1
|
Ogino M, Green TJ, Ogino T. The complete pathway for co-transcriptional mRNA maturation within a large protein of a non-segmented negative-strand RNA virus. Nucleic Acids Res 2024; 52:9803-9820. [PMID: 39077935 PMCID: PMC11381362 DOI: 10.1093/nar/gkae659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024] Open
Abstract
Non-segmented negative-strand (NNS) RNA viruses, such as rabies, Nipah and Ebola, produce 5'-capped and 3'-polyadenylated mRNAs resembling higher eukaryotic mRNAs. Here, we developed a transcription elongation-coupled pre-mRNA capping system for vesicular stomatitis virus (VSV, a prototypic NNS RNA virus). Using this system, we demonstrate that the single-polypeptide RNA-dependent RNA polymerase (RdRp) large protein (L) catalyzes all pre-mRNA modifications co-transcriptionally in the following order: (i) 5'-capping (polyribonucleotidylation of GDP) to form a GpppA cap core structure, (ii) 2'-O-methylation of GpppA into GpppAm, (iii) guanine-N7-methylation of GpppAm into m7GpppAm (cap 1), (iv) 3'-polyadenylation to yield a poly(A) tail. The GDP polyribonucleotidyltransferase (PRNTase) domain of L generated capped pre-mRNAs of 18 nucleotides or longer via the formation of covalent enzyme-pre-mRNA intermediates. The single methyltransferase domain of L sequentially methylated the cap structure only when pre-mRNAs of 40 nucleotides or longer were associated with elongation complexes. These results suggest that the formation of pre-mRNA closed loop structures in elongation complexes via the RdRp and PRNTase domains followed by the RdRp and MTase domains on the same polypeptide is required for the cap 1 formation during transcription. Taken together, our findings indicate that NNS RNA virus L acts as an all-in-one viral mRNA assembly machinery.
Collapse
Affiliation(s)
- Minako Ogino
- Department of Medical Microbiology and Immunology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Todd J Green
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Tomoaki Ogino
- Department of Medical Microbiology and Immunology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| |
Collapse
|
2
|
Li T, Liu M, Gu Z, Su X, Liu Y, Lin J, Zhang Y, Shen QT. Structures of the mumps virus polymerase complex via cryo-electron microscopy. Nat Commun 2024; 15:4189. [PMID: 38760379 PMCID: PMC11101452 DOI: 10.1038/s41467-024-48389-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 04/26/2024] [Indexed: 05/19/2024] Open
Abstract
The viral polymerase complex, comprising the large protein (L) and phosphoprotein (P), is crucial for both genome replication and transcription in non-segmented negative-strand RNA viruses (nsNSVs), while structures corresponding to these activities remain obscure. Here, we resolved two L-P complex conformations from the mumps virus (MuV), a typical member of nsNSVs, via cryogenic-electron microscopy. One conformation presents all five domains of L forming a continuous RNA tunnel to the methyltransferase domain (MTase), preferably as a transcription state. The other conformation has the appendage averaged out, which is inaccessible to MTase. In both conformations, parallel P tetramers are revealed around MuV L, which, together with structures of other nsNSVs, demonstrates the diverse origins of the L-binding X domain of P. Our study links varying structures of nsNSV polymerase complexes with genome replication and transcription and points to a sliding model for polymerase complexes to advance along the RNA templates.
Collapse
Affiliation(s)
- Tianhao Li
- School of Life Sciences, Department of Chemical Biology, Southern University of Science and Technology, Shenzhen, 518055, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, 518055, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Mingdong Liu
- School of Life Sciences, Department of Chemical Biology, Southern University of Science and Technology, Shenzhen, 518055, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhanxi Gu
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Synthetic Biology, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xin Su
- School of Life Sciences, Department of Chemical Biology, Southern University of Science and Technology, Shenzhen, 518055, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, 518055, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Yunhui Liu
- School of Life Sciences, Department of Chemical Biology, Southern University of Science and Technology, Shenzhen, 518055, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jinzhong Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Yu Zhang
- Key Laboratory of Synthetic Biology, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Qing-Tao Shen
- School of Life Sciences, Department of Chemical Biology, Southern University of Science and Technology, Shenzhen, 518055, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, 518055, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
3
|
Gupta N, Ogino M, Watkins DE, Yu T, Green TJ, Ogino T. Discontinuous L-binding motifs in the transactivation domain of the vesicular stomatitis virus P protein are required for terminal de novo transcription initiation by the L protein. J Virol 2023; 97:e0024623. [PMID: 37578231 PMCID: PMC10506490 DOI: 10.1128/jvi.00246-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/18/2023] [Indexed: 08/15/2023] Open
Abstract
The phospho- (P) protein, the co-factor of the RNA polymerase large (L) protein, of vesicular stomatitis virus (VSV, a prototype of nonsegmented negative-strand RNA viruses) plays pivotal roles in transcription and replication. However, the precise mechanism underlying the transcriptional transactivation by the P protein has remained elusive. Here, using an in vitro transcription system and a series of deletion mutants of the P protein, we mapped a region encompassing residues 51-104 as a transactivation domain (TAD) that is critical for terminal de novo initiation, the initial step of synthesis of the leader RNA and anti-genome/genome, with the L protein. Site-directed mutagenesis revealed that conserved amino acid residues in three discontinuous L-binding sites within the TAD are essential for the transactivation activity of the P protein or important for maintaining its full activity. Importantly, relative inhibitory effects of TAD point mutations on synthesis of the full-length leader RNA and mRNAs from the 3'-terminal leader region and internal genes, respectively, of the genome were similar to those on terminal de novo initiation. Furthermore, any of the examined TAD mutations did not alter the gradient pattern of mRNAs synthesized from internal genes, nor did they induce the production of readthrough transcripts. These results suggest that these TAD mutations impact mainly terminal de novo initiation but rarely other steps (e.g., elongation, termination, internal initiation) of single-entry stop-start transcription. Consistently, the mutations of the essential or important amino acid residues within the P TAD were lethal or deleterious to VSV replication in host cells. IMPORTANCE RNA-dependent RNA polymerase L proteins of nonsegmented negative-strand RNA viruses belonging to the Mononegavirales order require their cognate co-factor P proteins or their counterparts for genome transcription and replication. However, exact roles of these co-factor proteins in modulating functions of L proteins during transcription and replication remain unknown. In this study, we revealed that three discrete L-binding motifs within a transactivation domain of the P protein of vesicular stomatitis virus, a prototypic nonsegmented negative-strand RNA virus, are required for terminal de novo initiation mediated by the L protein, which is the first step of synthesis of the leader RNA as well as genome/anti-genome.
Collapse
Affiliation(s)
- Nirmala Gupta
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Minako Ogino
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Medical Microbiology and Immunology, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, USA
| | - Dean E. Watkins
- Department of Medical Microbiology and Immunology, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, USA
| | - Tiffany Yu
- Department of Medical Microbiology and Immunology, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, USA
| | - Todd J. Green
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Tomoaki Ogino
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Medical Microbiology and Immunology, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, USA
| |
Collapse
|
4
|
Locations and in situ structure of the polymerase complex inside the virion of vesicular stomatitis virus. Proc Natl Acad Sci U S A 2022; 119:e2111948119. [PMID: 35476516 PMCID: PMC9170060 DOI: 10.1073/pnas.2111948119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Unlike fellow nonsegmented negative-strand RNA viruses, exemplified by the devastating Nipah, Ebola, rabies, and measles viruses, vesicular stomatitis virus (VSV) can be considered beneficial, as it is widely used as a vector for anticancer therapy and vaccine development. In these RNA viruses, transcription and replication of the viral genome depend on an RNA-dependent RNA polymerase. Here, we determined the in situ structure of the VSV polymerase complex, consisting of a large protein (L) and a phosphoprotein (P), by cryo-electron tomography and subtomogram averaging. Approximately 55 polymerase complexes are packaged in each bullet-shaped virion through flexible interactions with nucleoproteins. Our results provide insights into the mechanism of L packaging during virus assembly and efficient initiation of transcription during infection. The polymerase complex of nonsegmented negative-strand RNA viruses primarily consists of a large (L) protein and a phosphoprotein (P). L is a multifunctional enzyme carrying out RNA-dependent RNA polymerization and all other steps associated with transcription and replication, while P is the nonenzymatic cofactor, regulating the function and conformation of L. The structure of a purified vesicular stomatitis virus (VSV) polymerase complex containing L and associated P segments has been determined; however, the location and manner of the attachments of L and P within each virion are unknown, limiting our mechanistic understanding of VSV RNA replication and transcription and hindering engineering efforts of this widely used anticancer and vaccine vector. Here, we have used cryo-electron tomography to visualize the VSV virion, revealing the attachment of the ring-shaped L molecules to VSV nucleocapsid proteins (N) throughout the cavity of the bullet-shaped nucleocapsid. Subtomogram averaging and three-dimensional classification of regions containing N and the matrix protein (M) have yielded the in situ structure of the polymerase complex. On average, ∼55 polymerase complexes are packaged in each virion. The capping domain of L interacts with two neighboring N molecules through flexible attachments. P, which exists as a dimer, bridges separate N molecules and the connector and C-terminal domains of L. Our data provide the structural basis for recruitment of L to N by P in virus assembly and for flexible attachments between L and N, which allow a quick response of L in primary transcription upon cell entry.
Collapse
|
5
|
Gibbons JS, Khadka S, Williams CG, Wang L, Schneller SW, Liu C, Tufariello JM, Basler CF. Mechanisms of anti-vesicular stomatitis virus activity of deazaneplanocin and its 3-brominated analogs. Antiviral Res 2021; 191:105088. [PMID: 34019950 DOI: 10.1016/j.antiviral.2021.105088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/02/2021] [Accepted: 05/10/2021] [Indexed: 12/30/2022]
Abstract
3-deazaneplanocin A (DzNep) and its 3-brominated analogs inhibit replication of several RNA viruses. This antiviral activity is attributed to inhibition of S-adenosyl homocysteine hydrolase (SAHase) and consequently inhibition of viral methyltransferases, impairing translation of viral transcripts. The L-enantiomers of some derivatives retain antiviral activity despite dramatically reduced inhibition of SAHase in vitro. To better understand the mechanisms by which these compounds exert their antiviral effects, we compared DzNep, its 3-bromo-derivative, CL123, and the related enantiomers, CL4033 and CL4053, for their activities towards the model negative-sense RNA virus vesicular stomatitis virus (VSV). In cell culture, DzNep, CL123 and CL4033 each exhibited 50 percent inhibitory concentrations (IC50s) in the nanomolar range whereas the IC50 for the L-form, CL4053, was 34-85 times higher. When a CL123-resistant mutant (VSVR) was selected, it exhibited cross-resistance to each of the neplanocin analogs, but retained sensitivity to the adenosine analog BCX4430, an RNA chain terminator. Sequencing of VSVR identified a mutation in the C-terminal domain (CTD) of the viral large (L) protein, a domain implicated in regulation of L protein methyltransferase activity. CL123 inhibited VSV viral mRNA 5' cap methylation, impaired viral protein synthesis and decreased association of viral mRNAs with polysomes. Modest impacts on viral transcription were also demonstrated. VSVR exhibited partial resistance in each of these assays but its replication was impaired, relative to the parent VSV, in the absence of the inhibitors. These data suggest that DzNep, CL123 and CL4033 inhibit VSV through impairment of viral mRNA cap methylation and that the L-form, CL4053, based on the cross-resistance of VSVR, may act by a similar mechanism.
