1
|
Samms KA, Monod EC, Ijaz A, Au S, Jenik K, Rodríguez-Ramos T, Dixon B, DeWitte-Orr SJ. Sequence independent immune effects of white spot syndrome virus (WSSV) dsRNA complexed with phytoglycogen nanoparticles in freshwater crayfish. J Invertebr Pathol 2025; 209:108239. [PMID: 39637936 DOI: 10.1016/j.jip.2024.108239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
White spot syndrome virus (WSSV), a double stranded (ds)DNA virus, is a pathogen that causes massive mortalities in crustaceans worldwide. The present study focuses on using dsRNA to induce sequence-independent immune responses to control virus replication. DsRNA is a well characterized innate immune stimulant in vertebrates and effectively induces an antiviral state. In crustaceans, it has been shown that dsRNA containing WSSV sequences (WSSV-dsRNA) can trigger an immune response independent of RNA interference (RNAi) to mitigate disease. We hypothesized that the potency and efficacy of dsRNA-induced immunity would be enhanced using a biodegradable, cationic phytoglycogen nanoparticle, Nanodendrix (nanoparticle; NP), to deliver the dsRNA. Two in vivo studies were conducted to test the efficacy of long dsRNA as an innate immune stimulant with or without the NP in crayfish. Long dsRNA, 360-500 bp in length, was synthesized based on two WSSV sequences, viral particle 28 (VP28) and viral particle 19 (VP19) respectively. Crayfish were injected in the ventral sinus with WSSV-dsRNA (VP28 or VP19 sequence) either in complex with the NP or alone. High molecular weight (HMW) poly inosinic: polycytidylic acid (poly IC), a synthetic viral dsRNA mimic, was used as a positive control. In the negative control groups, crayfish were injected with either phosphate buffered saline or NP alone. These studies found WSSV-dsRNA could enhance hemocyte numbers, nitric oxide levels and phenoloxidase activity. This enhancement was more effective than when using HMW poly IC. Finally, the nanoparticle did not increase dsRNA's immune activation capability, but it did reduce dsRNA's toxicity. Further studies may help determine the efficacy of these treatments as immune stimulants for preventing pathogenic outbreaks in the invertebrate aquaculture industry.
Collapse
Affiliation(s)
- Kayla A Samms
- Department of Health Sciences, 75 University Ave W, Wilfrid Laurier University, Waterloo ON N2L 3C5, Canada
| | - Emma C Monod
- Department of Health Sciences, 75 University Ave W, Wilfrid Laurier University, Waterloo ON N2L 3C5, Canada; Department of Biology, 200 University Ave W, University of Waterloo, Waterloo ON N2L 3G1, Canada
| | - Aizah Ijaz
- Department of Health Sciences, 75 University Ave W, Wilfrid Laurier University, Waterloo ON N2L 3C5, Canada
| | - Sarah Au
- Department of Health Sciences, 75 University Ave W, Wilfrid Laurier University, Waterloo ON N2L 3C5, Canada
| | - Kristof Jenik
- Department of Health Sciences, 75 University Ave W, Wilfrid Laurier University, Waterloo ON N2L 3C5, Canada
| | - Tania Rodríguez-Ramos
- Department of Biology, 200 University Ave W, University of Waterloo, Waterloo ON N2L 3G1, Canada
| | - Brian Dixon
- Department of Biology, 200 University Ave W, University of Waterloo, Waterloo ON N2L 3G1, Canada.
| | - Stephanie J DeWitte-Orr
- Department of Health Sciences, 75 University Ave W, Wilfrid Laurier University, Waterloo ON N2L 3C5, Canada.
| |
Collapse
|
2
|
Fajardo C, De Donato M, Macedo M, Charoonnart P, Saksmerprome V, Yang L, Purton S, Mancera JM, Costas B. RNA Interference Applied to Crustacean Aquaculture. Biomolecules 2024; 14:1358. [PMID: 39595535 PMCID: PMC11592254 DOI: 10.3390/biom14111358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
RNA interference (RNAi) is a powerful tool that can be used to specifically knock-down gene expression using double-stranded RNA (dsRNA) effector molecules. This approach can be used in aquaculture as an investigation instrument and to improve the immune responses against viral pathogens, among other applications. Although this method was first described in shrimp in the mid-2000s, at present, no practical approach has been developed for the use of dsRNA in shrimp farms, as the limiting factor for farm-scale usage in the aquaculture sector is the lack of cost-effective and simple dsRNA synthesis and administration procedures. Despite these limitations, different RNAi-based approaches have been successfully tested at the laboratory level, with a particular focus on shrimp. The use of RNAi technology is particularly attractive for the shrimp industry because crustaceans do not have an adaptive immune system, making traditional vaccination methods unfeasible. This review summarizes recent studies and the state-of-the-art on the mechanism of action, design, use, and administration methods of dsRNA, as applied to shrimp. In addition, potential constraints that may hinder the deployment of RNAi-based methods in the crustacean aquaculture sector are considered.
Collapse
Affiliation(s)
- Carlos Fajardo
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI-MAR), University of Cadiz (UCA), 11510 Puerto Real, Spain;
- Interdisciplinary Centre of Marine and Environmental Research, The University of Porto (CIIMAR), 4450-208 Matosinhos, Portugal; (M.M.); (B.C.)
| | - Marcos De Donato
- Center for Aquaculture Technologies (CAT), San Diego, CA 92121, USA;
- Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Querétaro 76130, Mexico
| | - Marta Macedo
- Interdisciplinary Centre of Marine and Environmental Research, The University of Porto (CIIMAR), 4450-208 Matosinhos, Portugal; (M.M.); (B.C.)
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (UP), 4050-313 Porto, Portugal
| | - Patai Charoonnart
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (P.C.); (V.S.)
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Bangkok 12120, Thailand
| | - Vanvimon Saksmerprome
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (P.C.); (V.S.)
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Bangkok 12120, Thailand
| | - Luyao Yang
- Department of Structural and Molecular Biology, University College London (UCL), London WC1E 6BT, UK; (L.Y.); (S.P.)
| | - Saul Purton
- Department of Structural and Molecular Biology, University College London (UCL), London WC1E 6BT, UK; (L.Y.); (S.P.)
| | - Juan Miguel Mancera
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI-MAR), University of Cadiz (UCA), 11510 Puerto Real, Spain;
| | - Benjamin Costas
- Interdisciplinary Centre of Marine and Environmental Research, The University of Porto (CIIMAR), 4450-208 Matosinhos, Portugal; (M.M.); (B.C.)
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (UP), 4050-313 Porto, Portugal
| |
Collapse
|
3
|
Bhassu S, Shama M, Tiruvayipati S, Soo TCC, Ahmed N, Yusoff K. Microbes and pathogens associated with shrimps - implications and review of possible control strategies. FRONTIERS IN MARINE SCIENCE 2024; 11:1397708. [PMID: 39498300 PMCID: PMC11534305 DOI: 10.3389/fmars.2024.1397708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Shrimp aquaculture has been growing rapidly over the last three decades. However, high-density aquaculture together with environmental degradation has led to increased incidence of shrimp infections. Thus, devising and implementing effective strategies to predict, diagnose and control the spread of infections of shrimps are crucial, also to ensure biosecurity and sustainability of the food industry. With the recent advancements in biotechnology, more attention has been given to develop novel promising therapeutic tools with potential to prevent disease occurrence and better manage shrimp health. Furthermore, owing to the advent of the next-generation sequencing (NGS) platforms, it has become possible to analyze the genetic basis of susceptibility or resistance of different stocks of shrimps to infections and how sustainable aquaculture could be made free of shrimp diseases.
Collapse
Affiliation(s)
- Subha Bhassu
- Animal Genetics and Genome Evolutionary Lab (AGAGEL), Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
- Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, Kuala Lumpur, Malaysia
- Malaysian Genome Vaccine Institute, National Institute Biotechnology Malaysia, Bangi, Selangor, Malaysia
| | - Maryam Shama
- Animal Genetics and Genome Evolutionary Lab (AGAGEL), Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Suma Tiruvayipati
- Infectious Diseases Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Tze Chiew Christie Soo
- Animal Genetics and Genome Evolutionary Lab (AGAGEL), Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Niyaz Ahmed
- Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, Telangana, India
| | - Khatijah Yusoff
- Malaysian Genome Vaccine Institute, National Institute Biotechnology Malaysia, Bangi, Selangor, Malaysia
| |
Collapse
|
4
|
Necira K, Contreras L, Kamargiakis E, Kamoun MS, Canto T, Tenllado F. Comparative analysis of RNA interference and pattern-triggered immunity induced by dsRNA reveals different efficiencies in the antiviral response to potato virus X. MOLECULAR PLANT PATHOLOGY 2024; 25:e70008. [PMID: 39290152 PMCID: PMC11408873 DOI: 10.1111/mpp.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024]
Abstract
Antiviral responses induced by double-stranded RNA (dsRNA) include RNA interference (RNAi) and pattern-triggered immunity (PTI), but their relative contributions to antiviral defence are not well understood. We aimed at testing the impact of exogenous applied dsRNA on both layers of defence against potato virus X expressing GFP (PVX-GFP) in Nicotiana benthamiana. Co-inoculation of PVX-GFP with either sequence-specific (RNAi) or nonspecific dsRNA (PTI) showed that nonspecific dsRNA reduced virus accumulation in both inoculated and systemic leaves. However, nonspecific dsRNA was a poor inducer of antiviral immunity compared to a sequence-specific dsRNA capable of triggering the RNAi response, and plants became susceptible to systemic infection. Studies with a PVX mutant unable to move from cell to cell indicated that the interference with PVX-GFP triggered by nonspecific dsRNA operated at the single-cell level. Next, we performed RNA-seq analysis to examine similarities and differences in the transcriptome triggered by dsRNA alone or in combination with viruses harbouring sequences targeted or not by dsRNA. Enrichment analysis showed an over-representation of plant-pathogen signalling pathways, such as calcium, ethylene and MAPK signalling, which are typical of antimicrobial PTI. Moreover, the transcriptomic response to the virus targeted by dsRNA had a greater impact on defence than the non-targeted virus, highlighting qualitative differences between sequence-specific RNAi and nonspecific PTI responses. Together, these results further our understanding of plant antiviral defence, particularly the contribution of nonspecific dsRNA-mediated PTI. We envisage that both sequence-specific RNAi and nonspecific PTI pathways may be triggered via topical application of dsRNA, contributing cumulatively to plant protection against viruses.
Collapse
Affiliation(s)
- Khouloud Necira
- Laboratory of Molecular Genetics, Immunology and Biotechnology, Faculty of SciencesUniversity of Tunis El ManarTunisTunisia
| | - Lorenzo Contreras
- Department of Biotechnology, Margarita Salas Center for Biological ResearchSpanish National Research CouncilMadridSpain
| | - Efstratios Kamargiakis
- Department of Biotechnology, Margarita Salas Center for Biological ResearchSpanish National Research CouncilMadridSpain
| | - Mohamed Selim Kamoun
- Laboratory of Bioinformatics, Biomathematics and BiostatisticsInstitut Pasteur de TunisTunisTunisia
| | - Tomás Canto
- Department of Biotechnology, Margarita Salas Center for Biological ResearchSpanish National Research CouncilMadridSpain
| | - Francisco Tenllado
- Department of Biotechnology, Margarita Salas Center for Biological ResearchSpanish National Research CouncilMadridSpain
| |
Collapse
|
5
|
Hong SJ, Kim KH. RNA interference targeting WSSV ribonucleotide reductase 2 provides long-term protection against infection in Litopenaeus vannamei. DISEASES OF AQUATIC ORGANISMS 2024; 159:71-78. [PMID: 39145473 DOI: 10.3354/dao03805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Many studies have demonstrated that long double-stranded RNAs (dsRNAs) targeting essential genes of white spot syndrome virus (WSSV) can induce a sequence-specific antiviral RNA interference (RNAi) response in shrimp, thereby offering protection against WSSV infection. However, further experimental data on the required dose of dsRNAs and the duration of protection from a single administration are necessary to establish RNAi-mediated methods as effective and practical antiviral measures. In this study, we evaluated the protective efficacy and the duration of protection provided by a single administration of various doses of long dsRNA targeting WSSV ribonucleotide reductase 2 (rr2) in white-leg shrimp Litopenaeus vannamei. The protective efficacy of long dsRNA targeting WSSV rr2 was not diminished by the reduction of the dose to 100 ng g-1 of body weight, suggesting that a relatively low dose can effectively induce an RNAi response in shrimp. Furthermore, shrimp were well-protected against WSSV challenges for up to 4 wk post-administration of the rr2-targeting long dsRNA, although the protective effect almost disappeared at 6 wk post-administration. These results suggest that long dsRNAs can provide protection against WSSV for at least 1 mo, and monthly administration of long dsRNAs could serve as a long-term protective strategy for shrimp against WSSV.
Collapse
Affiliation(s)
- Soon Joo Hong
- Department of Aquatic Life Medicine, Pukyong National University, Busan 48513, South Korea
| | - Ki Hong Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan 48513, South Korea
| |
Collapse
|
6
|
Cox N, De Swaef E, Corteel M, Van Den Broeck W, Bossier P, Nauwynck HJ, Dantas-Lima JJ. Experimental Infection Models and Their Usefulness for White Spot Syndrome Virus (WSSV) Research in Shrimp. Viruses 2024; 16:813. [PMID: 38793694 PMCID: PMC11125927 DOI: 10.3390/v16050813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
White spot syndrome virus (WSSV) is marked as one of the most economically devastating pathogens in shrimp aquaculture worldwide. Infection of cultured shrimp can lead to mass mortality (up to 100%). Although progress has been made, our understanding of WSSV's infection process and the virus-host-environment interaction is far from complete. This in turn hinders the development of effective mitigation strategies against WSSV. Infection models occupy a crucial first step in the research flow that tries to elucidate the infectious disease process to develop new antiviral treatments. Moreover, since the establishment of continuous shrimp cell lines is a work in progress, the development and use of standardized in vivo infection models that reflect the host-pathogen interaction in shrimp is a necessity. This review critically examines key aspects of in vivo WSSV infection model development that are often overlooked, such as standardization, (post)larval quality, inoculum type and choice of inoculation procedure, housing conditions, and shrimp welfare considerations. Furthermore, the usefulness of experimental infection models for different lines of WSSV research will be discussed with the aim to aid researchers when choosing a suitable model for their research needs.
