1
|
Hyde VR, Zhou C, Fernandez JR, Chatterjee K, Ramakrishna P, Lin A, Fisher GW, Çeliker OT, Caldwell J, Bender O, Sauer PJ, Lugo-Martinez J, Bar DZ, D'Aiuto L, Shemesh OA. Anti-herpetic tau preserves neurons via the cGAS-STING-TBK1 pathway in Alzheimer's disease. Cell Rep 2025; 44:115109. [PMID: 39753133 DOI: 10.1016/j.celrep.2024.115109] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 08/06/2024] [Accepted: 12/03/2024] [Indexed: 02/01/2025] Open
Abstract
Alzheimer's disease (AD) diagnosis relies on the presence of extracellular β-amyloid (Aβ) and intracellular hyperphosphorylated tau (p-tau). Emerging evidence suggests a potential link between AD pathologies and infectious agents, with herpes simplex virus 1 (HSV-1) being a leading candidate. Our investigation, using metagenomics, mass spectrometry, western blotting, and decrowding expansion pathology, detects HSV-1-associated proteins in human brain samples. Expression of the herpesvirus protein ICP27 increases with AD severity and strongly colocalizes with p-tau but not with Aβ. Modeling in human brain organoids shows that HSV-1 infection elevates tau phosphorylation. Notably, p-tau reduces ICP27 expression and markedly decreases post-infection neuronal death from 64% to 7%. This modeling prompts investigation into the cGAS-STING-TBK1 pathway products, nuclear factor (NF)-κB and IRF-3, which colocalizes with ICP27 and p-tau in AD. Furthermore, experimental activation of STING enhances tau phosphorylation, while TBK1 inhibition prevents it. Together, these findings suggest that tau phosphorylation acts as an innate immune response in AD, driven by cGAS-STING.
Collapse
Affiliation(s)
- Vanesa R Hyde
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Chaoming Zhou
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Juan R Fernandez
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Krishnashis Chatterjee
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Pururav Ramakrishna
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Amanda Lin
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Gregory W Fisher
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Orhan Tunç Çeliker
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jill Caldwell
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Omer Bender
- Department of Oral Biology, Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Peter Joseph Sauer
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Jose Lugo-Martinez
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Daniel Z Bar
- Department of Oral Biology, Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Leonardo D'Aiuto
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Or A Shemesh
- School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel; Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.
| |
Collapse
|
2
|
Sanders LS, Comar CE, Srinivas KP, Lalli J, Salnikov M, Lengyel J, Southern P, Mohr I, Wilson AC, Rice SA. Herpes Simplex Virus-1 ICP27 Nuclear Export Signal Mutants Exhibit Cell Type-Dependent Deficits in Replication and ICP4 Expression. J Virol 2023; 97:e0195722. [PMID: 37310267 PMCID: PMC10373558 DOI: 10.1128/jvi.01957-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/23/2023] [Indexed: 06/14/2023] Open
Abstract
Herpes simplex virus type-1 (HSV-1) protein ICP27 is an essential immediate early (IE) protein that promotes the expression of viral early (E) and late (L) genes via multiple mechanisms. Our understanding of this complex regulatory protein has been greatly enhanced by the characterization of HSV-1 mutants bearing engineered alterations in the ICP27 gene. However, much of this analysis has been performed in interferon-deficient Vero monkey cells. Here, we assessed the replication of a panel of ICP27 mutants in several other cell types. Our analysis shows that mutants lacking ICP27's amino (N)-terminal nuclear export signal (NES) display a striking cell type-dependent growth phenotype, i.e., they grow semi-permissively in Vero and some other cells but are tightly blocked for replication in primary human fibroblasts and multiple human cell lines. This tight growth defect correlates with a failure of these mutants to replicate viral DNA. We also report that HSV-1 NES mutants are deficient in expressing the IE protein ICP4 at early times postinfection. Analysis of viral RNA levels suggests that this phenotype is due, at least in part, to a defect in the export of ICP4 mRNA to the cytoplasm. In combination, our results (i) show that ICP27's NES is critically important for HSV-1 replication in many human cells, and (ii) suggest that ICP27 plays a heretofore unappreciated role in the expression of ICP4. IMPORTANCE HSV-1 IE proteins drive productive HSV-1 replication. The major paradigm of IE gene induction, developed over many years, involves the parallel activation of the five IE genes by the viral tegument protein VP16, which recruits the host RNA polymerase II (RNAP II) to the IE gene promoters. Here, we provide evidence that ICP27 can enhance ICP4 expression early in infection. Because ICP4 is required for transcription of viral E and L genes, this finding may be relevant to understanding how HSV-1 enters and exits the latent state in neurons.
Collapse
Affiliation(s)
- Leon Sylvester Sanders
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Courtney E. Comar
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | | | - Joseph Lalli
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Mark Salnikov
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Joy Lengyel
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Peter Southern
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Ian Mohr
- Department of Microbiology, New York University School of Medicine, New York University, New York, New York, USA
| | - Angus C. Wilson
- Department of Microbiology, New York University School of Medicine, New York University, New York, New York, USA
| | - Stephen A. Rice
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
3
|
Wu Y, Tan S, He Q, Wang M, Chen S, Jia R, Yang Q, Zhu D, Liu M, Zhao X, Zhang S, Huang J, Ou X, Mao S, Gao Q, Sun D, Tian B, Cheng A. Deletion of Double Copies of the US1 Gene Reduces the Infectivity of Recombinant Duck Plague Virus In Vitro and In Vivo. Microbiol Spectr 2022; 10:e0114022. [PMID: 36377937 PMCID: PMC9784771 DOI: 10.1128/spectrum.01140-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Abstract
Duck plague caused by duck plague virus (DPV) is one of the main diseases that seriously endangers the production of waterfowl. DPV possesses a large genome consisting of 78 open reading frames (ORFs), and understanding the function and mechanism of each encoded protein in viral replication and pathogenesis is the key to controlling duck plague outbreaks. US1 is one of the two genes located in the repeat regions of the DPV genome, but the function of its encoded protein in DPV replication and pathogenesis remains unclear. Previous studies found that the US1 gene or its homologs exist in almost all alphaherpesviruses, but the loci, functions, and pathogenesis of their encoded proteins vary among different viruses. Here, we aimed to define the roles of US1 genes in DPV infection and pathogenesis by generating a double US1 gene deletion mutant and its revertant without any mini-F cassette retention. In vitro and in vivo studies found that deletion of both copies of the US1 gene significantly impaired the replication, gene expression, and virulence of DPV, which could represent a potential candidate vaccine strain for the prevention of duck plague. IMPORTANCE Duck plague virus contains nearly 80 genes, but the functions and mechanisms of most of the genes have not yet been elucidated, including those of the newly identified immediate early gene US1. Here, we found that US1 deletion reduces viral gene expression, replication, and virus production both in vitro and in vivo. This insight defines a fundamental role of the US1 gene in DPV infection and indicates its involvement in DPV transcription. These results provide clues for the study of the pathogenesis of the US1 gene and the development of attenuated vaccines targeting this gene.
Collapse
Affiliation(s)
- Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Silun Tan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Qing He
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Dekang Zhu
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| |
Collapse
|
4
|
Preventing translational inhibition from ribosomal protein insufficiency by a herpes simplex virus-encoded ribosome-associated protein. Proc Natl Acad Sci U S A 2021; 118:2025546118. [PMID: 34725147 DOI: 10.1073/pnas.2025546118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2021] [Indexed: 12/14/2022] Open
Abstract
In addition to being required for protein synthesis, ribosomes and ribosomal proteins (RPs) also regulate messenger RNA translation in uninfected and virus-infected cells. By individually depleting 85 RPs using RNA interference, we found that overall protein synthesis in uninfected primary fibroblasts was more sensitive to RP depletion than those infected with herpes simplex virus-1 (HSV-1). Although representative RP depletion (uL3, uS4, uL5) inhibited protein synthesis in cells infected with two different DNA viruses (human cytomegalovirus, vaccinia virus), HSV-1-infected cell protein synthesis unexpectedly endured and required a single virus-encoded gene product, VP22. During individual RP insufficiency, VP22-expressing HSV-1 replicated better than a VP22-deficient variant. Furthermore, VP22 promotes polysome accumulation in virus-infected cells when uL3 or ribosome availability is limiting and cosediments with initiating and elongating ribosomes in infected and uninfected cells. This identifies VP22 as a virus-encoded, ribosome-associated protein that compensates for RP insufficiency to support viral protein synthesis and replication. Moreover, it reveals an unanticipated class of virus-encoded, ribosome-associated effectors that reduce the dependence of protein synthesis upon host RPs and broadly support translation during physiological stress such as infection.
Collapse
|
5
|
The Herpesviridae Conserved Multifunctional Infected-Cell Protein 27 (ICP27) Is Important but Not Required for Replication and Oncogenicity of Marek's Disease Alphaherpesvirus. J Virol 2019; 93:JVI.01903-18. [PMID: 30518650 DOI: 10.1128/jvi.01903-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 11/27/2018] [Indexed: 02/07/2023] Open
Abstract
The Herpesviridae conserved infected-cell protein 27 (ICP27) is essential for cell culture-based replication of most herpesviruses studied. For members of the Alphaherpesvirinae, ICP27 regulates the expression of many viral genes, including expression of pUL44 (gC), pUL47 (VP13/14), and pUL48 (VP16). These three viral proteins are dysregulated during Marek's disease alphaherpesvirus (MDV) replication in cell culture. MDV replicates in a highly cell-associated manner in cell culture, producing little to no infectious virus. In contrast, infectious cell-free MDV is produced in specialized feather follicle epithelial (FFE) cells of infected chickens, in which these three genes are abundantly expressed. This led us to hypothesize that MDV ICP27, encoded by gene UL54, is a defining factor for the dysregulation of gC, pUL47, and pUL48 and, ultimately, ineffective virus production in cell culture. To address ICP27's role in MDV replication, we generated recombinant MDV with ICP27 deleted (vΔ54). Interestingly, vΔ54 replicated, but plaque sizes were significantly reduced compared to those of parental viruses. The reduced cell-to-cell spread was due to ICP27 since plaque sizes were restored in rescued viruses, as well as when vΔ54 was propagated in cells expressing ICP27 in trans In chickens, vΔ54 replicated, induced disease, and was oncogenic but was unable to transmit from chicken to chicken. To our knowledge, this is the first report showing that the Herpesviridae conserved ICP27 protein is dispensable for replication and disease induction in its natural host.IMPORTANCE Marek's disease (MD) is a devastating oncogenic disease that affects the poultry industry and is caused by MD alphaherpesvirus (MDV). Current vaccines block induction of disease but do not block chicken-to-chicken transmission. There is a knowledge gap in our understanding of how MDV spreads from chicken to chicken. We studied the Herpesviridae conserved ICP27 regulatory protein in cell culture and during MDV infection in chickens. We determined that MDV ICP27 is important but not required for replication in both cell culture and chickens. In addition, MDV ICP27 was not required for disease induction or oncogenicity but was required for chicken-to-chicken transmission. This study is important because it addresses the role of ICP27 during infection in the natural host and provides important information for the development of therapies to protect chickens against MD.