Collapse
Affiliation(s)
- Joyce Sweeney Gibbons
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA; Department of Chemistry, Georgia State University, Atlanta, GA, USA
| | - Sudip Khadka
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA; Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Caroline G Williams
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Lin Wang
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA; Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Stewart W Schneller
- Molette Laboratory for Drug Discovery, Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, USA
| | - Chong Liu
- Molette Laboratory for Drug Discovery, Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, USA
| | - JoAnn M Tufariello
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Christopher F Basler
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
6
|
Gould JR, Qiu S, Shang Q, Dokland T, Ogino T, Petit CM, Green TJ. Consequences of Phosphorylation in a Mononegavirales Polymerase-Cofactor System. J Virol 2021; 95:JVI.02180-20. [PMID: 33441337 PMCID: PMC8092687 DOI: 10.1128/jvi.02180-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/06/2021] [Indexed: 11/20/2022] Open
Abstract
Vesicular stomatitis virus (VSV) is a member of the order Mononegavirales, which consists of viruses with a genome of nonsegmented negative-sense (NNS) RNA. Many insights into the molecular biology of NNS viruses were first made in VSV, which is often studied as a prototype for members of this order. Like other NNS viruses, the VSV RNA polymerase consists of a complex of the large protein (L) and phosphoprotein (P). Recent discoveries have produced a model in which the N-terminal disordered segment of P (PNTD) coordinates the C-terminal accessory domains to produce a "compacted" L conformation. Despite this advancement, the role of the three phosphorylation sites in PNTD has remained unknown. Using nuclear magnetic resonance spectroscopy to analyze the interactions between PNTD and the L protein C-terminal domain (LCTD), we demonstrated our ability to sensitively test for changes in the interface between the two proteins. This method showed that the binding site for PNTD on LCTD is longer than was previously appreciated. We demonstrated that phosphorylation of PNTD modulates its interaction with LCTD and used a minigenome reporter system to validate the functional significance of the PNTD-LCTD interaction. Using an electron microscopy approach, we showed that L bound to phosphorylated PNTD displays increased conformational heterogeneity in solution. Taken as a whole, our studies suggest a model in which phosphorylation of PNTD modulates its cofactor and conformational regulatory activities with L.IMPORTANCE Polymerase-cofactor interactions like those addressed in this study are absolute requirements for mononegavirus RNA synthesis. Despite cofactor phosphorylation being present in most of these interactions, what effect if any it has on this protein-protein interaction had not been addressed. Our study is the first to address the effects of phosphorylation on P during its interactions with L in residue-by-residue detail. As phosphorylation is the biologically relevant state of the cofactor, our demonstration of its effects on L conformation suggest that the structural picture of L during infection might be more complex than previously appreciated.
Collapse
Affiliation(s)
- Joseph R Gould
- Department of Microbiology, University of Alabama at Birmingham
| | - Shihong Qiu
- Department of Microbiology, University of Alabama at Birmingham
| | - Qiao Shang
- Department of Microbiology, University of Alabama at Birmingham
| | - Terje Dokland
- Department of Microbiology, University of Alabama at Birmingham
| | - Tomoaki Ogino
- Department of Medical Microbiology and Immunology, University of Toledo
| | - Chad M Petit
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham
| | - Todd J Green
- Department of Microbiology, University of Alabama at Birmingham
| |
Collapse
|
7
|
Stable Attenuation of Human Respiratory Syncytial Virus for Live Vaccines by Deletion and Insertion of Amino Acids in the Hinge Region between the mRNA Capping and Methyltransferase Domains of the Large Polymerase Protein. J Virol 2020; 94:JVI.01831-20. [PMID: 32999025 DOI: 10.1128/jvi.01831-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 01/02/2023] Open
Abstract
Human respiratory syncytial virus (RSV) is the leading viral cause of lower respiratory tract disease in infants and children worldwide. Currently, there are no FDA-approved vaccines to combat this virus. The large (L) polymerase protein of RSV replicates the viral genome and transcribes viral mRNAs. The L protein is organized as a core ring-like domain containing the RNA-dependent RNA polymerase and an appendage of globular domains containing an mRNA capping region and a cap methyltransferase region, which are linked by a flexible hinge region. Here, we found that the flexible hinge region of RSV L protein is tolerant to amino acid deletion or insertion. Recombinant RSVs carrying a single or double deletion or a single alanine insertion were genetically stable, highly attenuated in immortalized cells, had defects in replication and spread, and had a delay in innate immune cytokine responses in primary, well-differentiated, human bronchial epithelial (HBE) cultures. The replication of these recombinant viruses was highly attenuated in the upper and lower respiratory tracts of cotton rats. Importantly, these recombinant viruses elicited high levels of neutralizing antibody and provided complete protection against RSV replication. Taken together, amino acid deletions or insertions in the hinge region of the L protein can serve as a novel approach to rationally design genetically stable, highly attenuated, and immunogenic live virus vaccine candidates for RSV.IMPORTANCE Despite tremendous efforts, there are no FDA-approved vaccines for human respiratory syncytial virus (RSV). A live attenuated RSV vaccine is one of the most promising vaccine strategies for RSV. However, it has been a challenge to identify an RSV vaccine strain that has an optimal balance between attenuation and immunogenicity. In this study, we generated a panel of recombinant RSVs carrying a single and double deletion or a single alanine insertion in the large (L) polymerase protein that are genetically stable, sufficiently attenuated, and grow to high titer in cultured cells, while retaining high immunogenicity. Thus, these recombinant viruses may be promising vaccine candidates for RSV.
Collapse
|
8
|
Abstract
Mononegavirales, known as nonsegmented negative-sense (NNS) RNA viruses, are a class of pathogenic and sometimes deadly viruses that include rabies virus (RABV), human respiratory syncytial virus (HRSV), and Ebola virus (EBOV). Unfortunately, no effective vaccines and antiviral therapeutics against many Mononegavirales are currently available. Viral polymerases have been attractive and major antiviral therapeutic targets. Therefore, Mononegavirales polymerases have been extensively investigated for their structures and functions. Mononegavirales, known as nonsegmented negative-sense (NNS) RNA viruses, are a class of pathogenic and sometimes deadly viruses that include rabies virus (RABV), human respiratory syncytial virus (HRSV), and Ebola virus (EBOV). Unfortunately, no effective vaccines and antiviral therapeutics against many Mononegavirales are currently available. Viral polymerases have been attractive and major antiviral therapeutic targets. Therefore, Mononegavirales polymerases have been extensively investigated for their structures and functions. Mononegavirales mimic RNA synthesis of their eukaryotic counterparts by utilizing multifunctional RNA polymerases to replicate entire viral genomes and transcribe viral mRNAs from individual viral genes as well as synthesize 5′ methylated cap and 3′ poly(A) tail of the transcribed viral mRNAs. The catalytic subunit large protein (L) and cofactor phosphoprotein (P) constitute the Mononegavirales polymerases. In this review, we discuss the shared and unique features of RNA synthesis, the monomeric multifunctional enzyme L, and the oligomeric multimodular adapter P of Mononegavirales. We outline the structural analyses of the Mononegavirales polymerases since the first structure of the vesicular stomatitis virus (VSV) L protein determined in 2015 and highlight multiple high-resolution cryo-electron microscopy (cryo-EM) structures of the polymerases of Mononegavirales, namely, VSV, RABV, HRSV, human metapneumovirus (HMPV), and human parainfluenza virus (HPIV), that have been reported in recent months (2019 to 2020). We compare the structures of those polymerases grouped by virus family, illustrate the similarities and differences among those polymerases, and reveal the potential RNA synthesis mechanisms and models of highly conserved Mononegavirales. We conclude by the discussion of remaining questions, evolutionary perspectives, and future directions.
Collapse
|
9
|
Riedel C, Hennrich AA, Conzelmann KK. Components and Architecture of the Rhabdovirus Ribonucleoprotein Complex. Viruses 2020; 12:v12090959. [PMID: 32872471 PMCID: PMC7552012 DOI: 10.3390/v12090959] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022] Open
Abstract
Rhabdoviruses, as single-stranded, negative-sense RNA viruses within the order Mononegavirales, are characterised by bullet-shaped or bacteroid particles that contain a helical ribonucleoprotein complex (RNP). Here, we review the components of the RNP and its higher-order structural assembly.
Collapse
Affiliation(s)
- Christiane Riedel
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
- Correspondence:
| | - Alexandru A. Hennrich
- Max von Pettenkofer-Institute Virology, Faculty of Medicine, and Gene Center, LMU Munich, 81377 Munich, Germany; (A.A.H.); (K.-K.C.)
| | - Karl-Klaus Conzelmann
- Max von Pettenkofer-Institute Virology, Faculty of Medicine, and Gene Center, LMU Munich, 81377 Munich, Germany; (A.A.H.); (K.-K.C.)
| |
Collapse
|
10
|
Ogino M, Fedorov Y, Adams DJ, Okada K, Ito N, Sugiyama M, Ogino T. Vesiculopolins, a New Class of Anti-Vesiculoviral Compounds, Inhibit Transcription Initiation of Vesiculoviruses. Viruses 2019; 11:v11090856. [PMID: 31540123 PMCID: PMC6783830 DOI: 10.3390/v11090856] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/11/2019] [Accepted: 09/11/2019] [Indexed: 01/09/2023] Open
Abstract
Vesicular stomatitis virus (VSV) represents a promising platform for developing oncolytic viruses, as well as vaccines against significant human pathogens. To safely control VSV infection in humans, small-molecule drugs that selectively inhibit VSV infection may be needed. Here, using a cell-based high-throughput screening assay followed by an in vitro transcription assay, compounds with a 7-hydroxy-6-methyl-3,4-dihydroquinolin-2(1H)-one structure and an aromatic group at position 4 (named vesiculopolins, VPIs) were identified as VSV RNA polymerase inhibitors. The most effective compound, VPI A, inhibited VSV-induced cytopathic effects and in vitro mRNA synthesis with micromolar to submicromolar 50% inhibitory concentrations. VPI A was found to inhibit terminal de novo initiation rather than elongation for leader RNA synthesis, but not mRNA capping, with the VSV L protein, suggesting that VPI A is targeted to the polymerase domain in the L protein. VPI A inhibited transcription of Chandipura virus, but not of human parainfluenza virus 3, suggesting that it specifically acts on vesiculoviral L proteins. These results suggest that VPIs may serve not only as molecular probes to elucidate the mechanisms of transcription of vesiculoviruses, but also as lead compounds to develop antiviral drugs against vesiculoviruses and other related rhabdoviruses.
Collapse
Affiliation(s)
- Minako Ogino
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | - Yuriy Fedorov
- Small Molecule Drug Development Core, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | - Drew J Adams
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | - Kazuma Okada
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | - Naoto Ito
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
- Gifu Center for Highly Advanced Integration of Nanosciences and Life Sciences (G-CHAIN), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | - Makoto Sugiyama
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | - Tomoaki Ogino
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
11
|
Ogino M, Gupta N, Green TJ, Ogino T. A dual-functional priming-capping loop of rhabdoviral RNA polymerases directs terminal de novo initiation and capping intermediate formation. Nucleic Acids Res 2019; 47:299-309. [PMID: 30395342 PMCID: PMC6326812 DOI: 10.1093/nar/gky1058] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/17/2018] [Indexed: 12/19/2022] Open
Abstract
The L proteins of rhabdoviruses, such as vesicular stomatitis virus (VSV) and rabies virus (RABV), possess an unconventional mRNA capping enzyme (GDP polyribonucleotidyltransferase, PRNTase) domain with a loop structure protruding into an active site cavity of the RNA-dependent RNA polymerase (RdRp) domain. Here, using complementary VSV and RABV systems, we show that the loop governs RNA synthesis and capping during the dynamic stop-start transcription cycle. A conserved tryptophan residue in the loop was identified as critical for terminal de novo initiation from the genomic promoter to synthesize the leader RNA and virus replication in host cells, but not for internal de novo initiation or elongation from the gene-start sequence for mRNA synthesis or pre-mRNA capping. The co-factor P protein was found to be essential for both terminal and internal initiation. A conserved TxΨ motif adjacent the tryptophan residue in the loop was required for pre-mRNA capping in the step of the covalent enzyme-pRNA intermediate formation, but not for either terminal or internal transcription initiation. These results provide insights into the regulation of stop-start transcription by the interplay between the RdRp active site and the dual-functional priming-capping loop of the PRNTase domain in non-segmented negative strand RNA viruses.
