1
|
Yao X, Cai H, Chen J, Yu F, Wu X, Shi Y, Hu Y, Xu Y, Xu Q, Liu Z. Increased long-term central memory T cells in patients with retreatment pulmonary tuberculosis. Front Immunol 2025; 16:1545537. [PMID: 40170853 PMCID: PMC11959053 DOI: 10.3389/fimmu.2025.1545537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 02/18/2025] [Indexed: 04/03/2025] Open
Abstract
Background T cells are crucial in controlling Mycobacterium tuberculosis infection and disease progression. Nevertheless, the specific functions and changes of T lymphocyte subsets in retreatment tuberculosis remain poorly understand. The study aims to identify the changes in T lymphocyte subsets and the immunoprotective effect of TCM in retreatment tuberculosis. Method We collected venous blood from the participants and assessed using flow cytometry. Univariate analysis and regression model were used to evaluate the changes of T lymphocyte subsets and key subsets in retreatment tuberculosis. Results In the study, while the frequencies of CD4 and CD8 T cells were similar between primary and retreatment patients, retreatment patients exhibited a significant increase in TCM (P < 0.05), which may represent a protective factor for retreatment (adjusted OR=0.926, 95%CI: 0.860-0.996, P < 0.05) (adjusted OR=0.951, 95%CI: 0.912-0.992, P<0.05). Furthermore, TCM significantly increased in retreatment patients who achieved cure (P < 0.05), though were similar between the cure and no-cure for primary patients; The potentially protective effect of TCM in patients with repeated infection may possibly contribute by improving the efficacy of retreatment chemotherapy (adjusted OR=0.803, 95%CI: 0.677-0.953, P < 0.05) (adjusted OR=0.890, 95% CI: 0.812-0.976, P<0.05), particularly in those with lung injury (adjusted OR=0.780, 95% CI: 0.635-0.957, P< 0.05) (adjusted OR=0.805, 95% CI: 0.660-0.983, P<0.05). Conclusion Development of adjunct immunotherapies for increasing TCM responses may improve the efficacy of retreatment tuberculosis with existing and with novel chemotherapies.
Collapse
Affiliation(s)
- Xin Yao
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Haomin Cai
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianxia Chen
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fangyong Yu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaocui Wu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yarong Shi
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Yang Hu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuyan Xu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Qinghua Xu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhonghua Liu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| |
Collapse
|
2
|
Han JW, Shin EC. Investigating Human Liver Tissue-Resident Memory T Cells from the Perspectives of Gastroenterologists and Hepatologists. Gut Liver 2025; 19:161-170. [PMID: 40058791 PMCID: PMC11907256 DOI: 10.5009/gnl240366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/18/2024] [Accepted: 09/22/2024] [Indexed: 03/15/2025] Open
Abstract
Liver tissue-resident memory T (TRM) cells play a pivotal role in hepatic immune responses. Their unique residence within liver sinusoids allow continuous antigen surveillance. In this review, we highlight the role of liver TRM cells in protective immunity and disease pathology. Comparisons between human and murine liver TRM cells reveal species-specific characteristics, suggesting the need for human-focused studies. One key finding is the involvement of liver TRM cells in viral hepatitis, where they can both control infection and contribute to liver damage. Liver TRM cells also exhibit dual roles in metabolic-associated steatotic liver disease, promoting inflammation and fibrosis while also contributing to fibrosis resolution. In autoimmune liver diseases, such as autoimmune hepatitis and primary sclerosing cholangitis, the presence of liver TRM cells correlates with disease severity. In this review, we underscore the importance of liver TRM cells in vaccine development, particularly vaccines against malaria. Future research should focus on the mechanisms governing TRM-cell formation, maintenance, and function, with the aim of supporting their protective roles while mitigating detrimental effects. Advancing our understanding of liver TRM cells will enhance our knowledge of liver immunology and inform novel therapeutic strategies for liver disease management.
Collapse
Affiliation(s)
- Ji Won Han
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
- The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon, Korea
| |
Collapse
|
3
|
Wang P, Wang Y, Zhao X, Zheng R, Zhang Y, Meng R, Dong H, Liang S, He X, Song Y, Su H, Yan B, Yang AG, Jia L. Chimeric antigen receptor with novel intracellular modules improves antitumor performance of T cells. Signal Transduct Target Ther 2025; 10:20. [PMID: 39809749 PMCID: PMC11733243 DOI: 10.1038/s41392-024-02096-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025] Open
Abstract
The excessive cytokine release and limited persistence represent major challenges for chimeric antigen receptor T (CAR-T) cell therapy in diverse tumors. Conventional CARs employ an intracellular domain (ICD) from the ζ subunit of CD3 as a signaling module, and it is largely unknown how alternative CD3 chains potentially contribute to CAR design. Here, we obtained a series of CAR-T cells against HER2 and mesothelin using a domain comprising a single immunoreceptor tyrosine-based activation motif from different CD3 subunits as the ICD of CARs. While these reconstituted CARs conferred sufficient antigen-specific cytolytic activity on equipped T cells, they elicited low tonic signal, ameliorated the exhaustion and promoted memory differentiation of these cells. Intriguingly, the CD3ε-derived ICD outperformed others in generation of CAR-T cells that produced minimized cytokines. Mechanistically, CD3ε-based CARs displayed a restrained cytomembrane expression on engineered T cells, which was ascribed to endoplasmic reticulum retention mediated by the carboxyl terminal basic residues. The present study demonstrated the applicability of CAR reconstitution using signaling modules from different CD3 subunits, and depicted a novel pattern of CAR expression that reduces cytokine release, thus paving a way for preparation of CAR-T cells displaying improved safety and persistence against diverse tumor antigens.
Collapse
Affiliation(s)
- Pengju Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yiyi Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiaojuan Zhao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Rui Zheng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yiting Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Ruotong Meng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Hao Dong
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Sixin Liang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xinyi He
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yang Song
- Department of Oncology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Haichuan Su
- Department of Oncology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Bo Yan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - An-Gang Yang
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China.
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China.
- Department of Oncology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Lintao Jia
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
4
|
Deng G, Zhang Y, Song J, Zhang Y, Zheng Q, Luo Y, Fei X, Yang Y, Kuai L, Li B, Luo Y. The role and therapeutic strategies for tissue-resident memory T cells, central memory T cells, and effector memory T cells in psoriasis. Immunology 2024; 173:470-480. [PMID: 39136109 DOI: 10.1111/imm.13843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 07/19/2024] [Indexed: 10/04/2024] Open
Abstract
Psoriasis is a skin disease that is inflammatory and persistent, causing a high rate of recurrence, poor quality of life, and significant socioeconomic burden. Its main pathological manifestations are abnormal activation and infiltration of T cells and excessive proliferation of keratinocytes (KCs). The great majority of patients with psoriasis will relapse after remission. It usually lasts a lifetime and necessitates long-term treatment strategies. During periods of activity and remission, one of the main cell types in psoriasis is memory T cells, which include tissue-resident memory T (TRM) cells, central memory T (TCM) cells, and effector memory T (TEM) cells. They work by releasing inflammatory factors, cytotoxic particles, or altering cell subpopulations, leading to increased inflammation or recurrence. This review summarizes the role of memory T cells in the pathology and treatment of psoriasis, with a view to potential novel therapies and therapeutic targets.
Collapse
Affiliation(s)
- Guoshu Deng
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yulin Zhang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiankun Song
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, China
| | - Ying Zhang
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, China
| | - Qi Zheng
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, China
| | - Yue Luo
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, China
| | - Xiaoya Fei
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, China
| | - Yang Yang
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, China
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bin Li
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Ying Luo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Elizaldi SR, Hawes CE, Verma A, Shaan Lakshmanappa Y, Dinasarapu AR, Schlegel BT, Rajasundaram D, Li J, Durbin-Johnson BP, Ma ZM, Pal PB, Beckman D, Ott S, Raeman R, Lifson J, Morrison JH, Iyer SS. Chronic SIV-Induced neuroinflammation disrupts CCR7+ CD4+ T cell immunosurveillance in the rhesus macaque brain. J Clin Invest 2024; 134:e175332. [PMID: 38470479 PMCID: PMC11060742 DOI: 10.1172/jci175332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 03/05/2024] [Indexed: 03/13/2024] Open
Abstract
CD4+ T cells survey and maintain immune homeostasis in the brain, yet their differentiation states and functional capabilities remain unclear. Our approach, combining single-cell transcriptomic analysis, ATAC-Seq, spatial transcriptomics, and flow cytometry, revealed a distinct subset of CCR7+ CD4+ T cells resembling lymph node central memory (TCM) cells. We observed chromatin accessibility at the CCR7, CD28, and BCL-6 loci, defining molecular features of TCM. Brain CCR7+ CD4+ T cells exhibited recall proliferation and interleukin-2 production ex vivo, showcasing their functional competence. We identified the skull bone marrow as a local niche for these cells alongside CNS border tissues. Sequestering TCM cells in lymph nodes using FTY720 led to reduced CCR7+ CD4+ T cell frequencies in the cerebrospinal fluid, accompanied by increased monocyte levels and soluble markers indicating immune activation. In macaques chronically infected with SIVCL757 and experiencing viral rebound due to cessation of antiretroviral therapy, a decrease in brain CCR7+ CD4+ T cells was observed, along with increased microglial activation and initiation of neurodegenerative pathways. Our findings highlight a role for CCR7+ CD4+ T cells in CNS immune surveillance, and their decline during chronic SIV highlights their responsiveness to neuroinflammation.