Collapse
|
6
|
Pheasant K, Möller-Levet CS, Jones J, Depledge D, Breuer J, Elliott G. Nuclear-cytoplasmic compartmentalization of the herpes simplex virus 1 infected cell transcriptome is co-ordinated by the viral endoribonuclease vhs and cofactors to facilitate the translation of late proteins. PLoS Pathog 2018; 14:e1007331. [PMID: 30475899 PMCID: PMC6283614 DOI: 10.1371/journal.ppat.1007331] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 12/06/2018] [Accepted: 11/02/2018] [Indexed: 11/19/2022] Open
Abstract
HSV1 encodes an endoribonuclease termed virion host shutoff (vhs) that is produced late in infection and packaged into virions. Paradoxically, vhs is active against not only host but also virus transcripts, and is involved in host shutoff and the temporal expression of the virus transcriptome. Two other virus proteins-VP22 and VP16 -are proposed to regulate vhs to prevent uncontrolled and lethal mRNA degradation but their mechanism of action is unknown. We have performed dual transcriptomic analysis and single-cell mRNA FISH of human fibroblasts, a cell type where in the absence of VP22, HSV1 infection results in extreme translational shutoff. In Wt infection, host mRNAs exhibited a wide range of susceptibility to vhs ranging from resistance to 1000-fold reduction, a variation that was independent of their relative abundance or transcription rate. However, vhs endoribonuclease activity was not found to be overactive against any of the cell transcriptome in Δ22-infected cells but rather was delayed, while its activity against the virus transcriptome and in particular late mRNA was minimally enhanced. Intriguingly, immediate-early and early transcripts exhibited vhs-dependent nuclear retention later in Wt infection but late transcripts were cytoplasmic. However, in the absence of VP22, not only early but also late transcripts were retained in the nucleus by a vhs-dependent mechanism, a characteristic that extended to cellular transcripts that were not efficiently degraded by vhs. Moreover, the ability of VP22 to bind VP16 enhanced but was not fundamental to the rescue of vhs-induced nuclear retention of late transcripts. Hence, translational shutoff in HSV1 infection is primarily a result of vhs-induced nuclear retention and not degradation of infected cell mRNA. We have therefore revealed a new mechanism whereby vhs and its co-factors including VP22 elicit a temporal and spatial regulation of the infected cell transcriptome, thus co-ordinating efficient late protein production.
Collapse
Affiliation(s)
- Kathleen Pheasant
- Section of Virology, Department of Microbial Sciences, Faculty of Health & Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Carla Sofia Möller-Levet
- Section of Virology, Department of Microbial Sciences, Faculty of Health & Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Juliet Jones
- Section of Virology, Department of Microbial Sciences, Faculty of Health & Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Daniel Depledge
- Division of Infection and Immunity, UCL, London, United Kingdom
| | - Judith Breuer
- Division of Infection and Immunity, UCL, London, United Kingdom
| | - Gillian Elliott
- Section of Virology, Department of Microbial Sciences, Faculty of Health & Medical Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
7
|
Wudiri GA, Nicola AV. Cellular Cholesterol Facilitates the Postentry Replication Cycle of Herpes Simplex Virus 1. J Virol 2017; 91:e00445-17. [PMID: 28446672 PMCID: PMC5487575 DOI: 10.1128/jvi.00445-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 04/19/2017] [Indexed: 12/24/2022] Open
Abstract
Cholesterol is an essential component of cell membranes and is required for herpes simplex virus 1 (HSV-1) entry (1-3). Treatment of HSV-1-infected Vero cells with methyl beta-cyclodextrin from 2 to 9 h postentry reduced plaque numbers. Transport of incoming viral capsids to the nuclear periphery was unaffected by the cholesterol reduction, suggesting that cell cholesterol is important for the HSV-1 replicative cycle at a stage(s) beyond entry, after the arrival of capsids at the nucleus. The synthesis and release of infectious HSV-1 and cell-to-cell spread of infection were all impaired in cholesterol-reduced cells. Propagation of HSV-1 on DHCR24-/- fibroblasts, which lack the desmosterol-to-cholesterol conversion enzyme, resulted in the generation of infectious extracellular virions (HSVdes) that lack cholesterol and likely contain desmosterol. The specific infectivities (PFU per viral genome) of HSVchol and HSVdes were similar, suggesting cholesterol and desmosterol in the HSV envelope support similar levels of infectivity. However, infected DHCR24-/- fibroblasts released ∼1 log less infectious HSVdes and ∼1.5 log fewer particles than release of cholesterol-containing particles (HSVchol) from parental fibroblasts, suggesting that the hydrocarbon tail of cholesterol facilitates viral synthesis. Together, the results suggest multiple roles for cholesterol in the HSV-1 replicative cycle.IMPORTANCE HSV-1 infections are associated with a wide range of clinical manifestations that are of public health importance. Cholesterol is a key player in the complex interaction between viral and cellular factors that allows HSV-1 to enter host cells and establish infection. Previous reports have demonstrated a role for cellular cholesterol in the entry of HSV-1 into target cells. Here, we employed both chemical treatment and cells that were genetically defined to synthesize only desmosterol to demonstrate that cholesterol is important at stages following the initial entry and transport of viral capsids to the nucleus. Viral protein expression, encapsidation of the viral genome, and the release of mature virions were impacted by the reduction of cellular cholesterol. Cholesterol was also critical for cell-to-cell spread of infection. These findings provide new insights into the cholesterol dependence of HSV-1 replication.
Collapse
Affiliation(s)
- George A Wudiri
- Department of Veterinary Microbiology and Pathology and Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Anthony V Nicola
- Department of Veterinary Microbiology and Pathology and Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| |
Collapse
|
8
|
Viral and cellular mRNA-specific activators harness PABP and eIF4G to promote translation initiation downstream of cap binding. Proc Natl Acad Sci U S A 2017; 114:6310-6315. [PMID: 28559344 DOI: 10.1073/pnas.1610417114] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Regulation of mRNA translation is a major control point for gene expression and is critical for life. Of central importance is the complex between cap-bound eukaryotic initiation factor 4E (eIF4E), eIF4G, and poly(A) tail-binding protein (PABP) that circularizes mRNAs, promoting translation and stability. This complex is often targeted to regulate overall translation rates, and also by mRNA-specific translational repressors. However, the mechanisms of mRNA-specific translational activation by RNA-binding proteins remain poorly understood. Here, we address this deficit, focusing on a herpes simplex virus-1 protein, ICP27. We reveal a direct interaction with PABP that is sufficient to promote PABP recruitment and necessary for ICP27-mediated activation. PABP binds several translation factors but is primarily considered to activate translation initiation as part of the PABP-eIF4G-eIF4E complex that stimulates the initial cap-binding step. Importantly, we find that ICP27-PABP forms a complex with, and requires the activity of, eIF4G. Surprisingly, ICP27-PABP-eIF4G complexes act independently of the effects of PABP-eIF4G on cap binding to promote small ribosomal subunit recruitment. Moreover, we find that a cellular mRNA-specific regulator, Deleted in Azoospermia-like (Dazl), also employs the PABP-eIF4G interaction in a similar manner. We propose a mechanism whereby diverse RNA-binding proteins directly recruit PABP, in a non-poly(A) tail-dependent manner, to stimulate the small subunit recruitment step. This strategy may be particularly relevant to biological conditions associated with hypoadenylated mRNAs (e.g., germ cells/neurons) and/or limiting cytoplasmic PABP (e.g., viral infection, cell stress). This mechanism adds significant insight into our knowledge of mRNA-specific translational activation and the function of the PABP-eIF4G complex in translation initiation.
Collapse
|
9
|
Liu C, Cheng A, Wang M, Chen S, Jia R, Zhu D, Liu M, Sun K, Yang Q, Wu Y, Zhao X, Chen X. Regulation of viral gene expression by duck enteritis virus UL54. Sci Rep 2017; 7:1076. [PMID: 28432334 PMCID: PMC5430722 DOI: 10.1038/s41598-017-01161-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 03/27/2017] [Indexed: 11/10/2022] Open
Abstract
Duck enteritis virus (DEV) UL54 is a homologue of human herpes simplex virus-1 (HSV-1) ICP27, which plays essential regulatory roles during infection. Our previous studies indicated that DEV UL54 is an immediate-early protein that can shuttle between the nucleus and the cytoplasm. In the present study, we found that UL54-deleted DEV (DEV-ΔUL54) exhibits growth kinetics, a plaque size and a viral DNA copy number that are significantly different from those of its parent wild-type virus (DEV-LoxP) and the revertant (DEV-ΔUL54 (Revertant)). Relative viral mRNA levels, reflecting gene expression, the transcription phase and the translation stage, are also significantly different between DEV-ΔUL54-infected cells and DEV-LoxP/DEV-ΔUL54 (Revertant)-infected cells. However, the localization pattern of UL30 mRNA is obviously changed in DEV-ΔUL54-infected cells. These findings suggest that DEV UL54 is important for virus growth and may regulate viral gene expression during transcription, mRNA export and translation.