Collapse
Affiliation(s)
- Minako Ogino
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Nirmala Gupta
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Todd J Green
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Tomoaki Ogino
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
12
|
Ogino T, Green TJ. RNA Synthesis and Capping by Non-segmented Negative Strand RNA Viral Polymerases: Lessons From a Prototypic Virus. Front Microbiol 2019; 10:1490. [PMID: 31354644 PMCID: PMC6636387 DOI: 10.3389/fmicb.2019.01490] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/14/2019] [Indexed: 12/26/2022] Open
Abstract
Non-segmented negative strand (NNS) RNA viruses belonging to the order Mononegavirales are highly diversified eukaryotic viruses including significant human pathogens, such as rabies, measles, Nipah, and Ebola. Elucidation of their unique strategies to replicate in eukaryotic cells is crucial to aid in developing anti-NNS RNA viral agents. Over the past 40 years, vesicular stomatitis virus (VSV), closely related to rabies virus, has served as a paradigm to study the fundamental molecular mechanisms of transcription and replication of NNS RNA viruses. These studies provided insights into how NNS RNA viruses synthesize 5'-capped mRNAs using their RNA-dependent RNA polymerase L proteins equipped with an unconventional mRNA capping enzyme, namely GDP polyribonucleotidyltransferase (PRNTase), domain. PRNTase or PRNTase-like domains are evolutionally conserved among L proteins of all known NNS RNA viruses and their related viruses belonging to Jingchuvirales, a newly established order, in the class Monjiviricetes, suggesting that they may have evolved from a common ancestor that acquired the unique capping system to replicate in a primitive eukaryotic host. This article reviews what has been learned from biochemical and structural studies on the VSV RNA biosynthesis machinery, and then focuses on recent advances in our understanding of regulatory and catalytic roles of the PRNTase domain in RNA synthesis and capping.
Collapse
Affiliation(s)
- Tomoaki Ogino
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Todd J. Green
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
13
|
Global analysis of polysome-associated mRNA in vesicular stomatitis virus infected cells. PLoS Pathog 2019; 15:e1007875. [PMID: 31226162 PMCID: PMC6608984 DOI: 10.1371/journal.ppat.1007875] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 07/03/2019] [Accepted: 05/27/2019] [Indexed: 01/05/2023] Open
Abstract
Infection of mammalian cells with vesicular stomatitis virus (VSV) results in the inhibition of cellular translation while viral translation proceeds efficiently. VSV RNA synthesis occurs entirely within the cytoplasm, where during transcription the viral polymerase produces 5 mRNAs that are structurally indistinct to cellular mRNAs with respect to their 5′ cap-structure and 3′-polyadenylate tail. Using the global approach of massively parallel sequencing of total cytoplasmic, monosome- and polysome-associated mRNA, we interrogate the impact of VSV infection of HeLa cells on translation. Analysis of sequence reads in the different fractions shows >60% of total cytoplasmic and polysome-associated reads map to the 5 viral genes by 6 hours post-infection, a time point at which robust host cell translational shut-off is observed. Consistent with an overwhelming abundance of viral mRNA in the polysome fraction, the reads mapping to cellular genes were reduced. The cellular mRNAs that remain most polysome-associated following infection had longer half-lives, were typically larger, and were more AU rich, features that are shared with the viral mRNAs. Several of those mRNAs encode proteins known to positively affect viral replication, and using chemical inhibition and siRNA depletion we confirm that the host chaperone heat shock protein 90 (hsp90) and eukaryotic translation initiation factor 3A (eIF3A)—encoded by 2 such mRNAs—support viral replication. Correspondingly, regulated in development and DNA damage 1 (Redd1) encoded by a host mRNA with reduced polysome association inhibits viral infection. These data underscore the importance of viral mRNA abundance in the shut-off of host translation in VSV infected cells and link the differential translatability of some cellular mRNAs with pro- or antiviral function. Viruses co-opt the host translational machinery and frequently suppress host cell protein synthesis. Many positive-strand RNA viruses manipulate initiation factors while bypassing their need for viral protein production using internal ribosome entry sites. Negative-strand RNA viruses and DNA viruses produce mRNAs that contain host-like 5′ cap-structures and 3′ polyadenylate tails. Those similarities necessitate a different mechanism for controlling viral versus host protein synthesis. We infected cells with vesicular stomatitis virus and sequenced polysome-associated mRNAs at 2 and 6 hours post-infection providing 2 snapshots of how infection alters translation. We present evidence that the 5 viral mRNAs outcompete cellular mRNAs for ribosomes and demonstrate that individual host mRNAs vary in the extent to which their polysome association is altered by infection. Host mRNAs that are more abundant, have longer half-lives, greater than average length, and a similar AU content to the viral mRNAs were more likely to be enriched among polysome-associated cellular mRNAs. Several of the enriched mRNAs encode proteins that promote viral replication, whereas mRNAs that exhibit the largest decrease in polysome association include those that encode antiviral functions.
Collapse
|
14
|
Ogino T, Green TJ. Transcriptional Control and mRNA Capping by the GDP Polyribonucleotidyltransferase Domain of the Rabies Virus Large Protein. Viruses 2019; 11:E504. [PMID: 31159413 PMCID: PMC6631705 DOI: 10.3390/v11060504] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/24/2019] [Accepted: 05/30/2019] [Indexed: 12/11/2022] Open
Abstract
Rabies virus (RABV) is a causative agent of a fatal neurological disease in humans and animals. The large (L) protein of RABV is a multifunctional RNA-dependent RNA polymerase, which is one of the most attractive targets for developing antiviral agents. A remarkable homology of the RABV L protein to a counterpart in vesicular stomatitis virus, a well-characterized rhabdovirus, suggests that it catalyzes mRNA processing reactions, such as 5'-capping, cap methylation, and 3'-polyadenylation, in addition to RNA synthesis. Recent breakthroughs in developing in vitro RNA synthesis and capping systems with a recombinant form of the RABV L protein have led to significant progress in our understanding of the molecular mechanisms of RABV RNA biogenesis. This review summarizes functions of RABV replication proteins in transcription and replication, and highlights new insights into roles of an unconventional mRNA capping enzyme, namely GDP polyribonucleotidyltransferase, domain of the RABV L protein in mRNA capping and transcription initiation.
Collapse
Affiliation(s)
- Tomoaki Ogino
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| | - Todd J Green
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
15
|
Jamin M, Yabukarski F. Nonsegmented Negative-Sense RNA Viruses-Structural Data Bring New Insights Into Nucleocapsid Assembly. Adv Virus Res 2016; 97:143-185. [PMID: 28057258 DOI: 10.1016/bs.aivir.2016.09.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Viruses with a nonsegmented negative-sense RNA genome (NNVs) include important human pathogens as well as life-threatening zoonotic viruses. These viruses share a common RNA replication complex, including the genomic RNA and three proteins, the nucleoprotein (N), the phosphoprotein (P), and the RNA-dependent RNA polymerase (L). During genome replication, the RNA polymerase complex first synthesizes positive-sense antigenomes, which in turn serve as template for the production of negative-sense progeny genomes. These newly synthesized antigenomic and genomic RNAs must be encapsidated by N, and the source of soluble, RNA-free N, competent for the encapsidation is a complex between N and P, named the N0-P complex. In this review, we summarize recent progress made in the structural characterization of the different components of this peculiar RNA polymerase machinery. We discuss common features and replication strategies and highlight idiosyncrasies encountered in different viruses, along with the key role of the dual ordered/disordered architecture of protein components and the dynamics of the viral polymerase machinery. In particular, we focus on the N0-P complex and its role in the nucleocapsid assembly process. These new results provide evidence that the mechanism of NC assembly is conserved between the different families and thus support a divergent evolution from a common ancestor. In addition, the successful inhibition of infection due to different NNVs by peptides derived from P suggests that the mechanism of NC assembly is a potential target for antiviral development.
Collapse
Affiliation(s)
- M Jamin
- Institut de Biologie Structurale (IBS), CEA, CNRS, University Grenoble Alpes, Grenoble, France.
| | - F Yabukarski
- Institut de Biologie Structurale (IBS), CEA, CNRS, University Grenoble Alpes, Grenoble, France
| |
Collapse
|
16
|
[The multifunctional RNA polymerase L protein of non-segmented negative strand RNA viruses catalyzes unique mRNA capping]. Uirusu 2016; 64:165-78. [PMID: 26437839 DOI: 10.2222/jsv.64.165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Non-segmented negative strand RNA viruses belonging to the Mononegavirales order possess RNA-dependent RNA polymerase L proteins within viral particles. The L protein is a multifunctional enzyme catalyzing viral RNA synthesis and processing (i.e., mRNA capping, cap methylation, and polyadenylation). Using vesicular stomatitis virus (VSV) as a prototypic model virus, we have shown that the L protein catalyzes the unconventional mRNA capping reaction, which is strikingly different from the eukaryotic reaction. Furthermore, co-transcriptional pre-mRNA capping with the VSV L protein was found to be required for accurate stop?start transcription to synthesize full-length mRNAs in vitro and virus propagation in host cells. This article provides a review of historical and present studies leading to the elucidation of the molecular mechanism of VSV mRNA capping.
Collapse
|
17
|
Neubauer J, Ogino M, Green TJ, Ogino T. Signature motifs of GDP polyribonucleotidyltransferase, a non-segmented negative strand RNA viral mRNA capping enzyme, domain in the L protein are required for covalent enzyme-pRNA intermediate formation. Nucleic Acids Res 2015; 44:330-41. [PMID: 26602696 PMCID: PMC4705655 DOI: 10.1093/nar/gkv1286] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/05/2015] [Indexed: 11/17/2022] Open
Abstract
The unconventional mRNA capping enzyme (GDP polyribonucleotidyltransferase, PRNTase; block V) domain in RNA polymerase L proteins of non-segmented negative strand (NNS) RNA viruses (e.g. rabies, measles, Ebola) contains five collinear sequence elements, Rx(3)Wx(3–8)ΦxGxζx(P/A) (motif A; Φ, hydrophobic; ζ, hydrophilic), (Y/W)ΦGSxT (motif B), W (motif C), HR (motif D) and ζxxΦx(F/Y)QxxΦ (motif E). We performed site-directed mutagenesis of the L protein of vesicular stomatitis virus (VSV, a prototypic NNS RNA virus) to examine participation of these motifs in mRNA capping. Similar to the catalytic residues in motif D, G1100 in motif A, T1157 in motif B, W1188 in motif C, and F1269 and Q1270 in motif E were found to be essential or important for the PRNTase activity in the step of the covalent L-pRNA intermediate formation, but not for the GTPase activity that generates GDP (pRNA acceptor). Cap defective mutations in these residues induced termination of mRNA synthesis at position +40 followed by aberrant stop–start transcription, and abolished virus gene expression in host cells. These results suggest that the conserved motifs constitute the active site of the PRNTase domain and the L-pRNA intermediate formation followed by the cap formation is essential for successful synthesis of full-length mRNAs.
Collapse
Affiliation(s)
- Julie Neubauer
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Minako Ogino
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Todd J Green
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Tomoaki Ogino
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
18
|
Hastie E, Cataldi M, Steuerwald N, Grdzelishvili VZ. An unexpected inhibition of antiviral signaling by virus-encoded tumor suppressor p53 in pancreatic cancer cells. Virology 2015; 483:126-40. [PMID: 25965802 DOI: 10.1016/j.virol.2015.04.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/08/2015] [Accepted: 04/21/2015] [Indexed: 11/17/2022]
Abstract
Virus-encoded tumor suppressor p53 transgene expression has been successfully used in vesicular stomatitis virus (VSV) and other oncolytic viruses (OVs) to enhance their anticancer activities. However, p53 is also known to inhibit virus replication via enhanced type I interferon (IFN) antiviral responses. To examine whether p53 transgenes enhance antiviral signaling in human pancreatic ductal adenocarcinoma (PDAC) cells, we engineered novel VSV recombinants encoding human p53 or the previously described chimeric p53-CC, which contains the coiled-coil (CC) domain from breakpoint cluster region (BCR) protein and evades the dominant-negative activities of endogenously expressed mutant p53. Contrary to an expected enhancement of antiviral signaling by p53, our global analysis of gene expression in PDAC cells showed that both p53 and p53-CC dramatically inhibited type I IFN responses. Our data suggest that this occurs through p53-mediated inhibition of the NF-κB pathway. Importantly, VSV-encoded p53 or p53-CC did not inhibit antiviral signaling in non-malignant human pancreatic ductal cells, which retained their resistance to all tested VSV recombinants. To the best of our knowledge, this is the first report of p53-mediated inhibition of antiviral signaling, and it suggests that OV-encoded p53 can simultaneously produce anticancer activities while assisting, rather than inhibiting, virus replication in cancer cells.
