1
|
Herd CL, Mellet J, Mashingaidze T, Durandt C, Pepper MS. Consequences of HIV infection in the bone marrow niche. Front Immunol 2023; 14:1163012. [PMID: 37497228 PMCID: PMC10366613 DOI: 10.3389/fimmu.2023.1163012] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/21/2023] [Indexed: 07/28/2023] Open
Abstract
Dysregulation of the bone marrow niche resulting from the direct and indirect effects of HIV infection contributes to haematological abnormalities observed in HIV patients. The bone marrow niche is a complex, multicellular environment which functions primarily in the maintenance of haematopoietic stem/progenitor cells (HSPCs). These adult stem cells are responsible for replacing blood and immune cells over the course of a lifetime. Cells of the bone marrow niche support HSPCs and help to orchestrate the quiescence, self-renewal and differentiation of HSPCs through chemical and molecular signals and cell-cell interactions. This narrative review discusses the HIV-associated dysregulation of the bone marrow niche, as well as the susceptibility of HSPCs to infection by HIV.
Collapse
|
2
|
Williams ME, Cloete R. Molecular Modeling of Subtype-Specific Tat Protein Signatures to Predict Tat-TAR Interactions That May Be Involved in HIV-Associated Neurocognitive Disorders. Front Microbiol 2022; 13:866611. [PMID: 35464972 PMCID: PMC9021916 DOI: 10.3389/fmicb.2022.866611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/16/2022] [Indexed: 12/30/2022] Open
Abstract
HIV-1 is responsible for a spectrum of neurocognitive deficits defined as HIV-associated neurocognitive disorders (HAND). The HIV transactivator of transcription (Tat) protein plays a key role in the neuropathophysiology of HAND. The Tat protein functions by transactivation of viral genes through its interaction with the transactivation response (TAR) RNA element. Subtype-specific Tat protein signatures including C31S, R57S and Q63E present in Tat subtype C has previously been linked to a lowered neuropathophysiology compared to Tat subtype B. In this study, we attempted to understand the molecular mechanism by which Tat subtype-specific variation, particularly, C31S, R57S, and Q63E influence the Tat-TAR interaction. We performed molecular modeling to generate accurate three-dimensional protein structures of the HIV-1 Tat subtypes C and B using the Swiss model webserver. Thereafter, we performed a molecular docking of the TAR RNA element to each of the Tat subtypes B and C protein structures using the HDOCK webserver. Our findings indicate that Tat subtype B had a higher affinity for the TAR RNA element compared to Tat subtype C based on a higher docking score of −187.37, a higher binding free energy value of −9834.63 ± 216.17 kJ/mol, and a higher number of protein–nucleotide interactions of 26. Furthermore, Tat subtype B displayed more flexible regions when bound to the TAR element and this flexibility could account for the stronger affinity of Tat subtype B to TAR. From the Tat signatures linked to neuropathogenesis, only R57/R57S are involved in Tat-TAR interaction. Due to the lack of electrostatic interactions observed between Tat subtype C and TAR, weaker affinity is observed, and this may contribute to a lower level of neuropathophysiology observed in subtype C infection.
Collapse
Affiliation(s)
- Monray E. Williams
- Human Metabolomics, North-West University, Potchefstroom, South Africa
- *Correspondence: Monray E. Williams,
| | - Ruben Cloete
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
3
|
Williams ME, Zulu SS, Stein DJ, Joska JA, Naudé PJW. Signatures of HIV-1 subtype B and C Tat proteins and their effects in the neuropathogenesis of HIV-associated neurocognitive impairments. Neurobiol Dis 2019; 136:104701. [PMID: 31837421 DOI: 10.1016/j.nbd.2019.104701] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/18/2019] [Accepted: 12/08/2019] [Indexed: 11/16/2022] Open
Abstract
HIV-associated neurocognitive impairments (HANI) are a spectrum of neurological disorders due to the effects of HIV-1 on the central nervous system (CNS). The HIV-1 subtypes; HIV-1 subtype B (HIV-1B) and HIV-1 subtype C (HIV-1C) are responsible for the highest prevalence of HANI and HIV infections respectively. The HIV transactivator of transcription (Tat) protein is a major contributor to the neuropathogenesis of HIV. The effects of the Tat protein on cells of the CNS is determined by the subtype-associated amino acid sequence variations. The extent to which the sequence variation between Tat-subtypes contribute to underlying mechanisms and neurological outcomes are not clear. In this review of the literature, we discuss how amino acid variations between HIV-1B Tat (TatB) and HIV-1C Tat (TatC) proteins contribute to the potential underlying neurobiological mechanisms of HANI. Tat-C is considered to be a more effective transactivator, whereas Tat-B may exert increased neurovirulence, including neuronal apoptosis, monocyte infiltration into the brain, (neuro)inflammation, oxidative stress and blood-brain barrier damage. These findings support the premise that Tat variants from different HIV-1 subtypes may direct neurovirulence and neurological outcomes in HANI.
Collapse
Affiliation(s)
- Monray E Williams
- Department of Psychiatry and Mental Health and Neuroscience Institute, Brain Behaviour Unit, University of Cape Town, Cape Town, South Africa.
| | - Simo S Zulu
- Department of Psychiatry and Mental Health and Neuroscience Institute, Brain Behaviour Unit, University of Cape Town, Cape Town, South Africa
| | - Dan J Stein
- Department of Psychiatry and Mental Health and Neuroscience Institute, Brain Behaviour Unit, University of Cape Town, Cape Town, South Africa; SAMRC Unit on Risk and Resilience in Mental Disorders and Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - John A Joska
- Division of Neuropsychiatry, Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Petrus J W Naudé
- Department of Psychiatry and Mental Health and Neuroscience Institute, Brain Behaviour Unit, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
4
|
Spector C, Mele AR, Wigdahl B, Nonnemacher MR. Genetic variation and function of the HIV-1 Tat protein. Med Microbiol Immunol 2019; 208:131-169. [PMID: 30834965 DOI: 10.1007/s00430-019-00583-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 02/11/2019] [Indexed: 12/14/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) encodes a transactivator of transcription (Tat) protein, which has several functions that promote viral replication, pathogenesis, and disease. Amino acid variation within Tat has been observed to alter the functional properties of Tat and, depending on the HIV-1 subtype, may produce Tat phenotypes differing from viruses' representative of each subtype and commonly used in in vivo and in vitro experimentation. The molecular properties of Tat allow for distinctive functional activities to be determined such as the subcellular localization and other intracellular and extracellular functional aspects of this important viral protein influenced by variation within the Tat sequence. Once Tat has been transported into the nucleus and becomes engaged in transactivation of the long terminal repeat (LTR), various Tat variants may differ in their capacity to activate viral transcription. Post-translational modification patterns based on these amino acid variations may alter interactions between Tat and host factors, which may positively or negatively affect this process. In addition, the ability of HIV-1 to utilize or not utilize the transactivation response (TAR) element within the LTR, based on genetic variation and cellular phenotype, adds a layer of complexity to the processes that govern Tat-mediated proviral DNA-driven transcription and replication. In contrast, cytoplasmic or extracellular localization of Tat may cause pathogenic effects in the form of altered cell activation, apoptosis, or neurotoxicity. Tat variants have been shown to differentially induce these processes, which may have implications for long-term HIV-1-infected patient care in the antiretroviral therapy era. Future studies concerning genetic variation of Tat with respect to function should focus on variants derived from HIV-1-infected individuals to efficiently guide Tat-targeted therapies and elucidate mechanisms of pathogenesis within the global patient population.
Collapse
Affiliation(s)
- Cassandra Spector
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N 15th St, Philadelphia, PA, 19102, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Anthony R Mele
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N 15th St, Philadelphia, PA, 19102, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N 15th St, Philadelphia, PA, 19102, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N 15th St, Philadelphia, PA, 19102, USA.
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA.
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
5
|
A Naturally Occurring Polymorphism in the HIV-1 Tat Basic Domain Inhibits Uptake by Bystander Cells and Leads to Reduced Neuroinflammation. Sci Rep 2019; 9:3308. [PMID: 30824746 PMCID: PMC6397180 DOI: 10.1038/s41598-019-39531-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 01/07/2019] [Indexed: 01/28/2023] Open
Abstract
HIV-1 Tat protein contributes to HIV-neuropathogenesis in several ways including its ability to be taken up by uninfected bystander CNS cells and to activate inflammatory host genes causing synaptic injury. Here, we report that in the globally dominant HIV-1 clade C, Tat displays a naturally occurring polymorphism, R57S, in its basic domain, which mediates cellular uptake. We examined the effect of this polymorphism on Tat uptake and its consequences for cellular gene transactivation. In decapeptides corresponding to the basic domain, a R57S substitution caused up to a 70% reduction in uptake. We also used a transcellular Tat transactivation assay, where we expressed Tat proteins of HIV-1 clade B (Tat-B) or C (Tat-C) or their position 57 variants in HeLa cells. We quantified the secreted Tat proteins and measured their uptake by TZM-bl cells, which provide readout via an HIV-1 Tat-responsive luciferase gene. Transactivation by Tat-B was significantly reduced by R57S substitution, while that of Tat-C was enhanced by the reciprocal S57R substitution. Finally, we exposed microglia to Tat variants and found that R57 is required for maximal neuroinflammation. The R57S substitution dampened this response. Thus, genetic variations can modulate the ability of HIV-1 Tat to systemically disseminate neuroinflammation.
