.
Collapse
Affiliation(s)
- Luc Swevers
- Institute of Biosciences & Applications, NCSR "Demokritos", 15341 Athens, Greece.
| | - Jisheng Liu
- School of Life Sciences, Guangzhou University, 510006 Guangzhou, China.
| | - Guy Smagghe
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
17
|
Brutscher LM, Daughenbaugh KF, Flenniken ML. Virus and dsRNA-triggered transcriptional responses reveal key components of honey bee antiviral defense. Sci Rep 2017; 7:6448. [PMID: 28743868 PMCID: PMC5526946 DOI: 10.1038/s41598-017-06623-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 07/04/2017] [Indexed: 12/22/2022] Open
Abstract
Recent high annual losses of honey bee colonies are associated with many factors, including RNA virus infections. Honey bee antiviral responses include RNA interference and immune pathway activation, but their relative roles in antiviral defense are not well understood. To better characterize the mechanism(s) of honey bee antiviral defense, bees were infected with a model virus in the presence or absence of dsRNA, a virus associated molecular pattern. Regardless of sequence specificity, dsRNA reduced virus abundance. We utilized next generation sequencing to examine transcriptional responses triggered by virus and dsRNA at three time-points post-infection. Hundreds of genes exhibited differential expression in response to co-treatment of dsRNA and virus. Virus-infected bees had greater expression of genes involved in RNAi, Toll, Imd, and JAK-STAT pathways, but the majority of differentially expressed genes are not well characterized. To confirm the virus limiting role of two genes, including the well-characterized gene, dicer, and a probable uncharacterized cyclin dependent kinase in honey bees, we utilized RNAi to reduce their expression in vivo and determined that virus abundance increased, supporting their involvement in antiviral defense. Together, these results further our understanding of honey bee antiviral defense, particularly the role of a non-sequence specific dsRNA-mediated antiviral pathway.
Collapse
Affiliation(s)
- Laura M Brutscher
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA.,Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA.,Pollinator Health Center, Montana State University, Bozeman, MT, USA
| | - Katie F Daughenbaugh
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA.,Pollinator Health Center, Montana State University, Bozeman, MT, USA
| | - Michelle L Flenniken
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA. .,Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA. .,Pollinator Health Center, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
18
|
Yang J, Zhang F, Cai NJ, Wu N, Chen X, Li J, Meng XF, Zhu TQ, Chen JP, Zhang HM. A furoviral replicase recruits host HSP70 to membranes for viral RNA replication. Sci Rep 2017; 7:45590. [PMID: 28367995 PMCID: PMC5377427 DOI: 10.1038/srep45590] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/01/2017] [Indexed: 12/13/2022] Open
Abstract
Many host factors have been identified to be involved in viral infection. However, although furoviruses cause important diseases of cereals worldwide, no host factors have yet been identified that interact with furoviral genes or participate in the viral infection cycle. In this study, both TaHSP70 and NbHSP70 were up-regulated in Chinese wheat mosaic furovirus (CWMV)-infected plants. Their overexpression and inhibition were correlated with the accumulation of viral genomic RNAs, suggesting that the HSP70 genes could be necessary for CWMV infection. The subcellular distributions of TaHSP70 and NbHSP70 were significantly affected by CWMV infection or by infiltration of RNA1 alone. Further assays showed that the viral replicase encoded by CWMV RNA1 interacts with both TaHSP70 and NbHSP70 in vivo and vitro and that its region aa167-333 was responsible for the interaction. Subcellular assays showed that the viral replicase could recruit both TaHSP70 and NbHSP70 from the cytoplasm or nucleus to the granular aggregations or inclusion-like structures on the intracellular membrane system, suggesting that both HSP70s may be recruited into the viral replication complex (VRC) to promote furoviral replication. This is the first host factor identified to be involved in furoviral infection, which extends the list and functional scope of HSP70 chaperones.
Collapse
Affiliation(s)
- Jian Yang
- State Key Laboratory Breeding Base for Zhejiang Sustain Pest and Disease Control; MOA and Zhejiang Key Laboratory of Plant Protection and Biotechnology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Fen Zhang
- State Key Laboratory Breeding Base for Zhejiang Sustain Pest and Disease Control; MOA and Zhejiang Key Laboratory of Plant Protection and Biotechnology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China
| | - Nian-Jun Cai
- State Key Laboratory Breeding Base for Zhejiang Sustain Pest and Disease Control; MOA and Zhejiang Key Laboratory of Plant Protection and Biotechnology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China
| | - Ne Wu
- State Key Laboratory Breeding Base for Zhejiang Sustain Pest and Disease Control; MOA and Zhejiang Key Laboratory of Plant Protection and Biotechnology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Zhejiang Agriculture and Forest University, Linan 311300, China
| | - Xuan Chen
- State Key Laboratory Breeding Base for Zhejiang Sustain Pest and Disease Control; MOA and Zhejiang Key Laboratory of Plant Protection and Biotechnology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Zhejiang Agriculture and Forest University, Linan 311300, China
| | - Jing Li
- State Key Laboratory Breeding Base for Zhejiang Sustain Pest and Disease Control; MOA and Zhejiang Key Laboratory of Plant Protection and Biotechnology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiang-Feng Meng
- Zhumadian Academy of Agriculture Sciences, Zhumadian 463000, China
| | - Tong-Quan Zhu
- Zhumadian Academy of Agriculture Sciences, Zhumadian 463000, China
| | - Jian-Ping Chen
- State Key Laboratory Breeding Base for Zhejiang Sustain Pest and Disease Control; MOA and Zhejiang Key Laboratory of Plant Protection and Biotechnology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Heng-Mu Zhang
- State Key Laboratory Breeding Base for Zhejiang Sustain Pest and Disease Control; MOA and Zhejiang Key Laboratory of Plant Protection and Biotechnology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
19
|
Qiu Y, Miao M, Wang Z, Liu Y, Yang J, Xia H, Li XF, Qin CF, Hu Y, Zhou X. The RNA binding of protein A from Wuhan nodavirus is mediated by mitochondrial membrane lipids. Virology 2014; 462-463:1-13. [PMID: 25092456 PMCID: PMC7112130 DOI: 10.1016/j.virol.2014.05.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/06/2014] [Accepted: 05/21/2014] [Indexed: 01/19/2023]
Abstract
RNA replication of positive-strand (+)RNA viruses requires the lipids present in intracellular membranes, the sites of which viral replicases associate with. However, the direct effects of membrane lipids on viral replicases are still poorly understood. Wuhan nodavirus (WhNV) protein A, which associates with mitochondrial membranes, is the sole replicase required for RNA replication. Here, we report that WhNV protein A binds to RNA1 in a cooperative manner. Moreover, mitochondrial membrane lipids (MMLs) stimulated the RNA binding activity and cooperativity of protein A, and such stimulations exhibited strong selectivity for distinct phospholipids. Interestingly, MMLs stimulated the RNA-binding cooperativity only at higher protein A concentrations. Further investigation showed that MMLs stimulate the RNA binding of protein A by promoting its self-interaction. Finally, manipulating MML metabolism affected the protein A-induced RNA1 recruitment in cells. Together, our findings reveal the direct effects of membrane lipids on the RNA binding activity of a nodaviral replicase. WhNV protein A directly binds to RNA1 in a cooperative manner. Mitochondrial membrane lipids (MMLs) stimulate the binding activity of protein A. The RNA binding of protein A is selectively stimulated by specific phospholipids. MMLs enhance the RNA binding of protein A by stimulating its self-interaction. Manipulating phospholipid metabolism regulates protein A-induced RNA1 recruitment.