Collapse
Affiliation(s)
- Chaoyue Liu
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Anchun Cheng
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.
| | - Mingshu Wang
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.
| | - Shun Chen
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Renyong Jia
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Dekang Zhu
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Mafeng Liu
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Kunfeng Sun
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Qiao Yang
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Ying Wu
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Xinxin Zhao
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Xiaoyue Chen
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| |
Collapse
|
10
|
Liu C, Cheng A, Wang M, Chen S, Jia R, Zhu D, Liu M, Sun K, Yang Q, Chen X. Characterization of nucleocytoplasmic shuttling and intracellular localization signals in Duck Enteritis Virus UL54. Biochimie 2016; 127:86-94. [PMID: 27157269 DOI: 10.1016/j.biochi.2016.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/03/2016] [Indexed: 10/21/2022]
Abstract
Duck Enteritis virus (DEV) UL54 is a homolog of herpes simplex virus-1 (HSV-1) trafficking protein ICP27, which plays an essential role in infection. In this study, DEV UL54 shuttling between the nucleus and cytoplasm was verified with a heterokaryon assay. One predicted nuclear export sequence (NES) (339-348 aa) was shown to be functional and chromosomal region maintenance 1 (CRM1)-dependent; however, the insensitivity of UL54 to Leptomycin B (LMB) and NES mutation suggests that other mechanisms are responsible for the observed nuclear export. Next, three non-classical nuclear localization sequences (NLSs), referred to as NLS1 (105-122 aa), NLS2 (169-192 aa) and NLS3 (257-274 aa), were identified. Furthermore, a recombinant DEV with the UL54 NLSs deleted (DEV- UL54 mNLSs) was constructed and showed that UL54 NLSs moderately affected DEV growth.
Collapse
Affiliation(s)
- Chaoyue Liu
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China; Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Wenjiang, Chengdu City, Sichuan, 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China
| | - Anchun Cheng
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China; Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Wenjiang, Chengdu City, Sichuan, 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China.
| | - Mingshu Wang
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China; Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Wenjiang, Chengdu City, Sichuan, 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China.
| | - Shun Chen
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China; Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Wenjiang, Chengdu City, Sichuan, 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China
| | - Renyong Jia
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China; Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Wenjiang, Chengdu City, Sichuan, 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China
| | - Dekang Zhu
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Wenjiang, Chengdu City, Sichuan, 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China
| | - Mafeng Liu
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China; Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Wenjiang, Chengdu City, Sichuan, 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China
| | - Kunfeng Sun
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China; Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Wenjiang, Chengdu City, Sichuan, 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China
| | - Qiao Yang
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China; Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Wenjiang, Chengdu City, Sichuan, 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China
| | - Xiaoyue Chen
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Wenjiang, Chengdu City, Sichuan, 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China
| |
Collapse
|
11
|
Liu C, Cheng A, Wang M, Chen S, Jia R, Zhu D, Liu M, Sun K, Yang Q, Chen X. Duck enteritis virus UL54 is an IE protein primarily located in the nucleus. Virol J 2015; 12:198. [PMID: 26606920 PMCID: PMC4658773 DOI: 10.1186/s12985-015-0424-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/15/2015] [Indexed: 12/31/2022] Open
Abstract
Background The UL54 protein of Duck Enteritis Virus (DEV) is a homolog of herpes simplex virus-1 (HSV-1) immediate-early infectious cell protein 27 (ICP27), a multifunctional protein essential for viral infection. Nonetheless, there is little information on the UL54 protein of DEV. Methods The UL54 gene was cloned into the pPAL7 vector, and the recombinant protein, expressed in the E. coli Rosetta, was used to produce a specific antibody. Using this antibody, Western blotting and indirect immunofluorescence analysis (IFA) were used to analyze the expression level and intracellular localization, respectively, of UL54 in DEV-infected cells at different times. Real-time quantitative reverse transcription PCR (RT-PCR) and the pharmacological inhibition test were utilized to ascertain the kinetic class of the UL54 gene. Results UL54 was expressed as a fusion protein of approximately 66.0 kDa using the prokaryotic expression system, and this protein was used to generate the specific anti-UL54 antibody. The UL54 protein was initially diffusely distributed throughout the cytoplasmic region; then, after 2 h, it gradually distributed into the nucleus, peaking at 24 h, and complete localization to the nucleus was observed thereafter. The UL54 transcript was detected as early as 0.5 h, and peak expression was observed at 24 h. The UL54 gene was insensitive to the DNA polymerase inhibitor Ganciclovir (GCV) and the protein synthesis inhibitor Cycloheximide (CHX), both of which confirmed that UL54 was an immediate early gene. Conclusions The DEV UL54 gene was expressed in a prokaryotic expression system and characterized for expression level, intracellular localization and gene kinetic class. We propose that these results will provide the foundation for further functional analyses of this gene.
Collapse
Affiliation(s)
- Chaoyue Liu
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Anchun Cheng
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China. .,Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China. .,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.
| | - Mingshu Wang
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China. .,Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China. .,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.
| | - Shun Chen
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Renyong Jia
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Dekang Zhu
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Mafeng Liu
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Kunfeng Sun
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Qiao Yang
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Xiaoyue Chen
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| |
Collapse
|
12
|
Abstract
Herpesviral mRNAs are produced and translated by cellular machinery, rendering them susceptible to the network of regulatory events that impact translation. In response, these viruses have evolved to infiltrate and hijack translational control pathways as well as to integrate specialized host translation strategies into their own repertoire. They are robust systems to dissect mechanisms of mammalian translational regulation and continue to offer insight into cis-acting mRNA features that impact assembly and activity of the translation apparatus. Here, I discuss recent advances revealing the extent to which the three herpesvirus subfamilies regulate both host and viral translation, thereby dramatically impacting the landscape of protein synthesis in infected cells.
Collapse
Affiliation(s)
- Britt A Glaunsinger
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720;
| |
Collapse
|
13
|
Functional comparison of herpes simplex virus 1 (HSV-1) and HSV-2 ICP27 homologs reveals a role for ICP27 in virion release. J Virol 2014; 89:2892-905. [PMID: 25540385 DOI: 10.1128/jvi.02994-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Numerous studies have focused on the regulatory functions of ICP27, an immediate-early (IE) protein of herpes simplex virus 1 (HSV-1). However, its homolog in HSV-2, termed ICP27t2, has been little studied. Here, we used two different approaches to functionally compare ICP27t2 and ICP27. In transfection-based assays, ICP27t2 closely resembled ICP27 in its capacity to enhance HSV-1 late gene expression, suppress the splicing of a viral intron, and complement the growth of an HSV-1 ICP27 null mutant. To study ICP27t2 in the context of viral infection, we engineered K2F1, an HSV-1 mutant that encodes ICP27t2 in place of ICP27. In Vero cells, K2F1 replicated with wild-type (WT) kinetics and yields, expressed delayed-early and late proteins normally, and was fully capable of activating several cellular signal transduction pathways that are ICP27 dependent. Thus, we conclude that ICP27t2 and ICP27 are functionally very similar and that ICP27t2 can mediate all ICP27 activities that are required for HSV-1 replication in cell culture. Surprisingly, however, we found that K2F1 forms plaques that are morphologically different from those of WT HSV-1. Investigation of this trait demonstrated that it results from the decreased release of progeny virions into the culture medium. This appears to be due to a reduction in the detachment of K2F1 progeny from the extracellular surface of the infected cell. We identified two HSV-1 ICP27 amino-terminal deletion mutants with a similar release defect. Together, these results demonstrate that ICP27 plays a heretofore-unappreciated role in modulating the efficiency of progeny virion release. IMPORTANCE ICP27 is an essential, multifunctional regulatory protein that has a number of critical roles in the HSV-1 life cycle. Although ICP27 homologs are encoded by all known members of the Herpesviridae, previous work with several of these homologs has shown that they cannot substitute for ICP27 in the context of HSV-1-infected cells. Here, we identify ICP27t2 as the first homolog that can efficiently replace ICP27 in HSV-1 infection. Unexpectedly, our results also reveal that the sequence of the ICP27 gene can affect the release of HSV-1 progeny virions from the infected cell. Thus, our comparative study has revealed a novel function for ICP27 in the regulation of virus release.
Collapse
|
14
|
The herpes simplex virus 2 virion-associated ribonuclease vhs interferes with stress granule formation. J Virol 2014; 88:12727-39. [PMID: 25142597 DOI: 10.1128/jvi.01554-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED In a previous study, it was observed that cells infected with herpes simplex virus 2 (HSV-2) failed to accumulate stress granules (SGs) in response to oxidative stress induced by arsenite treatment. As a follow-up to this observation, we demonstrate here that disruption of arsenite-induced SG formation by HSV-2 is mediated by a virion component. Through studies on SG formation in cells infected with HSV-2 strains carrying defective forms of UL41, the gene that encodes vhs, we identify vhs as a virion component required for this disruption. Cells infected with HSV-2 strains producing defective forms of vhs form SGs spontaneously late in infection. In addition to core SG components, these spontaneous SGs contain the viral immediate early protein ICP27 as well as the viral serine/threonine kinase Us3. As part of these studies, we reexamined the frameshift mutation known to reside within the UL41 gene of HSV-2 strain HG52. We demonstrate that this mutation is unstable and can rapidly revert to restore wild-type UL41 following low-multiplicity passaging. Identification of the involvement of virion-associated vhs in the disruption of SG formation will enable mechanistic studies on how HSV-2 is able to counteract antiviral stress responses early in infection. In addition, the ability of Us3 to localize to stress granules may indicate novel roles for this viral kinase in the regulation of translation. IMPORTANCE Eukaryotic cells respond to stress by rapidly shutting down protein synthesis and storing mRNAs in cytoplasmic stress granules (SGs). Stoppages in protein synthesis are problematic for all viruses as they rely on host cell machinery to synthesize viral proteins. Thus, many viruses target SGs for disruption or modification. Infection by herpes simplex virus 2 (HSV-2) was previously observed to disrupt SG formation induced by oxidative stress. In this follow-up study, we identify virion host shutoff protein (vhs) as a viral protein involved in this disruption. The identification of a specific viral protein involved in disrupting SG formation is a key step toward understanding how HSV-2 interacts with these antiviral structures. Additionally, this understanding may provide insights into the biology of SGs that may find application in studies on human motor neuron degenerative diseases, like amyotrophic lateral sclerosis (ALS), which may arise as a result of dysregulation of SG formation.