Collapse
|
6
|
van der Kuyl AC, Vink M, Zorgdrager F, Bakker M, Wymant C, Hall M, Gall A, Blanquart F, Berkhout B, Fraser C, Cornelissen M. The evolution of subtype B HIV-1 tat in the Netherlands during 1985-2012. Virus Res 2018; 250:51-64. [PMID: 29654800 DOI: 10.1016/j.virusres.2018.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/05/2018] [Accepted: 04/05/2018] [Indexed: 12/18/2022]
Abstract
For the production of viral genomic RNA, HIV-1 is dependent on an early viral protein, Tat, which is required for high-level transcription. The quantity of viral RNA detectable in blood of HIV-1 infected individuals varies dramatically, and a factor involved could be the efficiency of Tat protein variants to stimulate RNA transcription. HIV-1 virulence, measured by set-point viral load, has been observed to increase over time in the Netherlands and elsewhere. Investigation of tat gene evolution in clinical isolates could discover a role of Tat in this changing virulence. A dataset of 291 Dutch HIV-1 subtype B tat genes, derived from full-length HIV-1 genome sequences from samples obtained between 1985-2012, was used to analyse the evolution of Tat. Twenty-two patient-derived tat genes, and the control TatHXB2 were analysed for their capacity to stimulate expression of an LTR-luciferase reporter gene construct in diverse cell lines, as well as for their ability to complement a tat-defective HIV-1LAI clone. Analysis of 291 historical tat sequences from the Netherlands showed ample amino acid (aa) variation between isolates, although no specific mutations were selected for over time. Of note, however, the encoded protein varied its length over the years through the loss or gain of stop codons in the second exon. In transmission clusters, a selection against the shorter Tat86 ORF was apparent in favour of the more common Tat101 version, likely due to negative selection against Tat86 itself, although random drift, transmission bottlenecks, or linkage to other variants could also explain the observation. There was no correlation between Tat length and set-point viral load; however, the number of non-intermediate variants in our study was small. In addition, variation in the length of Tat did not significantly change its capacity to stimulate transcription. From 1985 till 2012, variation in the length of the HIV-1 subtype B tat gene is increasingly found in the Dutch epidemic. However, as Tat proteins did not differ significantly in their capacity to stimulate transcription elongation in vitro, the increased HIV-1 virulence seen in recent years could not be linked to an evolving viral Tat protein.
Collapse
Affiliation(s)
- Antoinette C van der Kuyl
- Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands.
| | - Monique Vink
- Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| | - Fokla Zorgdrager
- Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| | - Margreet Bakker
- Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| | - Chris Wymant
- Medical Research Council Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, W21PG, United Kingdom; Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Matthew Hall
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Astrid Gall
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - François Blanquart
- Medical Research Council Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, W21PG, United Kingdom; Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| | - Christophe Fraser
- Medical Research Council Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, W21PG, United Kingdom; Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Marion Cornelissen
- Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| | | |
Collapse
|
7
|
Cotterell J, Neely GG. A strategy for effective latent HIV reactivation using subtherapeutic drug doses. Sci Rep 2017; 7:16644. [PMID: 29192171 PMCID: PMC5709488 DOI: 10.1038/s41598-017-00097-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 02/06/2017] [Indexed: 11/10/2022] Open
Abstract
Cell state switches underlie a plethora of biological phenomena and disease treatment strategies. Hence the ability to efficiently switch states in a chosen direction is of central importance in a number of scenarios. Increasing the concentration of an effector that results in a given switch is often limited by side effects. Approaches are thus increasingly sought to bypass these constraints, increasing the frequency of state switching without increasing the frequency of the side effect. Here, we employ dynamical systems theory to uncover a simple strategy as to how to maximize the probability of reactivating latent Human immunodeficiency virus (HIV) whilst maintaining minimal side effects. We demonstrate that continuous supply of an effector is significantly more likely to result in a switch with minimal side effects than the same effector supplied in temporally discrete doses. Importantly this continual dosage is likely to occur far below the Minimum effective dose at a concentration that has classically been thought subtherapeutic. We therefore suggest that in many interventional settings there exists potential to reduce drug dose much further than has previously been thought possible yet still maintaining efficacy.
Collapse
Affiliation(s)
- James Cotterell
- The Garvan Institute for Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia. .,The Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre and School of Life & Environmental Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia.
| | - G Gregory Neely
- The Garvan Institute for Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia.,The Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre and School of Life & Environmental Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia
| |
Collapse
|
8
|
Rustanti L, Jin H, Lor M, Lin MH, Rawle DJ, Harrich D. A mutant Tat protein inhibits infection of human cells by strains from diverse HIV-1 subtypes. Virol J 2017; 14:52. [PMID: 28288662 PMCID: PMC5348743 DOI: 10.1186/s12985-017-0705-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 02/10/2017] [Indexed: 11/10/2022] Open
Abstract
Background Nullbasic is a mutant HIV-1 Tat protein that inhibits HIV-1 replication via three independent mechanisms that disrupts 1) reverse transcription of the viral RNA genome into a DNA copy, 2) HIV-1 Rev protein function required for viral mRNA transport from the nucleus to the cytoplasm and 3) HIV-1 mRNA transcription by RNA Polymerase II. The Nullbasic protein is derived from the subtype B strain HIV-1BH10 and has only been tested against other HIV-1 subtype B strains. However, subtype B strains only account for ~10% of HIV-1 infections globally and HIV-1 Tat sequences vary between subtypes especially for subtype C, which is responsible for ~50% HIV-1 infection worldwide. These differences could influence the ability of Tat to interact with RNA and cellular proteins and thus could affect the antiviral activity of Nullbasic. Therefore, Nullbasic was tested against representative HIV-1 strains from subtypes C, D and A/D recombinant to determine if it can inhibit their replication. Methods Nullbasic was delivered to human cells using a self-inactivating (SIN) γ-retroviral system. We evaluated Nullbasic-mCherry (NB-mCh) fusion protein activity against the HIV-1 strains in TZM-bl cell lines for inhibition of transactivation and virus replication. We also examined antiviral activity of Nullbasic-ZsGreen1 (NB-ZSG1) fusion protein against the same strains in primary CD4+ T cells. The Nullbasic expression was monitored by western blot and flow cytometry. The effects of Nullbasic on primary CD4+ T cells cytotoxicity, proliferation and apoptosis were also examined. Results The results show that Nullbasic inhibits Tat-mediated transactivation and virus replication of all the HIV-1 strains tested in TZM-bl cells. Importantly, Nullbasic inhibits replication of the HIV-1 strains in primary CD4+ T cells without affecting cell proliferation, cytotoxicity or level of apoptotic cells. Conclusion A SIN-based γ-retroviral vector used to express Nullbasic fusion proteins improved protein expression particularly in primary CD4+ T cells. Nullbasic has antiviral activity against all strains from the subtypes tested although small differences in viral inhibition were observed. Further improvement of in γ-retroviral vector stable expression of Nullbasic expression may have utility in a future gene therapy approach applicable to genetically diverse HIV-1 strains. Electronic supplementary material The online version of this article (doi:10.1186/s12985-017-0705-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lina Rustanti
- School of Medicine, the University of Queensland, Herston, QLD, 4029, Australia.,Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, 4029, Australia.,National Institute of Health Research and Development, the Ministry of Health of Republic of Indonesia, Jalan Percetakan Negara 29, Central Jakarta, 10560, Indonesia
| | - Hongping Jin
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, 4029, Australia
| | - Mary Lor
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, 4029, Australia
| | - Min Hsuan Lin
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan, 33302, Taiwan
| | - Daniel J Rawle
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, 4029, Australia.,School of Chemistry and Molecular Biosciences, the University of Queensland, St. Lucia, QLD, 4072, Australia
| | - David Harrich
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, 4029, Australia.
| |
Collapse
|
9
|
Park RJ, Wang T, Koundakjian D, Hultquist JF, Lamothe-Molina P, Monel B, Schumann K, Yu H, Krupzcak KM, Garcia-Beltran W, Piechocka-Trocha A, Krogan NJ, Marson A, Sabatini DM, Lander ES, Hacohen N, Walker BD. A genome-wide CRISPR screen identifies a restricted set of HIV host dependency factors. Nat Genet 2016; 49:193-203. [PMID: 27992415 DOI: 10.1038/ng.3741] [Citation(s) in RCA: 244] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/15/2016] [Indexed: 12/14/2022]
Abstract
Host proteins are essential for HIV entry and replication and can be important nonviral therapeutic targets. Large-scale RNA interference (RNAi)-based screens have identified nearly a thousand candidate host factors, but there is little agreement among studies and few factors have been validated. Here we demonstrate that a genome-wide CRISPR-based screen identifies host factors in a physiologically relevant cell system. We identify five factors, including the HIV co-receptors CD4 and CCR5, that are required for HIV infection yet are dispensable for cellular proliferation and viability. Tyrosylprotein sulfotransferase 2 (TPST2) and solute carrier family 35 member B2 (SLC35B2) function in a common pathway to sulfate CCR5 on extracellular tyrosine residues, facilitating CCR5 recognition by the HIV envelope. Activated leukocyte cell adhesion molecule (ALCAM) mediates cell aggregation, which is required for cell-to-cell HIV transmission. We validated these pathways in primary human CD4+ T cells through Cas9-mediated knockout and antibody blockade. Our findings indicate that HIV infection and replication rely on a limited set of host-dispensable genes and suggest that these pathways can be studied for therapeutic intervention.