Collapse
Affiliation(s)
- Eric Hastie
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Marcela Cataldi
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Nury Steuerwald
- Cannon Research Center, Carolinas Healthcare System, Charlotte, NC, USA
| | - Valery Z Grdzelishvili
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA.
| |
Collapse
|
19
|
Putative domain-domain interactions in the vesicular stomatitis virus L polymerase protein appendage region. J Virol 2014; 88:14458-66. [PMID: 25297996 DOI: 10.1128/jvi.02267-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The multidomain polymerase protein (L) of nonsegmented negative-strand (NNS) RNA viruses catalyzes transcription and replication of the virus genome. The N-terminal half of the protein forms a ring-like polymerase structure, while the C-terminal half encoding viral mRNA transcript modifications consists of a flexible appendage with three distinct globular domains. To gain insight into putative transient interactions between L domains during viral RNA synthesis, we exchanged each of the four distinct regions encompassing the appendage region of vesicular stomatitis virus (VSV) Indiana serotype L protein with their counterparts from VSV New Jersey and analyzed effects on virus polymerase activity in a minigenome system. The methyltransferase domain exchange yielded a fully active polymerase protein, which functioned as well as wild-type L in the context of a recombinant virus. Exchange of the downstream C-terminal nonconserved region abolished activity, but coexchanging it with the methyltransferase domain generated a polymerase favoring replicase over transcriptase activity, providing strong evidence of interaction between these two regions. Exchange of the capping enzyme domain or the adjacent nonconserved region thought to function as an "unstructured" linker also abrogated polymerase activity even when either domain was coexchanged with other appendage domains. Further probing of the putative linker segment using in-frame enhanced green fluorescent protein (EGFP) insertions similarly abrogated activity. We discuss the implications of these findings with regard to L protein appendage domain structure and putative domain-domain interactions required for polymerase function. IMPORTANCE NNS viruses include many well-known human pathogens (e.g., rabies, measles, and Ebola viruses), as well as emerging viral threats (e.g., Nipah and Hendra viruses). These viruses all encode a large L polymerase protein similarly organized into multiple domains that work in concert to enable virus genome transcription and replication. But how the unique L protein carries out the multiplicity of individual steps in these two distinct processes is poorly understood. Using two different approaches, i.e., exchanging individual domains in the C-terminal appendage region of the protein between two closely related VSV serotypes and inserting unrelated protein domains, we shed light on requirements for domain-domain interactions and domain contiguity in polymerase function. These findings further our understanding of the conformational dynamics of NNS L polymerase proteins, which play an essential role in the pathogenic properties of these viruses and represent attractive targets for the development of antiviral measures.
Collapse
|
20
|
Ogino T. Capping of vesicular stomatitis virus pre-mRNA is required for accurate selection of transcription stop-start sites and virus propagation. Nucleic Acids Res 2014; 42:12112-25. [PMID: 25274740 PMCID: PMC4231761 DOI: 10.1093/nar/gku901] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The multifunctional RNA-dependent RNA polymerase L protein of vesicular stomatitis virus catalyzes unconventional pre-mRNA capping via the covalent enzyme-pRNA intermediate formation, which requires the histidine–arginine (HR) motif in the polyribonucleotidyltransferase domain. Here, the effects of cap-defective mutations in the HR motif on transcription were analyzed using an in vitro reconstituted transcription system. The wild-type L protein synthesized the leader RNA from the 3′-end of the genome followed by 5′-capped and 3′-polyadenylated mRNAs from internal genes by a stop–start transcription mechanism. Cap-defective mutants efficiently produced the leader RNA, but displayed aberrant stop–start transcription using cryptic termination and initiation signals within the first gene, resulting in sequential generation of ∼40-nucleotide transcripts with 5′-ATP from a correct mRNA-start site followed by a 28-nucleotide transcript and long 3′-polyadenylated transcript initiated with non-canonical GTP from atypical start sites. Frequent transcription termination and re-initiation within the first gene significantly attenuated the production of downstream mRNAs. Consistent with the inability of these mutants in in vitro mRNA synthesis and capping, these mutations were lethal to virus replication in cultured cells. These findings indicate that viral mRNA capping is required for accurate stop–start transcription as well as mRNA stability and translation and, therefore, for virus replication in host cells.
Collapse
Affiliation(s)
- Tomoaki Ogino
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
21
|
Methyltransferase-defective avian metapneumovirus vaccines provide complete protection against challenge with the homologous Colorado strain and the heterologous Minnesota strain. J Virol 2014; 88:12348-63. [PMID: 25122790 DOI: 10.1128/jvi.01095-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED Avian metapneumovirus (aMPV), also known as avian pneumovirus or turkey rhinotracheitis virus, is the causative agent of turkey rhinotracheitis and is associated with swollen head syndrome in chickens. Since its discovery in the 1970s, aMPV has been recognized as an economically important pathogen in the poultry industry worldwide. The conserved region VI (CR VI) of the large (L) polymerase proteins of paramyxoviruses catalyzes methyltransferase (MTase) activities that typically methylate viral mRNAs at guanine N-7 (G-N-7) and ribose 2'-O positions. In this study, we generated a panel of recombinant aMPV (raMPV) Colorado strains carrying mutations in the S-adenosyl methionine (SAM) binding site in the CR VI of L protein. These recombinant viruses were specifically defective in ribose 2'-O, but not G-N-7 methylation and were genetically stable and highly attenuated in cell culture and viral replication in the upper and lower respiratory tracts of specific-pathogen-free (SPF) young turkeys. Importantly, turkeys vaccinated with these MTase-defective raMPVs triggered a high level of neutralizing antibody and were completely protected from challenge with homologous aMPV Colorado strain and heterologous aMPV Minnesota strain. Collectively, our results indicate (i) that aMPV lacking 2'-O methylation is highly attenuated in vitro and in vivo and (ii) that inhibition of mRNA cap MTase can serve as a novel target to rationally design live attenuated vaccines for aMPV and perhaps other paramyxoviruses. IMPORTANCE Paramyxoviruses include many economically and agriculturally important viruses such as avian metapneumovirus (aMPV), and Newcastle disease virus (NDV), human pathogens such as human respiratory syncytial virus, human metapneumovirus, human parainfluenza virus type 3, and measles virus, and highly lethal emerging pathogens such as Nipah virus and Hendra virus. For many of them, there is no effective vaccine or antiviral drug. These viruses share common strategies for viral gene expression and replication. During transcription, paramyxoviruses produce capped, methylated, and polyadenylated mRNAs. Using aMPV as a model, we found that viral ribose 2'-O methyltransferase (MTase) is a novel approach to rationally attenuate the virus for vaccine purpose. Recombinant aMPV (raMPV) lacking 2'-O MTase were not only highly attenuated in turkeys but also provided complete protection against the challenge of homologous and heterologous aMPV strains. This novel approach can be applicable to other animal and human paramyxoviruses for rationally designing live attenuated vaccines.
Collapse
|
22
|
Moerdyk-Schauwecker M, Hwang SI, Grdzelishvili VZ. Cellular proteins associated with the interior and exterior of vesicular stomatitis virus virions. PLoS One 2014; 9:e104688. [PMID: 25105980 PMCID: PMC4126742 DOI: 10.1371/journal.pone.0104688] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 07/15/2014] [Indexed: 01/18/2023] Open
Abstract
Virus particles (virions) often contain not only virus-encoded but also host-encoded proteins. Some of these host proteins are enclosed within the virion structure, while others, in the case of enveloped viruses, are embedded in the host-derived membrane. While many of these host protein incorporations are likely accidental, some may play a role in virus infectivity, replication and/or immunoreactivity in the next host. Host protein incorporations may be especially important in therapeutic applications where large numbers of virus particles are administered. Vesicular stomatitis virus (VSV) is the prototypic rhabdovirus and a candidate vaccine, gene therapy and oncolytic vector. Using mass spectrometry, we previously examined cell type dependent host protein content of VSV virions using intact (“whole”) virions purified from three cell lines originating from different species. Here we aimed to determine the localization of host proteins within the VSV virions by analyzing: i) whole VSV virions; and ii) whole VSV virions treated with Proteinase K to remove all proteins outside the viral envelope. A total of 257 proteins were identified, with 181 identified in whole virions and 183 identified in Proteinase K treated virions. Most of these proteins have not been previously shown to be associated with VSV. Functional enrichment analysis indicated the most overrepresented categories were proteins associated with vesicles, vesicle-mediated transport and protein localization. Using western blotting, the presence of several host proteins, including some not previously shown in association with VSV (such as Yes1, Prl1 and Ddx3y), was confirmed and their relative quantities in various virion fractions determined. Our study provides a valuable inventory of virion-associated host proteins for further investigation of their roles in the replication cycle, pathogenesis and immunoreactivity of VSV.
Collapse
Affiliation(s)
- Megan Moerdyk-Schauwecker
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
- Center for Biomedical Engineering and Science, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Sun-Il Hwang
- Proteomics Laboratory for Clinical and Translational Research, Carolinas HealthCare System, Charlotte, North Carolina, United States of America
| | - Valery Z. Grdzelishvili
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
- Center for Biomedical Engineering and Science, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
23
|
Rational design of human metapneumovirus live attenuated vaccine candidates by inhibiting viral mRNA cap methyltransferase. J Virol 2014; 88:11411-29. [PMID: 25056882 DOI: 10.1128/jvi.00876-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The paramyxoviruses human respiratory syncytial virus (hRSV), human metapneumovirus (hMPV), and human parainfluenza virus type 3 (hPIV3) are responsible for the majority of pediatric respiratory diseases and inflict significant economic loss, health care costs, and emotional burdens. Despite major efforts, there are no vaccines available for these viruses. The conserved region VI (CR VI) of the large (L) polymerase proteins of paramyxoviruses catalyzes methyltransferase (MTase) activities that typically methylate viral mRNAs at positions guanine N-7 (G-N-7) and ribose 2'-O. In this study, we generated a panel of recombinant hMPVs carrying mutations in the S-adenosylmethionine (SAM) binding site in CR VI of L protein. These recombinant viruses were specifically defective in ribose 2'-O methylation but not G-N-7 methylation and were genetically stable and highly attenuated in cell culture and viral replication in the upper and lower respiratory tracts of cotton rats. Importantly, vaccination of cotton rats with these recombinant hMPVs (rhMPVs) with defective MTases triggered a high level of neutralizing antibody, and the rats were completely protected from challenge with wild-type rhMPV. Collectively, our results indicate that (i) amino acid residues in the SAM binding site in the hMPV L protein are essential for 2'-O methylation and (ii) inhibition of mRNA cap MTase can serve as a novel target to rationally design live attenuated vaccines for hMPV and perhaps other paramyxoviruses, such as hRSV and hPIV3. IMPORTANCE Human paramyxoviruses, including hRSV, hMPV, and hPIV3, cause the majority of acute upper and lower respiratory tract infections in humans, particularly in infants, children, the elderly, and immunocompromised individuals. Currently, there is no licensed vaccine available. A formalin-inactivated vaccine is not suitable for these viruses because it causes enhanced lung damage upon reinfection with the same virus. A live attenuated vaccine is the most promising vaccine strategy for human paramyxoviruses. However, it remains a challenge to identify an attenuated virus strain that has an optimal balance between attenuation and immunogenicity. Using reverse genetics, we generated a panel of recombinant hMPVs that were specifically defective in ribose 2'-O methyltransferase (MTase) but not G-N-7 MTase. These MTase-defective hMPVs were genetically stable and sufficiently attenuated but retained high immunogenicity. This work highlights a critical role of 2'-O MTase in paramyxovirus replication and pathogenesis and a new avenue for the development of safe and efficacious live attenuated vaccines for hMPV and other human paramyxoviruses.