Collapse
Affiliation(s)
- Yang Qiu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China; State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Meng Miao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Zhaowei Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Yongxiang Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Jie Yang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Hongjie Xia
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Xiao-Feng Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yuanyang Hu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Xi Zhou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China.
| |
Collapse
|
20
|
The hop-like stress-induced protein 1 cochaperone is a novel cell-intrinsic restriction factor for mitochondrial tombusvirus replication. J Virol 2014; 88:9361-78. [PMID: 24920799 DOI: 10.1128/jvi.00561-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
UNLABELLED Recent genome-wide screens reveal that the host cells express an arsenal of proteins that inhibit replication of plus-stranded RNA viruses by functioning as cell-intrinsic restriction factors of viral infections. One group of cell-intrinsic restriction factors against tombusviruses contains tetratricopeptide repeat (TPR) domains that directly interact with the viral replication proteins. In this paper, we find that the TPR domain-containing Hop-like stress-inducible protein 1 (Sti1p) cochaperone selectively inhibits the mitochondrial membrane-based replication of Carnation Italian ringspot tombusvirus (CIRV). In contrast, Sti1/Hop does not inhibit the peroxisome membrane-based replication of the closely related Tomato bushy stunt virus (TBSV) or Cucumber necrosis virus (CNV) in a yeast model or in plants. Deletion of STI1 in yeast leads to up to a 4-fold increase in CIRV replication, and knockdown of the orthologous Hop cochaperone in plants results in a 3-fold increase in CIRV accumulation. Overexpression of Sti1p derivatives in yeast reveals that the inhibitory function depends on the TPR1 domain known to interact with heat shock protein 70 (Hsp70), but not on the TPR2 domain interacting with Hsp90. In vitro CIRV replication studies based on isolated mitochondrial preparations and purified recombinant proteins has confirmed that Sti1p, similar to the TPR-containing Cyp40-like Cpr7p cyclophilin and the Ttc4 oncogene-like Cns1 cochaperone, is a strong inhibitor of CIRV replication. Sti1p interacts and colocalizes with the CIRV replication proteins in yeast. Our findings indicate that the TPR-containing Hop/Sti1 cochaperone could act as a cell-intrinsic virus restriction factor of the mitochondrial CIRV, but not against the peroxisomal tombusviruses in yeast and plants. IMPORTANCE The host cells express various cell-intrinsic restriction factors that inhibit the replication of plus-stranded RNA viruses. In this paper, the authors find that the Hop-like stress-inducible protein 1 (Sti1p) cochaperone selectively inhibits the mitochondrial membrane-based replication of Carnation Italian ringspot tombusvirus (CIRV) in yeast. Deletion of STI1 in yeast or knockdown of the orthologous Hop cochaperone in plants leads to increased CIRV replication. In addition, overexpression of Sti1p derivatives in yeast reveals that the inhibitory function depends on the TPR1 domain known to interact with heat shock protein 70 (Hsp70), but not on the TPR2 domain interacting with Hsp90. In vitro CIRV replication studies based on isolated mitochondrial preparations and purified recombinant proteins have confirmed that Sti1p is a strong inhibitor of CIRV replication. The authors' findings reveal that the Hop/Sti1 cochaperone could act as a cell-intrinsic restriction factor against the mitochondrial CIRV, but not against the related peroxisomal tombusviruses.
Collapse
|
21
|
High-throughput screen of natural product libraries for hsp90 inhibitors. BIOLOGY 2014; 3:101-38. [PMID: 24833337 PMCID: PMC4009755 DOI: 10.3390/biology3010101] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 01/22/2014] [Accepted: 01/22/2014] [Indexed: 02/07/2023]
Abstract
Hsp90 has become the target of intensive investigation, as inhibition of its function has the ability to simultaneously incapacitate proteins that function in pathways that represent the six hallmarks of cancer. While a number of Hsp90 inhibitors have made it into clinical trials, a number of short-comings have been noted, such that the search continues for novel Hsp90 inhibitors with superior pharmacological properties. To identify new potential Hsp90 inhibitors, we have utilized a high-throughput assay based on measuring Hsp90-dependent refolding of thermally denatured luciferase to screen natural compound libraries. Over 4,000 compounds were screen with over 100 hits. Data mining of the literature indicated that 51 compounds had physiological effects that Hsp90 inhibitors also exhibit, and/or the ability to downregulate the expression levels of Hsp90-dependent proteins. Of these 51 compounds, seven were previously characterized as Hsp90 inhibitors. Four compounds, anthothecol, garcinol, piplartine, and rottlerin, were further characterized, and the ability of these compounds to inhibit the refolding of luciferase, and reduce the rate of growth of MCF7 breast cancer cells, correlated with their ability to suppress the Hsp90-dependent maturation of the heme-regulated eIF2α kinase, and deplete cultured cells of Hsp90-dependent client proteins. Thus, this screen has identified an additional 44 compounds with known beneficial pharmacological properties, but with unknown mechanisms of action as possible new inhibitors of the Hsp90 chaperone machine.
Collapse
|
22
|
Wu W, Wang Z, Xia H, Liu Y, Qiu Y, Liu Y, Hu Y, Zhou X. Flock house virus RNA polymerase initiates RNA synthesis de novo and possesses a terminal nucleotidyl transferase activity. PLoS One 2014; 9:e86876. [PMID: 24466277 PMCID: PMC3900681 DOI: 10.1371/journal.pone.0086876] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 12/18/2013] [Indexed: 12/26/2022] Open
Abstract
Flock House virus (FHV) is a positive-stranded RNA virus with a bipartite genome of RNAs, RNA1 and RNA2, and belongs to the family Nodaviridae. As the most extensively studied nodavirus, FHV has become a well-recognized model for studying various aspects of RNA virology, particularly viral RNA replication and antiviral innate immunity. FHV RNA1 encodes protein A, which is an RNA-dependent RNA polymerase (RdRP) and functions as the sole viral replicase protein responsible for RNA replication. Although the RNA replication of FHV has been studied in considerable detail, the mechanism employed by FHV protein A to initiate RNA synthesis has not been determined. In this study, we characterized the RdRP activity of FHV protein A in detail and revealed that it can initiate RNA synthesis via a de novo (primer-independent) mechanism. Moreover, we found that FHV protein A also possesses a terminal nucleotidyl transferase (TNTase) activity, which was able to restore the nucleotide loss at the 3'-end initiation site of RNA template to rescue RNA synthesis initiation in vitro, and may function as a rescue and protection mechanism to protect the 3' initiation site, and ensure the efficiency and accuracy of viral RNA synthesis. Altogether, our study establishes the de novo initiation mechanism of RdRP and the terminal rescue mechanism of TNTase for FHV protein A, and represents an important advance toward understanding FHV RNA replication.