Collapse
Affiliation(s)
- Ryan J Park
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT), and Harvard University, Cambridge, Massachusetts, USA.,Harvard-MIT Health Sciences and Technology, Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute of MIT and Harvard University, Cambridge, Massachusetts, USA
| | - Tim Wang
- Broad Institute of MIT and Harvard University, Cambridge, Massachusetts, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA.,David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, Massachusetts, USA
| | - Dylan Koundakjian
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT), and Harvard University, Cambridge, Massachusetts, USA
| | - Judd F Hultquist
- Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biosciences, QB3, University of California at San Francisco (UCSF), San Francisco, California, USA.,Gladstone Institute of Virology and Immunology, J. David Gladstone Institutes, San Francisco, California, USA
| | - Pedro Lamothe-Molina
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT), and Harvard University, Cambridge, Massachusetts, USA.,Biological Sciences in Public Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Blandine Monel
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT), and Harvard University, Cambridge, Massachusetts, USA.,Howard Hughes Medical Institute, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Kathrin Schumann
- Department of Microbiology and Immunology, University of California at San Francisco, San Francisco, California, USA
| | - Haiyan Yu
- Broad Institute of MIT and Harvard University, Cambridge, Massachusetts, USA
| | - Kevin M Krupzcak
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
| | - Wilfredo Garcia-Beltran
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT), and Harvard University, Cambridge, Massachusetts, USA.,Harvard-MIT Health Sciences and Technology, Harvard Medical School, Boston, Massachusetts, USA
| | - Alicja Piechocka-Trocha
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT), and Harvard University, Cambridge, Massachusetts, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biosciences, QB3, University of California at San Francisco (UCSF), San Francisco, California, USA.,Gladstone Institute of Virology and Immunology, J. David Gladstone Institutes, San Francisco, California, USA
| | - Alexander Marson
- Department of Microbiology and Immunology, University of California at San Francisco, San Francisco, California, USA.,Diabetes Center, University of California at San Francisco, San Francisco, California, USA.,Department of Medicine, University of California at San Francisco, San Francisco, California, USA.,Innovative Genomics Initiative (IGI), University of California, Berkeley, Berkeley, California, USA.,UCSF Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California, USA
| | - David M Sabatini
- Broad Institute of MIT and Harvard University, Cambridge, Massachusetts, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA.,David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, Massachusetts, USA.,Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Eric S Lander
- Broad Institute of MIT and Harvard University, Cambridge, Massachusetts, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Nir Hacohen
- Broad Institute of MIT and Harvard University, Cambridge, Massachusetts, USA.,Massachusetts General Hospital Cancer Center, Boston, Massachusetts, USA
| | - Bruce D Walker
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT), and Harvard University, Cambridge, Massachusetts, USA.,Broad Institute of MIT and Harvard University, Cambridge, Massachusetts, USA.,Howard Hughes Medical Institute, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Institute of Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
10
|
Molecular and Genetic Characterization of HIV-1 Tat Exon-1 Gene from Cameroon Shows Conserved Tat HLA-Binding Epitopes: Functional Implications. Viruses 2016; 8:v8070196. [PMID: 27438849 PMCID: PMC4974531 DOI: 10.3390/v8070196] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/24/2016] [Accepted: 07/12/2016] [Indexed: 12/26/2022] Open
Abstract
HIV-1 Tat plays a critical role in viral transactivation. Subtype-B Tat has potential use as a therapeutic vaccine. However, viral genetic diversity and population genetics would significantly impact the efficacy of such a vaccine. Over 70% of the 37-million HIV-infected individuals are in sub-Saharan Africa (SSA) and harbor non-subtype-B HIV-1. Using specimens from 100 HIV-infected Cameroonians, we analyzed the sequences of HIV-1 Tat exon-1, its functional domains, post-translational modifications (PTMs), and human leukocyte antigens (HLA)-binding epitopes. Molecular phylogeny revealed a high genetic diversity with nine subtypes, CRF22_01A1/CRF01_AE, and negative selection in all subtypes. Amino acid mutations in Tat functional domains included N24K (44%), N29K (58%), and N40K (30%) in CRF02_AG, and N24K in all G subtypes. Motifs and phosphorylation analyses showed conserved amidation, N-myristoylation, casein kinase-2 (CK2), serine and threonine phosphorylation sites. Analysis of HLA allelic frequencies showed that epitopes for HLAs A*0205, B*5301, Cw*0401, Cw*0602, and Cw*0702 were conserved in 58%-100% of samples, with B*5301 epitopes having binding affinity scores > 100 in all subtypes. This is the first report of N-myristoylation, amidation, and CK2 sites in Tat; these PTMs and mutations could affect Tat function. HLA epitopes identified could be useful for designing Tat-based vaccines for highly diverse HIV-1 populations, as in SSA.
Collapse
|
11
|
Zhao X, Qian L, Zhou D, Qi D, Liu C, Kong X. Stability of HIV-1 subtype B and C Tat is associated with variation in the carboxyl-terminal region. Virol Sin 2016; 31:199-206. [PMID: 27007880 DOI: 10.1007/s12250-016-3681-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/01/2016] [Indexed: 12/14/2022] Open
Abstract
The multifunctional trans-activator Tat is an essential regulatory protein for HIV-1 replication and is characterized by high sequence diversity. Numerous experimental studies have examined Tat in HIV-1 subtype B, but research on subtype C Tat is lacking, despite the high prevalence of infections caused by subtype C worldwide. We hypothesized that amino acid differences contribute to functional differences among Tat proteins. In the present study, we found that subtype B NL4-3 Tat and subtype C isolate HIV1084i Tat exhibited differences in stability by overexpressing the fusion protein Tat-Flag. In addition, 1084i Tat can activate LTR and NF-κB more efficiently than NL4-3 Tat. In analyses of the activities of the truncated forms of Tat, we found that the carboxyl-terminal region of Tat regulates its stability and transactivity. According to our results, we speculated that the differences in stability between B-Tat and C-Tat result in differences in transactivation ability.
Collapse
Affiliation(s)
- Xuechao Zhao
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Lingyu Qian
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Deyu Zhou
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Di Qi
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Chang Liu
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Xiaohong Kong
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
12
|
Johri MK, Sharma N, Singh SK. HIV Tat protein: Is Tat-C much trickier than Tat-B? J Med Virol 2015; 87:1334-43. [PMID: 25879536 DOI: 10.1002/jmv.24182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2015] [Indexed: 01/25/2023]
Abstract
Out of various subtypes of human immunodeficiency virus type 1 (HIV-1), subtype B and C cause most of the infections worldwide. Clade specific differences have been reported in differences in clinical picture of HIV pathogenesis. Transcription of the HIV-1 genome is regulated by the interaction of HIV Tat protein to the trans-activation response (TAR) element. The differential binding of clade B and C Tat proteins to TAR and differences in activation of NF-κB cascade leading to differential transactivation capacity and cytokine expression has been examined in this study. More stable Tat-TAR complex formation by Tat-C revealed by EMSA and higher TNF-α expression shown by Tat-C compared to Tat-B leads to higher NF-κB activation, which may be plausible cause for higher transactivation by Tat-C as obtained by FACS analysis. This comparative study would be helpful in understanding the basic mechanism of clade specific Tat protein differences and their functional relationships.