Collapse
|
15
|
Read GS. Virus-encoded endonucleases: expected and novel functions. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 4:693-708. [PMID: 23900973 DOI: 10.1002/wrna.1188] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 06/21/2013] [Accepted: 06/24/2013] [Indexed: 12/21/2022]
Abstract
Endonucleases catalyze critical steps in the processing, function, and turnover of many cellular RNAs. It is, therefore, not surprising that a number of viruses encode endonucleases that play important roles in viral gene expression. The virion host shutoff (Vhs) endonuclease of herpes simplex virus, the SOX protein of Kaposi Sarcoma Herpesvirus (KSHV), and the influenza virus PB1 endonuclease have well-characterized functions that stem from their abilities to cleave RNA. Vhs accelerates turnover of many cellular and viral mRNAs, redirecting the cell from host to viral gene expression, counteracting key elements of the innate immune response, and facilitating sequential expression of different classes of viral genes. SOX reduces synthesis of many host proteins during the lytic phase of KSHV infections. PB1 is a component of the influenza RNA polymerase that snatches capped oligonucleotides from cellular pre-mRNAs to serve as primers during viral mRNA synthesis. However, all three proteins have important second functions. Vhs stimulates translation of the 3' cistron of bicistronic mRNAs that have selected cellular internal ribosome entry sites, and stimulates polysome loading and translation of selected viral mRNAs at late times during productive infections. SOX has an alkaline exonuclease activity that is important for processing and maturation of newly synthesized copies of the KSHV genome. The influenza RNA polymerase binds the cap and 5' region of viral mRNAs and recruits eIF4G and other factors to viral mRNAs, allowing them to be translated under conditions of reduced eIF4E functionality. This review will discuss the novel and expected functions of these viral endonucleases.
Collapse
Affiliation(s)
- G Sullivan Read
- Division of Cell Biology and Biophysics, University of Missouri, Kansas City, Kansas City, MO, USA
| |
Collapse
|
16
|
Walsh D, Mathews MB, Mohr I. Tinkering with translation: protein synthesis in virus-infected cells. Cold Spring Harb Perspect Biol 2013; 5:a012351. [PMID: 23209131 DOI: 10.1101/cshperspect.a012351] [Citation(s) in RCA: 190] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Viruses are obligate intracellular parasites, and their replication requires host cell functions. Although the size, composition, complexity, and functions encoded by their genomes are remarkably diverse, all viruses rely absolutely on the protein synthesis machinery of their host cells. Lacking their own translational apparatus, they must recruit cellular ribosomes in order to translate viral mRNAs and produce the protein products required for their replication. In addition, there are other constraints on viral protein production. Crucially, host innate defenses and stress responses capable of inactivating the translation machinery must be effectively neutralized. Furthermore, the limited coding capacity of the viral genome needs to be used optimally. These demands have resulted in complex interactions between virus and host that exploit ostensibly virus-specific mechanisms and, at the same time, illuminate the functioning of the cellular protein synthesis apparatus.
Collapse
Affiliation(s)
- Derek Walsh
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA.
| | | | | |
Collapse
|
17
|
mRNA decay during herpes simplex virus (HSV) infections: mutations that affect translation of an mRNA influence the sites at which it is cleaved by the HSV virion host shutoff (Vhs) protein. J Virol 2012; 87:94-109. [PMID: 23077305 DOI: 10.1128/jvi.01557-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During lytic infections, the herpes simplex virus (HSV) virion host shutoff (Vhs) endoribonuclease degrades many host and viral mRNAs. Within infected cells it cuts mRNAs at preferred sites, including some in regions of translation initiation. Vhs binds the translation initiation factors eIF4H, eIF4AI, and eIF4AII, suggesting that its mRNA degradative function is somehow linked to translation. To explore how Vhs is targeted to preferred sites, we examined the in vitro degradation of a target mRNA in rabbit reticulocyte lysates containing in vitro-translated Vhs. Vhs caused rapid degradation of mRNAs beginning with cleavages at sites in the first 250 nucleotides, including a number near the start codon and in the 5' untranslated region. Ligation of the ends to form a circular mRNA inhibited Vhs cleavage at the same sites at which it cuts capped linear molecules. This was not due to an inability to cut any circular RNA, since Vhs cuts circular mRNAs containing an encephalomyocarditis virus (EMCV) internal ribosome entry site (IRES) at the same sites as linear molecules with the IRES. Cutting linear mRNAs at preferred sites was augmented by the presence of a 5' cap. Moreover, mutations that altered the 5' proximal AUG abolished Vhs cleavage at nearby sites, while mutations that changed sequences surrounding the AUG to improve their match to the Kozak consensus sequence enhanced Vhs cutting near the start codon. The results indicate that mutations in an mRNA that affect its translation affect the sites at which it is cut by Vhs and suggest that Vhs is directed to its preferred cut sites during translation initiation.
Collapse
|
18
|
Lippé R. Deciphering novel host-herpesvirus interactions by virion proteomics. Front Microbiol 2012; 3:181. [PMID: 22783234 PMCID: PMC3390586 DOI: 10.3389/fmicb.2012.00181] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 04/27/2012] [Indexed: 12/15/2022] Open
Abstract
Over the years, a vast array of information concerning the interactions of viruses with their hosts has been collected. However, recent advances in proteomics and other system biology techniques suggest these interactions are far more complex than anticipated. One particularly interesting and novel aspect is the analysis of cellular proteins incorporated into mature virions. Though sometimes considered purification contaminants in the past, their repeated detection by different laboratories suggests that a number of these proteins are bona fide viral components, some of which likely contribute to the viral life cycles. The present mini review focuses on cellular proteins detected in herpesviruses. It highlights the common cellular functions of these proteins, their potential implications for host–pathogen interactions, discusses technical limitations, the need for complementing methods and probes potential future research avenues.
Collapse
Affiliation(s)
- Roger Lippé
- Department of Pathology and Cell biology, University of Montreal Montreal, QC, Canada
| |
Collapse
|
19
|
Sandri-Goldin RM. The many roles of the highly interactive HSV protein ICP27, a key regulator of infection. Future Microbiol 2012; 6:1261-77. [PMID: 22082288 DOI: 10.2217/fmb.11.119] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Human herpes viruses cause an array of illnesses ranging from cancers for Epstein?Barr virus and Kaposi?s sarcoma-associated herpes virus, to painful skin lesions, and more rarely, keratitis and encephalitis for HSV. All herpes viruses encode a multifunctional protein, typified by HSV ICP27, which plays essential roles in viral infection. ICP27 functions in all stages of mRNA biogenesis from transcription, RNA processing and export through to translation. ICP27 has also been implicated in nuclear protein quality control, cell cycle control, activation of stress signaling pathways and prevention of apoptosis. ICP27 interacts with many proteins and it binds RNA. This article focuses on how ICP27 performs its many roles and highlights similarities with its homologs, which could be targets for antiviral intervention.
Collapse
Affiliation(s)
- Rozanne M Sandri-Goldin
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
20
|
Malik P, Tabarraei A, Kehlenbach RH, Korfali N, Iwasawa R, Graham SV, Schirmer EC. Herpes simplex virus ICP27 protein directly interacts with the nuclear pore complex through Nup62, inhibiting host nucleocytoplasmic transport pathways. J Biol Chem 2012; 287:12277-92. [PMID: 22334672 PMCID: PMC3320978 DOI: 10.1074/jbc.m111.331777] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The herpes simplex virus ICP27 protein is important for the expression and nuclear export of viral mRNAs. Although several binding sites have been mapped along the ICP27 sequence for various RNA and protein partners, including the transport receptor TAP of the host cell nuclear transport machinery, several aspects of ICP27 trafficking through the nuclear pore complex remain unclear. We investigated if ICP27 could interact directly with the nuclear pore complex itself, finding that ICP27 directly binds the core nucleoporin Nup62. This is confirmed through co-immunoprecipitation and in vitro binding assays with purified components. Mapping with ICP27 deletion and point mutants further shows that the interaction requires sequences in both the N and C termini of ICP27. Expression of wild type ICP27 protein inhibited both classical, importin α/β-dependent and transportin-dependent nuclear import. In contrast, an ICP27 point mutant that does not interact with Nup62 had no such inhibitory effect. We suggest that ICP27 association with Nup62 provides additional binding sites at the nuclear pore for ICP27 shuttling, thus supporting ICP27-mediated transport. We propose that ICP27 competes with some host cell transport receptors for binding, resulting in inhibition of those host transport pathways.
Collapse
Affiliation(s)
- Poonam Malik
- Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, Scotland, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
21
|
Zhang R, Wang Y, Song B, Han ZQ, Xu YM. Recombinant cell lines expressing shRNA targeting herpes simplex virus 2 VP16 inhibit virus replication. Intervirology 2012; 55:426-34. [PMID: 22286011 DOI: 10.1159/000335663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 12/01/2011] [Indexed: 01/15/2023] Open
Abstract
AIMS To establish HSV2 VP16 targeting shRNA-expressing cell lines and investigate the antiviral effect of shRNA targeting HSV2 VP16. METHODS The cell lines Vero-shRNAs and negative-control Vero-shCON were established. Their inhibition effects on VP16 mRNA expression were tested by real-time fluorescent quantitative polymerase chain reaction (PCR) and their antiviral effects were evaluated by yield reduction assay. The influence of passage numbers on the inhibition ability of cell lines was researched. RESULTS Vero-shRNA24 targeting the upper stream, Vero-shRNA642 targeting the lower stream and Vero-shCON were established. Vero-shRNA24, Vero-shRNA642 and Vero-shRNA24 + 642 could reduce the VP16 mRNA significantly. Vero-shRNA24 was the most efficient. The HSV2 titers in Vero and Vero-shCON were the highest at 72 h after infection, and started decreasing thereafter. The viral titers of the Vero-shRNA groups reached a peak after 84 h and the highest titers were lower than in the Vero group. The inhibiting effect on VP16 mRNA expression and viral replication of Vero-shRNA24 cell lines of passages 10 and 20 were not significantly different from the primary cell line. Although of no statistical significance, the passage 50 cell line showed decreased inhibiting ability. CONCLUSIONS Recombinant cell lines expressing shRNA targeting HSV2 VP16 were established. They can stably inhibit HSV2 VP16 mRNA expression and viral replication within passage 50.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | | | | | | | | |
Collapse
|
22
|
Zaborowska I, Kellner K, Henry M, Meleady P, Walsh D. Recruitment of host translation initiation factor eIF4G by the Vaccinia Virus ssDNA-binding protein I3. Virology 2012; 425:11-22. [PMID: 22280895 DOI: 10.1016/j.virol.2011.12.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 12/09/2011] [Accepted: 12/23/2011] [Indexed: 11/15/2022]
Abstract
Poxviruses are large double-stranded DNA viruses that replicate exclusively in the cytoplasm of infected cells within discrete compartments termed viral factories. Recent work has shown that the prototypical poxvirus, Vaccinia Virus (VacV) sequesters components of the eukaryotic translation initiation complex eIF4F within viral factories while also stimulating formation of eIF4F complexes. However, the forces that govern these events remain unknown. Here, we show that maximal eIF4F formation requires viral DNA replication and the formation of viral factories, suggesting that sequestration functions to promote eIF4F assembly, and identify the ssDNA-binding protein, I3 as a viral factor that interacts and co-localizes with the eIF4F scaffold protein, eIF4G. Although it did not adversely affect host or viral protein synthesis, I3 specifically mediated the binding of eIF4G to ssDNA. Combined, our findings offer an explanation for the specific pattern and temporal process of eIF4G redistribution and eIF4F complex assembly within VacV-infected cells.