Collapse
Affiliation(s)
- Natasja Cox
- IMAQUA, 9080 Lochristi, Belgium; (E.D.S.); (M.C.); (J.J.D.-L.)
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium;
| | | | - Mathias Corteel
- IMAQUA, 9080 Lochristi, Belgium; (E.D.S.); (M.C.); (J.J.D.-L.)
| | - Wim Van Den Broeck
- Department of Morphology, Medical Imaging, Orthopedics, Physiotherapy and Nutrition, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium;
| | - Peter Bossier
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| | - Hans J. Nauwynck
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium;
| | | |
Collapse
|
7
|
Vatanavicharn T, Matjank W, Masrinoul P, Supungul P, Tassanakajon A, Rimphanitchayakit V, Ponprateep S. Antiviral properties of Penaeus monodon cyclophilin A in response to white spot syndrome virus infection in the black tiger shrimp. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109299. [PMID: 38104700 DOI: 10.1016/j.fsi.2023.109299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Cyclophilin A (CypA) or peptidylprolyl isomerase A, plays an important role in protein folding, trafficking, environmental stress, cell signaling and apoptosis etc. In shrimp, the mRNA expression level of PmCypA was stimulated by LPS. In this study, all three types of shrimp hemocytes: hyaline cell, granulocyte and semi-granulocyte expressed the PmCypA protein. The mRNA expression level of PmCypA was found to be up-regulate to four-fold in white spot syndrome virus (WSSV) infected hemocytes at 48 h. Interestingly, PmCypA protein was only detected extracellularly in shrimp plasma at 24 h post WSSV infection. To find out the function of extracellular PmCypA, the recombinant PmCypA (rPmCypA) was produced and administrated in shrimp primary hemocyte cell culture to observe the antiviral properties. In rPmCypA-administrated hemocyte cell culture, the mRNA transcripts of WSSV intermediate early gene, ie1 and early gene, wsv477 were significantly decreased but not that of late gene, vp28. To explore the antiviral mechanism of PmCypA, the expression of PmCypA in shrimp hemocytes was silenced and the expression of immune-related genes were investigated. Surprisingly, the suppression of PmCypA affected other gene expression, decreasing of penaeidin, PmHHAP and PmCaspase and increasing of C-type lectin. Our results suggested that the PmCypA might plays important role in anti-WSSV via apoptosis pathway. Further studies of PmCypA underlying antiviral mechanism are underway to show its biological function in shrimp immunity.
Collapse
Affiliation(s)
- Tipachai Vatanavicharn
- Department of Biology, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Watchalaya Matjank
- Department of Biology, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Promsin Masrinoul
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, 25/25 Phuttamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Premruethai Supungul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 110120, Thailand
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Vichien Rimphanitchayakit
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sirikwan Ponprateep
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand.
| |
Collapse
|
8
|
Alam MS, Islam MN, Das M, Islam SF, Rabbane MG, Karim E, Roy A, Alam MS, Ahmed R, Kibria ASM. RNAi-Based Therapy: Combating Shrimp Viral Diseases. Viruses 2023; 15:2050. [PMID: 37896827 PMCID: PMC10612085 DOI: 10.3390/v15102050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/18/2023] [Accepted: 09/23/2023] [Indexed: 10/29/2023] Open
Abstract
Shrimp aquaculture has become a vital industry, meeting the growing global demand for seafood. Shrimp viral diseases have posed significant challenges to the aquaculture industry, causing major economic losses worldwide. Conventional treatment methods have proven to be ineffective in controlling these diseases. However, recent advances in RNA interference (RNAi) technology have opened new possibilities for combating shrimp viral diseases. This cutting-edge technology uses cellular machinery to silence specific viral genes, preventing viral replication and spread. Numerous studies have shown the effectiveness of RNAi-based therapies in various model organisms, paving the way for their use in shrimp health. By precisely targeting viral pathogens, RNAi has the potential to provide a sustainable and environmentally friendly solution to combat viral diseases in shrimp aquaculture. This review paper provides an overview of RNAi-based therapy and its potential as a game-changer for shrimp viral diseases. We discuss the principles of RNAi, its application in combating viral infections, and the current progress made in RNAi-based therapy for shrimp viral diseases. We also address the challenges and prospects of this innovative approach.
Collapse
Affiliation(s)
- Md. Shahanoor Alam
- Department of Genetics and Fish Breeding, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh;
| | - Mohammad Nazrul Islam
- Department of Biotechnology, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh;
| | - Mousumi Das
- Department of Aquaculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh;
| | - Sk. Farzana Islam
- Department of Fisheries (DoF), Government of the People’s Republic of Bangladesh, Matshya Bhaban, Ramna, Dhaka 1000, Bangladesh; (S.F.I.); (R.A.)
| | - Md. Golam Rabbane
- Department of Fisheries, Faculty of Biological Sciences, University of Dhaka, Dhaka 1000, Bangladesh;
| | - Ehsanul Karim
- Bangladesh Fisheries Research Institute, Mymensingh 2201, Bangladesh;
| | - Animesh Roy
- Department of Fisheries Biology and Aquatic Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh;
| | - Mohammad Shafiqul Alam
- Department of Genetics and Fish Breeding, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh;
| | - Raju Ahmed
- Department of Fisheries (DoF), Government of the People’s Republic of Bangladesh, Matshya Bhaban, Ramna, Dhaka 1000, Bangladesh; (S.F.I.); (R.A.)
| | - Abu Syed Md. Kibria
- Department of Aquaculture, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh;
| |
Collapse
|
9
|
Alenton RRR, Mai HN, Dhar AK. Engineering a replication-incompetent viral vector for the delivery of therapeutic RNA in crustaceans. PNAS NEXUS 2023; 2:pgad278. [PMID: 37693213 PMCID: PMC10485883 DOI: 10.1093/pnasnexus/pgad278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/05/2023] [Accepted: 08/15/2023] [Indexed: 09/12/2023]
Abstract
Viral disease pandemics are a major cause of economic losses in crustacean farming worldwide. While RNA interference (RNAi)-based therapeutics have shown promise at a laboratory scale, without an effective oral delivery platform, RNA-based therapy will not reach its potential against controlling viral diseases in crustaceans. Using a reverse-engineered shrimp RNA virus, Macrobrachium rosenbergii nodavirus (MrNV), we have developed a shrimp viral vector for delivering an engineered RNA cargo. By replacing the RNA-dependent RNA polymerase (RdRp) protein-coding region of MrNV with a cargo RNA encoding green fluorescent protein (GFP) as a proof-of-concept, we generated a replication-incompetent mutant MrNV(ΔRdRp) carrying the GFP RNA cargo resulting in MrNV(ΔRdRp)-GFP. Upon incorporating MrNV(ΔRdRp)-GFP in the diet of the marine Pacific white shrimp (Penaeus vannamei), MrNV(ΔRdRp) particles were visualized in hemocytes demonstrating successful vector internalization. Fluorescence imaging of hemocytes showed the expression of GFP protein and the MrNV capsid RNA (RNA2) as well as the incorporated GFP RNA cargo. Detection of cargo RNA in hepatopancreas and pleopods indicated the systemic spread of the viral vector. The quantitative load of both the MrNV RNA2 and GFP RNA progressively diminished within 8 days postadministration of the viral vector, which indicated a lack of MrNV(ΔRdRp)-GFP replication in shrimp. In addition, no pathological hallmarks of the wild-type MrNV infection were detected using histopathology in the target tissue of treated shrimp. The data unequivocally demonstrated the successful engineering of a replication-incompetent viral vector for RNA delivery, paving the way for the oral delivery of antiviral therapeutics in farmed crustaceans.
Collapse
Affiliation(s)
- Rod Russel R Alenton
- Aquaculture Pathology Laboratory, School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ 85721, USA
| | - Hung N Mai
- Aquaculture Pathology Laboratory, School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ 85721, USA
| | - Arun K Dhar
- Aquaculture Pathology Laboratory, School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
10
|
Joo Hong S, Hong Kim K. Effects of length and sequence of long double-stranded RNAs targeting ribonucleotide reductase 2 of white spot syndrome virus (WSSV) on protective efficacy against WSSV. J Invertebr Pathol 2023; 196:107869. [PMID: 36455669 DOI: 10.1016/j.jip.2022.107869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
Long double-stranded RNA (dsRNA)-mediated RNA interference (RNAi) has been a well-known mechanism against white spot syndrome virus (WSSV) in cultured shrimp. In the present study, we investigated the protective efficacy of dsRNAs targeting the ribonucleotide reductase 2 (rr2) gene of WSSV according to length and target sequence location. To produce different lengths of dsRNAs, the 640 bp rr2 fragment (fragment I) was split into two equal 320 bp fragments (fragment II and III), then each 320 bp fragment was redivided into two 160 bp fragments (fragment IV, V, VI, and VII). After the synthesis of seven kinds of dsRNA fragments, dsRNAs with the same length were mixed with each other, then used for the evaluation of dsRNA's length effect in Penaeus vannamei. The result showed that 160 bp long dsRNAs were as effective as 320 and 640 bp long dsRNAs in the protection of shrimp against WSSV infection, suggesting that the dsRNA length of 160 bp would be enough to be used as RNAi-mediated WSSV suppression in P. vannamei. However, as the 160 bp long dsRNAs used in the length effect experiment were not a single dsRNA population but a mixture of 160 bp dsRNA fragments covering the parent 640 bp long dsRNA, the sequence effect was not included in this RNAi efficacy. In the experiments to know the effect of not only length but also sequence of rr2-targeting long dsRNAs on the protective efficacy against WSSV, dsRNAs with a length of 640 bp (fragment I) and 320 bp (fragment II, III) showed a constant high defense ability, but the protection degree of long dsRNAs with a length of 160 bp was different depending on the kinds of the fragment, suggesting that the RNAi efficacy of some rr2-targeting long dsRNAs with a length of 160 bp might have sequences that are variable according to experimental conditions. In conclusion, this study showed that the protective ability of long dsRNAs in shrimp against WSSV infection can be affected by the length and sequence of the long dsRNAs.
Collapse
Affiliation(s)
- Soon Joo Hong
- Department of Aquatic Life Medicine, Pukyong National University, Busan 48513, South Korea
| | - Ki Hong Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan 48513, South Korea.
| |
Collapse
|
11
|
Worawittayatada J, Angsujinda K, Sinnuengnong R, Attasart P, Smith DR, Assavalapsakul W. Simultaneous Production of a Virus-Like Particle Linked to dsRNA to Enhance dsRNA Delivery for Yellow Head Virus Inhibition. Viruses 2022; 14:v14122594. [PMID: 36560598 PMCID: PMC9785521 DOI: 10.3390/v14122594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/24/2022] Open
Abstract
A co-expressed Penaeus stylirostris densovirus (PstDNV) capsid and dsRNA specific to the yellow head virus (YHV) protease (CoEx cpPstDNV/dspro) has been shown to suppress YHV replication in the Pacific white-legged shrimp (Litopenaeus vannamei). However, maintaining two plasmids in a single bacterial cell is not desirable; therefore, a single plasmid harboring both the PstDNV capsid and the dsRNA-YHV-pro gene was constructed under the regulation of a single T7 promoter, designated pET28a-Linked cpPstDNV-dspro. Following induction, this novel construct expressed an approximately 37-kDa recombinant protein associated with a roughly 400-bp dsRNA (Linked cpPstDNV-dspro). Under a transmission electron microscope, the virus-like particles (VLP; Linked PstDNV VLPs-dspro) obtained were seen to be monodispersed, similar to the native PstDNV virion. A nuclease digestion assay indicated dsRNA molecules were both encapsulated and present outside the Linked PstDNV VLPs-dspro. In addition, the amount of dsRNA produced from this strategy was higher than that obtained with a co-expression strategy. In a YHV infection challenge, the Linked PstDNV VLPs-dspro was more effective in delaying and reducing mortality than other constructs tested. Lastly, the linked construct provides protection for the dsRNA cargo from nucleolytic enzymes present in the shrimp hemolymph. This is the first report of a VLP carrying virus-inhibiting dsRNA that could be produced without disassembly and reassembly to control virus infection in shrimp.