Collapse
Affiliation(s)
- Manish Kumar Johri
- Laboratory of Neurovirology and Inflammation Biology, CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad, 500007, India
| | - Nikhil Sharma
- Laboratory of Neurovirology and Inflammation Biology, CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad, 500007, India
| | - Sunit K Singh
- Laboratory of Neurovirology and Inflammation Biology, CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad, 500007, India
| |
Collapse
|
13
|
Roy CN, Khandaker I, Furuse Y, Oshitani H. Molecular characterization of full-length Tat in HIV-1 subtypes B and C. Bioinformation 2015; 11:151-60. [PMID: 25914449 PMCID: PMC4403036 DOI: 10.6026/97320630011151] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/02/2015] [Indexed: 12/13/2022] Open
Abstract
HIV-1Tat (trans-acting activator of transcription) plays essential roles in the replication through viral mRNA and genome transcription from the HIV-1 LTR promoter. However, Tat undergoes continuous amino acid substitutions. As a consequence, the virus escapes from host immunity indicating that genetic diversity of Tat protein in major HIV-1 subtypes is required to be continuously monitored. We analyzed available full-length HIV-1 sequences of subtypes B (n=493) and C (n=280) strains circulating worldwide. We observed 81% and 84% nucleotide sequence identities of HIV-1 Tat for subtypes B and C, respectively. Based on phylogenetic and mutation analyses, global diversity of subtype B was apparently higher compared to that of subtype C. Positively selected sites, such as positions Ser68 and Ser70 in both subtypes, were located in the Tat-transactivation responsive RNA (TAR) interaction domain. We also found positively selected sites in exon 2, such as positions Ser75, Pro77, Asp80, Pro81 and Ser87 for both subtypes. Our study provides useful information on the full-length HIV-1 Tat sequences in globally circulating strains.
Collapse
Affiliation(s)
- Chandra Nath Roy
- Department of Virology, Tohoku University Graduate School of Medicine, 2-1 Seiryomachi, Aoba-ku, Sendai city, Miyagi, Japan-9808575
| | - Irona Khandaker
- Department of Virology, Tohoku University Graduate School of Medicine, 2-1 Seiryomachi, Aoba-ku, Sendai city, Miyagi, Japan-9808575
| | - Yuki Furuse
- Department of Virology, Tohoku University Graduate School of Medicine, 2-1 Seiryomachi, Aoba-ku, Sendai city, Miyagi, Japan-9808575
| | - Hitoshi Oshitani
- Department of Virology, Tohoku University Graduate School of Medicine, 2-1 Seiryomachi, Aoba-ku, Sendai city, Miyagi, Japan-9808575
| |
Collapse
|
14
|
Reactivation of latent HIV-1 by new semi-synthetic ingenol esters. Virology 2014; 462-463:328-39. [PMID: 25014309 DOI: 10.1016/j.virol.2014.05.033] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 04/28/2014] [Accepted: 05/29/2014] [Indexed: 11/21/2022]
Abstract
The ability of HIV to establish long-lived latent infection is mainly due to transcriptional silencing of viral genome in resting memory T lymphocytes. Here, we show that new semi-synthetic ingenol esters reactivate latent HIV reservoirs. Amongst the tested compounds, 3-caproyl-ingenol (ING B) was more potent in reactivating latent HIV than known activators such as SAHA, ingenol 3,20-dibenzoate, TNF-α, PMA and HMBA. ING B activated PKC isoforms followed by NF-κB nuclear translocation. As virus reactivation is dependent on intact NF-κB binding sites in the LTR promoter region ING B, we have shown that. ING B was able to reactivate virus transcription in primary HIV-infected resting cells up to 12 fold and up to 25 fold in combination with SAHA. Additionally, ING B promoted up-regulation of P-TEFb subunits CDK9/Cyclin T1. The role of ING B on promoting both transcription initiation and elongation makes this compound a strong candidate for an anti-HIV latency drug combined with suppressive HAART.
Collapse
|
15
|
Ronsard L, Lata S, Singh J, Ramachandran VG, Das S, Banerjea AC. Molecular and genetic characterization of natural HIV-1 Tat Exon-1 variants from North India and their functional implications. PLoS One 2014; 9:e85452. [PMID: 24465566 PMCID: PMC3900424 DOI: 10.1371/journal.pone.0085452] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 11/27/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Designing an ideal vaccine against HIV-1 has been difficult due to enormous genetic variability as a result of high replication rate and lack of proofreading activity of reverse transcriptase leading to emergence of genetic variants and recombinants. Tat transactivates HIV-1 LTR, resulting in a remarkable increase in viral gene expression, and plays a vital role in pathogenesis. The aim of this study was to characterize the genetic variations of Tat exon-1 from HIV-1 infected patients from North India. METHODS Genomic DNA was isolated from PBMCs and Tat exon-1 was PCR amplified with specific primers followed by cloning, sequencing and sequence analyses using bioinformatic tools for predicting HIV-1 subtypes, recombination events, conservation of domains and phosphorylation sites, and LTR transactivation by luciferase assay. RESULTS Phylogenetic analysis of Tat exon-1 variants (n = 120) revealed sequence similarity with South African Tat C sequences and distinct geographical relationships were observed for B/C recombinants. Bootscan analysis of our variants showed 90% homology to Tat C and 10% to B/C recombinants with a precise breakpoint. Natural substitutions were observed with high allelic frequencies which may be beneficial for virus. High amino acid conservation was observed in Tat among Anti Retroviral Therapy (ART) recipients. Barring few changes, most of the functional domains, predicted motifs and phosphorylation sites were well conserved in most of Tat variants. dN/dS analysis revealed purifying selection, implying the importance of functional conservation of Tat exon-1. Our Indian Tat C variants and B/C recombinants showed differential LTR transactivation. CONCLUSIONS The possible role of Tat exon-1 variants in shaping the current HIV-1 epidemic in North India was highlighted. Natural substitutions across conserved functional domains were observed and provided evidence for the emergence of B/C recombinants within the ORF of Tat exon-1. These events are likely to have implications for viral pathogenesis and vaccine formulations.
Collapse
Affiliation(s)
- Larance Ronsard
- Virology Laboratory, National Institute of Immunology, New Delhi, India
- Department of Microbiology, University College of Medical Sciences and Guru Teg Bahadur Hospital, Delhi, India
| | - Sneh Lata
- Department of Microbiology, University College of Medical Sciences and Guru Teg Bahadur Hospital, Delhi, India
| | - Jyotsna Singh
- Virology Laboratory, National Institute of Immunology, New Delhi, India
- Department of Microbiology, University College of Medical Sciences and Guru Teg Bahadur Hospital, Delhi, India
| | | | - Shukla Das
- Department of Microbiology, University College of Medical Sciences and Guru Teg Bahadur Hospital, Delhi, India
| | - Akhil C. Banerjea
- Virology Laboratory, National Institute of Immunology, New Delhi, India
- * E-mail: ,
| |
Collapse
|
16
|
Bagashev A, Sawaya BE. Roles and functions of HIV-1 Tat protein in the CNS: an overview. Virol J 2013; 10:358. [PMID: 24359561 PMCID: PMC3879180 DOI: 10.1186/1743-422x-10-358] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 12/06/2013] [Indexed: 01/01/2023] Open
Abstract
Nearly 50% of HIV-infected individuals suffer from some form of HIV-associated neurocognitive disorders (HAND). HIV-1 Tat (a key HIV transactivator of transcription) protein is one of the first HIV proteins to be expressed after infection occurs and is absolutely required for the initiation of the HIV genome transcription. In addition to its canonical functions, various studies have shown the deleterious role of HIV-1 Tat in the development and progression of HAND. Within the CNS, only specific cell types can support productive viral replication (astrocytes and microglia), however Tat protein can be released form infected cells to affects HIV non-permissive cells such as neurons. Therefore, in this review, we will summarize the functions of HIV-1 Tat proteins in neural cells and its ability to promote HAND.
Collapse
Affiliation(s)
| | - Bassel E Sawaya
- Molecular Studies of Neurodegenerative Diseases Lab, The Fels Institute for Cancer Research & Molecular Biology, Philadelphia, PA 19140, USA.
| |
Collapse
|
17
|
tat Exon 1 exhibits functional diversity during HIV-1 subtype C primary infection. J Virol 2013; 87:5732-45. [PMID: 23487450 DOI: 10.1128/jvi.03297-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) Tat is a mediator of viral transcription and is involved in the control of virus replication. However, associations between HIV-1 Tat diversity and functional effects during primary HIV-1 infection are still unclear. We estimated selection pressures in tat exon 1 using the mixed-effects model of evolution with 672 viral sequences generated from 20 patients infected with HIV-1 subtype C (HIV-1C) over 500 days postseroconversion. tat exon 1 residues 3, 4, 21, 24, 29, 39, and 68 were under positive selection, and we established that specific amino acid signature patterns were apparent in primary HIV-1C infection compared with chronic infection. We assessed the impact of these mutations on long terminal repeat (LTR) activity and found that Tat activity was negatively affected by the Ala(21) substitution identified in 13/20 (65%) of patients, which reduced LTR activity by 88% (± 1%) (P < 0.001). The greatest increase in Tat activity was seen with the Gln(35)/Lys(39) double mutant that resulted in an additional 49% (± 14%) production of LTR-driven luciferase (P = 0.012). There was a moderate positive correlation between Tat-mediated LTR activity and HIV-1 RNA in plasma (P = 0.026; r = 0.400) after 180 days postseroconversion that was reduced by 500 days postseroconversion (P = 0.043; r = 0.266). Although Tat activation of the LTR is not a strong predictor of these clinical variables, there are significant linear relationships between Tat transactivation and patients' plasma viral loads and CD4 counts, highlighting the complex interplay between Tat mutations in early HIV-1C infection.