Collapse
Affiliation(s)
- Wenzhe Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Zhaowei Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Hongjie Xia
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yongxiang Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yang Qiu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yujie Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yuanyang Hu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xi Zhou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
- * E-mail:
| |
Collapse
|
23
|
Xu J, Cherry S. Viruses and antiviral immunity in Drosophila. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 42:67-84. [PMID: 23680639 PMCID: PMC3826445 DOI: 10.1016/j.dci.2013.05.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 04/26/2013] [Accepted: 05/02/2013] [Indexed: 05/10/2023]
Abstract
Viral pathogens present many challenges to organisms, driving the evolution of a myriad of antiviral strategies to combat infections. A wide variety of viruses infect invertebrates, including both natural pathogens that are insect-restricted, and viruses that are transmitted to vertebrates. Studies using the powerful tools in the model organism Drosophila have expanded our understanding of antiviral defenses against diverse viruses. In this review, we will cover three major areas. First, we will describe the tools used to study viruses in Drosophila. Second, we will survey the major viruses that have been studied in Drosophila. And lastly, we will discuss the well-characterized mechanisms that are active against these diverse pathogens, focusing on non-RNAi mediated antiviral mechanisms. Antiviral RNAi is discussed in another paper in this issue.
Collapse
Affiliation(s)
- Jie Xu
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | |
Collapse
|
24
|
Wang Z, Qiu Y, Liu Y, Qi N, Si J, Xia X, Wu D, Hu Y, Zhou X. Characterization of a nodavirus replicase revealed a de novo initiation mechanism of RNA synthesis and terminal nucleotidyltransferase activity. J Biol Chem 2013; 288:30785-801. [PMID: 24019510 DOI: 10.1074/jbc.m113.492728] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Nodaviruses are a family of positive-stranded RNA viruses with a bipartite genome of RNAs. In nodaviruses, genomic RNA1 encodes protein A, which is recognized as an RNA-dependent RNA polymerase (RdRP) and functions as the sole viral replicase protein responsible for its RNA replication. Although nodaviral RNA replication has been studied in considerable detail, and nodaviruses are well recognized models for investigating viral RNA replication, the mechanism(s) governing the initiation of nodaviral RNA synthesis have not been determined. In this study, we characterized the RdRP activity of Wuhan nodavirus (WhNV) protein A in detail and determined that this nodaviral protein A initiates RNA synthesis via a de novo mechanism, and this RNA synthesis initiation could be independent of other viral or cellular factors. Moreover, we uncovered that WhNV protein A contains a terminal nucleotidyltransferase (TNTase) activity, which is the first time such an activity has been identified in nodaviruses. We subsequently found that the TNTase activity could function in vitro to repair the 3' initiation site, which may be digested by cellular exonucleases, to ensure the efficiency and accuracy of viral RNA synthesis initiation. Furthermore, we determined the cis-acting elements for RdRP or TNTase activity at the 3'-end of positive or negative strand RNA1. Taken together, our data establish the de novo synthesis initiation mechanism and the TNTase activity of WhNV protein A, and this work represents an important advance toward understanding the mechanism(s) of nodaviral RNA replication.
Collapse
Affiliation(s)
- Zhaowei Wang
- From the State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
RNA viruses face dynamic environments and are masters at adaptation. During their short 'lifespans', they must surmount multiple physical, anatomical and immunological challenges. Central to their adaptative capacity is the enormous genetic diversity that characterizes RNA virus populations. Although genetic diversity increases the rate of adaptive evolution, low replication fidelity can present a risk because excess mutations can lead to population extinction. In this Review, we discuss the strategies used by RNA viruses to deal with the increased mutational load and consider how this mutational robustness might influence viral evolution and pathogenesis.
Collapse
|
26
|
Zhang K, Li Z, Jaiswal M, Bayat V, Xiong B, Sandoval H, Charng WL, David G, Haueter C, Yamamoto S, Graham BH, Bellen HJ. The C8ORF38 homologue Sicily is a cytosolic chaperone for a mitochondrial complex I subunit. J Cell Biol 2013; 200:807-820. [PMID: 23509070 PMCID: PMC3601355 DOI: 10.1083/jcb.201208033] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 02/19/2013] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial complex I (CI) is an essential component in energy production through oxidative phosphorylation. Most CI subunits are encoded by nuclear genes, translated in the cytoplasm, and imported into mitochondria. Upon entry, they are embedded into the mitochondrial inner membrane. How these membrane-associated proteins cope with the hydrophilic cytoplasmic environment before import is unknown. In a forward genetic screen to identify genes that cause neurodegeneration, we identified sicily, the Drosophila melanogaster homologue of human C8ORF38, the loss of which causes Leigh syndrome. We show that in the cytoplasm, Sicily preprotein interacts with cytosolic Hsp90 to chaperone the CI subunit, ND42, before mitochondrial import. Loss of Sicily leads to loss of CI proteins and preproteins in both mitochondria and cytoplasm, respectively, and causes a CI deficiency and neurodegeneration. Our data indicate that cytosolic chaperones are required for the subcellular transport of ND42.
Collapse
Affiliation(s)
- Ke Zhang
- Program in Structural and Computational Biology and Molecular Biophysics, Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Program in Developmental Biology, Medical Scientist Training Program, Department of Neuroscience, and Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030
| | - Zhihong Li
- Program in Structural and Computational Biology and Molecular Biophysics, Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Program in Developmental Biology, Medical Scientist Training Program, Department of Neuroscience, and Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030
| | - Manish Jaiswal
- Program in Structural and Computational Biology and Molecular Biophysics, Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Program in Developmental Biology, Medical Scientist Training Program, Department of Neuroscience, and Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030
| | - Vafa Bayat
- Program in Structural and Computational Biology and Molecular Biophysics, Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Program in Developmental Biology, Medical Scientist Training Program, Department of Neuroscience, and Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030
| | - Bo Xiong
- Program in Structural and Computational Biology and Molecular Biophysics, Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Program in Developmental Biology, Medical Scientist Training Program, Department of Neuroscience, and Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030
| | - Hector Sandoval
- Program in Structural and Computational Biology and Molecular Biophysics, Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Program in Developmental Biology, Medical Scientist Training Program, Department of Neuroscience, and Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030
| | - Wu-Lin Charng
- Program in Structural and Computational Biology and Molecular Biophysics, Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Program in Developmental Biology, Medical Scientist Training Program, Department of Neuroscience, and Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030
| | - Gabriela David
- Program in Structural and Computational Biology and Molecular Biophysics, Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Program in Developmental Biology, Medical Scientist Training Program, Department of Neuroscience, and Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030
| | - Claire Haueter
- Program in Structural and Computational Biology and Molecular Biophysics, Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Program in Developmental Biology, Medical Scientist Training Program, Department of Neuroscience, and Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030
| | - Shinya Yamamoto
- Program in Structural and Computational Biology and Molecular Biophysics, Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Program in Developmental Biology, Medical Scientist Training Program, Department of Neuroscience, and Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030
| | - Brett H. Graham
- Program in Structural and Computational Biology and Molecular Biophysics, Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Program in Developmental Biology, Medical Scientist Training Program, Department of Neuroscience, and Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030
| | - Hugo J. Bellen
- Program in Structural and Computational Biology and Molecular Biophysics, Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Program in Developmental Biology, Medical Scientist Training Program, Department of Neuroscience, and Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
27
|
Qiu Y, Wang Z, Liu Y, Qi N, Miao M, Si J, Xiang X, Cai D, Hu Y, Zhou X. Membrane association of Wuhan nodavirus protein A is required for its ability to accumulate genomic RNA1 template. Virology 2013; 439:140-51. [PMID: 23490047 DOI: 10.1016/j.virol.2013.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 01/16/2013] [Accepted: 02/13/2013] [Indexed: 01/13/2023]
Abstract
One common feature of positive-strand RNA viruses is the association of viral RNA and viral RNA replicase proteins with specific intracellular membranes to form RNA replication complexes. Wuhan nodavirus (WhNV) encodes protein A, which is the sole viral RNA replicase. Here, we showed that WhNV protein A closely associates with mitochondrial outer membranes and colocalizes with viral RNA replication sites. We further identified the transmembrane domains (N-terminal aa 33-64 and aa 212-254) of protein A for membrane association and mitochondrial localization. Moreover, we found that protein A accumulates genomic RNA by stabilizing the RNA. And our further investigation revealed that the ability of WhNV protein A to associate with membranes is closely linked with its ability for membrane recruitment and stabilization of viral genomic RNA templates. This study represents an advance toward understanding the mechanism of the RNA replication of WhNV and probably other nodaviruses.