Collapse
Affiliation(s)
| | - Chase E. Hawes
- Graduate Group in Immunology, UCD, Davis, California, USA
| | - Anil Verma
- Department of Pathology, School of Medicine, University of Pittsburgh, Pennsylvania, USA
| | | | - Ashok R. Dinasarapu
- Department of Neurology, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Brent T. Schlegel
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Dhivyaa Rajasundaram
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jie Li
- Bioinformatics Core, UCD, Davis, California, USA
| | | | - Zhong-Min Ma
- California National Primate Research Center, UCD, Davis, California, USA
| | - Pabitra B. Pal
- Department of Pathology, School of Medicine, University of Pittsburgh, Pennsylvania, USA
| | - Danielle Beckman
- California National Primate Research Center, UCD, Davis, California, USA
| | - Sean Ott
- California National Primate Research Center, UCD, Davis, California, USA
| | - Reben Raeman
- Department of Pathology, School of Medicine, University of Pittsburgh, Pennsylvania, USA
| | - Jeffrey Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, Maryland, USA
| | - John H. Morrison
- California National Primate Research Center, UCD, Davis, California, USA
- Department of Neurology, School of Medicine, and
| | - Smita S. Iyer
- Department of Pathology, School of Medicine, University of Pittsburgh, Pennsylvania, USA
- California National Primate Research Center, UCD, Davis, California, USA
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, UCD, Davis, California, USA
| |
Collapse
|
6
|
Mu S, Chen L, Dong H, Li S, Zhang Y, Yin S, Tian Y, Ding Y, Sun S, Shang S, Guo H. Enhanced antigen-specific CD8 T cells contribute to early protection against FMDV through swine DC vaccination. J Virol 2024; 98:e0200223. [PMID: 38289108 PMCID: PMC10878267 DOI: 10.1128/jvi.02002-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 02/21/2024] Open
Abstract
Foot-and-mouth disease virus (FMDV) remains a challenge for cloven-hooved animals. The currently licensed FMDV vaccines induce neutralizing antibody (NAb)-mediated protection but show defects in the early protection. Dendritic cell (DC) vaccines have shown great potency in inducing rapid T-cell immunity in humans and mice. Whether DC vaccination could enhance early protection against FMDV has not been elaborately explored in domestic pigs. In this study, we employed DC vaccination as an experimental approach to study the roles of cellular immunity in the early protection against FMDV in pigs. Autologous DCs were differentiated from the periphery blood mononuclear cells of each pig, pulsed with inactivated FMDV (iFMDV-DC) and treated with LPS, and then injected into the original pigs. The cellular immune responses and protective efficacy elicited by the iFMDV-DC were examined by multicolor flow cytometry and tested by FMDV challenge. The results showed that autologous iFMDV-DC immunization induced predominantly FMDV-specific IFN-γ-producing CD4+ T cells and cytotoxic CD8+ T cells (CTLs), high NAb titers, compared to the inactivated FMDV vaccine, and accelerated the development of memory CD4 and CD8 T cells, which was concomitantly associated with early protection against FMDV virulent strain in pigs. Such early protection was associated with the rapid proliferation of secondary T-cell response after challenge and significantly contributed by secondary CD8 effector memory T cells. These results demonstrated that rapid induction of cellular immunity through DC immunization is important for improving early protection against FMDV. Enhancing cytotoxic CD8+ T cells may facilitate the development of more effective FMDV vaccines.IMPORTANCEAlthough the currently licensed FMDV vaccines provide NAb-mediated protection, they have defects in early immune protection, especially in pigs. In this study, we demonstrated that autologous swine DC immunization augmented the cellular immune response and induced an early protective response against FMDV in pigs. This approach induced predominantly FMDV-specific IFN-γ-producing CD4+ T cells and cytotoxic CD8+ T cells, high NAb titers, and rapid development of memory CD4 and CD8 T cells. Importantly, the early protection conferred by this DC immunization is more associated with secondary CD8+ T response rather than NAbs. Our findings highlighted the importance of enhancing cytotoxic CD8+ T cells in early protection to FMDV in addition to Th1 response and identifying a strategy or adjuvant comparable to the DC vaccine might be a future direction for improving the current FMDV vaccines.
Collapse
Affiliation(s)
- Suyu Mu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Lingbo Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hu Dong
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shuai Li
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| | - Yun Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shuanghui Yin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yunfei Tian
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| | - Yaozhong Ding
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shiqi Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shaobin Shang
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
| | - Huichen Guo
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
7
|
Kong X, Li Q, Wang D, Wang M, Yang F, Meng J. Mechanism of Qizhen decoction-mediated maturation of DC cells to activate the IL-12/JAK2/STAT4 pathway to sensitise PD-1 inhibitors in the treatment of colorectal cancer. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117399. [PMID: 37956913 DOI: 10.1016/j.jep.2023.117399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 11/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicine has been utilized to treat colorectal cancer (CRC). Qizhen decoction (QZD), a potential compound prescription of traditional Chinese medicine, possesses multiple biological activities. It has been used to treat CRC in clinical practice and has been proven to be effective. AIM OF THE STUDY To investigate the impact of QZD supported by intestinal flora in combination with PD-1 inhibitor on colorectal cancer, and to elucidate the mechanism by which QZD enhances the sensitivity of PD-1 inhibitor against colorectal cancer. MATERIALS AND METHODS Observation of Intestinal Flora Mediating the Effect of QZD Combined with PD-1 Inhibitor in the Treatment of Colorectal Cancer. We used Flow cytometry and qPCR to detect the effect of QZD combined with PD-1 inhibitor on the activation of effector T cells in a wild mouse model of colorectal cancer. In wild and germ-free mouse models, the differences in inflammatory factors, pathological change, body mass, colorectal length, and tumour load were observed. In the study of the mechanism of QZD combined with PD-1 inhibitor in the treatment of colorectal cancer, the study evaluated the abundance of Akkermansia, the phenotypes of effector T cells and DC cells, as well as inflammatory factors in each group of mice to determine whether Akkermansia played a role in activating DC cells. Based on the JAK2/TYK2/STAT4 pathway, the mechanism of PD-1 inhibitor sensitisation by QZD in colorectal cancer was further investigated. RESULTS We found that QZD combined with PD-1 inhibitor could improve the therapeutic effect on colorectal cancer by inducing more critical immune functions. QZD promotes increased Akkermansia abundance in the gut. Akkermansia promotes maturation of DC cells, and mature DC cells activate the IL-12/JAK2/STAT4 pathway, which significantly activates effector T cells. Akkermansia is key to QZD combined with PD-1 inhibitor-mediated immunity exerting a therapeutic effect on colorectal cancer. CONCLUSION The mechanism of action of the QZD sensitizing PD-1 inhibitor is to promote the maturation of DC cells to release IL-12 and activate the JAK2/STAT4 pathway to induce effector T cell activation by increasing the abundance of Akkermansia.
Collapse
Affiliation(s)
- Xianbin Kong
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Qingbo Li
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Dong Wang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Miao Wang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Fan Yang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Jingyan Meng
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
8
|
Elizaldi SR, Hawes CE, Verma A, Dinasarapu AR, Lakshmanappa YS, Schlegel BT, Rajasundaram D, Li J, Durbin-Johnson BP, Ma ZM, Beckman D, Ott S, Lifson J, Morrison JH, Iyer SS. CCR7+ CD4 T Cell Immunosurveillance Disrupted in Chronic SIV-Induced Neuroinflammation in Rhesus Brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555037. [PMID: 37693567 PMCID: PMC10491118 DOI: 10.1101/2023.08.28.555037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
CD4 T cells survey and maintain immune homeostasis in the brain, yet their differentiation states and functional capabilities remain unclear. Our approach, combining single-cell transcriptomic analysis, ATAC-seq, spatial transcriptomics, and flow cytometry, revealed a distinct subset of CCR7+ CD4 T cells resembling lymph node central memory (T CM ) cells. We observed chromatin accessibility at the CCR7, CD28, and BCL-6 loci, defining molecular features of T CM . Brain CCR7+ CD4 T cells exhibited recall proliferation and interleukin-2 production ex vivo, showcasing their functional competence. We identified the skull bone marrow as a local niche for these cells alongside other CNS border tissues. Sequestering T CM cells in lymph nodes using FTY720 led to reduced CCR7+ CD4 T cell frequencies in the cerebrospinal fluid, accompanied by increased monocyte levels and soluble markers indicating immune activation. In macaques chronically infected with SIVCL57 and experiencing viral rebound due to cessation of antiretroviral therapy, a decrease in brain CCR7+ CD4 T cells was observed, along with increased microglial activation and initiation of neurodegenerative pathways. Our findings highlight a role for CCR7+ CD4 T cells in CNS immune surveillance and their decline during chronic SIV-induced neuroinflammation highlights their responsiveness to neuroinflammatory processes. GRAPHICAL ABSTRACT In Brief Utilizing single-cell and spatial transcriptomics on adult rhesus brain, we uncover a unique CCR7+ CD4 T cell subset resembling central memory T cells (T CM ) within brain and border tissues, including skull bone marrow. Our findings show decreased frequencies of this subset during SIV- induced chronic neuroinflammation, emphasizing responsiveness of CCR7+ CD4 T cells to CNS disruptions. Highlights CCR7+ CD4 T cells survey border and parenchymal CNS compartments during homeostasis; reduced presence of CCR7+ CD4 T cells in cerebrospinal fluid leads to immune activation, implying a role in neuroimmune homeostasis. CNS CCR7+ CD4 T cells exhibit phenotypic and functional features of central memory T cells (T CM ) including production of interleukin 2 and the capacity for rapid recall proliferation. Furthermore, CCR7+ CD4 T cells reside in the skull bone marrow. CCR7+ CD4 T cells are markedly decreased within the brain parenchyma during chronic viral neuroinflammation.
Collapse
|
9
|
Tang J, Jia X, Li J, Dong J, Wang J, Li W, Zhu Y, Hu Y, Hou B, Lin C, Cong Y, Ren T, Yan C, Yang H, Lai Q, Zheng H, Bao Y, Gautam N, Wang HR, Xu B, Chen XL, Li Q, Gascoigne NRJ, Fu G. Themis suppresses the effector function of CD8 + T cells in acute viral infection. Cell Mol Immunol 2023; 20:512-524. [PMID: 36977779 PMCID: PMC10203318 DOI: 10.1038/s41423-023-00997-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
CD8+ T cells play a central role in antiviral immune responses. Upon infection, naive CD8+ T cells differentiate into effector cells to eliminate virus-infected cells, and some of these effector cells further differentiate into memory cells to provide long-term protection after infection is resolved. Although extensively investigated, the underlying mechanisms of CD8+ T-cell differentiation remain incompletely understood. Themis is a T-cell-specific protein that plays critical roles in T-cell development. Recent studies using Themis T-cell conditional knockout mice also demonstrated that Themis is required to promote mature CD8+ T-cell homeostasis, cytokine responsiveness, and antibacterial responses. In this study, we used LCMV Armstrong infection as a probe to explore the role of Themis in viral infection. We found that preexisting CD8+ T-cell homeostasis defects and cytokine hyporesponsiveness do not impair viral clearance in Themis T-cell conditional knockout mice. Further analyses showed that in the primary immune response, Themis deficiency promoted the differentiation of CD8+ effector cells and increased their TNF and IFNγ production. Moreover, Themis deficiency impaired memory precursor cell (MPEC) differentiation but promoted short-lived effector cell (SLEC) differentiation. Themis deficiency also enhanced effector cytokine production in memory CD8+ T cells while impairing central memory CD8+ T-cell formation. Mechanistically, we found that Themis mediates PD-1 expression and its signaling in effector CD8+ T cells, which explains the elevated cytokine production in these cells when Themis is disrupted.
Collapse
Affiliation(s)
- Jian Tang
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Xian Jia
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Jian Li
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Junchen Dong
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Jiayu Wang
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Wanyun Li
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Yuzhen Zhu
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Yanyan Hu
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Bowen Hou
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Chunjie Lin
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Yu Cong
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Tong Ren
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Changsheng Yan
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Hongying Yang
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Qian Lai
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Haiping Zheng
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Yuzhou Bao
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Namrata Gautam
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hong-Rui Wang
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Bing Xu
- Department of Hematology, The First Affiliated Hospital and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
| | - Xiao Lei Chen
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China.
| | - Qing Li
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China.
| | - Nicholas R J Gascoigne
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Guo Fu
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China.