Collapse
Affiliation(s)
- Jaruwan Worawittayatada
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kitipong Angsujinda
- Aquatic Resources Research Institute, Chulalongkorn University, Bangkok 10330, Thailand
| | - Rapee Sinnuengnong
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Research and Development, Queen Saovabha Memorial Institute, The Thai Red Cross Society, Bangkok 10330, Thailand
| | - Pongsopee Attasart
- Center of Applied Shrimp Research and Innovation, Institute of Molecular Biosciences, Mahidol University, Nakorn Pathom 73170, Thailand
| | - Duncan R. Smith
- Institute of Molecular Biosciences, Mahidol University, Nakorn Pathom 73170, Thailand
| | - Wanchai Assavalapsakul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: ; Tel.: +66-2218-5096
| |
Collapse
|
12
|
Ng YS, Lee DY, Liu CH, Tung CY, He ST, Wang HC. White Spot Syndrome Virus Triggers a Glycolytic Pathway in Shrimp Immune Cells (Hemocytes) to Benefit Its Replication. Front Immunol 2022; 13:901111. [PMID: 35860260 PMCID: PMC9289281 DOI: 10.3389/fimmu.2022.901111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
White spot syndrome virus (WSSV) is the causative agent of a shrimp disease that inflicts in huge economic losses in shrimp-farming industry. WSSV triggers aerobic glycolysis in shrimp immune cells (hemocytes), but how this virus regulates glycolytic enzymes or pathway is yet to be characterized. Therefore, mRNA levels and activity of four important glycolytic enzymes, Hexokinase (HK), Phosphofructokinase (PFK), Pyruvate kinase (PK), and Lactate dehydrogenase (LDH), were measured in WSSV-infected shrimp hemocytes. Gene expression of HK and PFK, but not LDH or PK, was increased at the viral genome replication stage (12 hpi); furthermore, activity of these enzymes, except HK, was concurrently increased. However, there was no increased enzyme activity at the viral late stage (24 hpi). In vivo dsRNA silencing and glycolysis disruption by 2-DG further confirmed the role of glycolysis in virus replication. Based on tracing studies using stable isotope labeled glucose, glycolysis was activated at the viral genome replication stage, but not at the viral late stage. This study demonstrated that WSSV enhanced glycolysis by activating glycolytic enzyme at the viral genome replication stage, providing energy and biomolecules for virus replication.
Collapse
Affiliation(s)
- Yen Siong Ng
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Der-Yen Lee
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - Chun-Hung Liu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Cheng-Yi Tung
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Shu-Ting He
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Han-Ching Wang
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
- International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan
- *Correspondence: Han-Ching Wang,
| |
Collapse
|
13
|
Blasi G, Bortoletto E, Gasparotto M, Filippini F, Bai CM, Rosani U, Venier P. A glimpse on metazoan ZNFX1 helicases, ancient players of antiviral innate immunity. FISH & SHELLFISH IMMUNOLOGY 2022; 121:456-466. [PMID: 35063603 DOI: 10.1016/j.fsi.2022.01.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/03/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
The human zinc finger NFX1-type containing 1 (ZNFX1) is an interferon-stimulated protein associated to the outer mitochondrial membrane, able to bind dsRNAs and interact with MAVS proteins, promoting type I IFN response in the early stage of viral infection. An N-terminal Armadillo (ARM)-type fold and a large helicase core (P-loop) and zinc fingers confer RNA-binding and ATPase activities to ZNFX1. We studied the phylogenetic distribution of metazoan ZNFX1s, ZNFX1 gene expression trends and genomic and protein signatures during viral infection of invertebrates. Based on 221 ZNFX1 sequences, we obtained a polyphyletic tree with a taxonomy-consistent branching at the phylum-level only. In metazoan genomes, ZNFX1 genes were found either in single copy, with up to some tens of exons in vertebrates, or in multiple copies, with one or a few exons and one of them sometimes encompassing most of the coding sequence, in invertebrates like sponges, sea urchins and mollusks. Structural analyses of selected ZNFX1 proteins showed high conservation of the helicase region (P-loop), an overall conserved region and domain architecture, an ARM-fold mostly traceable, and the presence of intrinsically disordered regions of varying length and position. The remarkable over-expression of ZNFX1 in bivalve and gastropod mollusks infected with dsDNA viruses underscores the antiviral role of ZNFX1, whereas nothing similar was found in virus-infected nematodes and corals. Whether the functional diversification reported in the C. elegans ZNFX1 occurs in other metazoan proteins remains to be established.
Collapse
Affiliation(s)
- Giulia Blasi
- Department of Biology, University of Padova, 35121, Padova, Italy
| | | | | | | | - Chang-Ming Bai
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Yellow Sea Fisheries Research Institute, CAFS, Qingdao, 266237, China
| | - Umberto Rosani
- Department of Biology, University of Padova, 35121, Padova, Italy.
| | - Paola Venier
- Department of Biology, University of Padova, 35121, Padova, Italy.
| |
Collapse
|
14
|
Emerenciano MGC, Rombenso AN, Vieira FDN, Martins MA, Coman GJ, Truong HH, Noble TH, Simon CJ. Intensification of Penaeid Shrimp Culture: An Applied Review of Advances in Production Systems, Nutrition and Breeding. Animals (Basel) 2022; 12:ani12030236. [PMID: 35158558 PMCID: PMC8833552 DOI: 10.3390/ani12030236] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/24/2021] [Accepted: 01/11/2022] [Indexed: 12/15/2022] Open
Abstract
Intensification of the shrimp sector, also referred to as vertical expansion, has been predominately driven by consecutive incidences of global disease outbreaks, which have caused enormous economic loss for the main producer countries. A growing segment of the shrimp farming industry has opted to use production systems with higher density, biosecurity, and operating control to mitigate the risks posed by disease. However, successful super-intensive shrimp production is reliant on an advanced understanding of many important biological and economic parameters in the farming system, coupled with effective monitoring, to maintain optimal production. Compared to traditional extensive or semi-intensive systems, super-intensive systems require higher inputs of feed, energy, labor, and supplements. These systems are highly sensitive to the interactions between these different inputs and require that the biological and economical parameters of farming are carefully balanced to ensure success. Advancing nutritional knowledge and tools to support consistent and efficient production of shrimp in these high-cost super-intensive systems is also necessary. Breeding programs developing breeding-lines selected for these challenging super-intensive environments are critical. Understanding synergies between the key areas of production systems, nutrition, and breeding are crucial for super-intensive farming as all three areas coalesce to influence the health of shrimp and commercial farming success. This article reviews current strategies and innovations being used for Litopenaeus vannamei in production systems, nutrition, and breeding, and discusses the synergies across these areas that can support the production of healthy and high-quality shrimp in super-intensive systems. Finally, we briefly discuss some key issues of social license pertinent to the super-intensive shrimp farming industry.
Collapse
Affiliation(s)
- Maurício G. C. Emerenciano
- Livestock & Aquaculture Program, Bribie Island Research Centre, The Commonwealth Scientific and Industrial Research Organisation (CSIRO), Woorim 4507, Australia; (A.N.R.); (G.J.C.); (H.H.T.)
- Correspondence:
| | - Artur N. Rombenso
- Livestock & Aquaculture Program, Bribie Island Research Centre, The Commonwealth Scientific and Industrial Research Organisation (CSIRO), Woorim 4507, Australia; (A.N.R.); (G.J.C.); (H.H.T.)
| | - Felipe d. N. Vieira
- Marine Shrimp Laboratory, Federal University of Santa Catarina (UFSC), Florianópolis 88061-600, Brazil; (F.d.N.V.); (M.A.M.)
| | - Mateus A. Martins
- Marine Shrimp Laboratory, Federal University of Santa Catarina (UFSC), Florianópolis 88061-600, Brazil; (F.d.N.V.); (M.A.M.)
| | - Greg J. Coman
- Livestock & Aquaculture Program, Bribie Island Research Centre, The Commonwealth Scientific and Industrial Research Organisation (CSIRO), Woorim 4507, Australia; (A.N.R.); (G.J.C.); (H.H.T.)
| | - Ha H. Truong
- Livestock & Aquaculture Program, Bribie Island Research Centre, The Commonwealth Scientific and Industrial Research Organisation (CSIRO), Woorim 4507, Australia; (A.N.R.); (G.J.C.); (H.H.T.)
| | - Tansyn H. Noble
- Livestock & Aquaculture Program, CSIRO, Berrimah 0828, Australia;
| | - Cedric J. Simon
- Livestock & Aquaculture Program, CSIRO, Queensland Bioscience Precinct, St. Lucia 4067, Australia;
| |
Collapse
|
15
|
Ramos-Carreño S, Giffard-Mena I, Zamudio-Ocadiz JN, Nuñez-Rivera A, Valencia-Yañez R, Ruiz-Garcia J, Viana MT, Cadena-Nava RD. Antiviral therapy in shrimp through plant virus VLP containing VP28 dsRNA against WSSV. Beilstein J Org Chem 2021; 17:1360-1373. [PMID: 34136015 PMCID: PMC8182676 DOI: 10.3762/bjoc.17.95] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 05/20/2021] [Indexed: 12/13/2022] Open
Abstract
The white spot syndrome virus (WSSV), currently affecting cultured shrimp, causes substantial economic losses to the worldwide shrimp industry. An antiviral therapy using double-stranded RNA interference (dsRNAi) by intramuscular injection (IM) has proven the most effective shrimp protection against WSSV. However, IM treatment is still not viable for shrimp farms. The challenge is to develop an efficient oral delivery system that manages to avoid the degradation of antiviral RNA molecules. The present work demonstrates that VLPs (virus-like particles) allow efficient delivery of dsRNAi as antiviral therapy in shrimp. In particular, VLPs derived from a virus that infects plants, such as cowpea chlorotic mottle virus (CCMV), in which the capsid protein (CP) encapsidates the dsRNA of 563 bp, are shown to silence the WSSV glycoprotein VP28 (dsRNAvp28). In experimental challenges in vivo, the VLPs- dsRNAvp28 protect shrimp against WSSV up to 40% by oral administration and 100% by IM. The novel research demonstrates that plant VLPs, which avoid zoonosis, can be applied to pathogen control in shrimp and also other organisms, widening the application window in nanomedicine.
Collapse
Affiliation(s)
- Santiago Ramos-Carreño
- Facultad de Ciencias Marinas, Universidad Autónoma de Baja California (UABC), Carretera Transpeninsular Ensenada-Tijuana No. 3917, Colonia Playitas, C.P. 22860 Ensenada, B.C., México
| | - Ivone Giffard-Mena
- Facultad de Ciencias Marinas, Universidad Autónoma de Baja California (UABC), Carretera Transpeninsular Ensenada-Tijuana No. 3917, Colonia Playitas, C.P. 22860 Ensenada, B.C., México
| | - Jose N Zamudio-Ocadiz
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México (UNAM). Km 107 Carretera Tijuana-Ensenada, Col. Pedregal Playitas, C.P. 22860 Ensenada, B.C., México.,Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, (CICESE), Carretera Ensenada - Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, B.C., México
| | - Alfredo Nuñez-Rivera
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México (UNAM). Km 107 Carretera Tijuana-Ensenada, Col. Pedregal Playitas, C.P. 22860 Ensenada, B.C., México.,Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, (CICESE), Carretera Ensenada - Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, B.C., México
| | - Ricardo Valencia-Yañez
- Facultad de Ciencias Marinas, Universidad Autónoma de Baja California (UABC), Carretera Transpeninsular Ensenada-Tijuana No. 3917, Colonia Playitas, C.P. 22860 Ensenada, B.C., México
| | - Jaime Ruiz-Garcia
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, San Luis Potosí 78000, México
| | - Maria Teresa Viana
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California (UABC), Carretera Transpeninsular Ensenada-Tijuana No. 3917, Colonia Playitas, C.P. 22860 Ensenada, B.C., México
| | - Ruben D Cadena-Nava
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México (UNAM). Km 107 Carretera Tijuana-Ensenada, Col. Pedregal Playitas, C.P. 22860 Ensenada, B.C., México
| |
Collapse
|
16
|
Abo-Al-Ela HG. RNA Interference in Aquaculture: A Small Tool for Big Potential. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4343-4355. [PMID: 33835783 DOI: 10.1021/acs.jafc.1c00268] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
For decades, the tight regulatory functions of DNA and RNA have been the focus of extensive research with the goal of harnessing RNA molecules (e.g., microRNA and small interfering RNA) to control gene expression and to study biological functions. RNA interference (RNAi) has shown evidence of mediating gene expression, has been utilized to study functional genomics, and recently has potential in therapeutic agents. RNAi is a natural mechanism and a well-studied tool that can be used to silence specific genes. This method is also used in aquaculture as a research tool and to enhance immune responses. RNAi methods do have their limitations (e.g., immune triggering); efficient and easy-to-use RNAi methods for large-scale applications need further development. Despite these limitations, RNAi methods have been successfully used in aquaculture, in particular shrimp. This review discusses the uses of RNAi in aquaculture, such as immune- and production-related issues and the possible limitations that may hinder the application of RNAi in the aquaculture industry. Our challenge is to develop a highly potent in vivo RNAi delivery platform that could complete the desired action with minimal side effects and which can be applied on a large-scale with relatively little expense in the aquaculture industry.
Collapse
Affiliation(s)
- Haitham G Abo-Al-Ela
- Genetics and Biotechnology, Department of Aquaculture, Faculty of Fish Resources, Suez University, Suez 43518, Egypt
| |
Collapse
|
17
|
Wuthisathid K, Chaijarasphong T, Chotwiwatthanakun C, Somrit M, Sritunyalucksana K, Itsathitphaisarn O. Co-expression of double-stranded RNA and viral capsid protein in the novel engineered Escherichia coli DualX-B15(DE3) strain. BMC Microbiol 2021; 21:88. [PMID: 33757419 PMCID: PMC7989029 DOI: 10.1186/s12866-021-02148-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 03/14/2021] [Indexed: 11/23/2022] Open
Abstract
Background Viruses cause significant economic losses to shrimp aquaculture worldwide. In severe cases, they can lead to 100% mortality within a matter of days, hence the aquaculture industry requires antiviral strategies to minimize economic impacts. Currently, a double-stranded RNA (dsRNA)-based platform has been proven effective at a laboratory scale. The bottleneck for its industrialization is the lack of low-cost, efficient and practical delivery approaches. In an effort to bridge the gap between laboratory and farm applications, virus-like particles (VLP) have been used as nanocarriers of dsRNA. However, the implementation of this approach still suffers from high costs and a lengthy procedure, co-expression of subunits of VLP or capsid proteins (CPs) and dsRNA can be the solution for the problem. CP and dsRNA are traditionally expressed in two different E. coli hosts: protease-deficient and RNase III-deficient strains. To condense the manufacturing of dsRNA-containing VLP, this study constructed a novel E. coli strain that is able to co-express viral capsid proteins and dsRNA in the same E. coli cell. Results A novel bacterial strain DualX-B15(DE3) was engineered to be both protease- and RNase III-deficiency via P1 phage transduction. The results revealed that it could simultaneously express recombinant proteins and dsRNA. Conclusion Co-expression of viral capsid proteins and dsRNA in the same cell has been shown to be feasible. Not only could this platform serve as a basis for future cost-effective and streamlined production of shrimp antiviral therapeutics, it may be applicable for other applications that requires co-expression of recombinant proteins and dsRNA. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02148-8.