Collapse
Affiliation(s)
- Izabela Zaborowska
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | | | | | | | | |
Collapse
|
23
|
Li M, Wang S, Cai M, Guo H, Zheng C. Characterization of molecular determinants for nucleocytoplasmic shuttling of PRV UL54. Virology 2011; 417:385-93. [PMID: 21777931 DOI: 10.1016/j.virol.2011.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 06/02/2011] [Accepted: 06/06/2011] [Indexed: 10/17/2022]
Abstract
The pseudorabies virus (PRV) early protein UL54 is a homologue of the herpes simplex virus 1 (HSV-1) immediate-early protein ICP27, which is a multifunctional protein and essential for HSV-1 infection. To determine if UL54 might shuttle between the nucleus and cytoplasm, as has been shown for its homologues in human herpesviruses, the molecular determinants for its nucleocytoplasmic shuttling were investigated. Heterokaryon assays demonstrated that UL54 was a nucleocytoplasmic shuttling protein and this property could not be blocked by leptomycin B, an inhibitor of chromosome region maintenance 1 (CRM1). However, TAP/NXF1 promoted the nuclear export of UL54 and interacted with UL54, suggesting that UL54 shuttles between the nucleus and the cytoplasm via a TAP/NXF1, but not CRM1, dependent nuclear export pathway. Furthermore, UL54 was demonstrated to target to the nucleus through a classic Ran-, importin β1- and α5-dependent nuclear import mechanism.
Collapse
Affiliation(s)
- Meili Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | | | | | | | | |
Collapse
|
24
|
Manipulation of the host translation initiation complex eIF4F by DNA viruses. Biochem Soc Trans 2011; 38:1511-6. [PMID: 21118117 DOI: 10.1042/bst0381511] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the absence of their own translational machinery, all viruses must gain access to host cell ribosomes to synthesize viral proteins and replicate. Ribosome recruitment and scanning of capped host mRNAs is facilitated by the multisubunit eIF (eukaryotic initiation factor) 4F, which consists of a cap-binding protein, eIF4E and an RNA helicase, eIF4A, assembled on a large scaffolding protein, eIF4G. Although inactivated by many viruses to inhibit host translation, a growing number of DNA viruses are being found to employ diverse strategies to stimulate eIF4F activity in infected cells and maximize viral protein synthesis. These strategies include stimulation of cellular mTOR (mammalian target of rapamycin) signalling to inactivate 4E-BPs (eIF4E-binding proteins), a family of translational repressors that limit eIF4E availability and eIF4F complex formation, together with modulating the activity of the eIF4E kinase Mnk (mitogen-activated protein kinase signal-integrating kinase) in a variety of manners to regulate both host and viral mRNA translation. In some cases, specific viral proteins that mediate these signalling events have been identified, whereas others have been shown to interact with host translation initiation factors or complexes and modify their activity and/or subcellular localization. The present review outlines current understanding of the role of eIF4F in the life cycle of various DNA viruses and discusses its potential as a therapeutic target to suppress viral infection.
Collapse
|
25
|
Role of herpes simplex virus ICP27 in the degradation of mRNA by virion host shutoff RNase. J Virol 2010; 84:10182-90. [PMID: 20631134 DOI: 10.1128/jvi.00975-10] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The virion host shutoff (VHS) RNase tegument protein released into cells by infecting virus has two effects. Preexisting stable mRNAs (e.g., GAPDH [glyceraldehyde-3-phosphate dehydrogenase]) are rapidly degraded. Stress response RNAs containing AU-rich elements (AREs) in the 3' untranslated region (3'UTR) are deadenylated and cleaved, but the cleavage products persist for hours, in contrast to the short half-lives of ARE-containing mRNAs in uninfected cells. At late times, the VHS RNase is neutralized by the viral structural proteins VP16 and VP22. A recent study (J. A. Corcoran, W. L. Hsu, and J. R. Smiley, J. Virol. 80:9720-9729, 2006) reported that, at relatively late times after infection, ARE RNAs are rapidly degraded in cells infected with DeltaICP27 mutant virus and concluded that ICP27 "stabilizes" ARE mRNAs. We report the following. (i) The rates of degradation of ARE mRNA at early times (3 h) after infection with the wild type or the DeltaICP27 mutant virus are virtually identical, and hence ICP27 plays no role in this process. (ii) In noncomplementing cells, VHS RNase or VP22 is not synthesized. Therefore, the only VHS that is active is brought into cells by the DeltaICP27 mutant. (ii) The VHS RNase brought into the cells by the DeltaICP27 virus is reduced in potency relative to that of wild-type virus. Hence the rapid degradation of ARE mRNAs noted in DeltaICP27 mutant-infected cells at late times is similar to that taking place in mock-infected or in DeltaVHS RNase mutant-virus-infected cells and does not by itself support the hypothesis that ICP27 stabilizes ARE mRNAs. (iii) Concurrently, we present the first evidence that VHS RNase interacts with ICP27 most likely when bound to cap- and poly(A)-binding proteins, respectively.
Collapse
|
26
|
Corbin-Lickfett KA, Souki SK, Cocco MJ, Sandri-Goldin RM. Three arginine residues within the RGG box are crucial for ICP27 binding to herpes simplex virus 1 GC-rich sequences and for efficient viral RNA export. J Virol 2010; 84:6367-76. [PMID: 20410270 PMCID: PMC2903288 DOI: 10.1128/jvi.00509-10] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 04/15/2010] [Indexed: 01/21/2023] Open
Abstract
ICP27 is a multifunctional protein that is required for herpes simplex virus 1 mRNA export. ICP27 interacts with the mRNA export receptor TAP/NXF1 and binds RNA through an RGG box motif. Unlike other RGG box proteins, ICP27 does not bind G-quartet structures but instead binds GC-rich sequences that are flexible in structure. To determine the contribution of arginines within the RGG box, we performed in vitro binding assays with N-terminal proteins encoding amino acids 1 to 160 of wild-type ICP27 or arginine-to-lysine substitution mutants. The R138,148,150K triple mutant bound weakly to sequences that were bound by the wild-type protein and single and double mutants. Furthermore, during infection with the R138,148,150K mutant, poly(A)(+) RNA and newly transcribed RNA accumulated in the nucleus, indicating that viral RNA export was impaired. To determine if structural changes had occurred, nuclear magnetic resonance (NMR) analysis was performed on N-terminal proteins consisting of amino acids 1 to 160 from wild-type ICP27 and the R138,148,150K mutant. This region of ICP27 was found to be highly flexible, and there were no apparent differences in the spectra seen with wild-type ICP27 and the R138,148,150K mutant. Furthermore, NMR analysis with the wild-type protein bound to GC-rich sequences did not show any discernible folding. We conclude that arginines at positions 138, 148, and 150 within the RGG box of ICP27 are required for binding to GC-rich sequences and that the N-terminal portion of ICP27 is highly flexible in structure, which may account for its preference for binding flexible sequences.
Collapse
Affiliation(s)
- Kara A. Corbin-Lickfett
- Departments of Microbiology and Molecular Genetics, Molecular Biology and Biochemistry, University of California, Irvine, California 92697
| | - Stuart K. Souki
- Departments of Microbiology and Molecular Genetics, Molecular Biology and Biochemistry, University of California, Irvine, California 92697
| | - Melanie J. Cocco
- Departments of Microbiology and Molecular Genetics, Molecular Biology and Biochemistry, University of California, Irvine, California 92697
| | - Rozanne M. Sandri-Goldin
- Departments of Microbiology and Molecular Genetics, Molecular Biology and Biochemistry, University of California, Irvine, California 92697
| |
Collapse
|
27
|
Poly(A)-binding protein 1 partially relocalizes to the nucleus during herpes simplex virus type 1 infection in an ICP27-independent manner and does not inhibit virus replication. J Virol 2010; 84:8539-48. [PMID: 20573819 DOI: 10.1128/jvi.00668-10] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection of cells by herpes simplex virus type 1 (HSV-1) triggers host cell shutoff whereby mRNAs are degraded and cellular protein synthesis is diminished. However, virus protein translation continues because the translational apparatus in HSV-infected cells is maintained in an active state. Surprisingly, poly(A)-binding protein 1 (PABP1), a predominantly cytoplasmic protein that is required for efficient translation initiation, is partially relocated to the nucleus during HSV-1 infection. This relocalization occurred in a time-dependent manner with respect to virus infection. Since HSV-1 infection causes cell stress, we examined other cell stress inducers and found that oxidative stress similarly relocated PABP1. An examination of stress-induced kinases revealed similarities in HSV-1 infection and oxidative stress activation of JNK and p38 mitogen-activated protein (MAP) kinases. Importantly, PABP relocalization in infection was found to be independent of the viral protein ICP27. The depletion of PABP1 by small interfering RNA (siRNA) knockdown had no significant effect on viral replication or the expression of selected virus late proteins, suggesting that reduced levels of cytoplasmic PABP1 are tolerated during infection.