- Department of Hematology, The First Affiliated Hospital and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China.
- Cancer Research Center of Xiamen University, Xiamen, China.
| |
Collapse
|
10
|
Xia L, Yuan LZ, Hu YH, Liu JY, Hu GS, Qi RY, Zhang TY, Xiong HL, Zheng ZZ, Lin HW, Zhang JM, Yu C, Zhou M, Ma J, Cheng T, Chen RR, Guan Y, Xia NS, Liu W. A SARS-CoV-2-specific CAR-T-cell model identifies felodipine, fasudil, imatinib, and caspofungin as potential treatments for lethal COVID-19. Cell Mol Immunol 2023; 20:351-364. [PMID: 36864189 PMCID: PMC9979130 DOI: 10.1038/s41423-023-00985-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 01/10/2023] [Accepted: 02/06/2023] [Indexed: 03/04/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced cytokine storm is closely associated with coronavirus disease 2019 (COVID-19) severity and lethality. However, drugs that are effective against inflammation to treat lethal COVID-19 are still urgently needed. Here, we constructed a SARS-CoV-2 spike protein-specific CAR, and human T cells infected with this CAR (SARS-CoV-2-S CAR-T) and stimulated with spike protein mimicked the T-cell responses seen in COVID-19 patients, causing cytokine storm and displaying a distinct memory, exhausted, and regulatory T-cell phenotype. THP1 remarkably augmented cytokine release in SARS-CoV-2-S CAR-T cells when they were in coculture. Based on this "two-cell" (CAR-T and THP1 cells) model, we screened an FDA-approved drug library and found that felodipine, fasudil, imatinib, and caspofungin were effective in suppressing the release of cytokines, which was likely due to their ability to suppress the NF-κB pathway in vitro. Felodipine, fasudil, imatinib, and caspofungin were further demonstrated, although to different extents, to attenuate lethal inflammation, ameliorate severe pneumonia, and prevent mortality in a SARS-CoV-2-infected Syrian hamster model, which were also linked to their suppressive role in inflammation. In summary, we established a SARS-CoV-2-specific CAR-T-cell model that can be utilized as a tool for anti-inflammatory drug screening in a fast and high-throughput manner. The drugs identified herein have great potential for early treatment to prevent COVID-19 patients from cytokine storm-induced lethality in the clinic because they are safe, inexpensive, and easily accessible for immediate use in most countries.
Collapse
Affiliation(s)
- Lin Xia
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Lun-Zhi Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Ya-Hong Hu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Jun-Yi Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Guo-Sheng Hu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Ruo-Yao Qi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Tian-Ying Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Hua-Long Xiong
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Zao-Zao Zheng
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Hong-Wei Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Jia-Mo Zhang
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Chao Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Ming Zhou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Jian Ma
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Tong Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Ri-Rong Chen
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yi Guan
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ning-Shao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China.
| | - Wen Liu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China.
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China.
| |
Collapse
|
11
|
Babl N, Hofbauer J, Matos C, Voll F, Menevse AN, Rechenmacher M, Mair R, Beckhove P, Herr W, Siska PJ, Renner K, Kreutz M, Schnell A. Low-density lipoprotein balances T cell metabolism and enhances response to anti-PD-1 blockade in a HCT116 spheroid model. Front Oncol 2023; 13:1107484. [PMID: 36776340 PMCID: PMC9911890 DOI: 10.3389/fonc.2023.1107484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/10/2023] [Indexed: 01/28/2023] Open
Abstract
Introduction The discovery of immune checkpoints and the development of their specific inhibitors was acclaimed as a major breakthrough in cancer therapy. However, only a limited patient cohort shows sufficient response to therapy. Hence, there is a need for identifying new checkpoints and predictive biomarkers with the objective of overcoming immune escape and resistance to treatment. Having been associated with both, treatment response and failure, LDL seems to be a double-edged sword in anti-PD1 immunotherapy. Being embedded into complex metabolic conditions, the impact of LDL on distinct immune cells has not been sufficiently addressed. Revealing the effects of LDL on T cell performance in tumor immunity may enable individual treatment adjustments in order to enhance the response to routinely administered immunotherapies in different patient populations. The object of this work was to investigate the effect of LDL on T cell activation and tumor immunity in-vitro. Methods Experiments were performed with different LDL dosages (LDLlow = 50 μg/ml and LDLhigh = 200 μg/ml) referring to medium control. T cell phenotype, cytokines and metabolism were analyzed. The functional relevance of our findings was studied in a HCT116 spheroid model in the context of anti-PD-1 blockade. Results The key points of our findings showed that LDLhigh skewed the CD4+ T cell subset into a central memory-like phenotype, enhanced the expression of the co-stimulatory marker CD154 (CD40L) and significantly reduced secretion of IL-10. The exhaustion markers PD-1 and LAG-3 were downregulated on both T cell subsets and phenotypical changes were associated with a balanced T cell metabolism, in particular with a significant decrease of reactive oxygen species (ROS). T cell transfer into a HCT116 spheroid model resulted in a significant reduction of the spheroid viability in presence of an anti-PD-1 antibody combined with LDLhigh. Discussion Further research needs to be conducted to fully understand the impact of LDL on T cells in tumor immunity and moreover, to also unravel LDL effects on other lymphocytes and myeloid cells for improving anti-PD-1 immunotherapy. The reason for improved response might be a resilient, less exhausted phenotype with balanced ROS levels.
Collapse
Affiliation(s)
- Nathalie Babl
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Joshua Hofbauer
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Carina Matos
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Florian Voll
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany,Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany
| | - Ayse Nur Menevse
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany
| | - Michael Rechenmacher
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Ruth Mair
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Philipp Beckhove
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany,Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Peter J. Siska
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Kathrin Renner
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Marina Kreutz
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany,Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany
| | - Annette Schnell
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany,*Correspondence: Annette Schnell,
| |
Collapse
|
12
|
Gao A, Zhao W, Wu R, Su R, Jin R, Luo J, Gao C, Li X, Wang C. Tissue-resident memory T cells: The key frontier in local synovitis memory of rheumatoid arthritis. J Autoimmun 2022; 133:102950. [PMID: 36356551 DOI: 10.1016/j.jaut.2022.102950] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 11/09/2022]
Abstract
Rheumatoid arthritis (RA) is a highly disabling, systemic autoimmune disease. It presents a remarkable tendency to recur, which renders it almost impossible for patients to live without drugs. Under such circumstances, many patients have to suffer the pain of recurrent attacks as well as the side effects of long-term medication. Current therapies for RA are primarily systemic treatments without targeting the problem that RA is more likely to recur locally. Emerging studies suggest the existence of a mechanism mediating local memory during RA, which is closely related to the persistent residence of tissue-resident memory T cells (TRM). TRM, one of the memory T cell subsets, reside in tissues providing immediate immune protection but driving recurrent local inflammation on the other hand. The heterogeneity among synovial TRM is unclear, with the dominated CD8+ TRM observed in inflamed synovium of RA patients coming into focus. Besides local arthritis relapse, TRM may also contribute to extra-articular organ involvement in RA due to their migration potential. Future integration of single-cell RNA sequencing (scRNA-seq) with spatial transcriptomics to explore the gene expression patterns of TRM in both temporal dimension and spatial dimension may help us identify specific therapeutic targets. Targeting synovial TRM to suppress local arthritis flares while using systemic therapies to prevent extra-articular organ involvement may provide a new perspective to address RA recurrence.
Collapse
Affiliation(s)
- Anqi Gao
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China; Shanxi Key Laboratory for Immunomicroecology, Shanxi, China
| | - Wenpeng Zhao
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China; Shanxi Key Laboratory for Immunomicroecology, Shanxi, China
| | - Ruihe Wu
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China; Shanxi Key Laboratory for Immunomicroecology, Shanxi, China
| | - Rui Su
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China; Shanxi Key Laboratory for Immunomicroecology, Shanxi, China
| | - Ruqing Jin
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China; Shanxi Key Laboratory for Immunomicroecology, Shanxi, China
| | - Jing Luo
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China; Shanxi Key Laboratory for Immunomicroecology, Shanxi, China
| | - Chong Gao
- Pathology, Joint Program in Transfusion Medicine, Brigham and Women's Hospital/Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiaofeng Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China; Shanxi Key Laboratory for Immunomicroecology, Shanxi, China
| | - Caihong Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China; Shanxi Key Laboratory for Immunomicroecology, Shanxi, China.
| |
Collapse
|
13
|
The Regulatory-T-Cell Memory Phenotype: What We Know. Cells 2022; 11:cells11101687. [PMID: 35626725 PMCID: PMC9139615 DOI: 10.3390/cells11101687] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 01/25/2023] Open
Abstract
In immunology, the discovery of regulatory T (Treg) cells was a major breakthrough. Treg cells play a key role in pregnancy maintenance, in the prevention of autoimmune responses, and in the control of all immune responses, including responses to self cells, cancer, infection, and a transplant. It is currently unclear whether Treg cells are capable of long-term memory of an encounter with an antigen. Although the term “immunological memory” usually means an enhanced ability to protect the body from reinfection, the memory of the suppressive activity of Treg cells helps to avoid the state of generalized immunosuppression that may result from the second activation of the immune system. In this review, we would like to discuss the concept of regulatory memory and in which tissues memory Treg cells can perform their functions.
Collapse
|
14
|
Krause N, Mengwasser J, Phithak E, Beato F, Appis M, Milford EL, Pratschke J, Sauer I, Kuehl A, Vogel A, Goodyear M, Hammerich L, Tacke F, Haas JF, Müller T, Utku N. Immune Regulatory 1 Cells: A Novel and Potent Subset of Human T Regulatory Cells. Front Immunol 2022; 12:790775. [PMID: 35222353 PMCID: PMC8867398 DOI: 10.3389/fimmu.2021.790775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/22/2021] [Indexed: 11/23/2022] Open
Abstract
A subset of T regulatory cells (Tregs), identified by TIRC7 (T cell immune response cDNA 7) expression is designated as Immune Regulatory 1 Cells (IR1 cells). TIRC7 is an immune checkpoint inhibitor, co-localized with the T- cell receptor, HLA-DR and CTLA-4 during T-cell activation, which delivers regulatory signals via binding to its ligand, HLA-DR α2 domain. IR1 cells express FOXP3, and multiple other markers associated with immune suppression. They constitute as much as 10% of Tregs. IR1 cells strongly inhibit proliferation in mixed lymphocyte reactions, where they express high levels of IL-10. Ex vivo expansion of Tregs over 2 weeks in the presence of an agonist TIRC7 antibody disproportionately expands the IR1 Treg subset, while maintaining high expression of suppressive markers including CD39, IL-10, LAP and GARP. Ex vivo expanded IR1 cells are a potent, homogeneous, stable set of suppressor Tregs with the potential to modulate immune dysregulation. The characteristics of IR1 cells suggest a therapeutic advantage over polyclonal Tregs for therapeutic interventions. Early restoration of immune homeostasis using IR1 cells has the potential to fundamentally alter the natural history of conditions characterized by abnormalities in the T regulatory cell compartment.