Collapse
Affiliation(s)
- Yang Qiu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan, Hubei 430072, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Han B, Zhang L, Feng M, Fang Y, Li J. An Integrated Proteomics Reveals Pathological Mechanism of Honeybee (Apis cerena) Sacbrood Disease. J Proteome Res 2013; 12:1881-97. [DOI: 10.1021/pr301226d] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bin Han
- Institute of Apicultural Research/Key Laboratory of
Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing, China
| | - Lan Zhang
- Institute of Apicultural Research/Key Laboratory of
Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing, China
| | - Mao Feng
- Institute of Apicultural Research/Key Laboratory of
Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing, China
| | - Yu Fang
- Institute of Apicultural Research/Key Laboratory of
Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing, China
| | - Jianke Li
- Institute of Apicultural Research/Key Laboratory of
Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing, China
| |
Collapse
|
29
|
Verchot J. Cellular chaperones and folding enzymes are vital contributors to membrane bound replication and movement complexes during plant RNA virus infection. FRONTIERS IN PLANT SCIENCE 2012; 3:275. [PMID: 23230447 DOI: 10.3389/fpls.2012.00275/abstract] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Accepted: 11/21/2012] [Indexed: 05/24/2023]
Abstract
Cellular chaperones and folding enzymes play central roles in the formation of positive-strand and negative-strand RNA virus infection. This article examines the key cellular chaperones and discusses evidence that these factors are diverted from their cellular functions to play alternative roles in virus infection. For most chaperones discussed, their primary role in the cell is to ensure protein quality control. They are system components that drive substrate protein folding, complex assembly or disaggregation. Their activities often depend upon co-chaperones and ATP hydrolysis. During plant virus infection, Hsp70 and Hsp90 proteins play central roles in the formation of membrane-bound replication complexes for certain members of the tombusvirus, tobamovirus, potyvirus, dianthovirus, potexvirus, and carmovirus genus. There are several co-chaperones, including Yjd1, RME-8, and Hsp40 that associate with the bromovirus replication complex, pomovirus TGB2, and tospovirus Nsm movement proteins. There are also examples of plant viruses that rely on chaperone systems in the endoplasmic reticulum (ER) to support cell-to-cell movement. TMV relies on calreticulin to promote virus intercellular transport. Calreticulin also resides in the plasmodesmata and plays a role in calcium sequestration as well as glycoprotein folding. The pomovirus TGB2 interacts with RME-8 in the endosome. The potexvirus TGB3 protein stimulates expression of ER resident chaperones via the bZIP60 transcription factor. Up-regulating factors involved in protein folding may be essential to handling the load of viral proteins translated along the ER. In addition, TGB3 stimulates SKP1 which is a co-factor in proteasomal degradation of cellular proteins. Such chaperones and co-factors are potential targets for antiviral defense.
Collapse
Affiliation(s)
- Jeanmarie Verchot
- Department of Entomology and Plant Pathology, Oklahoma State University Stillwater, OK, USA
| |
Collapse
|
30
|
Huang YW, Hu CC, Liou MR, Chang BY, Tsai CH, Meng M, Lin NS, Hsu YH. Hsp90 interacts specifically with viral RNA and differentially regulates replication initiation of Bamboo mosaic virus and associated satellite RNA. PLoS Pathog 2012; 8:e1002726. [PMID: 22654666 PMCID: PMC3359997 DOI: 10.1371/journal.ppat.1002726] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 04/16/2012] [Indexed: 12/22/2022] Open
Abstract
Host factors play crucial roles in the replication of plus-strand RNA viruses. In this report, a heat shock protein 90 homologue of Nicotiana benthamiana, NbHsp90, was identified in association with partially purified replicase complexes from BaMV-infected tissue, and shown to specifically interact with the 3' untranslated region (3' UTR) of BaMV genomic RNA, but not with the 3' UTR of BaMV-associated satellite RNA (satBaMV RNA) or that of genomic RNA of other viruses, such as Potato virus X (PVX) or Cucumber mosaic virus (CMV). Mutational analyses revealed that the interaction occurs between the middle domain of NbHsp90 and domain E of the BaMV 3' UTR. The knockdown or inhibition of NbHsp90 suppressed BaMV infectivity, but not that of satBaMV RNA, PVX, or CMV in N. benthamiana. Time-course analysis further revealed that the inhibitory effect of 17-AAG is significant only during the immediate early stages of BaMV replication. Moreover, yeast two-hybrid and GST pull-down assays demonstrated the existence of an interaction between NbHsp90 and the BaMV RNA-dependent RNA polymerase. These results reveal a novel role for NbHsp90 in the selective enhancement of BaMV replication, most likely through direct interaction with the 3' UTR of BaMV RNA during the initiation of BaMV RNA replication.
Collapse
Affiliation(s)
- Ying Wen Huang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Chung Chi Hu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Ming Ru Liou
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Ban Yang Chang
- Institute of Biochemistry, National Chung Hsing University, Taichung, Taiwan
| | - Ching Hsiu Tsai
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Menghsiao Meng
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Na Sheng Lin
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yau Heiu Hsu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
31
|
Qin L, Xia H, Shi H, Zhou Y, Chen L, Yao Q, Liu X, Feng F, Yuan Y, Chen K. Comparative proteomic analysis reveals that caspase-1 and serine protease may be involved in silkworm resistance to Bombyx mori nuclear polyhedrosis virus. J Proteomics 2012; 75:3630-8. [PMID: 22546490 DOI: 10.1016/j.jprot.2012.04.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 03/30/2012] [Accepted: 04/11/2012] [Indexed: 11/17/2022]
Abstract
The silkworm Bombyx mori is of great economic value. The B. mori nuclear polyhedrosis virus (BmNPV) is one of the most common and severe pathogens for silkworm. Although certain immune mechanisms exist in silkworms, most silkworms are still susceptible to BmNPV infection. Interestingly, BmNPV infection resistance in some silkworm strains is varied and naturally existing. We have previously established a silkworm strain NB by genetic cross, which is highly resistant to BmNPV invasion. To investigate the molecular mechanism of silkworm resistance to BmNPV infection, we employed proteomic approach and genetic cross to globally identify proteins differentially expressed in parental silkworms NB and 306, a BmNPV-susceptible strain, and their F(1) hybrids. In all, 53 different proteins were found in direct cross group (NB♀, 306♂, F(1) hybrid) and 21 in reciprocal cross group (306♀, NB♂, F(1) hybrid). Gene ontology and KEGG pathway analyses showed that most of these different proteins are located in cytoplasm and are involved in many important metabolisms. Caspase-1 and serine protease expressed only in BmNPV-resistant silkworms, but not in BmNPV-susceptible silkworms, which was further confirmed by Western blot. Taken together, our data suggests that both caspase-1 and serine protease play a critical role in silkworm resistance against BmNPV infection.