Collapse
Affiliation(s)
- Kitti Wuthisathid
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.,Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Thawatchai Chaijarasphong
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.,Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Charoonroj Chotwiwatthanakun
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.,Nakhonsawan Campus, Mahidol University, Nakhonsawan, 60130, Thailand
| | - Monsicha Somrit
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Kallaya Sritunyalucksana
- Aquatic Animal Health Research Team (AQHT), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Yothi Office, Bangkok, 10400, Thailand
| | - Ornchuma Itsathitphaisarn
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand. .,Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
18
|
Cai H, Holleufer A, Simonsen B, Schneider J, Lemoine A, Gad HH, Huang J, Huang J, Chen D, Peng T, Marques JT, Hartmann R, Martins NE, Imler JL. 2'3'-cGAMP triggers a STING- and NF-κB-dependent broad antiviral response in Drosophila. Sci Signal 2020; 13:13/660/eabc4537. [PMID: 33262294 DOI: 10.1126/scisignal.abc4537] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We previously reported that an ortholog of STING regulates infection by picorna-like viruses in Drosophila In mammals, STING is activated by the cyclic dinucleotide 2'3'-cGAMP produced by cGAS, which acts as a receptor for cytosolic DNA. Here, we showed that injection of flies with 2'3'-cGAMP induced the expression of dSTING-regulated genes. Coinjection of 2'3'-cGAMP with a panel of RNA or DNA viruses resulted in substantially reduced viral replication. This 2'3'-cGAMP-mediated protection was still observed in flies with mutations in Atg7 and AGO2, genes that encode key components of the autophagy and small interfering RNA pathways, respectively. By contrast, this protection was abrogated in flies with mutations in the gene encoding the NF-κB transcription factor Relish. Transcriptomic analysis of 2'3'-cGAMP-injected flies revealed a complex response pattern in which genes were rapidly induced, induced after a delay, or induced in a sustained manner. Our results reveal that dSTING regulates an NF-κB-dependent antiviral program that predates the emergence of interferons in vertebrates.
Collapse
Affiliation(s)
- Hua Cai
- Sino-French Hoffmann Institute, State Key Laboratory of Respiratory Disease, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China.,Université de Strasbourg, CNRS UPR 9022, 67084 Strasbourg, France
| | - Andreas Holleufer
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Bine Simonsen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | | | - Aurélie Lemoine
- Université de Strasbourg, CNRS UPR 9022, 67084 Strasbourg, France
| | - Hans Henrik Gad
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Jingxian Huang
- Sino-French Hoffmann Institute, State Key Laboratory of Respiratory Disease, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China
| | - Jieqing Huang
- Sino-French Hoffmann Institute, State Key Laboratory of Respiratory Disease, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China
| | - Di Chen
- Sino-French Hoffmann Institute, State Key Laboratory of Respiratory Disease, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China
| | - Tao Peng
- Sino-French Hoffmann Institute, State Key Laboratory of Respiratory Disease, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China
| | - João T Marques
- Université de Strasbourg, CNRS UPR 9022, INSERM U1257, 67084 Strasbourg, France.,Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais CEP 31270901, Brazil
| | - Rune Hartmann
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark.
| | - Nelson E Martins
- Université de Strasbourg, CNRS UPR 9022, 67084 Strasbourg, France.
| | - Jean-Luc Imler
- Sino-French Hoffmann Institute, State Key Laboratory of Respiratory Disease, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China.,Université de Strasbourg, CNRS UPR 9022, 67084 Strasbourg, France
| |
Collapse
|
19
|
Tan K, Zhou M, Jiang H, Jiang D, Li Y, Wang W. siRNA-Mediated MrIAG Silencing Induces Sex Reversal in Macrobrachium rosenbergii. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:456-466. [PMID: 32337657 DOI: 10.1007/s10126-020-09965-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
The insulin-like androgenic gland (IAG) gene is well known in male crustacean, and it is a key regulator in male sexual differentiation and maintaining the male sexual characteristic. The neo-female can be produced by silencing the MrIAG (Macrobrachium rosenbergii Insulin-like Androgenic Gland) in male Macrobrachium rosenbergii. This is the first time to use siRNA approach to silenced MrIAG in male M. rosenbergii. In the current study, the optimal injection dosage to achieve sex reversal is 0.5 μg/g body weight. After MrIAG silencing, the expression level of Dmrt11e, Dmrt99b, MRPINK, Mrr, Sxl1, and Sxl2 decreased significantly. As their long-term silencing effect of MrIAG, the dsRNA and siRNA approaches produce three and two individual neo-females, respectively. The neo-female has a wider brood chamber, ovipositing setae, and ovigerous setae, which is resembled normal female. After a long-term silencing with siRNA, most of the germ cells were arrested in spermatocytes stage, but the spermatocytes in control can further developed into spermatozoon. The seminiferous tubules are loosely arranged and the spermatocytes are more than spermatozoon in the 0.5 μg/g body weight treatment dose. This current study suggests a new path to obtain neo-females through siRNA silencing.
Collapse
Affiliation(s)
- Kianann Tan
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - Miao Zhou
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huigong Jiang
- College of Natural and Applied Sciences, University of Guam, Mangilao, GU, USA
| | - Donghuo Jiang
- College of Natural and Applied Sciences, University of Guam, Mangilao, GU, USA
| | - Yanhe Li
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Weimin Wang
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
20
|
Ge HL, Tan K, Shi LL, Sun R, Wang WM, Li YH. Comparison of effects of dsRNA and siRNA RNA interference on insulin-like androgenic gland gene (IAG) in red swamp crayfish Procambarus clarkii. Gene 2020; 752:144783. [PMID: 32428699 DOI: 10.1016/j.gene.2020.144783] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/25/2020] [Accepted: 05/14/2020] [Indexed: 02/08/2023]
Abstract
RNA interference (RNAi), which employs double-strand RNA (dsRNA) or small interference RNA (siRNA), is a popular reverse genetic manipulation tool to study gene function. Presently, there is few reports on the implementation of RNAi on the insulin-like androgenic gland gene (IAG) in red swamp crayfish Procambarus clarkii. In this study, the effective sequence of siRNA and optimal injection dose were determined, and the effects of RNAi using dsRNA, siRNA, and long-term RNAi were investigated. The results showed that the doses of 0.5 and 1 µg/g of body weight of IAG-siRNA3 produced significantly better inhibition than 0.1 µg/g. qPCR assays showed that both dsRNA and siRNA silenced the IAG expression in five tissues (brain, ventral nerve cord, androgenic gland, testis, and vas deferens) in adult P. clarkii, with the effectiveness decreasing over time, inhibiting the production of spermatid. dsRNA exhibited a longer interference effect than siRNA in adults. For long-term interference (P. clarkii juveniles were injected 7 times with 1 µg/g of body weight of IAG-dsRNA), and found that the secondary sexual characteristics of juveniles were affected, while the control group developed normally. The results of this study could lay the foundation for crayfish sex reversal with IAG RNAi, and provide the reference for those studies in which the technique of RNAi was used.
Collapse
Affiliation(s)
- Hai-Lun Ge
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China.
| | - Kianann Tan
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China.
| | - Lin-Lin Shi
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China.
| | - Rong Sun
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China.
| | - Wei-Min Wang
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China.
| | - Yan-He Li
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China.
| |
Collapse
|
21
|
Molecular characteristics and abundance of insulin-like androgenic gland hormone and effects of RNA interference in Eriocheir sinensis. Anim Reprod Sci 2020; 215:106332. [DOI: 10.1016/j.anireprosci.2020.106332] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 02/10/2020] [Accepted: 02/24/2020] [Indexed: 01/30/2023]
|
22
|
Li L, Hong Y, Qiu H, Yang F, Li F. VP19 is important for the envelope coating of white spot syndrome virus. Virus Res 2019; 270:197666. [PMID: 31306682 DOI: 10.1016/j.virusres.2019.197666] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/10/2019] [Accepted: 07/12/2019] [Indexed: 12/17/2022]
Abstract
VP19 is a major envelope protein of white spot syndrome virus (WSSV), an important pathogen of farmed shrimp. However, the exact function of VP19 in WSSV assembly and infection is unknown. To understand the function of VP19, the gene was knocked down by RNA interference. We found that the dsRNA specific for vp19 gene dramatically reduced the replication of WSSV genomic DNA in infected animals. Further investigation by transmission electron microscopy showed that inhibition of VP19 prevented envelope coating of progeny virions, resulting in a high amount of immature virus particles without outer layer (envelope) in the host cells. This finding was further confirmed by SDS-PAGE analysis, which showed the loss of VP19 and other envelope proteins from the improperly assembled virions. These results suggest that VP19 is essential for WSSV envelope coating.
Collapse
Affiliation(s)
- Li Li
- College of Tea and Food Science, Wuyi University, Wuyishan, Fujian, China
| | - Yongcong Hong
- College of Tea and Food Science, Wuyi University, Wuyishan, Fujian, China
| | - Huaina Qiu
- Key Laboratory of Marine Genetic Resources of State Oceanic Administration, State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Feng Yang
- Key Laboratory of Marine Genetic Resources of State Oceanic Administration, State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Fang Li
- Key Laboratory of Marine Genetic Resources of State Oceanic Administration, State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China.
| |
Collapse
|
23
|
Abstract
Immunological memory is one of the core topics of contemporary immunology. Yet there are many discussions about what this concept precisely means, which components of the immune system display it, and in which phyla it exists. Recent years have seen the multiplication of claims that immunological memory can be found in "innate" immune cells and in many phyla beyond vertebrates (including invertebrates, plants, but also bacteria and archaea), as well as the multiplication of concepts to account for these phenomena, such as "innate immune memory" or "trained immunity". The aim of this critical review is to analyze these recent claims and concepts, and to distinguish ideas that have often been misleadingly associated, such as memory, adaptive immunity, and specificity. We argue that immunological memory is a gradual and multidimensional phenomenon, irreducible to any simple dichotomy, and we show why adopting this new view matters from an experimental and therapeutic point of view.
Collapse
Affiliation(s)
- Thomas Pradeu
- ImmunoConcept, CNRS & University of Bordeaux, Bordeaux, France
| | | |
Collapse
|
24
|
Vogel E, Santos D, Mingels L, Verdonckt TW, Broeck JV. RNA Interference in Insects: Protecting Beneficials and Controlling Pests. Front Physiol 2019; 9:1912. [PMID: 30687124 PMCID: PMC6336832 DOI: 10.3389/fphys.2018.01912] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 12/18/2018] [Indexed: 01/01/2023] Open
Abstract
Insects constitute the largest and most diverse group of animals on Earth with an equally diverse virome. The main antiviral immune system of these animals is the post-transcriptional gene-silencing mechanism known as RNA(i) interference. Furthermore, this process can be artificially triggered via delivery of gene-specific double-stranded RNA molecules, leading to specific endogenous gene silencing. This is called RNAi technology and has important applications in several fields. In this paper, we review RNAi mechanisms in insects as well as the potential of RNAi technology to contribute to species-specific insecticidal strategies. Regarding this aspect, we cover the range of strategies considered and investigated so far, as well as their limitations and the most promising approaches to overcome them. Additionally, we discuss patterns of viral infection, specifically persistent and acute insect viral infections. In the latter case, we focus on infections affecting economically relevant species. Within this scope, we review the use of insect-specific viruses as bio-insecticides. Last, we discuss RNAi-based strategies to protect beneficial insects from harmful viral infections and their potential practical application. As a whole, this manuscript stresses the impact of insect viruses and RNAi technology in human life, highlighting clear lines of investigation within an exciting and promising field of research.
Collapse
|
25
|
Li C, Weng S, He J. WSSV-host interaction: Host response and immune evasion. FISH & SHELLFISH IMMUNOLOGY 2019; 84:558-571. [PMID: 30352263 DOI: 10.1016/j.fsi.2018.10.043] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/15/2018] [Accepted: 10/20/2018] [Indexed: 06/08/2023]
Abstract
As invertebrates, shrimps rely on multiple innate defense reactions, including humoral immunity and cellular immunity to recognize and eliminate various invaders, such as viruses. White spot syndrome virus (WSSV) causes the most prevalent and devastating viral disease in penaeid shrimps, which are the most widely cultured species in the coastal waters worldwide. In the last couple of decades, studies about WSSV implicate a dual role of the immune system in protecting shrimps against the infection; these studies also explore on the pathogenesis of WSSV infection. Herein, we review our current knowledge of the innate immune responses of shrimps to WSSV, as well as the molecular mechanisms used by this virus to evade host immune responses or actively subvert them for its own benefit. Deciphering the interactions between WSSV and the shrimp host is paramount to understanding the mechanisms that regulate the balance between immune-mediated protection and pathogenesis during viral infection and to the development of a safe and effective WSSV defensive strategy.