Collapse
|
18
|
Eilebrecht S, Wilhelm E, Benecke BJ, Bell B, Benecke AG. HMGA1 directly interacts with TAR to modulate basal and Tat-dependent HIV transcription. RNA Biol 2013; 10:436-44. [PMID: 23392246 DOI: 10.4161/rna.23686] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The transactivating response element (TAR) of human immunodeficiency virus 1 (HIV-1) is essential for promoter transactivation by the viral transactivator of transcription (Tat). The Tat-TAR interaction thereby recruits active positive transcription elongation factor b (P-TEFb) from its inactive, 7SK/HEXIM1-bound form, leading to efficient viral transcription. Here, we show that the 7SK RNA-associating chromatin regulator HMGA1 can specifically bind to the HIV-1 TAR element and that 7SK RNA can thereby compete with TAR. The HMGA1-binding interface of TAR is located within the binding site for Tat and other cellular activators, and we further provide evidence for competition between HMGA1 and Tat for TAR-binding. HMGA1 negatively influences the expression of a HIV-1 promoter-driven reporter in a TAR-dependent manner, both in the presence and in the absence of Tat. The overexpression of the HMGA1-binding substructure of 7SK RNA results in a TAR-dependent gain of HIV-1 promoter activity similar to the effect of the shRNA-mediated knockdown of HMGA1. Our results support a model in which the HMGA1/TAR interaction prevents the binding of transcription-activating cellular co-factors and Tat, subsequently leading to reduced HIV-1 transcription.
Collapse
Affiliation(s)
- Sebastian Eilebrecht
- Institut des Hautes Études Scientifiques - Centre National de la Recherche Scientifique; Bures sur Yvette; France & Vaccine Research Institute; Institut Mondor de Recherche Biomédicale; Créteil, France
| | | | | | | | | |
Collapse
|
19
|
Narayanan A, Sampey G, Van Duyne R, Guendel I, Kehn-Hall K, Roman J, Currer R, Galons H, Oumata N, Joseph B, Meijer L, Caputi M, Nekhai S, Kashanchi F. Use of ATP analogs to inhibit HIV-1 transcription. Virology 2012; 432:219-31. [PMID: 22771113 DOI: 10.1016/j.virol.2012.06.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 02/21/2012] [Accepted: 06/02/2012] [Indexed: 12/18/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) is the etiological agent of AIDS. Chronic persistent infection is an important reason for the presence of "latent cell populations" even after Anti-Retroviral Therapy (ART). We have analyzed the effect of ATP analogs in inhibiting cdk9/T1 complex in infected cells. A third generation drug named CR8#13 is an effective inhibitor of Tat activated transcription. Following drug treatment, we observed a decreased loading of cdk9 onto the HIV-1 DNA. We found multiple novel cdk9/T1 complexes present in infected and uninfected cells with one complex being unique to infected cells. This complex is sensitive to CR8#13 in kinase assays. Treatment of PBMC with CR8#13 does not kill infected cells as compared to Flavopiridol. Interestingly, there is a difference in sensitivity of various clades to these analogs. Collectively, these results point to targeting novel complexes for inhibition of cellular proteins that are unique to infected cells.
Collapse
Affiliation(s)
- Aarthi Narayanan
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, VA 20110, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Dey SS, Xue Y, Joachimiak MP, Friedland GD, Burnett JC, Zhou Q, Arkin AP, Schaffer DV. Mutual information analysis reveals coevolving residues in Tat that compensate for two distinct functions in HIV-1 gene expression. J Biol Chem 2012; 287:7945-55. [PMID: 22253435 DOI: 10.1074/jbc.m111.302653] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Viral genomes are continually subjected to mutations, and functionally deleterious ones can be rescued by reversion or additional mutations that restore fitness. The error prone nature of HIV-1 replication has resulted in highly diverse viral sequences, and it is not clear how viral proteins such as Tat, which plays a critical role in viral gene expression and replication, retain their complex functions. Although several important amino acid positions in Tat are conserved, we hypothesized that it may also harbor functionally important residues that may not be individually conserved yet appear as correlated pairs, whose analysis could yield new mechanistic insights into Tat function and evolution. To identify such sites, we combined mutual information analysis and experimentation to identify coevolving positions and found that residues 35 and 39 are strongly correlated. Mutation of either residue of this pair into amino acids that appear in numerous viral isolates yields a defective virus; however, simultaneous introduction of both mutations into the heterologous Tat sequence restores gene expression close to wild-type Tat. Furthermore, in contrast to most coevolving protein residues that contribute to the same function, structural modeling and biochemical studies showed that these two residues contribute to two mechanistically distinct steps in gene expression: binding P-TEFb and promoting P-TEFb phosphorylation of the C-terminal domain in RNAPII. Moreover, Tat variants that mimic HIV-1 subtypes B or C at sites 35 and 39 have evolved orthogonal strengths of P-TEFb binding versus RNAPII phosphorylation, suggesting that subtypes have evolved alternate transcriptional strategies to achieve similar gene expression levels.
Collapse
Affiliation(s)
- Siddharth S Dey
- Department of Chemical and Biomolecular Engineering and the Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Mehla R, Bivalkar-Mehla S, Chauhan A. A flavonoid, luteolin, cripples HIV-1 by abrogation of tat function. PLoS One 2011; 6:e27915. [PMID: 22140483 PMCID: PMC3227592 DOI: 10.1371/journal.pone.0027915] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 10/27/2011] [Indexed: 12/17/2022] Open
Abstract
Despite the effectiveness of combination antiretroviral treatment (cART) against HIV-1, evidence indicates that residual infection persists in different cell types. Intensification of cART does not decrease the residual viral load or immune activation. cART restricts the synthesis of infectious virus but does not curtail HIV-1 transcription and translation from either the integrated or unintegrated viral genomes in infected cells. All treated patients with full viral suppression actually have low-level viremia. More than 60% of treated individuals also develop minor HIV-1 -associated neurocognitive deficits (HAND) due to residual virus and immune activation. Thus, new therapeutic agents are needed to curtail HIV-1 transcription and residual virus. In this study, luteolin, a dietary supplement, profoundly reduced HIV-1 infection in reporter cells and primary lymphocytes. HIV-1inhibition by luteolin was independent of viral entry, as shown by the fact that wild-type and VSV-pseudotyped HIV-1 infections were similarly inhibited. Luteolin was unable to inhibit viral reverse transcription. Luteolin had antiviral activity in a latent HIV-1 reactivation model and effectively ablated both clade-B- and -C -Tat-driven LTR transactivation in reporter assays but had no effect on Tat expression and its sub-cellular localization. We conclude that luteolin confers anti-HIV-1 activity at the Tat functional level. Given its biosafety profile and ability to cross the blood-brain barrier, luteolin may serve as a base flavonoid to develop potent anti-HIV-1 derivatives to complement cART.
Collapse
Affiliation(s)
- Rajeev Mehla
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States of America
| | - Shalmali Bivalkar-Mehla
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States of America
| | - Ashok Chauhan
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States of America
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
22
|
Campbell GR, Watkins JD, Loret EP, Spector SA. Differential induction of rat neuronal excitotoxic cell death by human immunodeficiency virus type 1 clade B and C tat proteins. AIDS Res Hum Retroviruses 2011; 27:647-54. [PMID: 20977378 DOI: 10.1089/aid.2010.0192] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
In the absence of effective antiretroviral therapy, infection with clade B human immunodeficiency virus (HIV-1) infection commonly progresses to AIDS dementia. However, in India, where clade C infection is most prevalent, severe cognitive impairment due to HIV-1 is reported to be less prevalent. The Tat protein of HIV-1, which is released from HIV-1-infected macrophages, is thought to play a major role in the disruption of neuronal function as well as in the infiltration of macrophages associated with advanced neuropathogenesis. Clade B Tat is excitotoxic to hippocampal neurons by potentiating N-methyl-d-aspartate-induced currents of the zinc-sensitive NR1/NR2A N-methyl-d-aspartate receptor in a zinc-binding-dependent mechanism. This study characterizes the zinc-binding properties of clade C Tat protein. Using ultraviolet spectroscopy and the Ellman reaction, we show that clade C Tat protein binds just one zinc ion per monomer. We then investigated the ability of clade C Tat to block the inhibition of N-methyl-d-aspartate receptors from zinc antagonism through ion chelation. Although clade C Tat enhanced N-methyl-d-aspartate-mediated rat hippocampus neuronal toxicity in the presence of zinc, the increase was significantly less than that observed with clade B Tat. These findings suggest that the observed differences in neuropathogenesis found with HIV-1 clade C infection compared to clade B may, in part, be due to a decrease in Tat-mediated neurotoxicity.