Collapse
Affiliation(s)
- Lvgao Qin
- School of Food and Biological Engineering, Jiangsu University, 301# Xuefu Road, Zhenjiang 212013, Jiangsu Province, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Verchot J. Cellular chaperones and folding enzymes are vital contributors to membrane bound replication and movement complexes during plant RNA virus infection. FRONTIERS IN PLANT SCIENCE 2012; 3:275. [PMID: 23230447 PMCID: PMC3515963 DOI: 10.3389/fpls.2012.00275] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Accepted: 11/21/2012] [Indexed: 05/03/2023]
Abstract
Cellular chaperones and folding enzymes play central roles in the formation of positive-strand and negative-strand RNA virus infection. This article examines the key cellular chaperones and discusses evidence that these factors are diverted from their cellular functions to play alternative roles in virus infection. For most chaperones discussed, their primary role in the cell is to ensure protein quality control. They are system components that drive substrate protein folding, complex assembly or disaggregation. Their activities often depend upon co-chaperones and ATP hydrolysis. During plant virus infection, Hsp70 and Hsp90 proteins play central roles in the formation of membrane-bound replication complexes for certain members of the tombusvirus, tobamovirus, potyvirus, dianthovirus, potexvirus, and carmovirus genus. There are several co-chaperones, including Yjd1, RME-8, and Hsp40 that associate with the bromovirus replication complex, pomovirus TGB2, and tospovirus Nsm movement proteins. There are also examples of plant viruses that rely on chaperone systems in the endoplasmic reticulum (ER) to support cell-to-cell movement. TMV relies on calreticulin to promote virus intercellular transport. Calreticulin also resides in the plasmodesmata and plays a role in calcium sequestration as well as glycoprotein folding. The pomovirus TGB2 interacts with RME-8 in the endosome. The potexvirus TGB3 protein stimulates expression of ER resident chaperones via the bZIP60 transcription factor. Up-regulating factors involved in protein folding may be essential to handling the load of viral proteins translated along the ER. In addition, TGB3 stimulates SKP1 which is a co-factor in proteasomal degradation of cellular proteins. Such chaperones and co-factors are potential targets for antiviral defense.
Collapse
Affiliation(s)
- Jeanmarie Verchot
- *Correspondence: Jeanmarie Verchot, Department of Entomology and Plant Pathology, Oklahoma State University, 127 Noble Research Center, Stillwater, OK 74075, USA. e-mail:
| |
Collapse
|
33
|
Nagy PD, Pogany J. The dependence of viral RNA replication on co-opted host factors. Nat Rev Microbiol 2011; 10:137-49. [PMID: 22183253 PMCID: PMC7097227 DOI: 10.1038/nrmicro2692] [Citation(s) in RCA: 339] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Positive-sense RNA ((+)RNA) viruses such as hepatitis C virus exploit host cells by subverting host proteins, remodelling subcellular membranes, co-opting and modulating protein and ribonucleoprotein complexes, and altering cellular metabolic pathways during infection. To facilitate RNA replication, (+)RNA viruses interact with numerous host molecules through protein-protein, RNA-protein and protein-lipid interactions. These interactions lead to the formation of viral replication complexes, which produce new viral RNA progeny in host cells. This Review presents the recent progress that has been made in understanding the role of co-opted host proteins and membranes during (+)RNA virus replication, and discusses common themes employed by different viruses.
Collapse
Affiliation(s)
- Peter D Nagy
- Department of Plant Pathology, University of Kentucky, 201F Plant Science Building, Lexington, Kentucky 40546, USA.
| | | |
Collapse
|
34
|
Geller R, Taguwa S, Frydman J. Broad action of Hsp90 as a host chaperone required for viral replication. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:698-706. [PMID: 22154817 DOI: 10.1016/j.bbamcr.2011.11.007] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Revised: 11/21/2011] [Accepted: 11/22/2011] [Indexed: 02/06/2023]
Abstract
Viruses are intracellular pathogens responsible for a vast number of human diseases. Due to their small genome size, viruses rely primarily on the biosynthetic apparatus of the host for their replication. Recent work has shown that the molecular chaperone Hsp90 is nearly universally required for viral protein homeostasis. As observed for many endogenous cellular proteins, numerous different viral proteins have been shown to require Hsp90 for their folding, assembly, and maturation. Importantly, the unique characteristics of viral replication cause viruses to be hypersensitive to Hsp90 inhibition, thus providing a novel therapeutic avenue for the development of broad-spectrum antiviral drugs. The major developments in this emerging field are hereby discussed. This article is part of a Special Issue entitled: Heat Shock Protein 90 (HSP90).
Collapse
Affiliation(s)
- Ron Geller
- Department of Biology and BioX Program, Stanford University, Stanford, CA, USA
| | | | | |
Collapse
|
35
|
Li J, Soroka J, Buchner J. The Hsp90 chaperone machinery: conformational dynamics and regulation by co-chaperones. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:624-35. [PMID: 21951723 DOI: 10.1016/j.bbamcr.2011.09.003] [Citation(s) in RCA: 363] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Revised: 09/07/2011] [Accepted: 09/08/2011] [Indexed: 11/24/2022]
Abstract
Hsp90 is a dimeric molecular chaperone required for the activation and stabilization of numerous client proteins many of which are involved in essential cellular processes like signal transduction pathways. This activation process is regulated by ATP-induced large conformational changes, co-chaperones and posttranslational modifications. For some co-chaperones, a detailed picture on their structures and functions exists, for others their contributions to the Hsp90 system is still unclear. Recent progress on the conformational dynamics of Hsp90 and how co-chaperones affect the Hsp90 chaperone cycle significantly increased our understanding of the gearings of this complex molecular machinery. This article is part of a Special Issue entitled: Heat Shock Protein 90 (Hsp90).