Collapse
Affiliation(s)
- Chaozheng Li
- State Key Laboratory for Biocontrol / School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, PR China
| | - Shaoping Weng
- State Key Laboratory for Biocontrol / School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, PR China
| | - Jianguo He
- State Key Laboratory for Biocontrol / School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
26
|
Nucleic Acid Sensing in Invertebrate Antiviral Immunity. NUCLEIC ACID SENSING AND IMMUNITY - PART B 2019; 345:287-360. [DOI: 10.1016/bs.ircmb.2018.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
27
|
Feng SY, Liang GF, Xu ZS, Li AF, Du JX, Song GN, Ren SY, Yang YL, Jiang G. Meta-analysis of antiviral protection of white spot syndrome virus vaccine to the shrimp. FISH & SHELLFISH IMMUNOLOGY 2018; 81:260-265. [PMID: 30010021 DOI: 10.1016/j.fsi.2018.07.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/09/2018] [Accepted: 07/11/2018] [Indexed: 06/08/2023]
Abstract
Currently, white spot syndrome virus (WSSV) is one of the most serious pathogens that impacts shrimp farming around the world. A WSSV vaccine provides a significant protective benefit to the host shrimp. Although various types of vaccines against WSSV have emerged, the immune effects among them were not compared, and it remains unclear which type of vaccine has the strongest protective effect. Meanwhile, due to the lack of effective routes of administration and immunization programs, WSSV vaccines have been greatly limited in the actual shrimp farming. To answer these questions, this study conducted a comprehensive meta-analysis over dozens of studies and compared all types WSSV vaccines, which include sub-unit protein vaccines, whole virus inactivated vaccines, DNA vaccines and RNA-based vaccines. The results showed that the RNA-based vaccine had the highest protection rate over the other three types of vaccines. Among the various sub-unit protein vaccines, VP26 vaccine had the best protective effects than other sub-unit protein vaccines. Moreover, this study demonstrated that vaccines expressed in eukaryotic hosts had higher protection rates than that of prokaryotic systems. Among the three immunization modes (oral administration, immersion and injection) used in monovalent protein vaccines, oral administration had the highest protection rate. In natural conditions, shrimp are mostly infected by the virus orally. These results provide a guide for exploration of a novel WSSV vaccine and help facilitate the application of WSSV vaccines in shrimp farming.
Collapse
Affiliation(s)
- Shu-Ying Feng
- Medical College, Henan University of Science and Technology, Luoyang, Henan, 471023, China
| | - Gao-Feng Liang
- Medical College, Henan University of Science and Technology, Luoyang, Henan, 471023, China
| | - Zheng-Shun Xu
- Medical College, Henan University of Science and Technology, Luoyang, Henan, 471023, China
| | - Ai-Fang Li
- Medical College, Henan University of Science and Technology, Luoyang, Henan, 471023, China
| | - Jing-Xia Du
- Medical College, Henan University of Science and Technology, Luoyang, Henan, 471023, China
| | - Guan-Nan Song
- Medical College, Henan University of Science and Technology, Luoyang, Henan, 471023, China
| | - Shai-Yu Ren
- Medical College, Henan University of Science and Technology, Luoyang, Henan, 471023, China
| | - Yu-Lin Yang
- Medical College, Henan University of Science and Technology, Luoyang, Henan, 471023, China
| | - Guanglong Jiang
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, IN, 46202, USA; Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, IN, 46202, USA.
| |
Collapse
|
28
|
Li H, Yin B, Wang S, Fu Q, Xiao B, Lǚ K, He J, Li C. RNAi screening identifies a new Toll from shrimp Litopenaeus vannamei that restricts WSSV infection through activating Dorsal to induce antimicrobial peptides. PLoS Pathog 2018; 14:e1007109. [PMID: 30256850 PMCID: PMC6175524 DOI: 10.1371/journal.ppat.1007109] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 10/08/2018] [Accepted: 09/10/2018] [Indexed: 12/21/2022] Open
Abstract
The function of Toll pathway defense against bacterial infection has been well established in shrimp, however how this pathway responds to viral infection is still largely unknown. In this study, we report the Toll4-Dorsal-AMPs cascade restricts the white spot syndrome virus (WSSV) infection of shrimp. A total of nine Tolls from Litopenaeus vannamei namely Toll1-9 are identified, and RNAi screening in vivo reveals the Toll4 is important for shrimp to oppose WSSV infection. Knockdown of Toll4 results in elevated viral loads and renders shrimp more susceptible to WSSV. Furthermore, Toll4 could be a one of upstream pattern recognition receptor (PRR) to detect WSSV, and thereby leading to nuclear translocation and phosphorylation of Dorsal, the known NF-κB transcription factor of the canonical Toll pathway. More importantly, silencing of Toll4 and Dorsal contributes to impaired expression of a specific set of antimicrobial peptides (AMPs) such as anti-LPS-factor (ALF) and lysozyme (LYZ) family, which exert potent anti-WSSV activity. Two AMPs of ALF1 and LYZ1 as representatives are demonstrated to have the ability to interact with several WSSV structural proteins to inhibit viral infection. Taken together, we therefore identify that the Toll4-Dorsal pathway mediates strong resistance to WSSV infection by inducing some specific AMPs. The TLR pathway mediated antiviral immune response is well identified in mammals, yet, Toll pathway governing this protection in invertebrates remains unknown. In the present study, we uncover that a shrimp Toll4 from a total of nine Tolls in L. vannamei confers resistance to WSSV thought inducing the NF-κB transcription factor Dorsal to inspire the production of some antimicrobial peptides (AMPs) with antiviral activity. The anti-LPS-factor (ALF) and lysozyme (LYZ) family are identified as the Toll4-Dorsal pathway targeted genes with the ability to interact with viral structural proteins in response to WSSV infection. These results suggest that the Toll receptor induces the expression of AMPs with antiviral activity could be a general antiviral mechanism in invertebrates and Toll pathway established antiviral defense could be conserved during evolution.
Collapse
Affiliation(s)
- Haoyang Li
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, P. R. China
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, P. R. China
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Sun Yat-sen University, Guangzhou, P. R. China
| | - Bin Yin
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, P. R. China
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Sun Yat-sen University, Guangzhou, P. R. China
| | - Sheng Wang
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, P. R. China
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Sun Yat-sen University, Guangzhou, P. R. China
| | - Qihui Fu
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, P. R. China
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Sun Yat-sen University, Guangzhou, P. R. China
| | - Bang Xiao
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, P. R. China
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Sun Yat-sen University, Guangzhou, P. R. China
| | - Kai Lǚ
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, P. R. China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, P. R. China
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Sun Yat-sen University, Guangzhou, P. R. China
| | - Jianguo He
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, P. R. China
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, P. R. China
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Sun Yat-sen University, Guangzhou, P. R. China
- * E-mail: (JH); (CL)
| | - Chaozheng Li
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, P. R. China
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, P. R. China
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Sun Yat-sen University, Guangzhou, P. R. China
- * E-mail: (JH); (CL)
| |
Collapse
|
29
|
Guanzon DAV, Maningas MBB. Functional elucidation of LvToll 3 receptor from P. vannamei through RNA interference and its potential role in the shrimp antiviral response. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 84:172-180. [PMID: 29421160 DOI: 10.1016/j.dci.2018.01.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 01/26/2018] [Accepted: 01/27/2018] [Indexed: 06/08/2023]
Abstract
There is a continuing debate on whether an antiviral immunity similar to vertebrate interferon response exists in invertebrates. Recent advances in penaeid immunology identified several new members of the Toll receptor family and one of these is LvToll3 (Litopenaeus vannamei Toll3). It is hypothesized in this study that LvToll3 responds to pathogen associated molecular patterns (PAMPs) such as dsRNA, which then activates certain antiviral pathways in penaeids. RNA interference (RNAi) was used to determine differences in the expression levels of specific genes putatively involved in the antiviral response through qPCR. Results showed that LvToll3 upregulation could be elicited through the introduction of double stranded RNA (dsRNA) regardless of sequence relative to initial levels in the 3rd hour. Furthermore, statistically intriguing trend in the overall expression of Vago 4/5 and Interferon regulatory factor (IRF) suggests that both these genes are affected by the expression of LvToll3. Dicer showed no statistical difference between the experimentally treated (LvToll3-dsRNA), positive control (GFP-dsRNA), and control (PBS) samples corroborating the assertion that dicer is part of another antiviral mechanism that acts in concert with Toll system. These findings suggests that LvToll3 plays a critical role in penaeid antiviral immunity when molecular patterns associated with viruses are detected.
Collapse
Affiliation(s)
| | - Mary Beth B Maningas
- The Graduate School, University of Santo Tomas, España, 1015, Manila, Philippines; Department of Biological Sciences, College of Science, University of Santo Tomas, España, 1015, Manila, Philippines; Research Center for the Natural and Applied Sciences, Molecular Biology and Biotechnology Laboratory, University of Santo Tomas, España, 1015, Manila, Philippines.
| |
Collapse
|
30
|
Hernández-Palomares MLE, Godoy-Lugo JA, Gómez-Jiménez S, Gámez-Alejo LA, Ortiz RM, Muñoz-Valle JF, Peregrino-Uriarte AB, Yepiz-Plascencia G, Rosas-Rodríguez JA, Soñanez-Organis JG. Regulation of lactate dehydrogenase in response to WSSV infection in the shrimp Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2018; 74:401-409. [PMID: 29337249 DOI: 10.1016/j.fsi.2018.01.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/17/2017] [Accepted: 01/11/2018] [Indexed: 06/07/2023]
Abstract
Lactate dehydrogenase (LDH) is key for anaerobic glycolysis. LDH is induced by the hypoxia inducible factor -1 (HIF-1). HIF-1 induces genes involved in glucose metabolism and regulates cellular oxygen homeostasis. HIF-1 is formed by a regulatory α-subunit (HIF-1α) and a constitutive β-subunit (HIF-1β). The white spot syndrome virus (WSSV) induces anaerobic glycolysis in shrimp hemocytes, associated with lactate accumulation. Although infection and lactate production are associated, the LDH role in WSSV-infected shrimp has not been examined. In this work, the effects of HIF-1 silencing on the expression of two LDH subunits (LDHvan-1 and LDHvan-2) in shrimp infected with the WSSV were studied. HIF-1α transcripts increased in gills, hepatopancreas, and muscle after WSSV infection, while HIF-1β remained constitutively expressed. The expression for both LDH subunits increased in each tissue evaluated during the WSSV infection, translating into increased enzyme activity. Glucose concentration increased in each tissue evaluated, while lactate increased in gills and hepatopancreas, but not in muscle. Silencing of HIF-1α blocked the increase of LDH expression and enzyme activity, along with glucose (all tissues) and lactate (gills and hepatopancreas) concentrations produced by WSSV infection. These results demonstrate that HIF-1 up regulates the expression of LDH subunits during WSSV infection, and that this induction contributes to substrate metabolism in energetically active tissues of infected shrimp.
Collapse
Affiliation(s)
- M L E Hernández-Palomares
- Centro de Investigación en Alimentación y Desarrollo (CIAD), Carretera a la Victoria KM. 0.6, Hermosillo, Sonora, C.P. 83304, Mexico
| | - J A Godoy-Lugo
- Universidad de Sonora, Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora Unidad Regional Sur, Lázaro Cárdenas #100, Col. Francisco Villa, Apartado Postal 85390, Navojoa, Sonora, Mexico
| | - S Gómez-Jiménez
- Centro de Investigación en Alimentación y Desarrollo (CIAD), Carretera a la Victoria KM. 0.6, Hermosillo, Sonora, C.P. 83304, Mexico
| | - L A Gámez-Alejo
- Centro de Investigación en Alimentación y Desarrollo (CIAD), Carretera a la Victoria KM. 0.6, Hermosillo, Sonora, C.P. 83304, Mexico
| | - R M Ortiz
- School of Natural Sciences, University of California Merced, 5200 N Lake Road, Merced, CA, 95343, USA
| | - J F Muñoz-Valle
- Instituto de Investigación en Ciencias Biomédicas, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - A B Peregrino-Uriarte
- Centro de Investigación en Alimentación y Desarrollo (CIAD), Carretera a la Victoria KM. 0.6, Hermosillo, Sonora, C.P. 83304, Mexico
| | - G Yepiz-Plascencia
- Centro de Investigación en Alimentación y Desarrollo (CIAD), Carretera a la Victoria KM. 0.6, Hermosillo, Sonora, C.P. 83304, Mexico
| | - J A Rosas-Rodríguez
- Universidad de Sonora, Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora Unidad Regional Sur, Lázaro Cárdenas #100, Col. Francisco Villa, Apartado Postal 85390, Navojoa, Sonora, Mexico
| | - J G Soñanez-Organis
- Universidad de Sonora, Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora Unidad Regional Sur, Lázaro Cárdenas #100, Col. Francisco Villa, Apartado Postal 85390, Navojoa, Sonora, Mexico.
| |
Collapse
|
31
|
Shekhar MS, Gomathi A, Dubey NK, Vinaya Kumar K, Vijayan KK. Effect of immune gene silencing in WSSV infected tiger shrimp Penaeus monodon. FISH & SHELLFISH IMMUNOLOGY 2017; 70:252-259. [PMID: 28882801 DOI: 10.1016/j.fsi.2017.09.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/28/2017] [Accepted: 09/03/2017] [Indexed: 06/07/2023]
Abstract
White spot syndrome virus, continues to cause huge economic loss to aquaculture industry. In the absence of effective therapeutics to control WSSV, it is important to understand the host pathogen interaction at the molecular level. Suppression subtractive hybridization (SSH) cDNA library was constructed which led to identification of several differentially expressed genes in response to WSSV infection in Penaeus monodon. The genes expressed in SSH cDNA library of shrimp gill and gut tissues belonged to a wide range of biological functions. The three differentially expressed genes, Single von Willebrand factor type C domain protein (pmSVC), P53 protein gene (pmP53) and ADP ribosylation factor (pmArf) were up-regulated against WSSV infection and were further characterized by gene silencing to study the role of these shrimp immune genes on WSSV multiplication. The sequence-specific knock down of pmSVC, pmP53 and pmArf using the dsRNA revealed that in pmSVC-dsRNA inoculated shrimps WSSV replication was more with increased viral copy numbers when compared with pmP53-dsRNA and pmArf -dsRNA inoculated shrimps. The varied response of immune genes to WSSV infection, indicated that host genes may either inhibit virus replication to some extent or might act as a target to facilitate viral pathogenesis.