Collapse
Affiliation(s)
- Nicolas Krause
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Hepatology and Gastroenterology, Universitätsmedizin Berlin, Berlin, Germany
| | - Jörg Mengwasser
- Department of Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Elpida Phithak
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Hepatology and Gastroenterology, Universitätsmedizin Berlin, Berlin, Germany
| | - Francisca Beato
- Department of Gastroenterology, Moffit Cancer Center, Tampa, FL, United States
| | - Marc Appis
- Department of Biochemistry, Freie Universität, Berlin, Germany
| | - Edgar Louis Milford
- Department of Medicine, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Johan Pratschke
- Department of Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Igor Sauer
- Department of Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Anja Kuehl
- Department of Hepatology and Gastroenterology, Universitätsmedizin Berlin, Berlin, Germany
| | - Arndt Vogel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Michael Goodyear
- Department of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Linda Hammerich
- Department of Hepatology and Gastroenterology, Charite, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charite, Berlin, Germany
| | - Johanna Faith Haas
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Tobias Müller
- Department of Hepatology and Gastroenterology, Universitätsmedizin Berlin, Berlin, Germany
| | - Nalan Utku
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Sachs Incubator for Translational Medicine, Sächsische Inkubator für Klinische Translation (SIKT), University of Leipzig, Leipzig, Germany
| |
Collapse
|
15
|
van Aalderen MC, van Lier RAW, Hombrink P. How to Reliably Define Human CD8 + T-Cell Subsets: Markers Playing Tricks. Cold Spring Harb Perspect Biol 2021; 13:a037747. [PMID: 33782028 PMCID: PMC8559543 DOI: 10.1101/cshperspect.a037747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In recent years, our understanding about the functional complexity of CD8+ T-cell populations has increased tremendously. The immunology field is now facing challenges to translate these insights into phenotypic definitions that correlate reliably with distinct functional traits. This is key to adequately monitor and understand compound immune responses including vaccination and immunotherapy regimens. Here we will summarize our understanding of the current state in the human CD8+ T-cell subset characterization field. We will address how reliably the currently used cell surface markers are connected to differentiation status and function of particular subsets. By restricting ourselves to CD8+ αβ T cells, we will focus mostly on major histocompatibility complex (MHC) class I-restricted virus- and tumor-specific T cells. This comes with a major advantage as fluorescently labeled peptide-loaded MHC class I multimers have been widely used to identify and characterize these cells.
Collapse
Affiliation(s)
- Michiel C van Aalderen
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centre (AUMC), Amsterdam 1105 AZ, The Netherlands
| | - Rene A W van Lier
- Adaptive Immunity Laboratory and Landsteiner Laboratory of the AUMC at Sanquin Blood Supply Foundation, Amsterdam 1066 CX, The Netherlands
| | - Pleun Hombrink
- Adaptive Immunity Laboratory and Landsteiner Laboratory of the AUMC at Sanquin Blood Supply Foundation, Amsterdam 1066 CX, The Netherlands
| |
Collapse
|
16
|
CD20 positive CD8 T cells are a unique and transcriptionally-distinct subset of T cells with distinct transmigration properties. Sci Rep 2021; 11:20499. [PMID: 34654826 PMCID: PMC8520003 DOI: 10.1038/s41598-021-00007-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 10/05/2021] [Indexed: 11/09/2022] Open
Abstract
The presence of T cells that are dimly positive for the B cell marker CD20 is well-established in autoimmunity and correlates with disease severity in various diseases. Further, we previously identified that the level of CD20-positive T cells was three-fourfold elevated in ascites fluid of ovarian carcinoma patients, together suggesting a role in both autoimmunity and cancer. In this respect, treatment of autoimmune patients with the CD20-targeting antibody Rituximab has also been shown to target and deplete CD20-positive T cells, previously identified as IFN-gamma producing, low proliferative, CD8 cytotoxic T cells with an effector memory (EM) differentiation state. However, the exact phenotype and relevance of CD20-positive T cells remains unclear. Here, we set out to identify the transcriptomic profile of CD20-positive T cells using RNA sequencing. Further, to gain insight into potential functional properties of CD20 expression in T cells, CD20 was ectopically expressed on healthy human T cells and phenotypic, functional, migratory and adhesive properties were determined in vitro and in vivo. Together, these assays revealed a reduced transmigration and an enhanced adhesive profile combined with an enhanced activation status for CD20-positive T cells.
Collapse
|
17
|
MacFarlane AW, Yeung HM, Alpaugh RK, Dulaimi E, Engstrom PF, Dasari A, Campbell KS, Vijayvergia N. Impacts of pembrolizumab therapy on immune phenotype in patients with high-grade neuroendocrine neoplasms. Cancer Immunol Immunother 2021; 70:1893-1906. [PMID: 33398390 PMCID: PMC8195815 DOI: 10.1007/s00262-020-02811-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023]
Abstract
High grade neuroendocrine neoplasms (G3 NENs) are rare aggressive tumors with limited treatment options. Twenty-one previously treated patients with metastatic extra-pulmonary G3 NENs were treated with pembrolizumab. Baseline tumor samples were assessed for PD-L1 and tumor infiltrating lymphocytes (TIL). Peripheral blood samples drawn pre-treatment, prior to cycle three, and at disease progression were analyzed by flow cytometry. One patient achieved partial response, two had stable disease, and 18 exhibited progressive disease. The partially responding patient did not progress after 392 days, and the median progression-free survival (PFS) was 59 days. Longer PFS correlated independently with higher pre-treatment peripheral blood T-cell counts and lower pre-treatment activation state (CD69 expression) of naïve T cells and NK cells. Peripheral T-cell viability was reduced in patients with greater TILs. Post-treatment, T cells had reduced numbers of CD4+ cells, reduced PD-1 expression, increased activation of effector (CD62L-) cells, and increased expression of TIGIT. Baseline TIGIT expression on peripheral T cells also correlated positively with Ki67 in tumor. Patients with higher baseline T-cell expression of TIM-3 had shorter PFS. Despite limited activity of pembrolizumab, this study highlights the immune phenotype in this rare tumor type before and after treatment. High baseline peripheral T-cell count and reduced activation of T and NK cell subsets were associated with improved outcomes. Furthermore, increased post-treatment TIGIT and elevated baseline TIM-3 expression suggest that these may limit the efficacy of pembrolizumab, providing a rationale for combination immunotherapy (PD-1 with TIGIT and/or TIM-3 antibodies) to treat extra-pulmonary G3 NENs.
Collapse
Affiliation(s)
- Alexander W MacFarlane
- Blood Cell Development and Function Program, Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Ho-Man Yeung
- Department of Medical Oncology, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - R Katherine Alpaugh
- Department of Medical Oncology, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Essel Dulaimi
- Department of Pathology, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Paul F Engstrom
- Department of Medical Oncology, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Arvind Dasari
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Kerry S Campbell
- Blood Cell Development and Function Program, Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA.
| | - Namrata Vijayvergia
- Department of Medical Oncology, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA.
| |
Collapse
|
18
|
Merino-Wong M, Niemeyer BA, Alansary D. Plasma Membrane Calcium ATPase Regulates Stoichiometry of CD4 + T-Cell Compartments. Front Immunol 2021; 12:687242. [PMID: 34093590 PMCID: PMC8175910 DOI: 10.3389/fimmu.2021.687242] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/04/2021] [Indexed: 11/13/2022] Open
Abstract
Immune responses involve mobilization of T cells within naïve and memory compartments. Tightly regulated Ca2+ levels are essential for balanced immune outcomes. How Ca2+ contributes to regulating compartment stoichiometry is unknown. Here, we show that plasma membrane Ca2+ ATPase 4 (PMCA4) is differentially expressed in human CD4+ T compartments yielding distinct store operated Ca2+ entry (SOCE) profiles. Modulation of PMCA4 yielded a more prominent increase of SOCE in memory than in naïve CD4+ T cell. Interestingly, downregulation of PMCA4 reduced the effector compartment fraction and led to accumulation of cells in the naïve compartment. In silico analysis and chromatin immunoprecipitation point towards Ying Yang 1 (YY1) as a transcription factor regulating PMCA4 expression. Analyses of PMCA and YY1 expression patterns following activation and of PMCA promoter activity following downregulation of YY1 highlight repressive role of YY1 on PMCA expression. Our findings show that PMCA4 adapts Ca2+ levels to cellular requirements during effector and quiescent phases and thereby represent a potential target to intervene with the outcome of the immune response.
Collapse
Affiliation(s)
| | | | - Dalia Alansary
- Molecular Biophysics, Saarland University, Homburg, Germany
| |
Collapse
|
19
|
Rostamian H, Fallah-Mehrjardi K, Khakpoor-Koosheh M, Pawelek JM, Hadjati J, Brown CE, Mirzaei HR. A metabolic switch to memory CAR T cells: Implications for cancer treatment. Cancer Lett 2020; 500:107-118. [PMID: 33290868 DOI: 10.1016/j.canlet.2020.12.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/27/2022]
Abstract
Therapeutic efficacy of chimeric antigen receptor (CAR) T cells is associated with their expansion, persistence and effector function. Although CAR T cell therapy has shown remarkable therapeutic effects in hematological malignancies, its therapeutic efficacy has been limited in some types of cancers - in particular, solid tumors - partially due to the cells' inability to persist and the acquisition of T cell dysfunction within a harsh immunosuppressive tumor microenvironment. Therefore, it would be expected that generation of CAR T cells with intrinsic properties for functional longevity, such as the cells with early-memory phenotypes, could beneficially enhance antitumor immunity. Furthermore, because the metabolic pathways of CAR T cells help determine cellular differentiation and lifespan, therapies targeting such pathways like glycolysis and oxidative phosphorylation, can alter CAR T cell fate and durability within tumors. Here we discuss how reprogramming of CAR T cell metabolism and metabolic switch to memory CAR T cells influences their antitumor activity. We also offer potential strategies for targeting these metabolic circuits in the setting of adoptive CAR T cell therapy, aiming to better unleash the potential of adoptive CAR T cell therapy in the clinic.