Collapse
|
24
|
Kondo H, Maruyama K, Chiba S, Andika IB, Suzuki N. Transcriptional mapping of the messenger and leader RNAs of orchid fleck virus, a bisegmented negative-strand RNA virus. Virology 2014; 452-453:166-74. [PMID: 24606694 DOI: 10.1016/j.virol.2014.01.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 12/25/2013] [Accepted: 01/11/2014] [Indexed: 11/24/2022]
Abstract
The transcriptional strategy of orchid fleck virus (OFV), which has a two-segmented negative-strand RNA genome and resembles plant nucleorhabdoviruses, remains unexplored. In this study, the transcripts of six genes encoded by OFV RNA1 and RNA2 in the poly(A)-enriched RNA fraction from infected plants were molecularly characterized. All of the OFV mRNAs were initiated at a start sequence 3'-UU-5' with one to three non-viral adenine nucleotides which were added at the 5' end of each mRNA, whereas their 3' termini ended with a 5'-AUUUAAA(U/G)AAAA(A)n-3' sequence. We also identified the presence of polyadenylated short transcripts derived from the 3'-terminal leader regions of both genomic and antigenomic strands, providing the first example of plus- and minus-strand leader RNAs in a segmented minus-strand RNA virus. The similarity in the transcriptional strategy between this bipartite OFV and monopartite rhabdoviruses, especially nucleorhabdoviruses (family Rhabdoviridae) is additional support for their close relationship.
Collapse
Affiliation(s)
- Hideki Kondo
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan.
| | - Kazuyuki Maruyama
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan
| | - Sotaro Chiba
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan
| | - Ida Bagus Andika
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan
| |
Collapse
|
25
|
mRNA cap methylation influences pathogenesis of vesicular stomatitis virus in vivo. J Virol 2013; 88:2913-26. [PMID: 24371058 DOI: 10.1128/jvi.03420-13] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED One role of mRNA cap guanine-N-7 (G-N-7) methylation is to facilitate the efficient translation of mRNA. The role of mRNA cap ribose 2'-O methylation is enigmatic, although recent work has implicated this as a signature to avoid detection of RNA by the innate immune system (S. Daffis, K. J. Szretter, J. Schriewer, J. Q. Li, S. Youn, J. Errett, T. Y. Lin, S. Schneller, R. Zust, H. P. Dong, V. Thiel, G. C. Sen, V. Fensterl, W. B. Klimstra, T. C. Pierson, R. M. Buller, M. Gale, P. Y. Shi, M. S. Diamond, Nature 468:452-456, 2010, doi:10.1038/nature09489). Working with vesicular stomatitis virus (VSV), we previously showed that a panel of recombinant VSVs carrying mutations at a predicted methyltransferase catalytic site (rVSV-K1651A, -D1762A, and -E1833Q) or S-adenosylmethionine (SAM) binding site (rVSV-G1670A, -G1672A, and -G4A) were defective in cap methylation and were also attenuated for growth in cell culture. Here, we analyzed the virulence of these recombinants in mice. We found that rVSV-K1651A, -D1762A, and -E1833Q, which are defective in both G-N-7 and 2'-O methylation, were highly attenuated in mice. All three viruses elicited a high level of neutralizing antibody and provided full protection against challenge with the virulent VSV. In contrast, mice inoculated with rVSV-G1670A and -G1672A, which are defective only in G-N-7 methylation, were attenuated in vivo yet retained a low level of virulence. rVSV-G4A, which is completely defective in both G-N-7 and 2'-O methylation, also exhibited low virulence in mice despite the fact that productive viral replication was not detected in lung and brain. Taken together, our results suggest that abrogation of viral mRNA cap methylation can serve as an approach to attenuate VSV, and perhaps other nonsegmented negative-strand RNA viruses, for potential application as vaccines and viral vectors. IMPORTANCE Nonsegmented negative-sense (NNS) RNA viruses include a wide range of significant human, animal, and plant pathogens. For many of these viruses, there are no vaccines or antiviral drugs available. mRNA cap methylation is essential for mRNA stability and efficient translation. Our current understanding of mRNA modifications of NNS RNA viruses comes largely from studies of vesicular stomatitis virus (VSV). In this study, we showed that recombinant VSVs (rVSVs) defective in mRNA cap methylation were attenuated in vitro and in vivo. In addition, these methyltransferase (MTase)-defective rVSVs triggered high levels of antibody responses and provided complete protection against VSV infection. Thus, this study will not only contribute to our understanding of the role of mRNA cap MTase in viral pathogenesis but also facilitate the development of new live attenuated vaccines for VSV, and perhaps other NNS RNA viruses, by inhibiting viral mRNA cap methylation.
Collapse
|
26
|
Hastie E, Cataldi M, Marriott I, Grdzelishvili VZ. Understanding and altering cell tropism of vesicular stomatitis virus. Virus Res 2013; 176:16-32. [PMID: 23796410 DOI: 10.1016/j.virusres.2013.06.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 06/06/2013] [Accepted: 06/07/2013] [Indexed: 12/18/2022]
Abstract
Vesicular stomatitis virus (VSV) is a prototypic nonsegmented negative-strand RNA virus. VSV's broad cell tropism makes it a popular model virus for many basic research applications. In addition, a lack of preexisting human immunity against VSV, inherent oncotropism and other features make VSV a widely used platform for vaccine and oncolytic vectors. However, VSV's neurotropism that can result in viral encephalitis in experimental animals needs to be addressed for the use of the virus as a safe vector. Therefore, it is very important to understand the determinants of VSV tropism and develop strategies to alter it. VSV glycoprotein (G) and matrix (M) protein play major roles in its cell tropism. VSV G protein is responsible for VSV broad cell tropism and is often used for pseudotyping other viruses. VSV M affects cell tropism via evasion of antiviral responses, and M mutants can be used to limit cell tropism to cell types defective in interferon signaling. In addition, other VSV proteins and host proteins may function as determinants of VSV cell tropism. Various approaches have been successfully used to alter VSV tropism to benefit basic research and clinically relevant applications.
Collapse
Affiliation(s)
- Eric Hastie
- Department of Biology, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, United States
| | | | | | | |
Collapse
|
27
|
[Plant rhabdoviruses with bipartite genomes]. Uirusu 2013; 63:143-54. [PMID: 25366049 DOI: 10.2222/jsv.63.143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Members of the family Rhabdoviridae (order Mononegavirales) have a broad range of hosts, including humans, livestock, fish, plants, and invertebrates. They have a nonsegmented negative-sense RNA as the genome. Orchid fleck virus (OFV) is distributed world-wide on several orchid plants and transmitted by the false spider mite, Brevipalpus californicus. Based on its virions morphology and cytopathic effects in the infected cells, OFV was tentatively placed as unassigned plant rhabdoviruses in the sixth ICTV Report. However, the molecular studies reveled that OFV has a unique two-segmented negative-sense RNA genome that resembles monopartite genomes of plant nucleorhabdoviruses. In this review, we describe the current knowledge on the genome structure and gene expression strategy of OFV, the possible mechanism of nuclear viroplasm formation, and the taxonomical consideration of the virus as well.
Collapse
|
28
|
Ramirez-Carvajal L, Long CR. Down-regulation of viral replication by lentiviral-mediated expression of short-hairpin RNAs against vesicular stomatitis virus ribonuclear complex genes. Antiviral Res 2012; 95:150-8. [DOI: 10.1016/j.antiviral.2012.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 05/03/2012] [Accepted: 05/17/2012] [Indexed: 10/28/2022]
|
29
|
Virojanapirom P, Khawplod P, Sawangvaree A, Wacharapluesadee S, Hemachudha T, Yamada K, Morimoto K, Nishizono A. Molecular analysis of the mutational effects of Thai street rabies virus with increased virulence in mice after passages in the BHK cell line. Arch Virol 2012; 157:2201-5. [PMID: 22777181 DOI: 10.1007/s00705-012-1402-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 05/23/2012] [Indexed: 12/25/2022]
Abstract
QS-BHK-P7, street rabies virus, after passages in the BHK cell line, had an in vitro phenotype that distinguished it from its parental virus. Both viruses caused lethal infection in mice by central nervous system inoculation; however, only QS-BHK-P7 killed mice by the intramuscular route. We found four mutations, S23R and H424P in ectodomain of the glycoprotein (G), I1711 V in the polymerase genes, and another at the non-coding region between the phosphoprotein and matrix protein genes of QS-BHK-P7. None of the mutations in the G gene occurred in previously reported pathogenic determinants. The roles of mutations in particular non-coding regions remain to be elucidated.
Collapse
Affiliation(s)
- Phatthamon Virojanapirom
- WHO Collaborating Centre for Research and Training on Viral Zoonoses, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Furr SR, Marriott I. Viral CNS infections: role of glial pattern recognition receptors in neuroinflammation. Front Microbiol 2012; 3:201. [PMID: 22723794 PMCID: PMC3379540 DOI: 10.3389/fmicb.2012.00201] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 05/15/2012] [Indexed: 12/13/2022] Open
Abstract
Viruses are the major causative agents of central nervous system (CNS) infection worldwide. RNA and DNA viruses trigger broad activation of glial cells including microglia and astrocytes, eliciting the release of an array of mediators that can promote innate and adaptive immune responses. Such responses can limit viral replication and dissemination leading to infection resolution. However, a defining feature of viral CNS infection is the rapid onset of severe neuroinflammation and overzealous glial responses are associated with significant neurological damage or even death. The mechanisms by which microglia and astrocytes perceive neurotropic RNA and DNA viruses are only now becoming apparent with the discovery of a variety of cell surface and cytosolic molecules that serve as sensors for viral components. In this review we discuss the role played by members of the Toll-like family of pattern recognition receptors (PRRs) in the inflammatory responses of glial cells to the principle causative agents of viral encephalitis. Importantly, we also describe the evidence for the involvement of a number of newly described intracellular PRRs, including retinoic acid-inducible gene I and DNA-dependent activator of IFN regulatory factors, that are thought to function as intracellular sensors of RNA and DNA viruses, respectively. Finally, we explore the possibility that cross-talk exists between these disparate viral sensors and their signaling pathways, and describe how glial cytosolic and cell surface/endosomal PRRs could act in a cooperative manner to promote the fulminant inflammation associated with acute neurotropic viral infection.
Collapse
Affiliation(s)
| | - Ian Marriott
- Department of Biology, University of North Carolina at Charlotte,Charlotte, NC, USA
| |
Collapse
|
31
|
Dochow M, Krumm SA, Crowe JE, Moore ML, Plemper RK. Independent structural domains in paramyxovirus polymerase protein. J Biol Chem 2012; 287:6878-91. [PMID: 22215662 DOI: 10.1074/jbc.m111.325258] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
All enzymatic activities required for genomic replication and transcription of nonsegmented negative strand RNA viruses (or Mononegavirales) are believed to be concentrated in the viral polymerase (L) protein. However, our insight into the organization of these different enzymatic activities into a bioactive tertiary structure remains rudimentary. Fragments of Mononegavirales polymerases analyzed to date cannot restore bioactivity through trans-complementation, unlike the related L proteins of segmented NSVs. We investigated the domain organization of phylogenetically diverse Paramyxovirus L proteins derived from measles virus (MeV), Nipah virus (NiV), and respiratory syncytial virus (RSV). Through a comprehensive in silico and experimental analysis of domain intersections, we defined MeV L position 615 as an interdomain candidate in addition to the previously reported residue 1708. Only position 1708 of MeV and the homologous positions in NiV and RSV L also tolerated the insertion of epitope tags. Splitting of MeV L at residue 1708 created fragments that were unable to physically interact and trans-complement, but strikingly, these activities were reconstituted by the addition of dimerization tags to the fragments. Equivalently split fragments of NiV, RSV, and MeV L oligomerized with comparable efficiency in all homo- and heterotypic combinations, but only the homotypic pairs were able to trans-complement. These results demonstrate that synthesis as a single polypeptide is not required for the Mononegavirales polymerases to adopt a proper tertiary conformation. Paramyxovirus polymerases are composed of at least two truly independent folding domains that lack a traditional interface but require molecular compatibility for bioactivity. The functional probing of the L domain architecture through trans-complementation is anticipated to be applicable to all Mononegavirales polymerases.