Collapse
Affiliation(s)
- M S Shekhar
- Genetics and Biotechnology Unit, Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, R.A.Puram, Chennai, 600028, India.
| | - A Gomathi
- Genetics and Biotechnology Unit, Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, R.A.Puram, Chennai, 600028, India
| | - N K Dubey
- Genetics and Biotechnology Unit, Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, R.A.Puram, Chennai, 600028, India
| | - K Vinaya Kumar
- Genetics and Biotechnology Unit, Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, R.A.Puram, Chennai, 600028, India
| | - K K Vijayan
- Genetics and Biotechnology Unit, Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, R.A.Puram, Chennai, 600028, India
| |
Collapse
|
32
|
Øvergård AC, Hamre LA, Kongshaug H, Nilsen F. RNAi-mediated treatment of two vertically transmitted rhabdovirus infecting the salmon louse (Lepeophtheirus salmonis). Sci Rep 2017; 7:14030. [PMID: 29070796 PMCID: PMC5656668 DOI: 10.1038/s41598-017-14282-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/06/2017] [Indexed: 12/21/2022] Open
Abstract
Rhabdoviruses are a family of enveloped negative-sense single-stranded RNA viruses infecting a variety of hosts. Recently, two vertically transmitted salmon louse (Lepeophtheirus salmonis) rhabdoviruses (LsRV) have been identified. The prevalence of these viruses was measured along the Norwegian coast and found to be close to 100%, and with the present lack of suitable cell lines to propagate these viruses, it is challenging to obtain material to study their host impact and infection routes. Thus, virus free lice strains were established from virus infected lice carrying one or both LsRVs by treating them with N protein dsRNA twice during development. The viral replication of the N protein was specifically down-regulated following introduction of virus-specific dsRNA, and virus-free lice strains were maintained for several generations. A preliminary study on infection routes suggested that the LsRV-No9 is maternally transmitted, and that the virus transmits from males to females horizontally. The ability to produce virus free strains allows for further studies on transmission modes and how these viruses influences on the L.salmonis interaction with its salmonid host. Moreover, this study provides a general fundament for future studies on how vertically transmitted rhabdoviruses influence the biology of their arthropod hosts.
Collapse
Affiliation(s)
- Aina-Cathrine Øvergård
- SLCR-Sea Lice Research Centre, Department of Biology, University of Bergen, Thormøhlensgt. 55, Pb. 7803, NO-5020, Bergen, Norway.
| | - Lars Are Hamre
- SLCR-Sea Lice Research Centre, Department of Biology, University of Bergen, Thormøhlensgt. 55, Pb. 7803, NO-5020, Bergen, Norway
| | - Heidi Kongshaug
- SLCR-Sea Lice Research Centre, Department of Biology, University of Bergen, Thormøhlensgt. 55, Pb. 7803, NO-5020, Bergen, Norway
| | - Frank Nilsen
- SLCR-Sea Lice Research Centre, Department of Biology, University of Bergen, Thormøhlensgt. 55, Pb. 7803, NO-5020, Bergen, Norway
| |
Collapse
|
33
|
Kongprajug A, Panyim S, Ongvarrasopone C. Suppression of PmRab11 inhibits YHV infection in Penaeus monodon. FISH & SHELLFISH IMMUNOLOGY 2017; 66:433-444. [PMID: 28527895 PMCID: PMC7173183 DOI: 10.1016/j.fsi.2017.05.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/16/2017] [Accepted: 05/15/2017] [Indexed: 05/28/2023]
Abstract
Yellow head virus (YHV) is one of the most serious pathogens that causes worldwide shrimp production loss. It enters the cells via clathrin-mediated endocytosis and utilizes small GTPase Rab proteins such as PmRab5 and PmRab7 for intracellular trafficking. In this study, molecular cloning and functional analysis of Rab11 during YHV infection were investigated. PmRab11 cDNA was cloned by Rapid amplification of cDNA ends (RACEs). It contained two forms of sizes 1200 and 1050 bp distinct at the 5' UTR. The coding region of PmRab11 was 645 bp, encoding 214 amino acids. It also demonstrated the characteristics of Rab11 proteins containing five GTP-binding domains, five Rab family domains, four Rab subfamily domains and a prenylation site at the C-terminus. Suppression of PmRab11 using dsRNA-PmRab11 either before or after YHV-challenge resulted in significant inhibition of YHV levels in the hemocytes and viral release in the supernatant in both mRNA and protein levels. In addition, the silencing effect of PmRab11 in YHV-infected shrimps resulted in a delay in shrimp mortality for at least 2 days. Immunofluorescence study showed co-localization between PmRab11 and YHV at 24-72 h post YHV-challenge. In contrast, the co-localization signals were absence in the PmRab11 knockdown hemocytes and the YHV signals accumulated at the perinuclear region at 24 h post YHV-challenge. Then, accumulation of YHV was hardly observed after 48-72 h. These results suggested that PmRab11 is required for YHV infection in shrimp.
Collapse
Affiliation(s)
- Akechai Kongprajug
- Institute of Molecular Biosciences, Mahidol University (Salaya Campus), Nakhon Pathom, 73170 Thailand
| | - Sakol Panyim
- Institute of Molecular Biosciences, Mahidol University (Salaya Campus), Nakhon Pathom, 73170 Thailand; Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400 Thailand
| | | |
Collapse
|
34
|
Recent progress in the development of white spot syndrome virus vaccines for protecting shrimp against viral infection. Arch Virol 2017. [DOI: 10.1007/s00705-017-3450-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
35
|
Lai AG, Aboobaker AA. Comparative genomic analysis of innate immunity reveals novel and conserved components in crustacean food crop species. BMC Genomics 2017; 18:389. [PMID: 28521727 PMCID: PMC5437397 DOI: 10.1186/s12864-017-3769-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/07/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Growing global demands for crustacean food crop species have driven large investments in aquaculture research worldwide. However, large-scale production is susceptible to pathogen-mediated destruction particularly in developing economies. Thus, a thorough understanding of the immune system components of food crop species is imperative for research to combat pathogens. RESULTS Through a comparative genomics approach utilising extant data from 55 species, we describe the innate immune system of the class Malacostraca, which includes all food crop species. We identify 7407 malacostracan genes from 39 gene families implicated in different aspects of host defence and demonstrate dynamic evolution of innate immunity components within this group. Malacostracans have achieved flexibility in recognising infectious agents through divergent evolution and expansion of pathogen recognition receptors genes. Antiviral RNAi, Toll and JAK-STAT signal transduction pathways have remained conserved within Malacostraca, although the Imd pathway appears to lack several key components. Immune effectors such as the antimicrobial peptides (AMPs) have unique evolutionary profiles, with many malacostracan AMPs not found in other arthropods. Lastly, we describe four putative novel immune gene families, potentially representing important evolutionary novelties of the malacostracan immune system. CONCLUSION Our analyses across the broader Malacostraca have allowed us to not only draw analogies with other arthropods but also to identify evolutionary novelties in immune modulation components and form strong hypotheses as to when key pathways have evolved or diverged. This will serve as a key resource for future immunology research in crustacean food crops.
Collapse
Affiliation(s)
- Alvina G Lai
- Department of Zoology, University of Oxford, Tinbergen Building, South Parks Road, Oxford, OX1 3PS, UK.
| | - A Aziz Aboobaker
- Department of Zoology, University of Oxford, Tinbergen Building, South Parks Road, Oxford, OX1 3PS, UK.
| |
Collapse
|
36
|
Nilsen P, Karlsen M, Sritunyalucksana K, Thitamadee S. White spot syndrome virus VP28 specific double-stranded RNA provides protection through a highly focused siRNA population. Sci Rep 2017; 7:1028. [PMID: 28432348 PMCID: PMC5430881 DOI: 10.1038/s41598-017-01181-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/27/2017] [Indexed: 11/09/2022] Open
Abstract
Several studies have demonstrated that injection of double-stranded RNAs (dsRNA) homologous to mRNA for the white spot syndrome virus (WSSV) viral protein 28 (VP28) can induce protection in shrimp against WSSV through RNA interference (RNAi). In comparison to shrimp injected with either PBS or a green fluorescent protein (GFP) nonspecific dsRNA, we obtained nearly complete protection against WSSV infection in shrimp injected with VP28 dsRNA. Upregulation of host genes associated with small RNA silencing was measured 48 hours post treatment in groups injected with dsRNA, and although the VP28-treated group remained moderately upregulated after challenge with WSSV, many-fold higher induction was observed in both control groups reflecting the ongoing viral infection. RNA sequencing of VP28-treated shrimp demonstrated a siRNA population dominated by high levels of 22 nt long molecules narrowly targeting the VP28 mRNA both before and after challenge with WSSV. Conversely, while no siRNAs targeting WSSV were detected before challenge, a broad response of 22 nt siRNAs mapping across the entire WSSV genome were found in both control groups after challenge. These results give detailed insight to how dsRNA targeting VP28 function to induce protection against WSSV, by generating a highly focused population of 22 nt long siRNA molecules.
Collapse
Affiliation(s)
- Pål Nilsen
- PHARMAQ AS, PO Box 267, N-0213, Oslo, Norway. .,Center of Excellence for Shrimp Molecular biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand. .,Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| | | | - Kallaya Sritunyalucksana
- Shrimp-Pathogen Interaction (SPI) Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Yothi Office, Rama VI Rd., Bangkok, 10400, Thailand
| | - Siripong Thitamadee
- Center of Excellence for Shrimp Molecular biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.,Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| |
Collapse
|
37
|
Role of Litopenaeus vannamei Yin Yang 1 in the Regulation of the White Spot Syndrome Virus Immediate Early Gene ie1. J Virol 2017; 91:JVI.02314-16. [PMID: 28077637 DOI: 10.1128/jvi.02314-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 12/29/2016] [Indexed: 01/26/2023] Open
Abstract
Yin Yang 1 (YY1) is a multifunctional zinc finger transcription factor that regulates many key cellular processes. In this study, we report the cloning of YY1 from Litopenaeus vannamei shrimp (LvYY1). This study shows that LvYY1 is ubiquitously expressed in shrimp tissues, and knockdown of LvYY1 expression by double-stranded RNA (dsRNA) injection in white spot syndrome virus (WSSV)-infected shrimp reduced both mRNA levels of the WSSV immediate early gene ie1 as well as overall copy numbers of the WSSV genome. The cumulative mortality rate of infected shrimp also declined with LvYY1 dsRNA injection. Using an insect cell model, we observed that LvYY1 activates ie1 expression, and a mutation introduced into the ie1 promoter subsequently repressed this capability. Moreover, reporter assay results suggested that LvYY1 is involved in basal transcriptional regulation via an interaction with L. vannamei TATA-binding protein (LvTBP). Electrophoretic mobility shift assay (EMSA) results further indicated that LvYY1 binds to a YY1-binding site in the region between positions -119 and -126 in the ie1 promoter. Chromatin immunoprecipitation analysis also confirmed that LvYY1 binds to the ie1 promoter in WSSV-infected shrimp. Taken together, these results indicate that WSSV uses host LvYY1 to enhance ie1 expression via a YY1-binding site and the TATA box in the ie1 promoter, thereby facilitating lytic activation and viral replication.IMPORTANCE WSSV has long been a scourge of the shrimp industry and remains a serious global threat. Thus, there is a pressing need to understand how the interactions between WSSV and its host drive infection, lytic development, pathogenesis, and mortality. Our successful cloning of L. vannamei YY1 (LvYY1) led to the elucidation of a critical virus-host interaction between LvYY1 and the WSSV immediate early gene ie1 We observed that LvYY1 regulates ie1 expression via a consensus YY1-binding site and TATA box. LvYY1 was also found to interact with L. vannamei TATA-binding protein (LvTBP), which may have an effect on basal transcription. Knockdown of LvYY1 expression inhibited ie1 transcription and subsequently reduced viral DNA replication and decreased cumulative mortality rates of WSSV-infected shrimp. These findings are expected to contribute to future studies involving WSSV-host interactions.