Collapse
Affiliation(s)
- Hosein Rostamian
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Keyvan Fallah-Mehrjardi
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Khakpoor-Koosheh
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - John M Pawelek
- Department of Dermatology and the Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Jamshid Hadjati
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Christine E Brown
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, CA, 91010, USA; Department of Immuno-Oncology, City of Hope Beckman Research Institute, Duarte, CA, 91010, USA.
| | - Hamid R Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Erythrocyte-driven immunization via biomimicry of their natural antigen-presenting function. Proc Natl Acad Sci U S A 2020; 117:17727-17736. [PMID: 32665441 DOI: 10.1073/pnas.2002880117] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Erythrocytes naturally capture certain bacterial pathogens in circulation, kill them through oxidative stress, and present them to the antigen-presenting cells (APCs) in the spleen. By leveraging this innate immune function of erythrocytes, we developed erythrocyte-driven immune targeting (EDIT), which presents nanoparticles from the surface of erythrocytes to the APCs in the spleen. Antigenic nanoparticles were adsorbed on the erythrocyte surface. By engineering the number density of adsorbed nanoparticles, (i.e., the number of nanoparticles loaded per erythrocyte), they were predominantly delivered to the spleen rather than lungs, which is conventionally the target of erythrocyte-mediated delivery systems. Presentation of erythrocyte-delivered nanoparticles to the spleen led to improved antibody response against the antigen, higher central memory T cell response, and lower regulatory T cell response, compared with controls. Enhanced immune response slowed down tumor progression in a prophylaxis model. These findings suggest that EDIT is an effective strategy to enhance systemic immunity.
Collapse
|
21
|
Helgeland H, Gabrielsen I, Akselsen H, Sundaram AYM, Flåm ST, Lie BA. Transcriptome profiling of human thymic CD4+ and CD8+ T cells compared to primary peripheral T cells. BMC Genomics 2020; 21:350. [PMID: 32393182 PMCID: PMC7216358 DOI: 10.1186/s12864-020-6755-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 04/23/2020] [Indexed: 12/20/2022] Open
Abstract
Background The thymus is a highly specialized organ of the immune system where T cell precursors develop and differentiate into self-tolerant CD4+ or CD8+ T cells. No studies to date have investigated how the human transcriptome profiles differ, between T cells still residing in the thymus and T cells in the periphery. Results We have performed high-throughput RNA sequencing to characterize the transcriptomes of primary single positive (SP) CD4+ and CD8+ T cells from infant thymic tissue, as well as primary CD4+ and CD8+ T cells from infant and adult peripheral blood, to enable the comparisons across tissues and ages. In addition, we have assessed the expression of candidate genes related to autoimmune diseases in thymic CD4+ and CD8+ T cells. The thymic T cells showed the largest number of uniquely expressed genes, suggesting a more diverse transcription in thymic T cells. Comparing T cells of thymic and blood origin, revealed more differentially expressed genes, than between infant and adult blood. Functional enrichment analysis revealed an over-representation of genes involved in cell cycle and replication in thymic T cells, whereas infant blood T cells were dominated by immune related terms. Comparing adult and infant blood T cells, the former was enriched for inflammatory response, cytokine production and biological adhesion, while upregulated genes in infant blood T cells were associated with cell cycle, cell death and gene expression. Conclusion This study provides valuable insight into the transcriptomes of the human primary SP T cells still residing within the thymus, and offers a unique comparison to primary blood derived T cells. Interestingly, the majority of autoimmune disease associated genes were expressed in one or more T cell subset, however ~ 11% of these were not expressed in frequently studied adult peripheral blood.
Collapse
Affiliation(s)
- Hanna Helgeland
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, 0450, Oslo, Norway. .,Department of Radiation Biology, Oslo University Hospital, 0379, Oslo, Norway.
| | - Ingvild Gabrielsen
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, 0450, Oslo, Norway
| | - Helle Akselsen
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, 0450, Oslo, Norway
| | - Arvind Y M Sundaram
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, 0450, Oslo, Norway
| | - Siri Tennebø Flåm
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, 0450, Oslo, Norway
| | - Benedicte Alexandra Lie
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, 0450, Oslo, Norway.
| |
Collapse
|
22
|
Liu Q, Sun Z, Chen L. Memory T cells: strategies for optimizing tumor immunotherapy. Protein Cell 2020; 11:549-564. [PMID: 32221812 PMCID: PMC7381543 DOI: 10.1007/s13238-020-00707-9] [Citation(s) in RCA: 193] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/08/2020] [Indexed: 12/15/2022] Open
Abstract
Several studies have demonstrated that memory T cells including stem cell memory (Tscm) T cells and central memory (Tcm) T cells show superior persistence and antitumor immunity compared with effector memory T (Tem) cells and effector T (Teff) cells. Furthermore, the Tcm/Teff ratio has been reported to be a predictive biomarker of immune responses against some tumors. Thus, a system-level understanding of the mechanisms underlying the differentiation of effector and memory T cells is of increasing importance for developing immunological strategies against various tumors. This review focuses on recent advances in efficacy against tumors, the origin, formation mechanisms of memory T cells, and the role of the gut microbiota in memory T cell formation. Furthermore, we summarize strategies to generate memory T cells in (ex) vivo that, might be applicable in clinical practice.
Collapse
Affiliation(s)
- Qingjun Liu
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China.,Newish Technology (Beijing) Co., Ltd., Xihuan South Road 18, Economic & Technical Development Zone, Beijing, 100176, China.,Moon (Guangzhou) Biotech Co., Ltd., Room 301, Building B5, Enterprise Accelerator, No. 11 Kaiyuan Avenue, Huangpu District, Guangzhou, 510000, China
| | - Zhongjie Sun
- Newish Technology (Beijing) Co., Ltd., Xihuan South Road 18, Economic & Technical Development Zone, Beijing, 100176, China.
| | - Ligong Chen
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China. .,Advanced Innovation Center for Human Brain Protection, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100088, China.
| |
Collapse
|
23
|
Memory CD4 + T Cells in Immunity and Autoimmune Diseases. Cells 2020; 9:cells9030531. [PMID: 32106536 PMCID: PMC7140455 DOI: 10.3390/cells9030531] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 12/26/2022] Open
Abstract
CD4+ T helper (Th) cells play central roles in immunity in health and disease. While much is known about the effector function of Th cells in combating pathogens and promoting autoimmune diseases, the roles and biology of memory CD4+ Th cells are complex and less well understood. In human autoimmune diseases such as multiple sclerosis (MS), there is a critical need to better understand the function and biology of memory T cells. In this review article we summarize current concepts in the field of CD4+ T cell memory, including natural history, developmental pathways, subsets, and functions. Furthermore, we discuss advancements in the field of the newly-described CD4+ tissue-resident memory T cells and of CD4+ memory T cells in autoimmune diseases, two major areas of important unresolved questions in need of answering to advance new vaccine design and development of novel treatments for CD4+ T cell-mediated autoimmune diseases.
Collapse
|
24
|
Moreno-Villanueva M, Zhang Y, Feiveson A, Mistretta B, Pan Y, Chatterjee S, Wu W, Clanton R, Nelman-Gonzalez M, Krieger S, Gunaratne P, Crucian B, Wu H. Single-Cell RNA-Sequencing Identifies Activation of TP53 and STAT1 Pathways in Human T Lymphocyte Subpopulations in Response to Ex Vivo Radiation Exposure. Int J Mol Sci 2019; 20:ijms20092316. [PMID: 31083348 PMCID: PMC6539494 DOI: 10.3390/ijms20092316] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/02/2019] [Accepted: 05/06/2019] [Indexed: 11/16/2022] Open
Abstract
Detrimental health consequences from exposure to space radiation are a major concern for long-duration human exploration missions to the Moon or Mars. Cellular responses to radiation are expected to be heterogeneous for space radiation exposure, where only high-energy protons and other particles traverse a fraction of the cells. Therefore, assessing DNA damage and DNA damage response in individual cells is crucial in understanding the mechanisms by which cells respond to different particle types and energies in space. In this project, we identified a cell-specific signature for radiation response by using single-cell transcriptomics of human lymphocyte subpopulations. We investigated gene expression in individual human T lymphocytes 3 h after ex vivo exposure to 2-Gy gamma rays while using the single-cell sequencing technique (10X Genomics). In the process, RNA was isolated from ~700 irradiated and ~700 non-irradiated control cells, and then sequenced with ~50 k reads/cell. RNA in each of the cells was distinctively barcoded prior to extraction to allow for quantification for individual cells. Principal component and clustering analysis of the unique molecular identifier (UMI) counts classified the cells into three groups or sub-types, which correspond to CD4+, naïve, and CD8+/NK cells. Gene expression changes after radiation exposure were evaluated using negative binomial regression. On average, BBC3, PCNA, and other TP53 related genes that are known to respond to radiation in human T cells showed increased activation. While most of the TP53 responsive genes were upregulated in all groups of cells, the expressions of IRF1, STAT1, and BATF were only upregulated in the CD4+ and naïve groups, but were unchanged in the CD8+/NK group, which suggests that the interferon-gamma pathway does not respond to radiation in CD8+/NK cells. Thus, single-cell RNA sequencing technique was useful for simultaneously identifying the expression of a set of genes in individual cells and T lymphocyte subpopulation after gamma radiation exposure. The degree of dependence of UMI counts between pairs of upregulated genes was also evaluated to construct a similarity matrix for cluster analysis. The cluster analysis identified a group of TP53-responsive genes and a group of genes that are involved in the interferon gamma pathway, which demonstrate the potential of this method for identifying previously unknown groups of genes with similar expression patterns.
Collapse
Affiliation(s)
- Maria Moreno-Villanueva
- NASA Johnson Space Center, Houston, TX 77058, USA.