Collapse
Affiliation(s)
- Jing Li
- Technische Universitat, Munchen, Germany
| | | | | |
Collapse
|
36
|
Knox C, Luke GA, Blatch GL, Pesce ER. Heat shock protein 40 (Hsp40) plays a key role in the virus life cycle. Virus Res 2011; 160:15-24. [DOI: 10.1016/j.virusres.2011.06.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2011] [Revised: 06/17/2011] [Accepted: 06/21/2011] [Indexed: 01/04/2023]
|
37
|
Mutsvunguma LZ, Moetlhoa B, Edkins AL, Luke GA, Blatch GL, Knox C. Theiler's murine encephalomyelitis virus infection induces a redistribution of heat shock proteins 70 and 90 in BHK-21 cells, and is inhibited by novobiocin and geldanamycin. Cell Stress Chaperones 2011; 16:505-15. [PMID: 21445704 PMCID: PMC3156266 DOI: 10.1007/s12192-011-0262-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 03/04/2011] [Accepted: 03/07/2011] [Indexed: 11/26/2022] Open
Abstract
Theiler's murine encephalomyelitis virus (TMEV) is a positive-sense RNA virus belonging to the Cardiovirus genus in the family Picornaviridae. In addition to other host cellular factors and pathways, picornaviruses utilise heat shock proteins (Hsps) to facilitate their propagation in cells. This study investigated the localisation of Hsps 70 and 90 in TMEV-infected BHK-21 cells by indirect immunofluorescence and confocal microscopy. The effect of Hsp90 inhibitors novobiocin (Nov) and geldanamycin (GA) on the development of cytopathic effect (CPE) induced by infection was also examined. Hsp90 staining was uniformly distributed in the cytoplasm of uninfected cells but was found concentrated in the perinuclear region during late infection where it overlapped with the signal for non-structural protein 2C within the viral replication complex. Hsp70 redistributed into the vicinity of the viral replication complex during late infection, but its distribution did not overlap with that of 2C. Inhibition of Hsp90 by GA and Nov had a negative effect on virus growth over a 48-h period as indicated by no observable CPE in treated compared to untreated cells. 2C was detected by Western analysis of GA-treated infected cell lysates at doses between 0.01 and 0.125 μM, suggesting that processing of viral precursors was not affected in the presence of this drug. In contrast, 2C was absent in cell lysates of Nov-treated cells at doses above 10 μM, although CPE was evident 48 hpi. This is the first study describing the dynamic behaviour of Hsps 70 and 90 in TMEV-infected cells and to identify Hsp90 as an important host factor in the life cycle of this virus.
Collapse
Affiliation(s)
- Lorraine Z. Mutsvunguma
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, 6140 Grahamstown, South Africa
| | - Boitumelo Moetlhoa
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, 6140 Grahamstown, South Africa
| | - Adrienne L. Edkins
- Biomedical Biotechnology Research Unit, Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, 6140 Grahamstown, South Africa
| | - Garry A. Luke
- Centre for Biomolecular Sciences, School of Biology, Biomolecular Sciences Building, University of St Andrews, North Haugh, St Andrews, Scotland KY16 9ST UK
| | - Gregory L. Blatch
- Biomedical Biotechnology Research Unit, Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, 6140 Grahamstown, South Africa
| | - Caroline Knox
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, 6140 Grahamstown, South Africa
| |
Collapse
|
38
|
Huh SU, Kim MJ, Ham BK, Paek KH. A zinc finger protein Tsip1 controls Cucumber mosaic virus infection by interacting with the replication complex on vacuolar membranes of the tobacco plant. THE NEW PHYTOLOGIST 2011; 191:746-762. [PMID: 21477206 DOI: 10.1111/j.1469-8137.2011.03717.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
• In Cucumber mosaic virus (CMV) RNA replication, replicase-associated protein CMV 1a and RNA-dependent RNA polymerase protein CMV 2a are essential for formation of an active virus replicase complex on vacuolar membranes. • To identify plant host factors involved in CMV replication, a yeast two-hybrid system was used with CMV 1a protein as bait. One of the candidate genes encoded Tsi1-interacting protein 1 (Tsip1), a zinc (Zn) finger protein. Tsip1 strongly interacted with CMV 2a protein, too. • Formation of a Tsip1 complex involving CMV 1a or CMV 2a was confirmed in vitro and in planta. When 35S::Tsip1 tobacco (Nicotiana tabacum) plants were inoculated with CMV-Kor, disease symptom development was delayed and the accumulation of CMV RNAs and coat protein was decreased in both the infected local leaves and the uninfected upper leaves, compared with the wild type, whereas Tsip1-RNAi plants showed modestly but consistently increased CMV susceptibility. In a CMV replication assay, CMV RNA concentrations were reduced in the 35S::Tsip1 transgenic protoplasts compared with wild-type (WT) protoplasts. • These results indicate that Tsip1 might directly control CMV multiplication in tobacco plants by formation of a complex with CMV 1a and CMV 2a.
Collapse
Affiliation(s)
- Sung Un Huh
- School of Life Sciences and Biotechnology, Korea University, 1, 5-ga, Anam-dong, Sungbuk-gu, Seoul 136-701, Republic of Korea
| | - Min Jung Kim
- Examination Division of Food and Biological Resources, Korean Intellectual Property Office, Daejeon 302-701, Republic of Korea
| | - Byung-Kook Ham
- Section of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Kyung-Hee Paek
- School of Life Sciences and Biotechnology, Korea University, 1, 5-ga, Anam-dong, Sungbuk-gu, Seoul 136-701, Republic of Korea
| |
Collapse
|
39
|
Padwad YS, Mishra KP, Jain M, Chanda S, Ganju L. Dengue virus infection activates cellular chaperone Hsp70 in THP-1 cells: downregulation of Hsp70 by siRNA revealed decreased viral replication. Viral Immunol 2011; 23:557-65. [PMID: 21142441 DOI: 10.1089/vim.2010.0052] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The pathogenic mechanism of dengue virus infection is related to the host responses within target cells, and therefore we assessed intracellular changes in stress proteins following dengue virus infection. This study provides evidence that Hsp70 helps in viral multiplication by suppressing the type 1 interferon response. Dengue virus infection in human monocytic THP-1 cells led to overexpression of Hsp70, which also acts as a chaperone. The functional role of Hsp70 in dengue virus multiplication was identified by downregulating the Hsp70 gene with its specific siRNA duplexes, which led to a decrease in viral RNA copy numbers in cellular supernatants and intracellular viral load. It also resulted in an increased IFN-α level, which mediates its antiviral effect through double-stranded RNA-induced protein kinase-PKR. Collectively these results suggest that an increased level of Hsp70 expression in dengue-virus-infected THP-1 cells assists in viral replication by escaping the antiviral effect of type 1 interferon.
Collapse
Affiliation(s)
- Y S Padwad
- Immunomodulation Laboratory, Defence Institute of Physiology and Allied Sciences, Timarpur, Delhi, India
| | | | | | | | | |
Collapse
|
40
|
Adamczyk-Poplawska M, Markowicz S, Jagusztyn-Krynicka EK. Proteomics for development of vaccine. J Proteomics 2011; 74:2596-616. [PMID: 21310271 DOI: 10.1016/j.jprot.2011.01.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 01/26/2011] [Accepted: 01/31/2011] [Indexed: 12/20/2022]
Abstract
The success of genome projects has provided us with a vast amount of information on genes of many pathogenic species and has raised hopes for rapid progress in combating infectious diseases, both by construction of new effective vaccines and by creating a new generation of therapeutic drugs. Proteomics, a strategy complementary to the genomic-based approach, when combined with immunomics (looking for immunogenic proteins) and vaccinomics (characterization of host response to immunization), delivers valuable information on pathogen-host cell interaction. It also speeds the identification and detailed characterization of new antigens, which are potential candidates for vaccine development. This review begins with an overview of the global status of vaccinology based on WHO data. The main part of this review describes the impact of proteomic strategies on advancements in constructing effective antibacterial, antiviral and anticancer vaccines. Diverse aspects of disease mechanisms and disease preventions have been investigated by proteomics.