Collapse
Affiliation(s)
- Grant R. Campbell
- Department of Pediatrics, Division of Infectious Diseases, University of California San Diego, La Jolla, California
| | - Jennifer D. Watkins
- Equipe Technologique de Recherche Appliquée sur le VIH-1 2011, Faculté de Pharmacie, Université de la Méditerranée, Marseille, France
- Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Erwann P. Loret
- Equipe Technologique de Recherche Appliquée sur le VIH-1 2011, Faculté de Pharmacie, Université de la Méditerranée, Marseille, France
| | - Stephen A. Spector
- Department of Pediatrics, Division of Infectious Diseases, University of California San Diego, La Jolla, California
- Rady Children's Hospital, San Diego, California
| |
Collapse
|
23
|
Liu Y, Nonnemacher MR, Stauff DL, Li L, Banerjee A, Irish B, Kilareski E, Rajagopalan N, Suchitra JB, Khan ZK, Ranga U, Wigdahl B. Structural and functional studies of CCAAT/enhancer binding sites within the human immunodeficiency virus type 1 subtype C LTR. Biomed Pharmacother 2010; 64:672-80. [PMID: 20970301 DOI: 10.1016/j.biopha.2010.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 09/05/2010] [Indexed: 11/17/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) subtype C, which is most predominant in sub-Saharan Africa as well as in Asia and India, is the most prevalent subtype worldwide. A large number of transcription factor families have been shown to be involved in regulating HIV-1 gene expression in T lymphocytes and cells of the monocyte-macrophage lineage. Among these, proteins of the CCAAT/enhancer binding protein (C/EBP) family are of particular importance in regulating HIV-1 gene expression within cells of the monocytic lineage during the course of hematologic development and cellular activation. Few studies have examined the role of C/EBPs in long terminal repeat (LTR)-directed viral gene expression of HIV-1 subtypes other than subtype B. Within subtype B viruses, two functional C/EBP sites located upstream of the TATA box are required for efficient viral replication in cells of the monocyte-macrophage lineage. We report the identification of three putative subtype C C/EBP sites, upstream site 1 and 2 (C-US1 and C-US2) and downstream site 1 (C-DS1). C-US1 and C-DS1 were shown to form specific DNA-protein complexes with members of the C/EBP family (C/EBPα, β, and δ). Functionally, within the U-937 monocytic cell line, subtype B and C LTRs were shown to be equally responsive to C/EBPβ-2, although the basal activity of subtype C LTRs appeared to be higher. Furthermore, the synergistic interaction between C/EBPβ-2 and Tat with the subtype C LTR was also observed in U-937 cells as previously demonstrated with the subtype B LTR.
Collapse
Affiliation(s)
- Yujie Liu
- Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, Pennsylvania 19129, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
de Arellano ER, Alcamí J, López M, Soriano V, Holguín A. Drastic decrease of transcription activity due to hypermutated long terminal repeat (LTR) region in different HIV-1 subtypes and recombinants. Antiviral Res 2010; 88:152-9. [PMID: 20713090 DOI: 10.1016/j.antiviral.2010.08.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 07/27/2010] [Accepted: 08/09/2010] [Indexed: 11/25/2022]
Abstract
Transcriptional activation of HIV-1 gene expression is partially controlled by the interaction between viral and cellular transcription factors acting at HIV-1 long terminal repeat (LTR) sequences. HIV-1 subtyping at LTR region and nucleotide LTR variability from clinical samples in 48 subjects carrying different HIV-1 subtypes (9A, 5C, 3D, 3F, 21G, 2H, 3J and 2 undefined) at the protease (PR) gene, were performed. LTR sequences from each HIV-1 clade were cloned in luciferase-expression vectors to determine basal and Tat-induced transcriptional activities in the presence and absence of PMA stimulation. A high number (37.8%) of recombinants at LTR/PR regions were identified. All HIV-1 promoters presented low basal transcriptional activity that was nevertheless induced by Tat and PMA. LTR activity was similar across the majority of HIV-1 variants in response to Tat and cell activation. Only subtype C and CRF01_AE LTRs presented higher basal and induced-PMA transcription activities than HXB2 clade B promoter. No basal or Tat/PMA induced activity was found in those promoters presenting G to A hypermutation compared to the wild type promoter activities. G to A hypermutation at some important transcription binding-factor sites within LTR compromised the activity of the viral promoter, decreasing the in vitro viral transcription of the luciferase gene.
Collapse
Affiliation(s)
- Eva Ramírez de Arellano
- Department of Infectious Diseases, Hospital Carlos III, Madrid, Spain; National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | | | | | | | | |
Collapse
|
25
|
Role of HIV-1 Tat in AIDS pathogenesis: its effects on cytokine dysregulation and contributions to the pathogenesis of opportunistic infection. AIDS 2010; 24:1609-23. [PMID: 20588103 DOI: 10.1097/qad.0b013e32833ac6a0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
26
|
Wong JK, Campbell GR, Spector SA. Differential induction of interleukin-10 in monocytes by HIV-1 clade B and clade C Tat proteins. J Biol Chem 2010; 285:18319-25. [PMID: 20378550 DOI: 10.1074/jbc.m110.120840] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The clade B human immunodeficiency virus, type 1 (HIV-1) Tat (trans-acting regulatory protein) induces interleukin-10 (IL-10) production in monocytes. IL-10, an anti-inflammatory cytokine, down-regulates proinflammatory cytokines and suppresses the immune response, leading to a rapid progression from HIV-1 infection to AIDS. Nine clades of HIV-1 are responsible for the majority of infections worldwide. Recent studies demonstrate that different HIV-1 clades have biological differences in relation to transmission, replication, and disease progression. In this study, we show that the cysteine to serine mutation at position 31, found in >90% of HIV-1 clade C Tat proteins, results in a marked decrease in IL-10 production in monocytes compared with clade B Tat. Additionally, the C31S mutation found in C Tat is responsible for the inability of these Tat proteins to produce high IL-10 levels in monocytes due to its inability to induce intracellular calcium flux through L-type calcium channels. Moreover, we show that p38alpha/p38beta and phosphoinositide 3-kinase are crucial to Tat-induced IL-10 production. These findings provide further evidence that HIV-1 clades differ in their biological properties that may impact HIV-1 pathogenesis and disease progression.
Collapse
Affiliation(s)
- Justine K Wong
- Department of Pediatrics, Division of Infectious Diseases, University of California, San Diego,La Jolla, California 92093, USA
| | | | | |
Collapse
|
27
|
Fang Z, Xing H, Meng Z, Hong K, Liao L, He X, Shao Y. Genetic characterization analysis of the tat exon-1 region of HIV type 1 CRF07_BC strains in China. AIDS Res Hum Retroviruses 2010; 26:359-63. [PMID: 20334571 DOI: 10.1089/aid.2009.0192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
HIV-1 CRF07_BC is one of the predominant strains in China, however, there have been few reports about the genetic characteristics of accessory genes of this strain. In this study, 236 CRF07_BC tat exon-1 regions were obtained by nested PCR and were followed by sequencing. Our results showed some variations in crucial functional domains, especially in the basic region. There were two conserved amino acid variations in the 1 approximately 56 aa fragment of tat gene exon-1 of 07_BC isolates, which were R7N (71.6%) and R46F (90.3%), as compared with subtype B' strains in Thailand. The analysis of the sequences provides some valuable information for an exploration of the predominance of the HIV-1 CRF07_BC epidemic.