Collapse
Affiliation(s)
- Melanie Dochow
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | |
Collapse
|
32
|
Structural insights into the rhabdovirus transcription/replication complex. Virus Res 2011; 162:126-37. [PMID: 21963663 DOI: 10.1016/j.virusres.2011.09.025] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 09/17/2011] [Accepted: 09/18/2011] [Indexed: 12/25/2022]
Abstract
The rhabdoviruses have a non-segmented single stranded negative-sense RNA genome. Their multiplication in a host cell requires three viral proteins in addition to the viral RNA genome. The nucleoprotein (N) tightly encapsidates the viral RNA, and the N-RNA complex serves as the template for both transcription and replication. The viral RNA-dependent RNA polymerase is a two subunit complex that consists of a large subunit, L, and a non-catalytic cofactor, the phosphoprotein, P. P also acts as a chaperone of nascent RNA-free N by forming a N(0)-P complex that prevents N from binding to cellular RNAs and from polymerizing in the absence of RNA. Here, we discuss the recent molecular and structural studies of individual components and multi-molecular complexes that are involved in the transcription/replication complex of these viruses with regard to their implication in viral transcription and replication.
Collapse
|
33
|
Ogino T, Banerjee AK. An unconventional pathway of mRNA cap formation by vesiculoviruses. Virus Res 2011; 162:100-9. [PMID: 21945214 DOI: 10.1016/j.virusres.2011.09.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 09/07/2011] [Accepted: 09/08/2011] [Indexed: 01/11/2023]
Abstract
mRNAs of vesicular stomatitis virus (VSV), a prototype of nonsegmented negative strand (NNS) RNA viruses (e.g., rabies, measles, mumps, Ebola, and Borna disease viruses), possess the 5'-terminal cap structure identical to that of eukaryotic mRNAs, but the mechanism of mRNA cap formation is distinctly different from the latter. The elucidation of the unconventional capping of VSV mRNA remained elusive for three decades since the discovery of the cap structure in some viral and eukaryotic mRNAs in 1975. Only recently our biochemical studies revealed an unexpected strategy employed by vesiculoviruses (VSV and Chandipura virus, an emerging arbovirus) to generate the cap structure. This article summarizes the historical and current research that led to the discovery of the novel vesiculoviral mRNA capping reaction.
Collapse
Affiliation(s)
- Tomoaki Ogino
- Department of Molecular Genetics, Section of Virology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| | | |
Collapse
|
34
|
Bankamp B, Takeda M, Zhang Y, Xu W, Rota PA. Genetic characterization of measles vaccine strains. J Infect Dis 2011; 204 Suppl 1:S533-48. [PMID: 21666210 DOI: 10.1093/infdis/jir097] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The complete genomic sequences of 9 measles vaccine strains were compared with the sequence of the Edmonston wild-type virus. AIK-C, Moraten, Rubeovax, Schwarz, and Zagreb are vaccine strains of the Edmonston lineage, whereas CAM-70, Changchun-47, Leningrad-4 and Shanghai-191 were derived from 4 different wild-type isolates. Nucleotide substitutions were found in the noncoding regions of the genomes as well as in all coding regions, leading to deduced amino acid substitutions in all 8 viral proteins. Although the precise mechanisms involved in the attenuation of individual measles vaccines remain to be elucidated, in vitro assays of viral protein functions and recombinant viruses with defined genetic modifications have been used to characterize the differences between vaccine and wild-type strains. Although almost every protein contributes to an attenuated phenotype, substitutions affecting host cell tropism, virus assembly, and the ability to inhibit cellular antiviral defense mechanisms play an especially important role in attenuation.
Collapse
Affiliation(s)
- Bettina Bankamp
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| | | | | | | | | |
Collapse
|
35
|
Tekes G, Rahmeh AA, Whelan SPJ. A freeze frame view of vesicular stomatitis virus transcription defines a minimal length of RNA for 5' processing. PLoS Pathog 2011; 7:e1002073. [PMID: 21655110 PMCID: PMC3107219 DOI: 10.1371/journal.ppat.1002073] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 04/04/2011] [Indexed: 11/25/2022] Open
Abstract
The RNA synthesis machinery of vesicular stomatitis virus (VSV) comprises the genomic RNA encapsidated by the viral nucleocapsid protein (N) and associated with the RNA dependent RNA polymerase, the viral components of which are a large protein (L) and an accessory phosphoprotein (P). The 241 kDa L protein contains all the enzymatic activities necessary for synthesis of the viral mRNAs, including capping, cap methylation and polyadenylation. Those RNA processing reactions are intimately coordinated with nucleotide polymerization such that failure to cap results in termination of transcription and failure to methylate can result in hyper polyadenylation. The mRNA processing reactions thus serve as a critical check point in viral RNA synthesis which may control the synthesis of incorrectly modified RNAs. Here, we report the length at which viral transcripts first gain access to the capping machinery during synthesis. By reconstitution of transcription in vitro with highly purified recombinant polymerase and engineered templates in which we omitted sites for incorporation of UTP, we found that transcripts that were 30-nucleotides in length were uncapped, whereas those that were 31-nucleotides in length contained a cap structure. The minimal RNA length required for mRNA cap addition was also sufficient for methylation since the 31-nucleotide long transcripts were methylated at both ribose-2'-O and guanine-N-7 positions. This work provides insights into the spatial relationship between the active sites for the RNA dependent RNA polymerase and polyribonucleotidyltransferase responsible for capping of the viral RNA. We combine the present findings with our recently described electron microscopic structure of the VSV polymerase and propose a model of how the spatial arrangement of the capping activities of L may influence nucleotide polymerization.
Collapse
Affiliation(s)
- Gergely Tekes
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Amal A. Rahmeh
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sean P. J. Whelan
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
36
|
Zhang X, Wei Y, Ma Y, Hu S, Li J. Identification of aromatic amino acid residues in conserved region VI of the large polymerase of vesicular stomatitis virus is essential for both guanine-N-7 and ribose 2'-O methyltransferases. Virology 2010; 408:241-52. [PMID: 20961592 PMCID: PMC7111938 DOI: 10.1016/j.virol.2010.09.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 08/23/2010] [Accepted: 09/17/2010] [Indexed: 10/25/2022]
Abstract
Non-segmented negative-sense RNA viruses possess a unique mechanism for mRNA cap methylation. For vesicular stomatitis virus, conserved region VI in the large (L) polymerase protein catalyzes both guanine-N-7 (G-N-7) and ribose 2'-O (2'-O) methyltransferases, and the two methylases share a binding site for the methyl donor S-adenosyl-l-methionine. Unlike conventional mRNA cap methylation, the 2'-O methylation of VSV precedes subsequent G-N-7 methylation. In this study, we found that individual alanine substitutions in two conserved aromatic residues (Y1650 and F1691) in region VI of L protein abolished both G-N-7 and 2'-O methylation. However, replacement of one aromatic residue with another aromatic residue did not significantly affect the methyltransferase activities. Our studies provide genetic and biochemical evidence that conserved aromatic residues in region VI of L protein essential for both G-N-7 and 2'-O methylations. In combination with the structural prediction, our results suggest that these aromatic residues may participate in RNA recognition.
Collapse
Affiliation(s)
- Xiaodong Zhang
- College of Animal Science, Zhejiang University, Hangzhou, Zhejiang, China
| | | | | | | | | |
Collapse
|
37
|
Assenberg R, Delmas O, Morin B, Graham SC, De Lamballerie X, Laubert C, Coutard B, Grimes JM, Neyts J, Owens RJ, Brandt BW, Gorbalenya A, Tucker P, Stuart DI, Canard B, Bourhy H. Genomics and structure/function studies of Rhabdoviridae proteins involved in replication and transcription. Antiviral Res 2010; 87:149-61. [PMID: 20188763 DOI: 10.1016/j.antiviral.2010.02.322] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 02/20/2010] [Indexed: 01/19/2023]
Abstract
Some mammalian rhabdoviruses may infect humans, and also infect invertebrates, dogs, and bats, which may act as vectors transmitting viruses among different host species. The VIZIER programme, an EU-funded FP6 program, has characterized viruses that belong to the Vesiculovirus, Ephemerovirus and Lyssavirus genera of the Rhabdoviridae family to perform ground-breaking research on the identification of potential new drug targets against these RNA viruses through comprehensive structural characterization of the replicative machinery. The contribution of VIZIER programme was of several orders. First, it contributed substantially to research aimed at understanding the origin, evolution and diversity of rhabdoviruses. This diversity was then used to obtain further structural information on the proteins involved in replication. Two strategies were used to produce recombinant proteins by expression of both full length or domain constructs in either E. coli or insect cells, using the baculovirus system. In both cases, parallel cloning and expression screening at small-scale of multiple constructs based on different viruses including the addition of fusion tags, was key to the rapid generation of expression data. As a result, some progress has been made in the VIZIER programme towards dissecting the multi-functional L protein into components suitable for structural and functional studies. However, the phosphoprotein polymerase co-factor and the structural matrix protein, which play a number of roles during viral replication and drives viral assembly, have both proved much more amenable to structural biology. Applying the multi-construct/multi-virus approach central to protein production processes in VIZIER has yielded new structural information which may ultimately be exploitable in the derivation of novel ways of intervening in viral replication.
Collapse
Affiliation(s)
- R Assenberg
- Division of Structural Biology and Oxford Protein Production Facility, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Murphy AM, Moerdyk-Schauwecker M, Mushegian A, Grdzelishvili VZ. Sequence-function analysis of the Sendai virus L protein domain VI. Virology 2010; 405:370-82. [PMID: 20609457 PMCID: PMC2923248 DOI: 10.1016/j.virol.2010.06.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 04/16/2010] [Accepted: 06/08/2010] [Indexed: 11/26/2022]
Abstract
The large (about 2200 amino acids) L polymerase protein of nonsegmented negative-strand RNA viruses (order Mononegavirales) has six conserved sequence regions (“domains”) postulated to constitute the specific enzymatic activities involved in viral mRNA synthesis, 5′-end capping, cap methylation, 3′ polyadenylation, and genomic RNA replication. Previous studies with vesicular stomatitis virus identified amino acid residues within the L protein domain VI required for mRNA cap methylation. In our recent study we analyzed four amino acid residues within domain VI of the Sendai virus L protein and our data indicated that there could be differences in L protein sequence requirements for cap methylation in two different families of Mononegavirales — rhabdoviruses and paramyxoviruses. In this study, we conducted a more comprehensive mutational analysis by targeting the entire SeV L protein domain VI, creating twenty-four L mutants, and testing these mutations for their effects on viral mRNA synthesis, cap methylation, viral genome replication and virus growth kinetics. Our analysis identified several residues required for successful cap methylation and virus replication and clearly showed the importance of the K-D-K-E tetrad and glycine-rich motif in the SeV cap methylation. This study is the first extensive sequence analysis of the L protein domain VI in the family Paramyxoviridae, and it confirms structural and functional similarity of this domain across different families of the order Mononegavirales.