Collapse
Affiliation(s)
- Monika Adamczyk-Poplawska
- Department of Virology, Institute of Microbiology, Biology Faculty, Warsaw University, Warsaw, Poland
| | | | | |
Collapse
|
41
|
Shim HY, Quan X, Yi YS, Jung G. Heat shock protein 90 facilitates formation of the HBV capsid via interacting with the HBV core protein dimers. Virology 2011; 410:161-9. [DOI: 10.1016/j.virol.2010.11.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 09/26/2010] [Accepted: 11/06/2010] [Indexed: 11/24/2022]
|
42
|
den Boon JA, Ahlquist P. Organelle-like membrane compartmentalization of positive-strand RNA virus replication factories. Annu Rev Microbiol 2010; 64:241-56. [PMID: 20825348 DOI: 10.1146/annurev.micro.112408.134012] [Citation(s) in RCA: 329] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Positive-strand RNA virus genome replication is invariably associated with extensively rearranged intracellular membranes. Recent biochemical and electron microscopy analyses, including three-dimensional electron microscope tomographic imaging, have fundamentally advanced our understanding of the ultrastructure and function of organelle-like RNA replication factories. Notably, for a range of positive-strand RNA viruses embodying many major differences, independent studies have revealed multiple common principles. These principles include that RNA replication often occurs inside numerous virus-induced vesicles invaginated or otherwise elaborated from a continuous, often endoplasmic reticulum-derived membrane network. Where analyzed, each such vesicle typically contains only one or a few genome replication intermediates in conjunction with many copies of viral nonstructural proteins. In addition, these genome replication compartments often are closely associated with sites of virion assembly and budding. Our understanding of these complexes is growing, providing substantial new insights into the organization, coordination, and potential control of crucial processes in virus replication.
Collapse
Affiliation(s)
- Johan A den Boon
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.
| | | |
Collapse
|
43
|
Inoue Y, Aizaki H, Hara H, Matsuda M, Ando T, Shimoji T, Murakami K, Masaki T, Shoji I, Homma S, Matsuura Y, Miyamura T, Wakita T, Suzuki T. Chaperonin TRiC/CCT participates in replication of hepatitis C virus genome via interaction with the viral NS5B protein. Virology 2010; 410:38-47. [PMID: 21093005 DOI: 10.1016/j.virol.2010.10.026] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2010] [Revised: 07/18/2010] [Accepted: 10/15/2010] [Indexed: 12/12/2022]
Abstract
To identify the host factors implicated in the regulation of hepatitis C virus (HCV) genome replication, we performed comparative proteome analyses of HCV replication complex (RC)-rich membrane fractions prepared from cells harboring genome-length bicistronic HCV RNA at the exponential and stationary growth phases. We found that the eukaryotic chaperonin T-complex polypeptide 1 (TCP1)-ring complex/chaperonin-containing TCP1 (TRiC/CCT) plays a role in the replication possibly through an interaction between subunit CCT5 and the viral RNA polymerase NS5B. siRNA-mediated knockdown of CCT5 suppressed RNA replication and production of the infectious virus. Gain-of-function activity was shown following co-transfection with whole eight TRiC/CCT subunits. HCV RNA synthesis was inhibited by an anti-CCT5 antibody in a cell-free assay. These suggest that recruitment of the chaperonin by the viral nonstructural proteins to the RC, which potentially facilitate folding of the RC component(s) into the mature active form, may be important for efficient replication of the HCV genome.
Collapse
Affiliation(s)
- Yasushi Inoue
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Kong Q, Xue C, Ren X, Zhang C, Li L, Shu D, Bi Y, Cao Y. Proteomic analysis of purified coronavirus infectious bronchitis virus particles. Proteome Sci 2010; 8:29. [PMID: 20534109 PMCID: PMC2909931 DOI: 10.1186/1477-5956-8-29] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 06/09/2010] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Infectious bronchitis virus (IBV) is the coronavirus of domestic chickens causing major economic losses to the poultry industry. Because of the complexity of the IBV life cycle and the small number of viral structural proteins, important virus-host relationships likely remain to be discovered. Toward this goal, we performed two-dimensional gel electrophoresis fractionation coupled to mass spectrometry identification approaches to perform a comprehensive proteomic analysis of purified IBV particles. RESULTS Apart from the virus-encoded structural proteins, we detected 60 host proteins in the purified virions which can be grouped into several functional categories including intracellular trafficking proteins (20%), molecular chaperone (18%), macromolcular biosynthesis proteins (17%), cytoskeletal proteins (15%), signal transport proteins (15%), protein degradation (8%), chromosome associated proteins (2%), ribosomal proteins (2%), and other function proteins (3%). Interestingly, 21 of the total host proteins have not been reported to be present in virions of other virus families, such as major vault protein, TENP protein, ovalbumin, and scavenger receptor protein. Following identification of the host proteins by proteomic methods, the presence of 4 proteins in the purified IBV preparation was verified by western blotting and immunogold labeling detection. CONCLUSIONS The results present the first standard proteomic profile of IBV and may facilitate the understanding of the pathogenic mechanisms.
Collapse
Affiliation(s)
- Qingming Kong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Zhao Y, Ben H, Qu S, Zhou X, Yan L, Xu B, Zhou S, Lou Q, Ye R, Zhou T, Yang P, Qu D. Proteomic analysis of primary duck hepatocytes infected with duck hepatitis B virus. Proteome Sci 2010; 8:28. [PMID: 20529248 PMCID: PMC2904733 DOI: 10.1186/1477-5956-8-28] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 06/07/2010] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) is a major cause of liver infection in human. Because of the lack of an appropriate cell culture system for supporting HBV infection efficiently, the cellular and molecular mechanisms of hepadnavirus infection remain incompletely understood. Duck heptatitis B virus (DHBV) can naturally infect primary duck hepatocytes (PDHs) that provide valuable model systems for studying hepadnavirus infection in vitro. In this report, we explored global changes in cellular protein expression in DHBV infected PDHs by two-dimension gel electrophoresis (2-DE) combined with MALDI-TOF/TOF tandem mass spectrometry (MS/MS). RESULTS The effects of hepadnavirus infection on hepatocytes were investigated in DHBV infected PDHs by the 2-DE analysis. Proteomic profile of PDHs infected with DHBV were analyzed at 24, 72 and 120 h post-infection by comparing with uninfected PDHs, and 75 differentially expressed protein spots were revealed by 2-DE analysis. Among the selected protein spots, 51 spots were identified corresponding to 42 proteins by MS/MS analysis; most of them were matched to orthologous proteins of Gallus gallus, Anas platyrhynchos or other avian species, including alpha-enolase, lamin A, aconitase 2, cofilin-2 and annexin A2, etc. The down-regulated expression of beta-actin and annexin A2 was confirmed by Western blot analysis, and potential roles of some differentially expressed proteins in the virus-infected cells have been discussed. CONCLUSIONS Differentially expressed proteins of DHBV infected PDHs revealed by 2-DE, are involved in carbohydrate metabolism, amino acid metabolism, stress responses and cytoskeleton processes etc, providing the insight to understanding of interactions between hepadnavirus and hepatocytes and molecular mechanisms of hepadnavirus pathogenesis.