Collapse
Affiliation(s)
- Zhiming Fang
- Division of Virology and Immunology, State Key Laboratory for Infectious Disease Control and Prevention, National Center for AIDS/STD Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- School of Life Science, Wenzhou Medical College, Zhejiang 325035, China
| | - Hui Xing
- Division of Virology and Immunology, State Key Laboratory for Infectious Disease Control and Prevention, National Center for AIDS/STD Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Zhefeng Meng
- Division of Virology and Immunology, State Key Laboratory for Infectious Disease Control and Prevention, National Center for AIDS/STD Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Kunxue Hong
- Division of Virology and Immunology, State Key Laboratory for Infectious Disease Control and Prevention, National Center for AIDS/STD Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Lingjie Liao
- Division of Virology and Immunology, State Key Laboratory for Infectious Disease Control and Prevention, National Center for AIDS/STD Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Xiang He
- Division of Virology and Immunology, State Key Laboratory for Infectious Disease Control and Prevention, National Center for AIDS/STD Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Yiming Shao
- Division of Virology and Immunology, State Key Laboratory for Infectious Disease Control and Prevention, National Center for AIDS/STD Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| |
Collapse
|
28
|
Kandathil AJ, Kannangai R, Abraham OC, Pulimood SA, Sridharan G. Amino acid sequence divergence of Tat protein (exon1)of subtype B and C HIV-1 strains: Does it have implications for vaccine development? Bioinformation 2009; 4:237-41. [PMID: 20975916 PMCID: PMC2951709 DOI: 10.6026/97320630004237] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2009] [Accepted: 11/15/2009] [Indexed: 11/23/2022] Open
Abstract
Functional genes of HIV-1 like the tat express proteins essential for viral survival and propagation. There are variations reported in levels of Tat
transactivation among the different subtypes of HIV-1. This study looked at the amino acid differences in the different regions of Tat protein
(exon 1) of subtype B and C strains of HIV-1 and tried to observe a molecular basis for protein function. HIV-1 sequences of subtype B (n=30)
and C (n=60) strains were downloaded from HIV-1 Los Alamos data base. Among the 60 subtype C strain sequences, 30 each were from India
and Africa. A HIV-1 Tat protein (exon 1) sequence, the consensus B and C sequence was obtained from the ’sequence search interface‘ in the
Los Alamos HIV-1 sequence data. The sequences were visualized using Weblogo and the RNA binding regions of the three consensus sequences
were also determined using BindN software program. Compared to subtype B, there was a high level of divergence in the auxiliary domain of tat
exon 1 (amino acid positions 58- 69). The net charge of the subtype C (Indian) Tat protein (exon 1) auxiliary domain was -1.9 at pH 7 and it had
an isoelectric point of 4.1. The net charge of the subtype C (African) auxiliary domain was -2.9 at pH 7 and it had an isoelectric point of 3.7
while the net charge of same region in subtype B was -0.9 at pH 7 with an isoelectric point of 4.9. The ratio of the hydrophilic residues to the total
number of residues was 60% in the in both the Indian and African subtype C in the auxiliary domain while this was 50% in subtype B. The
consensus subtype B sequence was found to have 36 RNA binding sites while subtype C (India) had 33 and subtype C (Africa) had 32 RNA
binding sites. The HIV-1 Tat-TAR interaction is a potential target for inhibitors and being considered for its potential use in HIV-1 vaccines.
Development of such inhibitor/vaccines would have to take into consideration the variation in amino acid sequence analyzed in this study as this
could determine epitope presentation on MHC class I antigen for afferent immune response.
Collapse
|
29
|
Meng Z, He X, Xing H, Xin R, Sun J, Yi F, Ma L, Shao Y. Construction and characterization of an infectious molecular clone of HIV type 1 CRF07_BC. AIDS Res Hum Retroviruses 2008; 24:259-64. [PMID: 18257686 DOI: 10.1089/aid.2007.0128] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
HIV-1 CRF07_BC constitutes a large fraction of HIV-1 strains circulating in China and is responsible for the rapidly expanding epidemic across the country. Little is known about the biological characteristics of the CRF07_BC viruses, particularly the propensity by which this circulating recombinant form of HIV replicates within an infected individual. In this study, a near-full-length genome of a CRF07_BC virus from an injecting drug user (IDU) from the Xingjiang region in China was cloned and rescued by the functional 5' LTR (long terminal repeat region) and 3' LTR from pNL4-3 to produce a chimeric infectious molecular clone (NLXJDC6441X2). When cultured in interleukin-2-stimulated peripheral blood mononuclear cells (PBMCs) and the Ghost.R5 cell line, NLXJDC6441X2 produced a lower replication yield than expected. More study is needed to explore the key role that leads to the poor infectious activity of NLXJDC6441X2. This study has produced the first isolation of the HIV-1 CRF07_BC DNA clone and has provided a versatile molecular model for research focusing on the biological properties of this subtype.
Collapse
Affiliation(s)
- Zhefeng Meng
- State Key Laboratory for Infection Diseases Prevention and Control, National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Beijing, P.R. China 100050
| | - Xiang He
- State Key Laboratory for Infection Diseases Prevention and Control, National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Beijing, P.R. China 100050
| | - Hui Xing
- State Key Laboratory for Infection Diseases Prevention and Control, National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Beijing, P.R. China 100050
| | - Ruolei Xin
- State Key Laboratory for Infection Diseases Prevention and Control, National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Beijing, P.R. China 100050
| | - Jianping Sun
- State Key Laboratory for Infection Diseases Prevention and Control, National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Beijing, P.R. China 100050
| | - Feng Yi
- State Key Laboratory for Infection Diseases Prevention and Control, National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Beijing, P.R. China 100050
| | - Liying Ma
- State Key Laboratory for Infection Diseases Prevention and Control, National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Beijing, P.R. China 100050
| | - Yiming Shao
- State Key Laboratory for Infection Diseases Prevention and Control, National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Beijing, P.R. China 100050
| |
Collapse
|
30
|
Campbell GR, Watkins JD, Singh KK, Loret EP, Spector SA. Human immunodeficiency virus type 1 subtype C Tat fails to induce intracellular calcium flux and induces reduced tumor necrosis factor production from monocytes. J Virol 2007; 81:5919-28. [PMID: 17376903 PMCID: PMC1900281 DOI: 10.1128/jvi.01938-06] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Over 50% of all human immunodeficiency virus type 1 (HIV-1) infections worldwide are caused by subtype C strains, yet most research to date focuses on subtype B, the subtype most commonly found in North America and Europe. The HIV-1 trans-acting regulatory protein (Tat) is essential for regulating productive replication of HIV-1. Tat is secreted by HIV-infected cells and alters several functions of uninfected bystander cells. One such function is that, by acting at the cell membrane, subtype B Tat stimulates the production of tumor necrosis factor (TNF) and chemokine (C-C motif) ligand 2 (CCL2) from human monocytes and can act as a chemoattractant. In this study, we show that the mutation of a cysteine to a serine at residue 31 of Tat commonly found in subtype C variants significantly inhibits the abilities of the protein to bind to chemokine (C-C motif) receptor 2 (CCR2), induce intracellular calcium flux, stimulate TNF and CCL2 production, and inhibit its chemoattractant properties. We also show that TNF is important in mediating some effects of extracellular Tat. This report therefore demonstrates the important functional differences between subtype C and subtype B Tat and highlights the need for further investigation into the different strains of HIV-1.
Collapse
Affiliation(s)
- Grant R Campbell
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0672, USA
| | | | | | | | | |
Collapse
|
31
|
Jeeninga RE, Jan B, van den Berg H, Berkhout B. Construction of doxycyline-dependent mini-HIV-1 variants for the development of a virotherapy against leukemias. Retrovirology 2006; 3:64. [PMID: 17005036 PMCID: PMC1592508 DOI: 10.1186/1742-4690-3-64] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Accepted: 09/27/2006] [Indexed: 11/10/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a high-risk type of blood-cell cancer. We describe the improvement of a candidate therapeutic virus for virotherapy of leukemic cells. Virotherapy is based on the exclusive replication of a virus in leukemic cells, leading to the selective removal of these malignant cells. To improve the safety of such a virus, we constructed an HIV-1 variant that replicates exclusively in the presence of the nontoxic effector doxycycline (dox). This was achieved by replacement of the viral TAR-Tat system for transcriptional activation by the Escherichia coli-derived Tet system for inducible gene expression. This HIV-rtTA virus replicates in a strictly dox-dependent manner. In this virus, additional deletions and/or inactivating mutations were introduced in the genes for accessory proteins. These proteins are essential for virus replication in untransformed cells, but dispensable in leukemic T cells. These minimized HIV-rtTA variants contain up to 7 deletions/inactivating mutations (TAR, Tat, vif, vpR, vpU, nef and U3) and replicate efficiently in the leukemic SupT1 T cell line, but do not replicate in normal peripheral blood mononuclear cells. These virus variants are also able to efficiently remove leukemic cells from a mixed culture with untransformed cells. The therapeutic viruses use CD4 and CXCR4 for cell entry and could potentially be used against CXCR4 expressing malignancies such as T-lymphoblastic leukemia/lymphoma, NK leukemia and some myeloid leukemias.
Collapse
Affiliation(s)
- Rienk E Jeeninga
- Laboratory of Experimental Virology, Department of Medical Microbiology Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands
| | - Barbara Jan
- Laboratory of Experimental Virology, Department of Medical Microbiology Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands
| | - Henk van den Berg
- Department of Paediatric Oncology, Emma Children Hospital, Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
32
|
Berro R, Kehn K, de la Fuente C, Pumfery A, Adair R, Wade J, Colberg-Poley AM, Hiscott J, Kashanchi F. Acetylated Tat regulates human immunodeficiency virus type 1 splicing through its interaction with the splicing regulator p32. J Virol 2006; 80:3189-204. [PMID: 16537587 PMCID: PMC1440361 DOI: 10.1128/jvi.80.7.3189-3204.2006] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) potent transactivator Tat protein mediates pleiotropic effects on various cell functions. Posttranslational modification of Tat affects its activity during viral transcription. Tat binds to TAR and subsequently becomes acetylated on lysine residues by histone acetyltransferases. Novel protein-protein interaction domains on acetylated Tat are then established, which are necessary for both sustained transcriptional activation of the HIV-1 promoter and viral transcription elongation. In this study, we investigated the identity of proteins that preferentially bound acetylated Tat. Using a proteomic approach, we identified a number of proteins that preferentially bound AcTat, among which p32, a cofactor of splicing factor ASF/SF-2, was identified. We found that p32 was recruited to the HIV-1 genome, suggesting a mechanism by which acetylation of Tat may inhibit HIV-1 splicing needed for the production of full-length transcripts. Using Tat from different clades, harboring a different number of acetylation sites, as well as Tat mutated at lysine residues, we demonstrated that Tat acetylation affected splicing in vivo. Finally, using confocal microscopy, we found that p32 and Tat colocalize in vivo in HIV-1-infected cells.