Collapse
Affiliation(s)
- Andrea M Murphy
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | | | | | | |
Collapse
|
39
|
Heinrich BS, Cureton DK, Rahmeh AA, Whelan SPJ. Protein expression redirects vesicular stomatitis virus RNA synthesis to cytoplasmic inclusions. PLoS Pathog 2010; 6:e1000958. [PMID: 20585632 PMCID: PMC2891829 DOI: 10.1371/journal.ppat.1000958] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 05/20/2010] [Indexed: 11/20/2022] Open
Abstract
Positive-strand and double-strand RNA viruses typically compartmentalize their replication machinery in infected cells. This is thought to shield viral RNA from detection by innate immune sensors and favor RNA synthesis. The picture for the non-segmented negative-strand (NNS) RNA viruses, however, is less clear. Working with vesicular stomatitis virus (VSV), a prototype of the NNS RNA viruses, we examined the location of the viral replication machinery and RNA synthesis in cells. By short-term labeling of viral RNA with 5′-bromouridine 5′-triphosphate (BrUTP), we demonstrate that primary mRNA synthesis occurs throughout the host cell cytoplasm. Protein synthesis results in the formation of inclusions that contain the viral RNA synthesis machinery and become the predominant sites of mRNA synthesis in the cell. Disruption of the microtubule network by treatment of cells with nocodazole leads to the accumulation of viral mRNA in discrete structures that decorate the surface of the inclusions. By pulse-chase analysis of the mRNA, we find that viral transcripts synthesized at the inclusions are transported away from the inclusions in a microtubule-dependent manner. Metabolic labeling of viral proteins revealed that inhibiting this transport step diminished the rate of translation. Collectively those data suggest that microtubule-dependent transport of viral mRNAs from inclusions facilitates their translation. Our experiments also show that during a VSV infection, protein synthesis is required to redirect viral RNA synthesis to intracytoplasmic inclusions. As viral RNA synthesis is initially unrestricted, we speculate that its subsequent confinement to inclusions might reflect a cellular response to infection. Positive-strand and double-strand RNA viruses compartmentalize their replication machinery in infected cells. This compartmentalization is thought to favor the catalysis of RNA synthesis, and sequester viral RNA molecules from detection by innate immune sensors. For the negative-strand RNA viruses that replicate in the cytoplasm, the site of RNA synthesis is less clear. Here, using a prototype non-segmented negative-strand (NNS) RNA virus, vesicular stomatitis virus (VSV), we investigated whether viral derived inclusions are sites of RNA synthesis in infected cells. Our work shows that prior to viral protein synthesis the invading viral cores synthesize mRNA throughout the host cell cytoplasm. Viral protein expression leads to the formation of intracytoplasmic inclusions that contain the viral machinery necessary for RNA synthesis and become the predominant sites of transcription. The newly synthesized viral mRNAs escape the inclusions by transport along microtubules and this facilitates their translation. Our work demonstrates that in contrast to the positive-strand and double-strand RNA viruses, VSV does not require the establishment of specialized compartments in the cytoplasm of the cell for RNA synthesis. Our findings suggest that the confinement of RNA synthesis to inclusions once infection is established may reflect a host response to infection.
Collapse
Affiliation(s)
- Bianca S. Heinrich
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - David K. Cureton
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Virology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Amal A. Rahmeh
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sean P. J. Whelan
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Virology, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
40
|
Chauhan VS, Furr SR, Sterka DG, Nelson DA, Moerdyk-Schauwecker M, Marriott I, Grdzelishvili VZ. Vesicular stomatitis virus infects resident cells of the central nervous system and induces replication-dependent inflammatory responses. Virology 2010; 400:187-96. [PMID: 20172575 DOI: 10.1016/j.virol.2010.01.025] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 01/11/2010] [Accepted: 01/20/2010] [Indexed: 11/18/2022]
Abstract
Vesicular stomatitis virus (VSV) infection of mice via intranasal administration results in a severe encephalitis with rapid activation and proliferation of microglia and astrocytes. We have recently shown that these glial cells express RIG-I and MDA5, cytosolic pattern recognition receptors for viral RNA. However, it is unclear whether VSV can replicate in glial cells or if such replication is required for their inflammatory responses. Here we demonstrate that primary microglia and astrocytes are permissive for VSV infection and limited productive replication. Importantly, we show that viral replication is required for robust inflammatory mediator production by these cells. Finally, we have confirmed that in vivo VSV administration can result in viral infection of glial cells in situ. These results suggest that viral replication within resident glial cells might play an important role in CNS inflammation following infection with VSV and possibly other neurotropic nonsegmented negative-strand RNA viruses.
Collapse
Affiliation(s)
- Vinita S Chauhan
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Histidine-mediated RNA transfer to GDP for unique mRNA capping by vesicular stomatitis virus RNA polymerase. Proc Natl Acad Sci U S A 2010; 107:3463-8. [PMID: 20142503 DOI: 10.1073/pnas.0913083107] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The RNA-dependent RNA polymerase L protein of vesicular stomatitis virus, a prototype of nonsegmented negative-strand (NNS) RNA viruses, forms a covalent complex with a 5'-phosphorylated viral mRNA-start sequence (L-pRNA), a putative intermediate in the unconventional mRNA capping reaction catalyzed by the RNA:GDP polyribonucleotidyltransferase (PRNTase) activity. Here, we directly demonstrate that the purified L-pRNA complex transfers pRNA to GDP to produce the capped RNA (Gpp-pRNA), indicating that the complex is a bona fide intermediate in the RNA transfer reaction. To locate the active site of the PRNTase domain in the L protein, the covalent RNA attachment site was mapped. We found that the 5'-monophosphate end of the RNA is linked to the histidine residue at position 1,227 (H1227) of the L protein through a phosphoamide bond. Interestingly, H1227 is part of the histidine-arginine (HR) motif, which is conserved within the L proteins of the NNS RNA viruses including rabies, measles, Ebola, and Borna disease viruses. Mutagenesis analyses revealed that the HR motif is required for the PRNTase activity at the step of the enzyme-pRNA intermediate formation. Thus, our findings suggest that an ancient NNS RNA viral polymerase has acquired the PRNTase domain independently of the eukaryotic mRNA capping enzyme during evolution and PRNTase becomes a rational target for designing antiviral agents.
Collapse
|
42
|
Rahmeh AA, Li J, Kranzusch PJ, Whelan SPJ. Ribose 2'-O methylation of the vesicular stomatitis virus mRNA cap precedes and facilitates subsequent guanine-N-7 methylation by the large polymerase protein. J Virol 2009; 83:11043-50. [PMID: 19710136 PMCID: PMC2772757 DOI: 10.1128/jvi.01426-09] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Accepted: 08/14/2009] [Indexed: 11/20/2022] Open
Abstract
During conventional mRNA cap formation, two separate methyltransferases sequentially modify the cap structure, first at the guanine-N-7 (G-N-7) position and subsequently at the ribose 2'-O position. For vesicular stomatitis virus (VSV), a prototype of the nonsegmented negative-strand RNA viruses, the two methylase activities share a binding site for the methyl donor S-adenosyl-l-methionine and are inhibited by individual amino acid substitutions within the C-terminal domain of the large (L) polymerase protein. This led to the suggestion that a single methylase domain functions for both 2'-O and G-N-7 methylations. Here we report a trans-methylation assay that recapitulates both ribose 2'-O and G-N-7 modifications by using purified recombinant L and in vitro-synthesized RNA. Using this assay, we demonstrate that VSV L typically modifies the 2'-O position of the cap prior to the G-N-7 position and that G-N-7 methylation is diminished by pre-2'-O methylation of the substrate RNA. Amino acid substitutions in the C terminus of L that prevent all cap methylation in recombinant VSV (rVSV) partially retain the ability to G-N-7 methylate a pre-2'-O-methylated RNA, therefore uncoupling the effect of substitutions in the C terminus of the L protein on the two methylations. In addition, we show that the 2'-O and G-N-7 methylase activities act specifically on RNA substrates that contain the conserved elements of a VSV mRNA start at the 5' terminus. This study provides new mechanistic insights into the mRNA cap methylase activities of VSV L, demonstrates that 2'-O methylation precedes and facilitates subsequent G-N-7 methylation, and reveals an RNA sequence and length requirement for the two methylase activities. We propose a model of regulation of the activity of the C terminus of L protein in 2'-O and G-N-7 methylation of the cap structure.
Collapse
Affiliation(s)
- Amal A. Rahmeh
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Ave., Boston, Massachusetts 02115
| | - Jianrong Li
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Ave., Boston, Massachusetts 02115
| | - Philip J. Kranzusch
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Ave., Boston, Massachusetts 02115
| | - Sean P. J. Whelan
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Ave., Boston, Massachusetts 02115
| |
Collapse
|
43
|
Moerdyk-Schauwecker M, Hwang SI, Grdzelishvili VZ. Analysis of virion associated host proteins in vesicular stomatitis virus using a proteomics approach. Virol J 2009; 6:166. [PMID: 19821998 PMCID: PMC2770056 DOI: 10.1186/1743-422x-6-166] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Accepted: 10/12/2009] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Vesicular stomatitis virus (VSV) is the prototypic rhabdovirus and the best studied member of the order Mononegavirales. There is now compelling evidence that enveloped virions released from infected cells carry numerous host (cellular) proteins some of which may play an important role in viral replication. Although several cellular proteins have been previously shown to be incorporated into VSV virions, no systematic study has been done to reveal the host protein composition for virions of VSV or any other member of Mononegavirales. RESULTS Here we used a proteomics approach to identify cellular proteins within purified VSV virions, thereby creating a "snapshot" of one stage of virus/host interaction that can guide future experiments aimed at understanding molecular mechanisms of virus-cell interactions. Highly purified preparations of VSV virions from three different cell lines of human, mouse and hamster origin were analyzed for the presence of cellular proteins using mass spectrometry. We have successfully confirmed the presence of several previously-identified cellular proteins within VSV virions and identified a number of additional proteins likely to also be present within the virions. In total, sixty-four cellular proteins were identified, of which nine were found in multiple preparations. A combination of immunoblotting and proteinase K protection assay was used to verify the presence of several of these proteins (integrin beta1, heat shock protein 90 kDa, heat shock cognate 71 kDa protein, annexin 2, elongation factor 1a) within the virions. CONCLUSION This is, to our knowledge, the first systematic study of the host protein composition for virions of VSV or any other member of the order Mononegavirales. Future experiments are needed to determine which of the identified proteins have an interaction with VSV and whether these interactions are beneficial, neutral or antiviral with respect to VSV replication. Identification of host proteins-virus interactions beneficial for virus would be particularly exciting as they can provide new ways to combat viral infections via control of host components.
Collapse
Affiliation(s)
| | - Sun-Il Hwang
- Cannon Research Center, Carolinas Medical Center, Charlotte, NC 28203, USA
| | - Valery Z Grdzelishvili
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| |
Collapse
|
44
|
Insertion of enhanced green fluorescent protein in a hinge region of vesicular stomatitis virus L polymerase protein creates a temperature-sensitive virus that displays no virion-associated polymerase activity in vitro. J Virol 2009; 83:12241-52. [PMID: 19793815 DOI: 10.1128/jvi.01273-09] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The RNA-dependent RNA polymerase of viruses belonging to the order Mononegavirales is part of a large multifunctional L protein that also catalyzes viral mRNA capping and cap methylation. The L protein of this diverse group of agents displays six blocks of conserved sequences. The precise relationship between these conserved regions and individual functions is largely unknown, except for "domain" VI that clearly encodes a viral mRNA cap methylase. The L protein of morbilliviruses (family Paramyxoviridae) was reported to tolerate insertion of the enhanced green fluorescent protein (EGFP) in a region just upstream of domain VI. Recombinant viruses with this insertion grow well in cell culture but are highly attenuated in animal hosts. We show here that the L protein of vesicular stomatitis virus (VSV), the prototype of the Rhabdoviridae family, also tolerates insertion of EGFP at a similar site. The modified protein (L(EGFP)) and the resultant recombinant virus both demonstrated a sharp temperature-sensitive phenotype for polymerase activity, with reduced activity at 37 degrees C and no activity at 37.5 degrees C. Neither translation nor methylation of mutant virus transcripts was affected at 37 degrees C. Curiously, mutant virus grown at permissive temperature contained about threefold-less L protein than the wild-type virus did and displayed no virion-associated polymerase activity in vitro. These findings support the notion that a flexible "hinge" region separates the cap methylase domain of L proteins from upstream functions and open up a number of avenues for studies of L-protein function in the more-tractable VSV model system.