Collapse
|
28
|
Herpes simplex virus 1 regulatory protein ICP27 undergoes a head-to-tail intramolecular interaction. J Virol 2010; 84:4124-35. [PMID: 20164236 DOI: 10.1128/jvi.02319-09] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) regulatory protein ICP27 is a multifunction functional protein that interacts with many cellular proteins. A number of the proteins with which ICP27 interacts require that both the N and C termini of ICP27 are intact. These include RNA polymerase II, TAP/NXF1, and Hsc70. We tested the possibility that the N and C termini of ICP27 could undergo a head-to-tail intramolecular interaction that exists in open and closed configurations for different binding partners. Here, we show by bimolecular fluorescence complementation (BiFC) assays and fluorescence resonance energy transfer (FRET) by acceptor photobleaching that ICP27 undergoes a head-to-tail intramolecular interaction but not head-to-tail or tail-to-tail intermolecular interactions. Substitution mutations in the N or C termini showed that the leucine-rich region (LRR) in the N terminus and the zinc finger-like region in the C terminus must be intact for intramolecular interactions. A recombinant virus, vNC-Venus-ICP27, was constructed, and this virus was severely impaired for virus replication. The expression of NC-Venus-ICP27 protein was delayed compared to ICP27 expression in wild-type HSV-1 infection, but NC-Venus-ICP27 was abundantly expressed at late times of infection. Because the renaturation of the Venus fluorescent protein results in a covalent bonding of the two halves of the Venus molecule, the head-to-tail interaction of NC-Venus-ICP27 locks ICP27 in a closed configuration. We suggest that the population of locked ICP27 molecules is not able to undergo further protein-protein interactions.
Collapse
|
29
|
Human cytomegalovirus UL69 protein facilitates translation by associating with the mRNA cap-binding complex and excluding 4EBP1. Proc Natl Acad Sci U S A 2010; 107:2640-5. [PMID: 20133758 DOI: 10.1073/pnas.0914856107] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
4EBP1 is phosphorylated by the mTORC1 kinase. When mTORC1 activity is inhibited, hypophosphorylated 4EBP1 binds and sequesters eIF4E, a component of the mRNA cap-binding complex, and blocks translation. As a consequence, mTORC1 activity is needed to maintain active translation. The human cytomegalovirus pUL38 protein preserves mTORC1 activity, keeping most of the E4BP1 in the infected cell in a hyperphosphorylated, inactive state. Here we report that a second viral protein, pUL69, also antagonizes the activity of 4EBP1, but by a separate mechanism. pUL69 interacts directly with eIF4A1, an element of the cap-binding complex, and the poly(A)-binding protein, which binds to the complex. When pUL69 accumulates during infection with wild-type virus, 4EBP1 is excluded from the complex. However, 4EBP1 is present in the cap-binding complex after infection with a pUL69-deficient virus, coincident with reduced accumulation of several late virus-coded proteins. We propose that pUL69 supports translation in human cytomegalovirus-infected cells by excluding hypophosphorylated 4EBP1 from the cap-binding complex.
Collapse
|
30
|
Herpes simplex virus proteins ICP27 and UL47 associate with polyadenylate-binding protein and control its subcellular distribution. J Virol 2010; 84:270-9. [PMID: 19864386 DOI: 10.1128/jvi.01740-09] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Human pathogenic viruses manipulate host cell translation machinery to ensure efficient expression of viral genes and to thwart host cell protein synthesis. Viral strategies include cleaving translation factors, manipulating translation factor abundance and recruitment into translation initiation complexes, or expressing viral translation factor analogs. Analyzing translation factors in herpes simplex virus type 1 (HSV-1)-infected HeLa cells, we found diminished association of the polyadenylate-binding protein (PABP) with the cap-binding complex. Although total PABP levels were unchanged, HSV-1 infection prompted accumulation of cytoplasmic PABPC1, but not its physiologic binding partner PABP-interacting protein 2 (Paip2), in the nucleus. Using glutathione S-transferase-PABP pull-down and proteomic analyses, we identified several viral proteins interacting with PABPC1 including tegument protein UL47 and infected-cell protein ICP27. Transient expression of ICP27 and UL47 in HeLa cells suggested that ICP27 and UL47 jointly displace Paip2 from PABP. ICP27 expression alone was sufficient to cause PABPC1 redistribution to the nucleus. ICP27 and UL47 did not alter translation efficiency of transfected reporter RNAs but modulated transcript abundance and expression of reporter cDNAs in transfected cells. This indicates that redistribution of PABPC1 may be involved in co- and posttranscriptional regulation of mRNA processing and/or nuclear export by HSV-1 gene regulatory proteins.
Collapse
|
31
|
ICP27 phosphorylation site mutants are defective in herpes simplex virus 1 replication and gene expression. J Virol 2009; 84:2200-11. [PMID: 20015991 DOI: 10.1128/jvi.00917-09] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) protein ICP27 is a multifunctional regulatory protein that is posttranslationally modified by phosphorylation during viral infection. ICP27 has been shown to be phosphorylated on three serine residues, specifically serine residues 16 and 18, which are within casein kinase 2 (CK2) sites, and serine residue 114, which is within a protein kinase A (PKA) site. Phosphorylation is an important regulatory mechanism that is reversible and controls many signaling pathways, protein-protein interactions, and protein subcellular localization. To determine the role of phosphorylation in modulating the activities of ICP27, we constructed phosphorylation site mutations at each of the three serine residues. Single, double, and triple viral mutants were created in which alanine or glutamic acid was substituted for serines 16, 18, and 114. ICP27 phosphorylation site mutants were defective in viral replication and viral gene expression. Notably, ICP4-containing replication compartment formation was severely compromised, with the appearance of small ring-like structures that persisted even at late times after infection. Neither the colocalization of ICP27 with RNA polymerase II nor the formation of Hsc70 nuclear foci was observed during infection with the phosphorylation site mutants, both of which occur during wild-type HSV-1 infection. These data indicate that several key events in which ICP27 plays a role are curtailed during infection with ICP27 phosphorylation site mutants.
Collapse
|
32
|
Johnson KE, Knipe DM. Herpes simplex virus-1 infection causes the secretion of a type I interferon-antagonizing protein and inhibits signaling at or before Jak-1 activation. Virology 2009; 396:21-9. [PMID: 19879619 DOI: 10.1016/j.virol.2009.09.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 07/28/2009] [Accepted: 09/16/2009] [Indexed: 11/18/2022]
Abstract
Host cells respond to viral infection by the production of type I interferons (IFNs), which induce the expression of antiviral genes. Herpes simplex virus I (HSV-1) encodes many mechanisms that inhibit the type I IFN response, including the ICP27-dependent inhibition of type I IFN signaling. Here we show inhibition of Stat-1 nuclear accumulation in cells that express ICP27. ICP27 expression also induces the secretion of a small, heat-stable type I IFN antagonizing protein that inhibits Stat-1 nuclear accumulation. We show that the inhibition of IFN-induced Stat-1 phosphorylation occurs at or upstream of Jak-1 phosphorylation. Finally, we show that ISG15 expression is induced after IFNalpha treatment in mock-infected cells, but not cells infected with WT HSV-1 or ICP27(-) HSV-1. These data suggest that HSV-1 has evolved multiple mechanisms to inhibit IFN signaling not only in infected cells, but also in neighboring cells, thereby allowing for increased viral replication and spread.
Collapse
Affiliation(s)
- Karen E Johnson
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
33
|
Ricci EP, Mure F, Gruffat H, Decimo D, Medina-Palazon C, Ohlmann T, Manet E. Translation of intronless RNAs is strongly stimulated by the Epstein-Barr virus mRNA export factor EB2. Nucleic Acids Res 2009; 37:4932-43. [PMID: 19528074 PMCID: PMC2731895 DOI: 10.1093/nar/gkp497] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Epstein–Barr virus protein (EB2) allows the nuclear export of a particular subset of early and late viral RNAs derived from intronless genes. EB2 is conserved among most herpesvirus members and its presence is essential for the production of infectious particles. Here we show that, besides its role as a nuclear export factor, EB2 strongly stimulates translation of unspliced mRNAs without affecting overall cellular translation. Interestingly, this effect can be reversed by the addition of an intron within the gene. The spliced mRNA is then efficiently exported and translated even in the absence of EB2. Moreover, we show that EB2 associates with translating ribosomes and increases the proportion of its target RNA in the polyribosomal fraction. Finally, testing of EB2 homolog proteins derived from EBV-related herpesviruses, shows that, even if they play similar roles within the replication cycle of their respective virus, their mechanisms of action are different.
Collapse
Affiliation(s)
- Emiliano P Ricci
- INSERM U758, Unité de Virologie Humaine, Ecole Normale Supérieure de Lyon, Lyon F-69007, France
| | | | | | | | | | | | | |
Collapse
|
34
|
Herpes simplex virus type 1 ICP27 induces p38 mitogen-activated protein kinase signaling and apoptosis in HeLa cells. J Virol 2008; 83:1767-77. [PMID: 19073744 DOI: 10.1128/jvi.01944-08] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The herpes simplex virus type 1 (HSV-1) protein ICP27 has been implicated in a variety of functions important for viral replication including host shutoff, viral gene expression, activation of mitogen-activated protein kinases p38 and Jun N-terminal protein kinase (JNK), and apoptosis inhibition. In the present study we sought to examine the functions of ICP27 in the absence of viral infection by creating stable HeLa cell lines that inducibly express ICP27. Here, we characterize two such cell lines and show that ICP27 expression is associated with a cellular growth defect. The observed defect is caused at least in part by the induction of apoptosis as indicated by caspase-3 activation, annexin V staining, and characteristic changes in cellular morphology. In an effort to identify the function of ICP27 responsible for inducing apoptosis, we show that ICP27 expression is sufficient to activate p38 signaling to a level that is similar to that observed during wild-type HSV-1 infection. However, ICP27 expression alone is unable to lead to a strong activation of JNK signaling. Using chemical inhibitors, we show that the ICP27-mediated activation of p38 signaling is responsible for the observed induction of apoptosis in the induced cell lines. Our findings suggest that during viral infection, ICP27 activates p38 and JNK signaling pathways via two distinct mechanisms. ICP27 directly activates p38 signaling, leading to stimulation of the host cell apoptotic pathways. In contrast, robust activation of JNK signaling by ICP27 requires one or more delayed early or late viral gene products and may be associated with the inhibition of apoptosis.