Collapse
Affiliation(s)
- Reem Berro
- Genetics Program, The George Washington University, Washington, D.C. 20037, Department of Biochemistry and Molecular Biology, The George Washington University School of Medicine, Washington, D.C. 20037, Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, Washington, D.C. 20010, Howard Florey Institute, University of Melbourne, Victoria 3010, Australia, Lady Davis Institute for Medical Research, McGill University, Montreal, Canada, The Institute for Genomic Research, Rockville, Maryland 20850
| | - Kylene Kehn
- Genetics Program, The George Washington University, Washington, D.C. 20037, Department of Biochemistry and Molecular Biology, The George Washington University School of Medicine, Washington, D.C. 20037, Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, Washington, D.C. 20010, Howard Florey Institute, University of Melbourne, Victoria 3010, Australia, Lady Davis Institute for Medical Research, McGill University, Montreal, Canada, The Institute for Genomic Research, Rockville, Maryland 20850
| | - Cynthia de la Fuente
- Genetics Program, The George Washington University, Washington, D.C. 20037, Department of Biochemistry and Molecular Biology, The George Washington University School of Medicine, Washington, D.C. 20037, Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, Washington, D.C. 20010, Howard Florey Institute, University of Melbourne, Victoria 3010, Australia, Lady Davis Institute for Medical Research, McGill University, Montreal, Canada, The Institute for Genomic Research, Rockville, Maryland 20850
| | - Anne Pumfery
- Genetics Program, The George Washington University, Washington, D.C. 20037, Department of Biochemistry and Molecular Biology, The George Washington University School of Medicine, Washington, D.C. 20037, Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, Washington, D.C. 20010, Howard Florey Institute, University of Melbourne, Victoria 3010, Australia, Lady Davis Institute for Medical Research, McGill University, Montreal, Canada, The Institute for Genomic Research, Rockville, Maryland 20850
| | - Richard Adair
- Genetics Program, The George Washington University, Washington, D.C. 20037, Department of Biochemistry and Molecular Biology, The George Washington University School of Medicine, Washington, D.C. 20037, Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, Washington, D.C. 20010, Howard Florey Institute, University of Melbourne, Victoria 3010, Australia, Lady Davis Institute for Medical Research, McGill University, Montreal, Canada, The Institute for Genomic Research, Rockville, Maryland 20850
| | - John Wade
- Genetics Program, The George Washington University, Washington, D.C. 20037, Department of Biochemistry and Molecular Biology, The George Washington University School of Medicine, Washington, D.C. 20037, Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, Washington, D.C. 20010, Howard Florey Institute, University of Melbourne, Victoria 3010, Australia, Lady Davis Institute for Medical Research, McGill University, Montreal, Canada, The Institute for Genomic Research, Rockville, Maryland 20850
| | - Anamaris M. Colberg-Poley
- Genetics Program, The George Washington University, Washington, D.C. 20037, Department of Biochemistry and Molecular Biology, The George Washington University School of Medicine, Washington, D.C. 20037, Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, Washington, D.C. 20010, Howard Florey Institute, University of Melbourne, Victoria 3010, Australia, Lady Davis Institute for Medical Research, McGill University, Montreal, Canada, The Institute for Genomic Research, Rockville, Maryland 20850
| | - John Hiscott
- Genetics Program, The George Washington University, Washington, D.C. 20037, Department of Biochemistry and Molecular Biology, The George Washington University School of Medicine, Washington, D.C. 20037, Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, Washington, D.C. 20010, Howard Florey Institute, University of Melbourne, Victoria 3010, Australia, Lady Davis Institute for Medical Research, McGill University, Montreal, Canada, The Institute for Genomic Research, Rockville, Maryland 20850
| | - Fatah Kashanchi
- Genetics Program, The George Washington University, Washington, D.C. 20037, Department of Biochemistry and Molecular Biology, The George Washington University School of Medicine, Washington, D.C. 20037, Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, Washington, D.C. 20010, Howard Florey Institute, University of Melbourne, Victoria 3010, Australia, Lady Davis Institute for Medical Research, McGill University, Montreal, Canada, The Institute for Genomic Research, Rockville, Maryland 20850
- Corresponding author. Mailing address: The George Washington University, 2300 I St., NW, Ross Hall, Room 551, Washington, DC 20037. Phone: (202) 994-1781. Fax: (202) 994-1780. E-mail:
| |
Collapse
|
33
|
|
34
|
Turk G, Carobene M, Monczor A, Rubio AE, Gómez-Carrillo M, Salomón H. Higher transactivation activity associated with LTR and Tat elements from HIV-1 BF intersubtype recombinant variants. Retrovirology 2006; 3:14. [PMID: 16483381 PMCID: PMC1402313 DOI: 10.1186/1742-4690-3-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Accepted: 02/16/2006] [Indexed: 01/02/2023] Open
Abstract
Background HIV-1 is characterized by its rapid genetic evolution and high diversity as a consequence of its error-prone reverse transcriptase and genetic recombination. This latter mechanism is responsible for the creation of circulating recombinant forms (CRFs) found in nature. Previous studies from our lab group have shown that the epidemic in Argentina is characterized by one highly prevalent circulating recombinant form, CRF12_BF, and many related BF recombinant forms. Since transcriptional transactivation of the HIV-1 long terminal repeat (LTR) promoter element requires the essential viral Tat protein, since these genetic structures underwent recombination in variants widely spread in South America, the aim of this work was to study transcriptional activity associated with the recombinant LTR and Tat elements. Results Differential transcriptional activity was measured for the BF recombinant LTR/Tat complex that is present in widely spread viral variants was demonstrated. This analysis demonstrated a higher activity for the BF complex when compared to its B subtype counterpart. Conclusion This study indicates structural and functional consequences of recombination events within the LTR promoter and Tat transactivator protein of a naturally occurring HIV-1 recombinant form.
Collapse
Affiliation(s)
- Gabriela Turk
- National Reference Center for AIDS, Department of Microbiology, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Mauricio Carobene
- National Reference Center for AIDS, Department of Microbiology, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Ana Monczor
- National Reference Center for AIDS, Department of Microbiology, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Andrea Elena Rubio
- National Reference Center for AIDS, Department of Microbiology, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Manuel Gómez-Carrillo
- National Reference Center for AIDS, Department of Microbiology, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Horacio Salomón
- National Reference Center for AIDS, Department of Microbiology, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
35
|
Brockman MA, Tanzi GO, Walker BD, Allen TM. Use of a novel GFP reporter cell line to examine replication capacity of CXCR4- and CCR5-tropic HIV-1 by flow cytometry. J Virol Methods 2006; 131:134-42. [PMID: 16182382 DOI: 10.1016/j.jviromet.2005.08.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Revised: 08/09/2005] [Accepted: 08/18/2005] [Indexed: 10/25/2022]
Abstract
The rate of HIV-1 disease progression correlates strongly with plasma viral load and is likely to be influenced by both host and viral determinants. Though interest in the impact of viral replication capacity during HIV-1 infection has been increasing, especially with respect to drug resistance mutations, its influence on disease course remains poorly understood. This is due in part to significant drawbacks in conventional means of measuring HIV-1 growth in vitro (i.e. expense, inconvenience, and experimental variability). A FACS-based method is described here to measure HIV-1 replication sensitively and a modification of this method can be used to determine viral titer accurately. Importantly, the target cells used are permissive to CXCR4- and CCR5-tropic HIV-1 strains. In pilot experiments, the growth kinetics of laboratory-adapted strains NL4-3 and IIIB were examined carefully. Using this method, differences were observed in growth kinetics between three laboratory strains and seven primary isolates, indicating the potential for a broad range of in vitro replication capacities among individual isolates. In conclusion, this FACS-based method provides a sensitive approach to measure the replication capacity of HIV-1 and may prove useful in studies examining the impact of viral fitness on disease progression.
Collapse
Affiliation(s)
- Mark A Brockman
- Howard Hughes Medical Institute, Massachusetts General Hospital and Division of AIDS, Harvard Medical School, Boston MA 02129, USA
| | | | | | | |
Collapse
|