Collapse
|
38
|
Bradford BJ, Cooper CA, Tizard ML, Doran TJ, Hinton TM. RNA interference-based technology: what role in animal agriculture? ANIMAL PRODUCTION SCIENCE 2017. [DOI: 10.1071/an15437] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Animal agriculture faces a broad array of challenges, ranging from disease threats to adverse environmental conditions, while attempting to increase productivity using fewer resources. RNA interference (RNAi) is a biological phenomenon with the potential to provide novel solutions to some of these challenges. Discovered just 20 years ago, the mechanisms underlying RNAi are now well described in plants and animals. Intracellular double-stranded RNA triggers a conserved response that leads to cleavage and degradation of complementary mRNA strands, thereby preventing production of the corresponding protein product. RNAi can be naturally induced by expression of endogenous microRNA, which are critical in the regulation of protein synthesis, providing a mechanism for rapid adaptation of physiological function. This endogenous pathway can be co-opted for targeted RNAi either through delivery of exogenous small interfering RNA (siRNA) into target cells or by transgenic expression of short hairpin RNA (shRNA). Potentially valuable RNAi targets for livestock include endogenous genes such as developmental regulators, transcripts involved in adaptations to new physiological states, immune response mediators, and also exogenous genes such as those encoded by viruses. RNAi approaches have shown promise in cell culture and rodent models as well as some livestock studies, but technical and market barriers still need to be addressed before commercial applications of RNAi in animal agriculture can be realised. Key challenges for exogenous delivery of siRNA include appropriate formulation for physical delivery, internal transport and eventual cellular uptake of the siRNA; additionally, rigorous safety and residue studies in target species will be necessary for siRNA delivery nanoparticles currently under evaluation. However, genomic incorporation of shRNA can overcome these issues, but optimal promoters to drive shRNA expression are needed, and genetic engineering may attract more resistance from consumers than the use of exogenous siRNA. Despite these hurdles, the convergence of greater understanding of RNAi mechanisms, detailed descriptions of regulatory processes in animal development and disease, and breakthroughs in synthetic chemistry and genome engineering has created exciting possibilities for using RNAi to enhance the sustainability of animal agriculture.
Collapse
|
39
|
Pauletto M, Segarra A, Montagnani C, Quillien V, Faury N, Le Grand J, Miner P, Petton B, Labreuche Y, Fleury E, Fabioux C, Bargelloni L, Renault T, Huvet A. Long dsRNAs promote an anti-viral response in Pacific oyster hampering ostreid herpesvirus 1 replication. J Exp Biol 2017; 220:3671-3685. [DOI: 10.1242/jeb.156299] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 08/07/2017] [Indexed: 12/24/2022]
Abstract
Double stranded RNA-mediated genetic interference (RNAi) is a widely used reverse genetic tool for determining the loss-of-function phenotype of a gene. Here, the possible induction of an immune response by long dsRNA was tested in a marine bivalve, i.e. Crassostrea gigas, as well as the specific role of the subunit 2 of the nuclear factor κB inhibitor (IκB2). This gene is a candidate of particular interest for functional investigations in the context of massive mortality oyster events as Cg-IκB2 mRNA levels exhibited significant variation depending on the amount of ostreid herpesvirus 1 (OsHV-1) DNA detected. In the present study, dsRNAs targeting Cg-IκB2 and Green Fluorescence Protein genes were injected in vivo into oysters before being challenged by OsHV-1. Survival appeared close to 100% in both dsRNA injected conditions associated with a low detection of viral DNA and a low expression of a panel of 39 OsHV-1 genes as compared to infected control. Long dsRNA molecules, both Cg-IκB2- and GFP-dsRNA, may have induced an anti-viral state controlling the OsHV-1 replication and precluding the understanding of the Cg-IκB2 specific role. Immune-related genes including Cg-IκB1, Cg-Rel1, Cg-IFI44, Cg-PKR, and Cg-IAP appeared activated in dsRNA-injected condition potentially hampering viral replication and thus conferring a better resistance to OsHV-1 infection. We revealed that long dsRNA-mediated genetic interference triggered an anti-viral state in the oyster, emphasizing the need of new reverse genetics tools for assessing immune gene function and avoiding off-target effects in bivalves.
Collapse
Affiliation(s)
- Marianna Pauletto
- Department of Comparative Biomedicine and Food Science. University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - Amélie Segarra
- Ifremer, Laboratoire de Génétique et Pathologie des Mollusques Marins, 17390 La Tremblade, France
| | - Caroline Montagnani
- Ifremer, IHPE UMR 5244, Univ. Perpignan Via Domitia, CNRS, Univ. Montpellier, F-34095, Montpellier, France
| | - Virgile Quillien
- Ifremer, UMR 6539 CNRS/UBO/IRD/Ifremer, LEMAR, 29280 Plouzané, France
| | - Nicole Faury
- Ifremer, Laboratoire de Génétique et Pathologie des Mollusques Marins, 17390 La Tremblade, France
| | | | - Philippe Miner
- Ifremer, UMR 6539 CNRS/UBO/IRD/Ifremer, LEMAR, 29280 Plouzané, France
| | - Bruno Petton
- Ifremer, UMR 6539 CNRS/UBO/IRD/Ifremer, LEMAR, 29280 Plouzané, France
| | - Yannick Labreuche
- Sorbonne Universités, UPMC Paris 06, CNRS, UMR 8227, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff cedex, France
| | - Elodie Fleury
- Ifremer, UMR 6539 CNRS/UBO/IRD/Ifremer, LEMAR, 29280 Plouzané, France
| | - Caroline Fabioux
- Institut Universitaire Européen de la Mer, Université de Bretagne Occidentale, UMR 6539 CNRS/UBO/IRD/Ifremer, LEMAR, 29280 Plouzané, France
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science. University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - Tristan Renault
- Ifremer, Département Ressources Biologiques et Environnement, rue de l'Ile d'Yeu, 44000 Nantes, France
| | - Arnaud Huvet
- Ifremer, UMR 6539 CNRS/UBO/IRD/Ifremer, LEMAR, 29280 Plouzané, France
| |
Collapse
|
40
|
Itsathitphaisarn O, Thitamadee S, Weerachatyanukul W, Sritunyalucksana K. Potential of RNAi applications to control viral diseases of farmed shrimp. J Invertebr Pathol 2016; 147:76-85. [PMID: 27867019 DOI: 10.1016/j.jip.2016.11.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 11/02/2016] [Accepted: 11/07/2016] [Indexed: 01/08/2023]
Abstract
Viral pathogens pose a primary threat to global shrimp aquaculture. Despite the urgent industry need for them, practical anti-viral control methods are unavailable due, in part, to lack of an adaptive immune response in crustaceans that renders conventional vaccination methods ineffective. One currently studied method of high interest for protecting shrimp against viral infection relies on the post-transcriptional gene silencing mechanism called RNA interference (RNAi) that is induced by gene-specific constructs of double stranded RNA (dsRNA). Although this approach was first described for successful protection of shrimp against white spot disease (WSD) by injecting dsRNA specific to genes of white spot syndrome virus (WSSV) into shrimp in the laboratory in 2005 no practical method for use of dsRNA in shrimp farms has been developed to date. The apparent bottleneck for farm-scale applications of RNAi-mediated viral control in shrimp aquaculture is the lack of simple and cost-effective delivery methods. This review summarizes recent studies on use and delivery of dsRNA to shrimp via injection and oral routes in hatcheries and on farms and it discusses the research directions that might lead to development of practical methods for applications with farmed shrimp. Oral delivery methods tested so far include use of dsRNA-expressing bacteria as a component of dry feed pellets or use of living brine shrimp (Artemia) pre-fed with dsRNA before they are fed to shrimp. Also tested have been dsRNA enclosed in nanocontainers including chitosan, liposomes and viral-like particles (VLP) before direct injection or use as components of feed pellets for hatchery or pond-reared shrimp.
Collapse
Affiliation(s)
- Ornchuma Itsathitphaisarn
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Siripong Thitamadee
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Wattana Weerachatyanukul
- Department of Anatomy and Structural Biology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Kallaya Sritunyalucksana
- Shrimp-Pathogen Interaction (SPI) Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Yothi Office, Rama VI Rd., Bangkok 10400, Thailand.
| |
Collapse
|
41
|
Raftery RM, Walsh DP, Castaño IM, Heise A, Duffy GP, Cryan SA, O'Brien FJ. Delivering Nucleic-Acid Based Nanomedicines on Biomaterial Scaffolds for Orthopedic Tissue Repair: Challenges, Progress and Future Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:5447-5469. [PMID: 26840618 DOI: 10.1002/adma.201505088] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 11/27/2015] [Indexed: 06/05/2023]
Abstract
As well as acting to fill defects and allow for cell infiltration and proliferation in regenerative medicine, biomaterial scaffolds can also act as carriers for therapeutics, further enhancing their efficacy. Drug and protein delivery on scaffolds have shown potential, however, supraphysiological quantities of therapeutic are often released at the defect site, causing off-target side effects and cytotoxicity. Gene therapy involves the introduction of foreign genes into a cell in order to exert an effect; either replacing a missing gene or modulating expression of a protein. State of the art gene therapy also encompasses manipulation of the transcriptome by harnessing RNA interference (RNAi) therapy. The delivery of nucleic acid nanomedicines on biomaterial scaffolds - gene-activated scaffolds -has shown potential for use in a variety of tissue engineering applications, but as of yet, have not reached clinical use. The current state of the art in terms of biomaterial scaffolds and delivery vector materials for gene therapy is reviewed, and the limitations of current procedures discussed. Future directions in the clinical translation of gene-activated scaffolds are also considered, with a particular focus on bone and cartilage tissue regeneration.
Collapse
Affiliation(s)
- Rosanne M Raftery
- Tissue Engineering Research Group (TERG), Dept. of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123, St. Stephens Green, Dublin 2, Dublin, Ireland
- Trinity Centre for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
- Drug Delivery and Advanced Materials Research Team, School of Pharmacy, Royal College of Surgeons in Ireland, 123, St. Stephens Green, Dublin 2, Dublin, Ireland
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland
| | - David P Walsh
- Tissue Engineering Research Group (TERG), Dept. of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123, St. Stephens Green, Dublin 2, Dublin, Ireland
- Trinity Centre for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
- Drug Delivery and Advanced Materials Research Team, School of Pharmacy, Royal College of Surgeons in Ireland, 123, St. Stephens Green, Dublin 2, Dublin, Ireland
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland
| | - Irene Mencía Castaño
- Tissue Engineering Research Group (TERG), Dept. of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123, St. Stephens Green, Dublin 2, Dublin, Ireland
- Trinity Centre for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Andreas Heise
- Tissue Engineering Research Group (TERG), Dept. of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123, St. Stephens Green, Dublin 2, Dublin, Ireland
| | - Garry P Duffy
- Tissue Engineering Research Group (TERG), Dept. of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123, St. Stephens Green, Dublin 2, Dublin, Ireland
- Trinity Centre for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Sally-Ann Cryan
- Tissue Engineering Research Group (TERG), Dept. of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123, St. Stephens Green, Dublin 2, Dublin, Ireland
- Trinity Centre for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
- Drug Delivery and Advanced Materials Research Team, School of Pharmacy, Royal College of Surgeons in Ireland, 123, St. Stephens Green, Dublin 2, Dublin, Ireland
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland
| | - Fergal J O'Brien
- Tissue Engineering Research Group (TERG), Dept. of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123, St. Stephens Green, Dublin 2, Dublin, Ireland
- Trinity Centre for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| |
Collapse
|
42
|
Green TJ, Speck P, Geng L, Raftos D, Beard MR, Helbig KJ. Oyster viperin retains direct antiviral activity and its transcription occurs via a signalling pathway involving a heat-stable haemolymph protein. J Gen Virol 2016; 96:3587-3597. [PMID: 26407968 DOI: 10.1099/jgv.0.000300] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Little is known about the response of non-model invertebrates, such as oysters, to virus infection. The vertebrate innate immune system detects virus-derived nucleic acids to trigger the type I IFN pathway, leading to the transcription of hundreds of IFN-stimulated genes (ISGs) that exert antiviral functions. Invertebrates were thought to lack the IFN pathway based on the absence of IFN or ISGs encoded in model invertebrate genomes. However, the oyster genome encodes many ISGs, including the well-described antiviral protein viperin. In this study, we characterized oyster viperin and showed that it localizes to caveolin-1 and inhibits dengue virus replication in a heterologous model. In a second set of experiments, we have provided evidence that the haemolymph from poly(I : C)-injected oysters contains a heat-stable, protease-susceptible factor that induces haemocyte transcription of viperin mRNA in conjunction with upregulation of IFN regulatory factor. Collectively, these results support the concept that oysters have antiviral systems that are homologous to the vertebrate IFN pathway.
Collapse
Affiliation(s)
- Timothy J Green
- School of Biological Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia.,Department of Biological Sciences and Sydney Institute of Marine Science, Macquarie University, NSW 2109, Australia
| | - Peter Speck
- School of Biological Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia
| | - Lu Geng
- School of Biological Sciences, University of Adelaide, SA 5001, Australia
| | - David Raftos
- Department of Biological Sciences and Sydney Institute of Marine Science, Macquarie University, NSW 2109, Australia
| | - Michael R Beard
- School of Biological Sciences, University of Adelaide, SA 5001, Australia
| | - Karla J Helbig
- School of Biological Sciences, University of Adelaide, SA 5001, Australia
| |
Collapse
|
43
|
Ramesh Kumar D, Elumalai R, Raichur AM, Sanjuktha M, Rajan JJ, Alavandi SV, Vijayan KK, Poornima M, Santiago TC. Development of antiviral gene therapy for Monodon baculovirus using dsRNA loaded chitosan-dextran sulfate nanocapsule delivery system in Penaeus monodon post-larvae. Antiviral Res 2016; 131:124-30. [PMID: 27132538 DOI: 10.1016/j.antiviral.2016.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 04/18/2016] [Indexed: 12/25/2022]
Abstract
In the present study, a suitable carrier system was developed for the delivery of dsRNA into Penaeus monodon (P. monodon) post larvae to silence the Monodon baculovirus (MBV) structural gene of p74. The carrier system was developed by layer by layer adsorption of oppositely charged chitosan-dextran sulfate, on charged silica nanoparticles. The silica template was removedto produce multilayered hollow nanocapsules (CS-DS) that were utilized for dsRNA loading at an alkaline pH. The capsule's surface was modified by conjugating with shrimp feed for enhanced cellular uptake. In vivo cellular uptake of CS-DS/FITC loaded nanocapsules conjugated with feed was studied after oral administration into post-larvae. The results revealed that the encapsulated FITC was effectively delivered and exhibited a sustained release into the cytoplasm of shrimp post-larvae. The MBV challenge study for structural gene p74was conducted after 3-25 days of post infection (dpi) with respective CS-DS/dsRNA coated with feed. The results showed a significant survival rate of 86.63% and effective gene silencing in P. monodon. Our findings indicated that the delivery of dsRNA using shrimp feed coatedCS-DSnanocapsules could be a novel approach to prevent viral infections in shrimp.