Collapse
|
35
|
The herpes simplex virus type 1 multiple function protein ICP27. Virol Sin 2008. [DOI: 10.1007/s12250-008-2993-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
36
|
VP22 of herpes simplex virus 1 promotes protein synthesis at late times in infection and accumulation of a subset of viral mRNAs at early times in infection. J Virol 2008; 83:1009-17. [PMID: 18987147 DOI: 10.1128/jvi.02245-07] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
VP22, encoded by the U(L)49 gene, is one of the most abundant proteins of the herpes simplex virus 1 (HSV-1) tegument. In the present study we show VP22 is required for optimal protein synthesis at late times in infection. Specifically, in the absence of VP22, viral proteins accumulated to wild-type levels until approximately 6 h postinfection. At that time, ongoing synthesis of most viral proteins dramatically decreased in the absence of VP22, whereas protein stability was not affected. Of the individual proteins we assayed, VP22 was required for optimal synthesis of the late viral proteins gE and gD and the immediate-early protein ICP0 but did not have discernible effects on accumulation of the immediate-early proteins ICP4 or ICP27. In addition, we found VP22 is required for the accumulation of a subset of mRNAs to wild-type levels at early, but not late, times in infection. Specifically, the presence of VP22 enhanced the accumulation of gE and gD mRNAs until approximately 9 h postinfection, but it had no discernible effect at later times in infection. Also, VP22 did not significantly affect ICP0 mRNA at any time in infection. Thus, the protein synthesis and mRNA phenotypes observed with the U(L)49-null virus are separable with regard to both timing during infection and the genes affected and suggest separate roles for VP22 in enhancing the accumulation of viral proteins and mRNAs. Finally, we show that VP22's effects on protein synthesis and mRNA accumulation occur independently of mutations in genes encoding the VP22-interacting partners VP16 and vhs.
Collapse
|
37
|
Abstract
Viruses are dependent upon the host cell protein synthesis machinery, thus they have developed a range of strategies to manipulate host translation to favour viral protein synthesis. Consequently, the study of viral translation has been a powerful tool for illuminating many aspects of cellular translational control. Although much work to date has focused on translational regulation by RNA viruses, DNA viruses have also evolved complex mechanisms to regulate protein synthesis. Here we summarize work on a large family of DNA viruses, the Herpesviridae, which have evolved mechanisms to sustain efficient cap-dependent translation and to regulate the translation of specific viral mRNAs.
Collapse
|
38
|
Herpes simplex virus type 1 ICP27 regulates expression of a variant, secreted form of glycoprotein C by an intron retention mechanism. J Virol 2008; 82:7443-55. [PMID: 18495765 DOI: 10.1128/jvi.00388-08] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously showed that herpes simplex virus type 1 (HSV-1) immediate-early (IE) protein ICP27 can posttranscriptionally stimulate mRNA accumulation from a transfected viral late gene encoding glycoprotein C (gC) (K. D. Perkins, J. Gregonis, S. Borge, and S. A. Rice, J. Virol. 77:9872-9884, 2003). We began this study by asking whether ICP27 homologs from other herpesviruses can also mediate this activity. Although the homologs from varicella-zoster virus (VZV) and human cytomegalovirus (HCMV) were inactive, the homolog from bovine herpesvirus 4 (BHV-4), termed HORF1/2, was a very efficient transactivator. Surprisingly, most of the mRNA produced via HORF1/2 transactivation was 225 nucleotides shorter than expected due to the removal of a previously undescribed intron from the gC transcript. We found that the gC mRNA produced in the absence of transactivation was also mostly spliced. In contrast, gC mRNA produced by ICP27 transactivation was predominantly unspliced. Based on these results, we conclude that ICP27 has two distinct effects on the transfected gC gene: it (i) stimulates mRNA accumulation and (ii) promotes the retention of an intron. Interestingly, the spliced transcript encodes a variant of gC that lacks its transmembrane domain and is secreted from transfected cells. As the gC splicing signals are conserved among several HSV-1 strains, we investigated whether the variant gC is expressed during viral infection. We report here that both the spliced transcript and its encoded protein are readily detected in Vero cells infected with three different laboratory strains of wild-type HSV-1. Moreover, the variant gC is efficiently secreted from infected cells. We have designated this alternate form of the protein as gCsec. As the extracellular domain of gC is known to bind heparan sulfate-containing proteoglycans and to inhibit the complement cascade via an interaction with complement component C3b, we speculate that gCsec could function as a secreted virulence factor.
Collapse
|
39
|
Abstract
The herpes simplex virus (HSV) ICP27 immediate-early protein plays an essential role in the expression of viral late genes. ICP27 is a multifunctional protein and has been reported to regulate multiple steps of mRNA synthesis and processing, including transcription, splicing, and nuclear export. Recently, ICP27 was reported to interact with translation factors and to stimulate translation of the viral late mRNA encoding VP16. We examined the effects of ICP27 on accumulation, nuclear export, and translation of HSV 1 (HSV-1) late mRNAs encoding VP16, ICP5, and gD. We confirm here that ICP27 stimulates translation of VP16 mRNA as well as an additional HSV-1 late ICP5 mRNA. The data presented here demonstrate that translation levels of both VP16 and ICP5 mRNA is reduced during infections with the ICP27-null virus mutant d27-1, and with ICP27 C-terminal deletion mutant viruses n406 and n504, compared to wild-type virus. In contrast, the translation of gD mRNA is not affected by the presence of ICP27 during infection. These data demonstrate that ICP27 functions to increase the translation levels of a subset of HSV-1 late genes, and this function requires the C terminus of ICP27.
Collapse
|
40
|
Bryant KF, Coen DM. Inhibition of translation by a short element in the 5' leader of the herpes simplex virus 1 DNA polymerase transcript. J Virol 2008; 82:77-85. [PMID: 17959669 PMCID: PMC2224361 DOI: 10.1128/jvi.01484-07] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Accepted: 10/17/2007] [Indexed: 12/29/2022] Open
Abstract
Many viruses regulate gene expression, both globally and specifically, to achieve maximal rates of replication. During herpes simplex virus 1 infection, translation of the DNA polymerase (Pol) catalytic subunit is inefficient relative to other proteins of the same temporal class (D. R. Yager, A. I. Marcy, and D. M. Coen., J. Virol. 64:2217-2225, 1990). To investigate the mechanisms involved in the inefficient translation of Pol and to determine whether this inefficient translation could affect viral replication, we performed a mutagenic analysis of the 5' end of the pol transcript. We found that a short sequence ( approximately 55 bases) in the 5' leader of the transcript is both necessary and sufficient to inhibit translation in rabbit reticulocyte lysates and sufficient to inhibit reporter gene translation in transfected cells. RNase structure mapping experiments indicated that the inhibitory element adopts a structure that contains regions of a double-stranded nature, which may interfere with ribosomal loading and/or scanning. Pol accumulated to approximately 2- to 3-fold-higher levels per mRNA in cells infected with a mutant virus containing a deletion of the approximately 55-base inhibitory element than in cells infected with a control virus containing this element. Additionally, the mutant virus replicated less efficiently than the control virus. These results suggest that the inhibitory element regulates Pol translation during infection and that its inhibition of Pol translation is beneficial for viral replication.
Collapse
MESH Headings
- 5' Untranslated Regions/genetics
- 5' Untranslated Regions/physiology
- Animals
- Chlorocebus aethiops
- DNA-Directed DNA Polymerase/genetics
- Exodeoxyribonucleases/genetics
- Gene Expression Regulation, Viral/genetics
- Gene Expression Regulation, Viral/physiology
- Genes, Reporter
- Herpesvirus 1, Human/physiology
- Luciferases, Firefly/biosynthesis
- Luciferases, Firefly/genetics
- Mutagenesis
- Nucleic Acid Conformation
- Protein Biosynthesis
- RNA, Double-Stranded
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Sequence Deletion
- Vero Cells
- Viral Proteins/genetics
- Virus Replication/genetics
- Virus Replication/physiology
Collapse
Affiliation(s)
- Kevin F Bryant
- Dept. of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Ave., Boston, MA 02115, USA
| | | |
Collapse
|
41
|
Bedard KM, Daijogo S, Semler BL. A nucleo-cytoplasmic SR protein functions in viral IRES-mediated translation initiation. EMBO J 2007; 26:459-67. [PMID: 17183366 PMCID: PMC1783453 DOI: 10.1038/sj.emboj.7601494] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Accepted: 11/14/2006] [Indexed: 11/08/2022] Open
Abstract
A significant number of viral and cellular mRNAs utilize cap-independent translation, employing mechanisms distinct from those of canonical translation initiation. Cap-independent translation requires noncanonical, cellular RNA-binding proteins; however, the roles of such proteins in ribosome recruitment and translation initiation are not fully understood. This work demonstrates that a nucleo-cytoplasmic SR protein, SRp20, functions in internal ribosome entry site (IRES)-mediated translation of a viral RNA. We found that SRp20 interacts with the cellular RNA-binding protein, PCBP2, a protein that binds to IRES sequences within the genomic RNAs of certain picornaviruses and is required for viral translation. We utilized in vitro translation in HeLa cell extracts depleted of SRp20 to demonstrate that SRp20 is required for poliovirus translation initiation. Targeting SRp20 in HeLa cells with short interfering RNAs resulted in inhibition of SRp20 protein expression and a corresponding decrease in poliovirus translation. Our data have identified a previously unknown function of an SR protein (i.e., the stimulation of IRES-mediated translation), further documenting the multifunctional nature of this important class of cellular RNA-binding proteins.