- Human Performance Research Center, University of Konstanz, 78457 Konstanz, Germany.
| | - Ye Zhang
- NASA Kennedy Space Center, Cape Canaveral, FL 32899, USA.
| | | | - Brandon Mistretta
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA.
| | - Yinghong Pan
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA.
| | - Sujash Chatterjee
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA.
| | - Winston Wu
- Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Ryan Clanton
- NASA Johnson Space Center, Houston, TX 77058, USA.
| | | | | | - Preethi Gunaratne
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA.
| | | | - Honglu Wu
- NASA Johnson Space Center, Houston, TX 77058, USA.
| |
Collapse
|
25
|
Geyer MB, Rivière I, Sénéchal B, Wang X, Wang Y, Purdon TJ, Hsu M, Devlin SM, Palomba ML, Halton E, Bernal Y, van Leeuwen DG, Sadelain M, Park JH, Brentjens RJ. Safety and tolerability of conditioning chemotherapy followed by CD19-targeted CAR T cells for relapsed/refractory CLL. JCI Insight 2019; 5:122627. [PMID: 30938714 DOI: 10.1172/jci.insight.122627] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Subgroups of patients with relapsed or refractory (R/R) chronic lymphocytic leukemia (CLL) exhibit suboptimal outcomes after standard therapies, including oral kinase inhibitors. We and others have previously reported on safety and efficacy of autologous CD19-targeted CAR T-cells for these patients; here we report safety and long-term follow-up of CAR T-cell therapy with or without conditioning chemotherapy for patients with R/R CLL and indolent B-cell non-Hodgkin lymphoma (B-NHL). METHODS We conducted a phase 1 clinical trial investigating CD19-targeted CAR T-cells incorporating a CD28 costimulatory domain (19-28z). Seventeen of 20 patients received conditioning chemotherapy prior to CAR T-cell infusion. Five patients with CLL received ibrutinib at the time of autologous T-cell collection and/or CAR T-cell administration. RESULTS This analysis included 16 patients with R/R CLL and 4 patients with R/R indolent B-NHL. Cytokine release syndrome (CRS) was observed in all 20 patients but grades 3 and 4 CRS and neurological events were uncommon (10% for each). Ex vivo expansion of T-cells and proportions of CD4+/CD8+ CAR T-cells with CD62L+CD127+ immunophenotype were significantly greater in patients on ibrutinib at leukapheresis. Three of 12 evaluable CLL patients receiving conditioning chemotherapy achieved CR (two had minimal residual disease-negative CR). All patients achieving CR remained progression-free at median follow-up of 53 months. CONCLUSION Conditioning chemotherapy and 19-28z CAR T-cells were acceptably tolerated across investigated dose levels in heavily pretreated patients with R/R CLL and indolent B-NHL, and a subgroup of patients achieved durable CR. Ibrutinib therapy may modulate autologous T-cell phenotype. TRIAL REGISTRATION ClinicalTrials.gov NCT00466531. FUNDING Juno Therapeutics.
Collapse
Affiliation(s)
- Mark B Geyer
- Department of Medicine.,Center for Cell Engineering
| | - Isabelle Rivière
- Center for Cell Engineering.,Michael G. Harris Cell Therapy and Cell Engineering Facility.,Molecular Pharmacology and Chemistry Program, and
| | - Brigitte Sénéchal
- Michael G. Harris Cell Therapy and Cell Engineering Facility.,Molecular Pharmacology and Chemistry Program, and
| | - Xiuyan Wang
- Center for Cell Engineering.,Michael G. Harris Cell Therapy and Cell Engineering Facility.,Molecular Pharmacology and Chemistry Program, and
| | - Yongzeng Wang
- Michael G. Harris Cell Therapy and Cell Engineering Facility
| | | | - Meier Hsu
- Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Sean M Devlin
- Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | | | | | | | | | | - Jae H Park
- Department of Medicine.,Center for Cell Engineering
| | - Renier J Brentjens
- Department of Medicine.,Center for Cell Engineering.,Molecular Pharmacology and Chemistry Program, and
| |
Collapse
|
26
|
Chatterjee S, Chakraborty P, Daenthanasanmak A, Iamsawat S, Andrejeva G, Luevano LA, Wolf M, Baliga U, Krieg C, Beeson CC, Mehrotra M, Hill EG, Rathmell JC, Yu XZ, Kraft AS, Mehrotra S. Targeting PIM Kinase with PD1 Inhibition Improves Immunotherapeutic Antitumor T-cell Response. Clin Cancer Res 2018; 25:1036-1049. [PMID: 30327305 DOI: 10.1158/1078-0432.ccr-18-0706] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/29/2018] [Accepted: 10/10/2018] [Indexed: 01/01/2023]
Abstract
PURPOSE Adoptive T-cell therapy (ACT) of cancer, which involves the infusion of ex vivo-engineered tumor epitope reactive autologous T cells into the tumor-bearing host, is a potential treatment modality for cancer. However, the durable antitumor response following ACT is hampered either by loss of effector function or survival of the antitumor T cells. Therefore, strategies to improve the persistence and sustain the effector function of the antitumor T cells are of immense importance. Given the role of metabolism in determining the therapeutic efficacy of T cells, we hypothesize that inhibition of PIM kinases, a family of serine/threonine kinase that promote cell-cycle transition, cell growth, and regulate mTORC1 activity, can improve the potency of T cells in controlling tumor. EXPERIMENTAL DESIGN The role of PIM kinases in T cells was studied either by genetic ablation (PIM1-/-PIM2-/-PIM3-/-) or its pharmacologic inhibition (pan-PIM kinase inhibitor, PimKi). Murine melanoma B16 was established subcutaneously and treated by transferring tumor epitope gp100-reactive T cells along with treatment regimen that involved inhibiting PIM kinases, anti-PD1 or both. RESULTS With inhibition of PIM kinases, T cells had significant reduction in their uptake of glucose, and upregulated expression of memory-associated genes that inversely correlate with glycolysis. In addition, the expression of CD38, which negatively regulates the metabolic fitness of the T cells, was also reduced in PimKi-treated cells. Importantly, the efficacy of antitumor T-cell therapy was markedly improved by inhibiting PIM kinases in tumor-bearing mice receiving ACT, and further enhanced by adding anti-PD1 antibody to this combination. CONCLUSIONS This study highlights the potential therapeutic significance of combinatorial strategies where ACT and inhibition of signaling kinase with checkpoint blockade could improve tumor control.
Collapse
Affiliation(s)
- Shilpak Chatterjee
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Paramita Chakraborty
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Anusara Daenthanasanmak
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Supinya Iamsawat
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Gabriela Andrejeva
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Libia A Luevano
- University of Arizona Cancer Center, University of Arizona, Tucson, Arizona
| | - Melissa Wolf
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Uday Baliga
- Department of Pathology & Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Carsten Krieg
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Craig C Beeson
- Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Meenal Mehrotra
- Department of Pathology & Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Elizabeth G Hill
- Department of Public Health, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
| | - Jeffery C Rathmell
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Xue-Zhong Yu
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Andrew S Kraft
- University of Arizona Cancer Center, University of Arizona, Tucson, Arizona
| | - Shikhar Mehrotra
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina.
| |
Collapse
|
27
|
Sabins NC, Chornoguz O, Leander K, Kaplan F, Carter R, Kinder M, Bachman K, Verona R, Shen S, Bhargava V, Santulli-Marotto S. TIM-3 Engagement Promotes Effector Memory T Cell Differentiation of Human Antigen-Specific CD8 T Cells by Activating mTORC1. THE JOURNAL OF IMMUNOLOGY 2017; 199:4091-4102. [PMID: 29127145 DOI: 10.4049/jimmunol.1701030] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/16/2017] [Indexed: 01/19/2023]
Abstract
T cell expression of TIM-3 following Ag encounter has been associated with a continuum of functional states ranging from effector memory T cells to exhaustion. We have designed an in vitro culture system to specifically address the impact of anti-TIM-3/TIM-3 engagement on human Ag-specific CD8 T cells during a normal response to Ag and found that anti-TIM-3 treatment enhances T cell function. In our in vitro T cell culture system, MART1-specific CD8 T cells were expanded from healthy donors using artificial APCs. To ensure that the T cells were the only source of TIM-3, cells were rechallenged with peptide-loaded artificial APCs in the presence of anti-TIM-3 Ab. In these conditions, anti-TIM-3 treatment promotes generation of effector T cells as shown by acquisition of an activated phenotype, increased cytokine production, enhanced proliferation, and a transcription program associated with T cell differentiation. Activation of mTORC1 has been previously demonstrated to enhance CD8 T cell effector function and differentiation. Anti-TIM-3 drives CD8 T cell differentiation through activation of the mTORC1 as evidenced by increased levels of phosphorylated S6 protein and rhebl1 transcript. Altogether these findings suggest that anti-TIM-3, together with Ag, drives differentiation in favor of effector T cells via the activation of mTOR pathway. To our knowledge, this is the first report demonstrating that TIM-3 engagement during Ag stimulation directly influences T cell differentiation through mTORC1.
Collapse
Affiliation(s)
- Nina Chi Sabins
- Janssen Biotherapeutics, Janssen Research and Development, Spring House, PA 19477
| | - Olesya Chornoguz
- Janssen Biotherapeutics, Janssen Research and Development, Spring House, PA 19477
| | - Karen Leander
- Janssen Biotherapeutics, Janssen Research and Development, Spring House, PA 19477
| | - Fred Kaplan
- Oncology, Janssen Research and Development, Spring House, PA 19477
| | - Richard Carter
- Janssen Biotherapeutics, Janssen Research and Development, Spring House, PA 19477
| | - Michelle Kinder
- Oncology, Janssen Research and Development, Spring House, PA 19477
| | - Kurtis Bachman
- Oncology, Janssen Research and Development, Spring House, PA 19477
| | - Raluca Verona
- Oncology, Janssen Research and Development, Spring House, PA 19477
| | - Shixue Shen
- Oncology, Janssen Research and Development, Spring House, PA 19477
| | - Vipul Bhargava
- Computational and Systems Biology, Janssen Research and Development, Spring House, PA 19477; and
| | | |
Collapse
|
28
|
Aggarwal S, Sharma SC, N Das S. Dynamics of regulatory T cells (T regs ) in patients with oral squamous cell carcinoma. J Surg Oncol 2017; 116:1103-1113. [PMID: 28833201 DOI: 10.1002/jso.24782] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/01/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND OBJECTIVES The immune dysfunction in oral squamous cell carcinoma (OSCC) patients is one of the major factors for growth and dissemination of tumor affecting disease-free survival. METHODS The phenotypic and functional characteristics of Regulatory T (Treg ) CD4+ CD25+ FoxP3+ subsets in OSCC patients were assessed by multicolor flow cytometry and its effector component (TGF-β) by Western blot and qRT-PCR. RESULTS An increased (P < 0.05) prevalence of Treg phenotypes (CD4+ CD25+ , CD4+ FoxP3+ , CD8+ FoxP3+ , CD4+ CD25+ FoxP3+ ) was observed in the peripheral circulation of OSCC patients that positively correlated with clinicopathological features. The increased frequency of CD4+ CD8+ CD25+ FoxP3+ , a unique T cell subset, CTLA-4+ , GITR+ , NrP1+ , HLA-DR+ , CD127+ , Tbet+ , TGF-β+ , and granzyme B+ (GzmB) Tregs also showed a significantly higher prevalence in OSCC patients. Functionally, CD4+ FoxP3+ Tregs showed skewed expression of IL-2, IL-10, and IL-35 in patients as compared with the normal controls. Further, enhanced expression of CCR5 and CCR7 on Tregs with up regulation of their ligands (CCL5, CCL19, and CCL21) in tumor cells indicates efficient recruitment and trafficking of Tregs to the tumor site. CONCLUSION It seems reasonable to assume that modulation of functional dynamics of selective Treg subsets may be useful in developing immunotherapeutic strategy for OSCC patients.