Collapse
Affiliation(s)
- D Ramesh Kumar
- Aquatic Animal Health and Environment Division, Central Institute of Brackishwater Aquaculture, Chennai 600028, India
| | - Rajasegaran Elumalai
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560 012, India
| | - Ashok M Raichur
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560 012, India
| | - M Sanjuktha
- Aquatic Animal Health and Environment Division, Central Institute of Brackishwater Aquaculture, Chennai 600028, India
| | - J J Rajan
- Aquatic Animal Health and Environment Division, Central Institute of Brackishwater Aquaculture, Chennai 600028, India
| | - S V Alavandi
- Aquatic Animal Health and Environment Division, Central Institute of Brackishwater Aquaculture, Chennai 600028, India
| | - K K Vijayan
- Aquatic Animal Health and Environment Division, Central Institute of Brackishwater Aquaculture, Chennai 600028, India
| | - M Poornima
- Aquatic Animal Health and Environment Division, Central Institute of Brackishwater Aquaculture, Chennai 600028, India
| | - T C Santiago
- Aquatic Animal Health and Environment Division, Central Institute of Brackishwater Aquaculture, Chennai 600028, India; Entomology Research Institute, Loyola College, Nungambakkam, Chennai 600 034, India.
| |
Collapse
|
44
|
Gene silencing of VP9 gene impairs WSSV infectivity on Macrobrachium rosenbergii. Virus Res 2016; 214:65-70. [DOI: 10.1016/j.virusres.2016.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 01/19/2016] [Accepted: 01/20/2016] [Indexed: 11/22/2022]
|
45
|
Rao R, Bhassu S, Bing RZY, Alinejad T, Hassan SS, Wang J. A transcriptome study on Macrobrachium rosenbergii hepatopancreas experimentally challenged with white spot syndrome virus (WSSV). J Invertebr Pathol 2016; 136:10-22. [PMID: 26880158 DOI: 10.1016/j.jip.2016.01.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 12/15/2015] [Accepted: 01/04/2016] [Indexed: 11/17/2022]
Abstract
The world production of shrimp such as the Malaysian giant freshwater prawn, Macrobrachium rosenbergii is seriously affected by the white spot syndrome virus (WSSV). There is an urgent need to understand the host pathogen interaction between M. rosenbergii and WSSV which will be able to provide a solution in controlling the spread of this infectious disease and lastly save the aquaculture industry. Now, using Next Generation Sequencing (NGS), we will be able to capture the response of the M. rosenbergii to the pathogen and have a better understanding of the host defence mechanism. Two cDNA libraries, one of WSSV-challenged M. rosenbergii and a normal control one, were sequenced using the Illumina HiSeq™ 2000 platform. After de novo assembly and clustering of the unigenes from both libraries, 63,584 standard unigenes were generated with a mean size of 698bp and an N50 of 1137bp. We successfully annotated 35.31% of all unigenes by using BLASTX program (E-value <10-5) against NCBI non-redundant (Nr), Swiss-Prot, Kyoto Encyclopedia of Genes and Genome pathway (KEGG) and Orthologous Groups of proteins (COG) databases. Gene Ontology (GO) assessment was conducted using BLAST2GO software. Differentially expressed genes (DEGs) by using the FPKM method showed 8443 host genes were significantly up-regulated whereas 5973 genes were significantly down-regulated. The differentially expressed immune related genes were grouped into 15 animal immune functions. The present study showed that WSSV infection has a significant impact on the transcriptome profile of M. rosenbergii's hepatopancreas, and further enhanced the knowledge of this host-virus interaction. Furthermore, the high number of transcripts generated in this study will provide a platform for future genomic research on freshwater prawns.
Collapse
Affiliation(s)
- Rama Rao
- Animal Genetics and Evolutionary Biology Laboratory and Terra-Aqua Lab, Centre for Research in Biotechnology for Agriculture (CEBAR), Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Subha Bhassu
- Animal Genetics and Evolutionary Biology Laboratory and Terra-Aqua Lab, Centre for Research in Biotechnology for Agriculture (CEBAR), Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Robin Zhu Ya Bing
- Beijing Genomics Institute, Shenzhen, 11th Floor, Main Building, Beishan, Industrial Zone, Yantian District, Shenzhen 518083, China.
| | - Tahereh Alinejad
- Animal Genetics and Evolutionary Biology Laboratory and Terra-Aqua Lab, Centre for Research in Biotechnology for Agriculture (CEBAR), Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Sharifah Syed Hassan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Building 3, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia.
| | - Jun Wang
- Animal Genetics and Evolutionary Biology Laboratory and Terra-Aqua Lab, Centre for Research in Biotechnology for Agriculture (CEBAR), Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
46
|
Chimwai C, Tongboonsong P, Namramoon O, Panyim S, Attasart P. A formulated double-stranded RNA diet for reducing Penaeus monodon densovirus infection in black tiger shrimp. J Invertebr Pathol 2016; 134:23-26. [DOI: 10.1016/j.jip.2016.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/30/2015] [Accepted: 01/04/2016] [Indexed: 11/29/2022]
|
47
|
Cowley J. Nidoviruses of Fish and Crustaceans. AQUACULTURE VIROLOGY 2016. [PMCID: PMC7150020 DOI: 10.1016/b978-0-12-801573-5.00032-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Viruses with diverse virion architectures demarcated into four families in the order Nidovirales have been discovered in vertebrate mammalian and fish species, as well as in invertebrate crustacean and mosquito species. The order is unified by nidoviruses sharing intermediate (12.7 kb) to very long (31.7 kb) (+) ssRNA genomes, each possessing a long 5′-terminal gene encoding overlapping ORF1a and ORF1b reading frames that contain a diversity of functionally related enzymes and that are translated in toto using a −1 ribosomal frameshift mechanism, as well as by semiconserved strategies for transcribing a nested set of 3′-coterminal subgenomic mRNAs that translate the viral proteins. The nidovirus that is most important to an aquaculture species is yellow head virus (YHV), which causes disease in shrimp farmed throughout the Eastern Hemisphere and is classified in the genus Okavirus, family Roniviridae. Fathead minnow nidovirus, genus Bafinivirus, subfamily Torovirinae, family Coronaviridae, also causes disease in minnows grown for the baitfish industry in the United States. Virions similar in morphology to okaviruses and bafiniviruses have also been detected in several crab species. Of these, however, only Eriocheir sinensis ronivirus, which causes disease in the Chinese mitten crab, an important freshwater aquaculture species in China, has been shown to possess a ~22 kb ssRNA genome that supports its being a nidovirus, but its taxonomic classification awaits genome sequence analysis. This chapter provides an overview of the structure, replication and biology of these viruses with a particular focus on YHV disease characteristics, diagnostic methods and disease prevention strategies.
Collapse
|
48
|
Chaudhari A, Pathakota GB, Annam PK. Design and Construction of Shrimp Antiviral DNA Vaccines Expressing Long and Short Hairpins for Protection by RNA Interference. Methods Mol Biol 2016; 1404:225-240. [PMID: 27076302 DOI: 10.1007/978-1-4939-3389-1_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
DNA vaccines present the aquaculture industry with an effective and economically viable method of controlling viral pathogens that drastically affect productivity. Since specific immune response is rudimentary in invertebrates, the presence of RNA interference (RNAi) pathway in shrimps provides a promising new approach to vaccination. Plasmid DNA vaccines that express short or long double stranded RNA in vivo have shown protection against viral diseases. The design, construction and considerations for preparing such vaccines are discussed.
Collapse
Affiliation(s)
- Aparna Chaudhari
- ICAR-Central Institute of Fisheries Education, Versova, Andheri West, Mumbai, 400061, India.
| | - Gireesh-Babu Pathakota
- ICAR-Central Institute of Fisheries Education, Versova, Andheri West, Mumbai, 400061, India
| | - Pavan-Kumar Annam
- ICAR-Central Institute of Fisheries Education, Versova, Andheri West, Mumbai, 400061, India
| |
Collapse
|
49
|
Green TJ, Rolland JL, Vergnes A, Raftos D, Montagnani C. OsHV-1 countermeasures to the Pacific oyster's anti-viral response. FISH & SHELLFISH IMMUNOLOGY 2015; 47:435-443. [PMID: 26384844 DOI: 10.1016/j.fsi.2015.09.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/06/2015] [Accepted: 09/14/2015] [Indexed: 06/05/2023]
Abstract
The host-pathogen interactions between the Pacific oyster (Crassostrea gigas) and Ostreid herpesvirus type 1 (OsHV-1) are poorly characterised. Herpesviruses are a group of large, DNA viruses that are known to encode gene products that subvert their host's antiviral response. It is likely that OsHV-1 has also evolved similar strategies as its genome encodes genes with high homology to C. gigas inhibitors of apoptosis (IAPs) and an interferon-stimulated gene (termed CH25H). The first objective of this study was to simultaneously investigate the expression of C. gigas and OsHV-1 genes that share high sequence homology during an acute infection. Comparison of apoptosis-related genes revealed that components of the extrinsic apoptosis pathway (TNF) were induced in response to OsHV-1 infection, but we failed to observe evidence of apoptosis using a combination of biochemical and molecular assays. IAPs encoded by OsHV-1 were highly expressed during the acute stage of infection and may explain why we didn't observe evidence of apoptosis. However, C. gigas must have an alternative mechanism to apoptosis for clearing OsHV-1 from infected gill cells as we observed a reduction in viral DNA between 27 and 54 h post-infection. The reduction of viral DNA in C. gigas gill cells occurred after the up-regulation of interferon-stimulated genes (viperin, PKR, ADAR). In a second objective, we manipulated the host's anti-viral response by injecting C. gigas with a small dose of poly I:C at the time of OsHV-1 infection. This small dose of poly I:C was unable to induce transcription of known antiviral effectors (ISGs), but these oysters were still capable of inhibiting OsHV-1 replication. This result suggests dsRNA induces an anti-viral response that is additional to the IFN-like pathway.
Collapse
Affiliation(s)
- Timothy J Green
- Department of Biological Sciences, Macquarie University, NSW, 2109, Australia; Sydney Institute of Marine Science, Chowder Bay Road, Mosman, NSW, 2088, Australia.
| | - Jean-Luc Rolland
- IFREMER, IHPE, UMR 5244, Univ. Perpignan Via Domitia, CNRS, Univ. Montpellier, F-34095, Montpellier, France
| | - Agnes Vergnes
- IFREMER, IHPE, UMR 5244, Univ. Perpignan Via Domitia, CNRS, Univ. Montpellier, F-34095, Montpellier, France
| | - David Raftos
- Department of Biological Sciences, Macquarie University, NSW, 2109, Australia; Sydney Institute of Marine Science, Chowder Bay Road, Mosman, NSW, 2088, Australia
| | - Caroline Montagnani
- IFREMER, IHPE, UMR 5244, Univ. Perpignan Via Domitia, CNRS, Univ. Montpellier, F-34095, Montpellier, France
| |
Collapse
|
50
|
Li C, Li H, Chen Y, Chen Y, Wang S, Weng SP, Xu X, He J. Activation of Vago by interferon regulatory factor (IRF) suggests an interferon system-like antiviral mechanism in shrimp. Sci Rep 2015; 5:15078. [PMID: 26459861 PMCID: PMC4602278 DOI: 10.1038/srep15078] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/07/2015] [Indexed: 12/27/2022] Open
Abstract
There is a debate on whether invertebrates possess an antiviral immunity similar to the interferon (IFN) system of vertebrates. The Vago gene from arthropods encodes a viral-activated secreted peptide that restricts virus infection through activating the JAK-STAT pathway and is considered to be a cytokine functionally similar to IFN. In this study, the first crustacean IFN regulatory factor (IRF)-like gene was identified in Pacific white shrimp, Litopenaeus vannamei. The L. vannamei IRF showed similar protein nature to mammalian IRFs and could be activated during virus infection. As a transcriptional regulatory factor, L. vannamei IRF could activate the IFN-stimulated response element (ISRE)-containing promoter to regulate the expression of mammalian type I IFNs and initiate an antiviral state in mammalian cells. More importantly, IRF could bind the 5'-untranslated region of L. vannamei Vago4 gene and activate its transcription, suggesting that shrimp Vago may be induced in a similar manner to that of IFNs and supporting the opinion that Vago might function as an IFN-like molecule in invertebrates. These suggested that shrimp might possess an IRF-Vago-JAK/STAT regulatory axis, which is similar to the IRF-IFN-JAK/STAT axis of vertebrates, indicating that invertebrates might possess an IFN system-like antiviral mechanism.
Collapse
Affiliation(s)
- Chaozheng Li
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
- Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, P.R. China
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Guangzhou, P.R. China
| | - Haoyang Li
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
- Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, P.R. China
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Guangzhou, P.R. China
| | - Yixiao Chen
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
- Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, P.R. China
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Guangzhou, P.R. China
| | - Yonggui Chen
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, P.R. China
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Guangzhou, P.R. China
| | - Sheng Wang
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
- Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, P.R. China
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Guangzhou, P.R. China
| | - Shao-Ping Weng
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
- Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, P.R. China
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Guangzhou, P.R. China
| | - Xiaopeng Xu
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
- Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, P.R. China
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Guangzhou, P.R. China
| | - Jianguo He
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
- Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, P.R. China
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, P.R. China
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Guangzhou, P.R. China
| |
Collapse
|