Collapse
Affiliation(s)
- Kristin M Bedard
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA, USA
| | - Sarah Daijogo
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA, USA
| | - Bert L Semler
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA, USA
| |
Collapse
|
42
|
Corcoran JA, Hsu WL, Smiley JR. Herpes simplex virus ICP27 is required for virus-induced stabilization of the ARE-containing IEX-1 mRNA encoded by the human IER3 gene. J Virol 2006; 80:9720-9. [PMID: 16973576 PMCID: PMC1617249 DOI: 10.1128/jvi.01216-06] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus (HSV) stifles cellular gene expression during productive infection of permissive cells, thereby diminishing host responses to infection. Host shutoff is achieved largely through the complementary actions of two viral proteins, ICP27 and virion host shutoff (vhs), that inhibit cellular mRNA biogenesis and trigger global mRNA decay, respectively. Although most cellular mRNAs are thus depleted, some instead increase in abundance after infection; perhaps surprisingly, some of these contain AU-rich instability elements (AREs) in their 3'-untranslated regions. ARE-containing mRNAs normally undergo rapid decay; however, their stability can increase in response to signals such as cytokines and virus infection that activate the p38/MK2 mitogen-activated protein kinase (MAPK) pathway. We and others have shown that HSV infection stabilizes the ARE mRNA encoding the stress-inducible IEX-1 mRNA, and a previous report from another laboratory has suggested vhs is responsible for this effect. However, we now report that ICP27 is essential for IEX-1 mRNA stabilization whereas vhs plays little if any role. A recent report has documented that ICP27 activates the p38 MAPK pathway, and we detected a strong correlation between this activity and stabilization of IEX-1 mRNA by using a panel of HSV type 1 (HSV-1) isolates bearing an array of previously characterized ICP27 mutations. Furthermore, IEX-1 mRNA stabilization was abrogated by the p38 inhibitor SB203580. Taken together, these data indicate that the HSV-1 immediate-early protein ICP27 alters turnover of the ARE-containing message IEX-1 by activating p38. As many ARE mRNAs encode proinflammatory cytokines or other immediate-early response proteins, some of which may limit viral replication, it will be of great interest to determine if ICP27 mediates stabilization of many or all ARE-containing mRNAs.
Collapse
Affiliation(s)
- Jennifer A Corcoran
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | | | | |
Collapse
|
43
|
Watanabe D, Brockman MA, Ndung'u T, Mathews L, Lucas WT, Murphy CG, Felber BK, Pavlakis GN, Deluca NA, Knipe DM. Properties of a herpes simplex virus multiple immediate-early gene-deleted recombinant as a vaccine vector. Virology 2006; 357:186-98. [PMID: 16996101 DOI: 10.1016/j.virol.2006.08.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Revised: 07/25/2006] [Accepted: 08/10/2006] [Indexed: 10/24/2022]
Abstract
Herpes simplex virus (HSV) recombinants induce durable immune responses in rhesus macaques and mice and have induced partial protection in rhesus macaques against mucosal challenge with virulent simian immunodeficiency virus (SIV). In this study, we evaluated the properties of a new generation HSV vaccine vector, an HSV-1 multiple immediate-early (IE) gene deletion mutant virus, d106, which contains deletions in the ICP4, ICP27, ICP22, and ICP47 genes. Because several of the HSV IE genes have been implicated in immune evasion, inactivation of the genes encoding these proteins was expected to result in enhanced immunogenicity. The d106 virus expresses few HSV gene products and shows minimal cytopathic effect in cultured cells. When d106 was inoculated into mice, viral DNA accumulated at high levels in draining lymph nodes, consistent with an ability to transduce dendritic cells and activate their maturation and movement to lymph nodes. A d106 recombinant expressing Escherichia coli beta-galactosidase induced durable beta-gal-specific IgG and CD8(+) T cell responses in naive and HSV-immune mice. Finally, d106-based recombinants have been constructed that express simian immunodeficiency virus (SIV) gag, env, or a rev-tat-nef fusion protein for several days in cultured cells. Thus, d106 shows many of the properties desirable in a vaccine vector: limited expression of HSV gene products and cytopathogenicity, high level expression of transgenes, ability to induce durable immune responses, and an ability to transduce dendritic cells and induce their maturation and migration to lymph nodes.
Collapse
Affiliation(s)
- Daisuke Watanabe
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Sanchez V, Spector DH. Cyclin-dependent kinase activity is required for efficient expression and posttranslational modification of human cytomegalovirus proteins and for production of extracellular particles. J Virol 2006; 80:5886-96. [PMID: 16731927 PMCID: PMC1472584 DOI: 10.1128/jvi.02656-05] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
We have previously shown that the addition of the cyclin-dependent kinase (cdk) inhibitor Roscovitine at the beginning of infection of cells with human cytomegalovirus (HCMV) significantly disrupts immediate-early gene expression and the progression of the infection. In the present study, we have examined the effects of cdk inhibition on late viral events by delaying addition of Roscovitine until 24 h postinfection. Although viral DNA replication was inhibited two- to threefold by treatment of infected cells with Roscovitine, the drop did not correspond to the 1- to 2-log-unit decrease in virus titer. Quantification of viral DNA in the supernatant from cells revealed that there was a significant reduction in the production or release of extracellular particles. We observed a lag in the expression of several viral proteins but there was a significant decrease in the steady-state levels of IE2-86. Likewise, the steady-state level of the essential tegument protein UL32 (pp150) was reduced. The levels of pp150 and IE2-86 mRNA were not greatly affected by treatment with Roscovitine and thus did not correlate with the reduced levels of protein. In contrast, the expression of the tegument protein ppUL69 was higher in drug-treated samples, and the protein accumulated in a hyperphosphorylated form. ppUL69 localized to intranuclear aggregates that did not overlap with viral replication centers in cells treated with Roscovitine. Taken together, these data indicate that cdk activity is required at multiple steps during HCMV infection, including the expression, modification, and localization of virus-encoded proteins.
Collapse
Affiliation(s)
- Veronica Sanchez
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0712, USA
| | | |
Collapse
|
45
|
Dai-Ju JQ, Li L, Johnson LA, Sandri-Goldin RM. ICP27 interacts with the C-terminal domain of RNA polymerase II and facilitates its recruitment to herpes simplex virus 1 transcription sites, where it undergoes proteasomal degradation during infection. J Virol 2006; 80:3567-81. [PMID: 16537625 PMCID: PMC1440381 DOI: 10.1128/jvi.80.7.3567-3581.2006] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) ICP27 has been shown to interact with RNA polymerase II (RNAP II) holoenzyme. Here, we show that ICP27 interacts with the C-terminal domain (CTD) of RNAP II and that ICP27 mutants that cannot interact fail to relocalize RNAP II to viral transcription sites, suggesting a role for ICP27 in RNAP II recruitment. Using monoclonal antibodies specific for different phosphorylated forms of the RNAP II CTD, we found that the serine-2 phosphorylated form, which is found predominantly in elongating complexes, was not recruited to viral transcription sites. Further, there was an overall reduction in phosphoserine-2 staining. Western blot analysis revealed that there was a pronounced decrease in the phosphoserine-2 form and in overall RNAP II levels in lysates from cells infected with wild-type HSV-1. There was no appreciable difference in cdk9 levels, suggesting that protein degradation rather than dephosphorylation was occurring. Treatment of infected cells with proteasome inhibitors MG-132 and lactacystin prevented the decrease in the phosphoserine-2 form and in overall RNAP II levels; however, there was a concomitant decrease in the levels of several HSV-1 late proteins and in virus yield. Proteasomal degradation has been shown to resolve stalled RNAP II complexes at sites of DNA damage to allow 3' processing of transcripts. Thus, we propose that at later times of infection when robust transcription and DNA replication are occurring, elongating complexes may collide and proteasomal degradation may be required for resolution.
Collapse
Affiliation(s)
- Jenny Q Dai-Ju
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California at Irvine, Irvine, CA 92697-4025, USA
| | | | | | | |
Collapse
|
46
|
Larralde O, Smith RWP, Wilkie GS, Malik P, Gray NK, Clements JB. Direct stimulation of translation by the multifunctional herpesvirus ICP27 protein. J Virol 2006; 80:1588-91. [PMID: 16415034 PMCID: PMC1346932 DOI: 10.1128/jvi.80.3.1588-1591.2006] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) ICP27 protein is an essential regulator of viral gene expression with roles at various levels of RNA metabolism in the nucleus. Using the tethered function assay, we showed a cytoplasmic activity for ICP27 in directly enhancing mRNA translation in vivo in the absence of other viral factors. The region of ICP27 required for translational stimulation maps to the C terminus. Furthermore, in infected cells, ICP27 is associated with polyribosomes, indicating a function in translation during the lytic cycle.
Collapse
Affiliation(s)
- Osmany Larralde
- MRC Human Genetics Unit, Western General Hospital, Edinburgh EH4 2XU, Scotland, United Kingdom
| | | | | | | | | | | |
Collapse
|
47
|
Schwartz JA, Brittle EE, Reynolds AE, Enquist LW, Silverstein SJ. UL54-null pseudorabies virus is attenuated in mice but productively infects cells in culture. J Virol 2006; 80:769-84. [PMID: 16378979 PMCID: PMC1346835 DOI: 10.1128/jvi.80.2.769-784.2006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The pseudorabies virus (PRV) UL54 homologs are important multifunctional proteins with roles in shutoff of host protein synthesis, transactivation of virus and cellular genes, and regulation of splicing and translation. Here we describe the first genetic characterization of UL54. We constructed UL54 null mutations in a PRV bacterial artificial chromosome using sugar suicide and lambdaRed allele exchange systems. Surprisingly, UL54 is dispensable for growth in tissue culture but exhibits a small-plaque phenotype that can be complemented in trans by both the herpes simplex virus type 1 ICP27 and varicella-zoster virus open reading frame 4 proteins. Deletion of UL54 in the virus vJSdelta54 had no effect on the ability of the virus to shut off host cell protein synthesis but did affect virus gene expression. The glycoprotein gC accumulated to lower levels in cells infected with vJSdelta54 compared to those infected with wild-type virus, while gK levels were undetectable. Other late gene products, gB, gE, and Us9, accumulated to higher levels than those seen in cells infected with wild-type virus in a multiplicity-dependent manner. DNA replication is also reduced in cells infected with vJSdelta54. UL54 appears to regulate UL53 and UL52 at the transcriptional level as their respective RNAs are decreased in cells infected with vJSdelta54. Interestingly, vJSdelta54 is highly attenuated in a mouse model of PRV infection. Animals infected with vJSdelta54 survive twice as long as animals infected with wild-type virus, and this results in delayed accumulation of virus-specific antigens in skin, dorsal root ganglia, and spinal cord tissues.
Collapse
Affiliation(s)
- Jennifer A Schwartz
- Department of Microbiology, Columbia University, 701 W. 168th St., New York, NY 10032, USA
| | | | | | | | | |
Collapse
|