Collapse
Affiliation(s)
- Sadhna Aggarwal
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Suresh C Sharma
- Department of Otorhinolaryngology, All India Institute of Medical Sciences, New Delhi, India
| | - Satya N Das
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
29
|
Mucosal BCG Vaccination Induces Protective Lung-Resident Memory T Cell Populations against Tuberculosis. mBio 2016; 7:mBio.01686-16. [PMID: 27879332 PMCID: PMC5120139 DOI: 10.1128/mbio.01686-16] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Mycobacterium bovis Bacille Calmette-Guérin (BCG) is the only licensed vaccine against tuberculosis (TB), yet its moderate efficacy against pulmonary TB calls for improved vaccination strategies. Mucosal BCG vaccination generates superior protection against TB in animal models; however, the mechanisms of protection remain elusive. Tissue-resident memory T (TRM) cells have been implicated in protective immune responses against viral infections, but the role of TRM cells following mycobacterial infection is unknown. Using a mouse model of TB, we compared protection and lung cellular infiltrates of parenteral and mucosal BCG vaccination. Adoptive transfer and gene expression analyses of lung airway cells were performed to determine the protective capacities and phenotypes of different memory T cell subsets. In comparison to subcutaneous vaccination, intratracheal and intranasal BCG vaccination generated T effector memory and TRM cells in the lung, as defined by surface marker phenotype. Adoptive mucosal transfer of these airway-resident memory T cells into naive mice mediated protection against TB. Whereas airway-resident memory CD4+ T cells displayed a mixture of effector and regulatory phenotype, airway-resident memory CD8+ T cells displayed prototypical TRM features. Our data demonstrate a key role for mucosal vaccination-induced airway-resident T cells in the host defense against pulmonary TB. These results have direct implications for the design of refined vaccination strategies. IMPORTANCE BCG remains the only licensed vaccine against TB. Parenterally administered BCG has variable efficacy against pulmonary TB, and thus, improved prevention strategies and a more refined understanding of correlates of vaccine protection are required. Induction of memory T cells has been shown to be essential for protective TB vaccines. Mimicking the natural infection route by mucosal vaccination has been known to generate superior protection against TB in animal models; however, the mechanisms of protection have remained elusive. Here we performed an in-depth analysis to dissect the immunological mechanisms associated with superior mucosal protection in the mouse model of TB. We found that mucosal, and not subcutaneous, BCG vaccination generates lung-resident memory T cell populations that confer protection against pulmonary TB. We establish a comprehensive phenotypic characterization of these populations, providing a framework for future vaccine development.
Collapse
|
30
|
Nasal vaccination stimulates CD8(+) T cells for potent protection against mucosal Brucella melitensis challenge. Immunol Cell Biol 2016; 94:496-508. [PMID: 26752510 PMCID: PMC4879022 DOI: 10.1038/icb.2016.5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 12/10/2015] [Accepted: 01/05/2016] [Indexed: 12/31/2022]
Abstract
Brucellosis remains a significant zoonotic threat worldwide. Humans and animals acquire infection via their oropharynx and upper respiratory tract following oral or aerosol exposure. After mucosal infection, brucellosis develops into a systemic disease. Mucosal vaccination could offer a viable alternative to conventional injection practices to deter disease. Using a nasal vaccination approach, the ΔznuA B. melitensis was found to confer potent protection against pulmonary Brucella challenge, and reduce colonization of spleens and lungs by more than 2500-fold, with more than 50% of vaccinated mice showing no detectable brucellae. Furthermore, tenfold more brucellae-specific, IFN-γ-producing CD8+ T cells than CD4+ T cells were induced in the spleen and respiratory lymph nodes. Evaluation of pulmonary and splenic CD8+ T cells from mice vaccinated with ΔznuA B. melitensis revealed that these expressed an activated effector memory (CD44hiCD62LloCCR7lo) T cells producing elevated levels of IFN-γ, TNF-α, perforin, and granzyme B. To assess the relative importance of these increased numbers of CD8+ T cells, CD8−/− mice were challenged with virulent B. melitensis, and they showed markedly increased bacterial loads in organs in contrast to similarly challenged CD4−/− mice. Only ΔznuA B. melitensis- and Rev-1-vaccinated CD4−/− and wild-type mice, not CD8−/− mice, were completely protected against Brucella challenge. Determination of cytokines responsible for conferring protection showed the relative importance of IFN-γ, but not IL-17. Unlike wild-type mice, IL-17 was greatly induced in IFN-γ−/− mice, but IL-17 could not substitute for IFN-γ’s protection, although an increase in brucellae dissemination was observed upon in vivo IL-17 neutralization. These results show that nasal ΔznuA B. melitensis vaccination represents an attractive means to stimulate systemic and mucosal immune protection via CD8+ T cell engagement.
Collapse
|
31
|
Modulation of Autoimmune T-Cell Memory by Stem Cell Educator Therapy: Phase 1/2 Clinical Trial. EBioMedicine 2015; 2:2024-36. [PMID: 26844283 PMCID: PMC4703710 DOI: 10.1016/j.ebiom.2015.11.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 10/29/2015] [Accepted: 11/03/2015] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) is a T cell-mediated autoimmune disease that causes a deficit of pancreatic islet β cells. The complexities of overcoming autoimmunity in T1D have contributed to the challenges the research community faces when devising successful treatments with conventional immune therapies. Overcoming autoimmune T cell memory represents one of the key hurdles. METHODS In this open-label, phase 1/phase 2 study, Caucasian T1D patients (N = 15) received two treatments with the Stem Cell Educator (SCE) therapy, an approach that uses human multipotent cord blood-derived multipotent stem cells (CB-SCs). SCE therapy involves a closed-loop system that briefly treats the patient's lymphocytes with CB-SCs in vitro and returns the "educated" lymphocytes (but not the CB-SCs) into the patient's blood circulation. This study is registered with ClinicalTrials.gov, NCT01350219. FINDINGS Clinical data demonstrated that SCE therapy was well tolerated in all subjects. The percentage of naïve CD4(+) T cells was significantly increased at 26 weeks and maintained through the final follow-up at 56 weeks. The percentage of CD4(+) central memory T cells (TCM) was markedly and constantly increased at 18 weeks. Both CD4(+) effector memory T cells (TEM) and CD8(+) TEM cells were considerably decreased at 18 weeks and 26 weeks respectively. Additional clinical data demonstrated the modulation of C-C chemokine receptor 7 (CCR7) expressions on naïve T, TCM, and TEM cells. Following two treatments with SCE therapy, islet β-cell function was improved and maintained in individuals with residual β-cell function, but not in those without residual β-cell function. INTERPRETATION Current clinical data demonstrated the safety and efficacy of SCE therapy in immune modulation. SCE therapy provides lasting reversal of autoimmune memory that could improve islet β-cell function in Caucasian subjects. FUNDING Obra Social "La Caixa", Instituto de Salud Carlos III, Red de Investigación Renal, European Union FEDER Funds, Principado de Asturias, FICYT, and Hackensack University Medical Center Foundation.
Collapse
Key Words
- AIRE, autoimmune regulator
- Autoimmunity
- CB-SCs, human cord blood-derived multipotent stem cells
- CCR7, C–C chemokine receptor 7
- Cord blood stem cell
- HLA, human leukocyte antigen
- HbA1C, glycated hemoglobin
- IL, interleukin
- Immune modulation
- M2, muscarinic acetylcholine receptor 2
- MLR, mixed leukocyte reactions
- MNC, mononuclear cells
- Memory T cells
- OGTT, oral glucose tolerance test
- PBMC, peripheral blood mononuclear cells
- R, responder
- S, stimulator
- SCE, Stem Cell Educator
- T1D, type 1 diabetes
- TCM, central memory T cells
- TCR, T-cell receptor
- TEM, effector memory T cells
- TGF-β1, transforming growth factor-β1
- Th, helper T cell
- Tregs, regulatory T cells
- Type 1 diabetes
Collapse
|
32
|
Chen CI, Zhang L, Datta SK. Hematopoietic stem and multipotent progenitor cells produce IL-17, IL-21 and other cytokines in response to TLR signals associated with late apoptotic products and augment memory Th17 and Tc17 cells in the bone marrow of normal and lupus mice. Clin Immunol 2015; 162:9-26. [PMID: 26521071 DOI: 10.1016/j.clim.2015.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 10/23/2015] [Accepted: 10/23/2015] [Indexed: 01/05/2023]
Abstract
We studied effects of early and late apoptotic (necroptotic) cell products, related damage associated alarmins and TLR agonists, on hematopoietic stem and progenitor cells (HSPC). Surprisingly, normal HSPC themselves produced IL-17 and IL-21 after 1½days of stimulation, and the best stimulators were TLR 7/8 agonist; HMGB1-DNA; TLR 9 agonist, and necroptotic B cells. The stimulated HSPC expressed additional cytokines/mediators, directly causing rapid expansion of IL-17(+) memory CD4 T (Th17), and CD8 T (Tc17) cells, and antigen-experienced IL-17(+) T cells with "naïve" phenotype. In lupus marrow, HSPC were spontaneously pre-stimulated by endogenous signals to produce IL-17 and IL-21. In contrast to HSPC, megakaryocyte progenitors (MKP) did not produce IL-17, and unlike HSPC, they could process and present particulate apoptotic autoantigens to augment autoimmune memory Th17 response. Thus abnormally stimulated primitive hematopoietic progenitors augment expansion of IL-17 producing immune and autoimmune memory T cells in the bone marrow, which may affect central tolerance.
Collapse
Affiliation(s)
- Ching-I Chen
- Division of Rheumatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Li Zhang
- Division of Rheumatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Syamal K Datta
- Division of Rheumatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
33
|
Arsenic trioxide inhibits accelerated allograft rejection mediated by alloreactive CD8(+) memory T cells and prolongs allograft survival time. Transpl Immunol 2015; 33:30-6. [PMID: 26044521 DOI: 10.1016/j.trim.2015.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 04/28/2015] [Accepted: 05/26/2015] [Indexed: 11/20/2022]
Abstract
CD8(+) memory T (Tm) cells are a significant barrier to transplant tolerance induction in alloantigen-primed recipients, and are insensitive to existing clinical immunosuppressants. Here, we studied the inhibition of CD8(+) Tm cells by arsenic trioxide (As2O3) for the first time. Alloantigen-primed CD8(+) Tm cells were transferred to T cell immunodeficient nude mice. The mice were subjected to heart allotransplantation, and treated with As2O3. The transplant survival time was determined, and the inhibitory effects of As2O3 on CD8(+) Tm cell-mediated immune rejection were assessed through serological studies and inspection of the transplanted heart and lymphoid organs. We found that As2O3 treatment prolonged the mean survival time of the graft and reduced the number of CD8(+) Tm cells in the spleen and lymph nodes. The expression of the genes encoding interleukin (IL)-2, and IFN-γ was reduced, while expression of IL-10 and transforming growth factor-β was increased in the transplant. Our findings show that As2O3 treatment inhibits allograft rejection mediated by alloreactive CD8(+) Tm cells in the mouse heart transplantation model.