Collapse
|
45
|
Li J, Rahmeh A, Brusic V, Whelan SPJ. Opposing effects of inhibiting cap addition and cap methylation on polyadenylation during vesicular stomatitis virus mRNA synthesis. J Virol 2009; 83:1930-40. [PMID: 19073725 PMCID: PMC2643785 DOI: 10.1128/jvi.02162-08] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Accepted: 11/28/2008] [Indexed: 12/14/2022] Open
Abstract
The multifunctional large (L) polymerase protein of vesicular stomatitis virus (VSV) contains enzymatic activities essential for RNA synthesis, including mRNA cap addition and polyadenylation. We previously mapped amino acid residues G1154, T1157, H1227, and R1228, present within conserved region V (CRV) of L, as essential for mRNA cap addition. Here we show that alanine substitutions to these residues also affect 3'-end formation. Specifically, the cap-defective polymerases produced truncated transcripts that contained A-rich sequences at their 3' termini and predominantly terminated within the first 500 nucleotides (nt) of the N gene. To examine how the cap-defective polymerases respond to an authentic VSV termination and reinitiation signal present at each gene junction, we reconstituted RNA synthesis using templates that contained genes inserted (I) at the leader-N gene junction. The I genes ranged in size from 382 to 1,098 nt and were typically transcribed into full-length uncapped transcripts. In addition to lacking a cap structure, the full-length I transcripts synthesized by the cap-defective polymerases lacked an authentic polyadenylate tail and instead contained 0 to 24 A residues. Moreover, the cap-defective polymerases were also unable to copy efficiently the downstream gene. Thus, single amino acid substitutions in CRV of L protein that inhibit cap addition also inhibit polyadenylation and sequential transcription of the genome. In contrast, an amino acid substitution, K1651A, in CRVI of L protein that completely inhibits cap methylation results in the hyperpolyadenylation of mRNA. This work reveals that inhibiting cap addition and cap methylation have opposing effects on polyadenylation during VSV mRNA synthesis and provides evidence in support of a link between correct 5' cap formation and 3' polyadenylation.
Collapse
Affiliation(s)
- Jianrong Li
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | |
Collapse
|
46
|
Chattopadhyay S, Banerjee AK. Phosphoprotein, P of human parainfluenza virus type 3 prevents self-association of RNA-dependent RNA polymerase, L. Virology 2009; 383:226-36. [PMID: 19012944 PMCID: PMC2658021 DOI: 10.1016/j.virol.2008.10.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 08/22/2008] [Accepted: 10/13/2008] [Indexed: 10/21/2022]
Abstract
The RNA-dependent RNA-polymerase (RdRp) of human parainfluenza virus type 3 (HPIV3) is a large protein (L, 2233 amino acids), and along with the phosphoprotein (P, 603 amino acids) forms a heterocomplex that transcribes the genome RNA into mRNAs in vitro and in vivo that are 5'-capped and methylated and 3'-polyadenylated. The interaction of the P protein, an obligatory cofactor, imparts the RdRp activity of the L protein, which is otherwise inactive. The precise mechanism underlying this activation process remains unknown. Several recent reports suggested that the L proteins of paramyxoviruses, when expressed alone, self-associate to form an oligomeric structure. The presumptive oligomerization domain lies in the N-terminal part of the L protein (for HPIV3, 889 amino acids). Here, we demonstrate that a series of N-terminally deleted L proteins as well as several truncated proteins that span different regions of the L protein can also efficiently co-immunoprecipitate the full length L protein. In addition, by several biochemical parameters, the L-L interaction was shown to form aggregates rather than oligomers. In contrast, when the P protein was co-expressed with the L protein, the former bound to a domain spanning the N-terminal 1060 amino acids of the latter, which prevented L-L self-association, resulting in the formation of structurally competent and functionally active RdRp.
Collapse
Affiliation(s)
- Santanu Chattopadhyay
- Department of Molecular Genetics, Section of Virology, Lerner Research Institute, The Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195
| | - Amiya K. Banerjee
- Department of Molecular Genetics, Section of Virology, Lerner Research Institute, The Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195
| |
Collapse
|
47
|
Galloway SE, Richardson PE, Wertz GW. Analysis of a structural homology model of the 2'-O-ribose methyltransferase domain within the vesicular stomatitis virus L protein. Virology 2008; 382:69-82. [PMID: 18848710 PMCID: PMC2631035 DOI: 10.1016/j.virol.2008.08.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 07/25/2008] [Accepted: 08/27/2008] [Indexed: 10/21/2022]
Abstract
The large (L) proteins of non-segmented negative stranded (NNS) RNA viruses contain the core RNA dependent RNA polymerase activity for RNA replication and transcription as well as the activities for polyadenylating and capping the mRNA transcripts and for methylating the cap structures. There is currently no structural information available for these large multi-functional proteins. Phylogenetic analyses have led to the division of the L protein primary structure into six functional domains of high conservation that are linked by variable regions. The studies in this report investigate the role of specific amino acids within domain VI of the VSV L protein, which contains a 2'-O-ribose methyltransferase (MTase) domain. We generated a structural homology model of residues 1644-1842 within domain VI based on the crystal structure determined for the known 2'-O-ribose MTase of E. coli, RrmJ. The information generated by this homology model directed us to residues structurally important for MTase activity and SAM binding. Selected residues were analyzed by site-specific mutagenesis and the mutant L proteins were assayed for their effects on RNA synthesis and cap methylation. The goal of this study was to functionally test the model in order to gain insight into the structural constraints of this region of the L protein. The data presented here revealed specific mutations that affect transcription, replication, and 5' cap methylation, many of which resulted in polymerases temperature sensitive for RNA synthesis.
Collapse
Affiliation(s)
- Summer E. Galloway
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Paul E. Richardson
- Department of Chemistry and Physics, Coastal Carolina University, Conway, South Carolina, USA
| | - Gail W. Wertz
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
48
|
Identification of sendai virus L protein amino acid residues affecting viral mRNA cap methylation. J Virol 2008; 83:1669-81. [PMID: 19052078 DOI: 10.1128/jvi.01438-08] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Viruses of the order Mononegavirales all encode a large (L) polymerase protein responsible for the replication and transcription of the viral genome as well as all posttranscriptional modifications of viral mRNAs. The L protein is conserved among all members of the Mononegavirales and has six conserved regions ("domains"). Using vesicular stomatitis virus (VSV) (family Rhabdoviridae) experimental system, we and others recently identified several conserved amino acid residues within L protein domain VI which are required for viral mRNA cap methylation. To verify that these critical amino acid residues have a similar function in other members of the Mononegavirales, we examined the Sendai virus (SeV) (family Paramyxoviridae) L protein by targeting homologous amino acid residues important for cap methylation in VSV which are highly conserved among all members of the Mononegavirales and are believed to constitute the L protein catalytic and S-adenosylmethionine-binding sites. In addition, an SeV L protein mutant with a deletion of the entire domain VI was generated. First, L mutants were tested for their abilities to synthesize viral mRNAs. While the domain VI deletion completely inactivated L, most of the amino acid substitutions had minor effects on mRNA synthesis. Using a reverse genetics approach, these mutations were introduced into the SeV genome, and recombinant infectious SeV mutants with single alanine substitutions at L positions 1782, 1804, 1805, and 1806 or a double substitution at positions 1804 and 1806 were generated. The mutant SeV virions were purified, detergent activated, and analyzed for their abilities to synthesize viral mRNAs methylated at their cap structures. In addition, further studies were done to examine these SeV mutants for a possible host range phenotype, which was previously shown for VSV cap methylation-defective mutants. In agreement with a predicted role of the SeV L protein invariant lysine 1782 as a catalytic residue, the recombinant virus with a single K1782A substitution was completely defective in cap methylation and showed a host range phenotype. In addition, the E1805A mutation within the putative S-adenosylmethionine-binding site of L resulted in a 60% reduction in cap methylation. In contrast to the homologous VSV mutants, other recombinant SeV mutants with amino acid substitutions at this site were neither defective in cap methylation nor host range restricted. The results of this initial study using an SeV experimental system demonstrate similarities as well as differences between the L protein cap methylation domains in different members of the Mononegavirales.
Collapse
|
49
|
Galloway SE, Wertz GW. S-adenosyl homocysteine-induced hyperpolyadenylation of vesicular stomatitis virus mRNA requires the methyltransferase activity of L protein. J Virol 2008; 82:12280-90. [PMID: 18829753 PMCID: PMC2593356 DOI: 10.1128/jvi.01225-08] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Accepted: 09/11/2008] [Indexed: 11/20/2022] Open
Abstract
There are many unique aspects of vesicular stomatitis virus (VSV) transcription. In addition to its unusual mRNA capping and methyltransferase mechanisms, the addition of S-adenosyl homocysteine (SAH), which is the by-product and competitive inhibitor of S-adenosyl methionine (SAM)-mediated methyltransferase reactions, leads to synthesis of poly(A) tails on the 3' end of VSV mRNAs that are 10- or 20-fold longer than normal. The mechanism by which this occurs is not understood, since it has been shown that productive transcription is not dependent on 5' cap methylation and full-length VSV mRNAs can be synthesized in the absence of SAM. To investigate this unusual phenotype, we assayed the effects of SAH on transcription using a panel of recombinant viruses that contained mutations in domain VI of the VSV L protein. The L proteins we investigated displayed a range of 5' cap methyltransferase activities. In the present study, we show that the ability of the VSV L protein to catalyze methyl transfer correlates with its sensitivity to SAH with respect to polyadenylation, thereby indicating an intriguing connection between 5' and 3' end mRNA modifications. We also identified an L protein mutant that hyperpolyadenylates mRNA irrespective of the presence or absence of exogenous SAH. Further, the data presented here show that the wild-type L protein hyperpolyadenylates a percentage of VSV mRNAs in infected cells as well as in vitro.
Collapse
Affiliation(s)
- Summer E Galloway
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | |
Collapse
|
50
|
AKT1-dependent activation of NF-kappaB by the L protein of parainfluenza virus 5. J Virol 2008; 82:10887-95. [PMID: 18715928 DOI: 10.1128/jvi.00806-08] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Innate immunity plays a critical role in the control of viral infections. The induction of innate immune responses requires activation of transcription factors. In particular, NF-kappaB plays an essential role in activating the expression of cytokines involved in innate immunity such as beta interferon (IFN-beta) and interleukin-6 (IL-6). However, the mechanisms by which viruses activate NF-kappaB are poorly defined. Infection by parainfluenza virus 5 (PIV5), a prototypical member of the Paramyxoviridae family of Mononegavirales, has been shown to activate the expression of IFN-beta and IL-6. To examine how PIV5 induces this expression, we have examined the activation of NF-kappaB by PIV5 proteins. We have found that expression of PIV5 L protein alone is sufficient to activate NF-kappaB. The L protein of PIV5, the catalytic component of the viral RNA-dependent RNA polymerase, contains six domains that are conserved among all negative-stranded nonsegmented RNA viruses. We have mapped the region that activates NF-kappaB to the second domain, which is thought to be involved in RNA synthesis. The activation of NF-kappaB by L requires AKT1, a serine/threonine kinase, since AKT1 small interfering RNA, an AKT inhibitor as well as a dominant-negative mutant of AKT1, blocks this activation. Furthermore, we have found that L interacts with AKT1 and enhances its phosphorylation. We speculate that L may encode AKT1 kinase activity.
Collapse
|