Collapse
Affiliation(s)
- Yanfeng Zhao
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Haijing Ben
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Su Qu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xinwen Zhou
- Department of Chemistry, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Liang Yan
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Bin Xu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Shuangcheng Zhou
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Qiang Lou
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Rong Ye
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Tianlun Zhou
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Pengyuan Yang
- Department of Chemistry, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Di Qu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| |
Collapse
|
46
|
Xiao A, Wong J, Luo H. Viral interaction with molecular chaperones: role in regulating viral infection. Arch Virol 2010; 155:1021-31. [DOI: 10.1007/s00705-010-0691-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 05/02/2010] [Indexed: 02/08/2023]
|
47
|
Smith DR, McCarthy S, Chrovian A, Olinger G, Stossel A, Geisbert TW, Hensley LE, Connor JH. Inhibition of heat-shock protein 90 reduces Ebola virus replication. Antiviral Res 2010; 87:187-94. [PMID: 20452380 DOI: 10.1016/j.antiviral.2010.04.015] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2010] [Revised: 04/22/2010] [Accepted: 04/30/2010] [Indexed: 12/24/2022]
Abstract
Ebola virus (EBOV), a negative-sense RNA virus in the family Filoviridae, is known to cause severe hemorrhagic fever in humans and other primates. Infection with EBOV causes a high mortality rate and currently there is no FDA-licensed vaccine or therapeutic treatment available. Recently, heat-shock protein 90 (Hsp90), a molecular chaperone, was shown to be an important host factor for the replication of several negative-strand viruses. We tested the effect of several different Hsp90 inhibitors including geldanamycin, radicicol, and 17-allylamino-17-demethoxygeldanamycin (17-AAG; a geldanamycin analog) on the replication of Zaire EBOV. Our results showed that inhibition of Hsp90 significantly reduced the replication of EBOV. Classic Hsp90 inhibitors reduced viral replication with an effective concentration at 50% (EC(50)) in the high nanomolar to low micromolar range, while drugs from a new class of Hsp90 inhibitors showed markedly more potent inhibition. These compounds blocked EBOV replication with an EC(50) in the low nanomolar range and showed significant potency in blocking replication in primary human monocytes. These results validated that Hsp90 is an important host factor for the replication of filoviruses and suggest that Hsp90 inhibitors may be therapeutically effective in treating EBOV infection.
Collapse
Affiliation(s)
- Darci R Smith
- U.S. Army Medical Research Institute of Infectious Diseases, Virology Division, Fort Detrick, MD, United States
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Pastorino B, Nougairède A, Wurtz N, Gould E, de Lamballerie X. Role of host cell factors in flavivirus infection: Implications for pathogenesis and development of antiviral drugs. Antiviral Res 2010; 87:281-94. [PMID: 20452379 DOI: 10.1016/j.antiviral.2010.04.014] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 04/21/2010] [Accepted: 04/30/2010] [Indexed: 01/19/2023]
Abstract
The genus Flavivirus contains approximately 70 arthropod-borne enveloped RNA viruses many of which cause severe human and in some cases, animal disease. They include dengue virus, yellow fever virus, West Nile virus, Japanese encephalitis virus, and tick-borne encephalitis virus. Hundreds of thousands of deaths due to flavivirus infections occur each year, many of which are unpreventable due to lack of availability of appropriate vaccines and/or antiviral drugs. Flaviviruses exploit the cytoplasmic cellular machinery to facilitate propagation of infectious progeny virions. They engage in dynamic and antagonistic interactions with host cell membranes and biochemical processes. Following infection, the cells initiate various antiviral strategies to counteract viral invasion. In its defense, the virus has alternative strategies to suppress these host responses to infection. The fine balance between these interactions determines the outcome of the viral infection and disease progression. Published studies have revealed specific effects of flaviviruses on cellular processes, but the underlying mechanisms that determine the specific cytopathogenetic changes induced by different flaviviruses have not, as yet, been elucidated. Independently of the suppression of the type I IFN response which has been described in detail elsewhere, this review focuses on recent discoveries relating to alterations of host metabolism following viral infection. Such studies may contribute to new approaches to antiviral drug development. The role of host cellular factors will be examined in the context of protection and/or pathogenesis resulting from flavivirus infection, with particular emphasis on West Nile virus and dengue virus.
Collapse
Affiliation(s)
- Boris Pastorino
- Unité des Virus Emergents, UMR190 "Emergence des pathologies virales" Université de la Méditerranée, Institut de Recherche pour le Développement, Faculté de Médecine, Marseille, France
| | | | | | | | | |
Collapse
|
49
|
Chen YM, Kuo CE, Wang TY, Shie PS, Wang WC, Huang SL, Tsai TJ, Chen PP, Chen JC, Chen TY. Cloning of an orange-spotted grouper Epinephelus coioides heat shock protein 90AB (HSP90AB) and characterization of its expression in response to nodavirus. FISH & SHELLFISH IMMUNOLOGY 2010; 28:895-904. [PMID: 20153436 DOI: 10.1016/j.fsi.2010.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 01/29/2010] [Accepted: 02/03/2010] [Indexed: 05/28/2023]
Abstract
The heat shock proteins (HSPs) family which consists of HSP90, HSP70, and low molecular mass HSPs are involved in chaperone activity. Here, we report the cloning and characterization of HSP90AB gene from orange-spotted grouper, Epinephelus coioides. The full-length of grouper HSP90AB was 727 amino acids and possessed an ATPase domain as well as an evolutionarily conserved molecular chaperone. The HSP90AB-green fluorescent protein fusion protein was evenly distributed in the cytoplasm. Immunohistochemistry (IHC) and real-time polymerase chain reaction (PCR) analyses indicated that the expression of grouper HSP90AB was marginally increased following nodavirus infection. Grouper E. coioides that received HSP90 inhibitor geldanamycin (GA) showed an increase in HSP90AB expression and growth of nodavirus supporting nodavirus replication.
Collapse
Affiliation(s)
- Young-Mao Chen
- Laboratories of Molecular Genetics, Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Role of cellular lipids in positive-sense RNA virus replication complex assembly and function. Viruses 2010; 2:1055-1068. [PMID: 21994671 PMCID: PMC3187604 DOI: 10.3390/v2051055] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2010] [Revised: 04/07/2010] [Accepted: 04/22/2010] [Indexed: 01/09/2023] Open
Abstract
Positive-sense RNA viruses are responsible for frequent and often devastating diseases in humans, animals, and plants. However, the development of effective vaccines and anti-viral therapies targeted towards these pathogens has been hindered by an incomplete understanding of the molecular mechanisms involved in viral replication. One common feature of all positive-sense RNA viruses is the manipulation of host intracellular membranes for the assembly of functional viral RNA replication complexes. This review will discuss the interplay between cellular membranes and positive-sense RNA virus replication, and will focus specifically on the potential structural and functional roles for cellular lipids in this process.
Collapse
|