Collapse
|
34
|
Li H, Jiang YM, Sun YF, Li P, Dang RJ, Ning HM, Li YH, Zhang YJ, Jiang XX, Guo XM, Wen N, Han Y, Mao N, Chen H, Zhang Y. CCR7 expressing mesenchymal stem cells potently inhibit graft-versus-host disease by spoiling the fourth supplemental Billingham's tenet. PLoS One 2014; 9:e115720. [PMID: 25549354 PMCID: PMC4280136 DOI: 10.1371/journal.pone.0115720] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 12/01/2014] [Indexed: 01/01/2023] Open
Abstract
The clinical acute graft-versus-host disease (GvHD)-therapy of mesenchymal stem cells (MSCs) is not as satisfactory as expected. Secondary lymphoid organs (SLOs) are the major niches serve to initiate immune responses or induce tolerance. Our previous study showed that CCR7 guide murine MSC line C3H10T1/2 migrating to SLOs. In this study, CCR7 gene was engineered into murine MSCs by lentivirus transfection system (MSCs/CCR7). The immunomodulatory mechanism of MSCs/CCR7 was further investigated. Provoked by inflammatory cytokines, MSCs/CCR7 increased the secretion of nitric oxide and calmed down the T cell immune response in vitro. Immunofluorescent staining results showed that transfused MSCs/CCR7 can migrate to and relocate at the appropriate T cell-rich zones within SLOs in vivo. MSCs/CCR7 displayed enhanced effect in prolonging the survival and alleviating the clinical scores of the GvHD mice than normal MSCs. Owing to the critical relocation sites, MSCs/CCR7 co-infusion potently made the T cells in SLOs more naïve like, thus control T cells trafficking from SLOs to the target organs. Through spoiling the fourth supplemental Billingham’s tenet, MSCs/CCR7 potently inhibited the development of GvHD. The study here provides a novel therapeutic strategy of MSCs/CCR7 infusion at a low dosage to give potent immunomodulatory effect for clinical immune disease therapy.
Collapse
Affiliation(s)
- Hong Li
- Department of Cell Biology, Institute of Basic Medical Sciences, Beijing 100850, People’s Republic of China
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital to Academy of Military Medical Sciences, Beijing 100071, People’s Republic of China
- * E-mail: (HL); (HC); (YZ)
| | - Yan-Ming Jiang
- Department of Ophthalmology, The Second Artillery General Hospital, Beijing 100088, People’s Republic of China
| | - Yan-Feng Sun
- Department of Pediatrics, General Hospital of Chinese People's Armed Police Forces, Beijing 100039, China
| | - Ping Li
- Department of Stomatology, Chinese PLA General Hospital, Beijing 100853, China
| | - Rui-Jie Dang
- Department of Stomatology, Chinese PLA General Hospital, Beijing 100853, China
| | - Hong-Mei Ning
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital to Academy of Military Medical Sciences, Beijing 100071, People’s Republic of China
| | - Yu-Hang Li
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital to Academy of Military Medical Sciences, Beijing 100071, People’s Republic of China
| | - Ying-Jie Zhang
- Department of Plastic and Reconstructive Surgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiao-Xia Jiang
- Department of Cell Biology, Institute of Basic Medical Sciences, Beijing 100850, People’s Republic of China
| | - Xi-Min Guo
- Department of Cell Biology, Institute of Basic Medical Sciences, Beijing 100850, People’s Republic of China
| | - Ning Wen
- Department of Stomatology, Chinese PLA General Hospital, Beijing 100853, China
| | - Yan Han
- Department of Plastic and Reconstructive Surgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Ning Mao
- Department of Cell Biology, Institute of Basic Medical Sciences, Beijing 100850, People’s Republic of China
| | - Hu Chen
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital to Academy of Military Medical Sciences, Beijing 100071, People’s Republic of China
- * E-mail: (HL); (HC); (YZ)
| | - Yi Zhang
- Department of Cell Biology, Institute of Basic Medical Sciences, Beijing 100850, People’s Republic of China
- * E-mail: (HL); (HC); (YZ)
| |
Collapse
|
35
|
Pereira LE, Makarova N, Dobard C, Aubert RD, Srinivasan P, McNicholl J, Smith JM. Development and optimization of a non-enzymatic method of leukocyte isolation from macaque tissues. J Med Primatol 2014; 43:360-3. [PMID: 25379593 DOI: 10.1111/jmp.12121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND METHODS Cell isolation from macaque tissues involves laborious enzymatic digestion. The Medimachine provides a simpler, quicker non-enzymatic method, yielding 1.5–5 million cells/g of vaginal or rectal tissue from pigtailed macaques. RESULTS AND CONCLUSIONS Flow cytometry analysis of the two methods revealed similar levels of cell viability and most major cell lineage and activation markers.
Collapse
|
36
|
Liu K, Vergani A, Zhao P, Ben Nasr M, Wu X, Iken K, Jiang D, Su X, Fotino C, Fiorina P, Visner GA. Inhibition of the purinergic pathway prolongs mouse lung allograft survival. Am J Respir Cell Mol Biol 2014; 51:300-10. [PMID: 24661183 DOI: 10.1165/rcmb.2013-0362oc] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Lung transplantation has limited survival with current immunosuppression. ATP is released from activated T cells, which act as costimulatory molecules through binding to the purinergic receptor P2XR7. We investigated the role of blocking the ATP/purinergic pathway, primarily P2XR7, using its inhibitor oxidized ATP (oATP) in modulating rejection of mouse lung allografts. Mouse lung transplants were performed using mice with major histocompatibility complex mismatch, BALB/c to C57BL6. Recipients received suramin or oATP, and lung allografts were evaluated 15 to ≥ 60 days after transplantation. Recipients were also treated with oATP after the onset of moderate to severe rejection to determine its ability to rescue lung allografts. Outcomes measures included lung function, histology, thoracic imaging, and allo-immune responses. Blocking purinergic receptors with the nonselective inhibitor suramin or with the P2XR7-selective inhibitor oATP reduced acute rejection and prolonged lung allograft survival for ≥ 60 days with no progression in severity. There were fewer inflammatory cells within lung allografts, less rejection, and improved lung function, which was maintained over time. CD4 and CD8 T cells were reduced within lung allografts with impaired activation with prolonged impairment of CD8 responses. In vitro, oATP reduced CD8 activation of Th1 inflammatory cytokines IFN-γ and TNF-α and cytolytic machinery, granzyme B. Cotreatment with immunosuppressive agents, cyclosporine, rapamycin, or CTLA-4Ig resulted in no additive benefits, and oATP alone resulted in better outcomes than cyclosporine alone. This study illustrates a potential new pathway to target in hopes of prolonging survival of lung transplant recipients.
Collapse
Affiliation(s)
- Kaifeng Liu
- 1 Department of Medicine/Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Pita-Lopez ML, Ortiz-Lazareno PC, Navarro-Meza M, Santoyo-Telles F, Peralta-Zaragoza O. CD28-, CD45RA(null/dim) and natural killer-like CD8+ T cells are increased in peripheral blood of women with low-grade cervical lesions. Cancer Cell Int 2014; 14:97. [PMID: 25278812 PMCID: PMC4180855 DOI: 10.1186/s12935-014-0097-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 09/11/2014] [Indexed: 11/25/2022] Open
Abstract
Background In response to antigen naive CD8+, T cells differentiate into effector cells, which express Natural killer (NK) receptors, lose CD28 expression, and die by apoptosis. However, in smaller quantities, the cells are retained for subsequent exposure to the same antigen. Knowledge is limited regarding whether the percentages of CD28-, Effector memory (EMRAnull/dim), and the CD16+/CD56 + CD8+ T cells of women with low-grade cervical lesions are altered at a systemic level. Methods We enrolled in this study women controls and women with Human papilloma virus infection (HPV-I) without associated cellular neoplastic changes and with Cervical Intraepithelial Neoplastic-I (CIN-I). Flow cytometry (FC) was performed for measurement of CD28-, memory subset, and NK-like CD8 + T cells, and IL-17, IFN-gamma, Tumor necrosis factor (TNF)-alpha, Interleukin (IL)-10, IL-6, IL-4, and IL-2. Finally, we genotyped the HPV. Results The CIN-I group increased the CD8 + CD28− and CD16+/56+ T cell percentage compared with that of HPV-I and controls (p <0.01), and CD8 + CCR7-CD45RAnull/dim (EMRAnull/dim) T cells were also increased in the CIN-I group compared with the controls (p <0.01). These two study groups were HPV- genotyped; 49% were HPV18+, and we did not observe differences in cytokine levels among all groups. Conclusions Increased levels of CD28-, EMRAnull/dim, and CD16+/CD56 + CD8+ T cells of peripheral blood in women with CIN-I may be associated with persistent HPV infection and could exert an influence on progression to cervical cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12935-014-0097-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maria Luisa Pita-Lopez
- Laboratorio de Biología Molecular e Inmunología, Centro Universitario del Sur, Universidad de Guadalajara, Av. Enrique Arreola Silva No. 883, 49000. Cd Guzmán, Jalisco México
| | - Pablo Cesar Ortiz-Lazareno
- División de Inmunología, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Sierra Mojada No. 800, 44340 Guadalajara, Jalisco México
| | - Monica Navarro-Meza
- Laboratorio de Biología Molecular e Inmunología, Centro Universitario del Sur, Universidad de Guadalajara, Av. Enrique Arreola Silva No. 883, 49000. Cd Guzmán, Jalisco México
| | - Felipe Santoyo-Telles
- Departamento de Ciencias Exactas Tecnologías y Metodologías, Centro Universitario del Sur, Universidad de Guadalajara, Av. Enrique Arreola Silva No. 883, 49000 Ciudad Guzman, Jalisco México
| | - Oscar Peralta-Zaragoza
- Direction of Chronic Infections and Cancer, Research Center in Infection Diseases, National Institute of Public Health Av. Universidad No. 655, Cerrada los Pinos y Caminera, Col. Santa María Ahuacatitlán, 62100 Cuernavaca, Morelos Mexico
| |
Collapse
|
38
|
Abstract
The adaptive immune system provides critical defense against pathogenic bacteria. Commensal bacteria have begun to receive much attention in recent years, especially in the gut where there is growing evidence of complex interactions with the adaptive immune system. In the present study, we observed that commensal skin bacteria are recognized by major populations of T cells in skin-draining lymph nodes of mice. Recombination activating gene 1 (Rag1)(-/-) mice, which lack adaptive immune cells, contained living skin-derived bacteria and bacterial sequences, especially mycobacteria, in their skin-draining lymph nodes. T cells from skin-draining lymph nodes of normal mice were shown, in vitro, to specifically recognize bacteria of several species that were grown from Rag1(-/-) lymph nodes. T cells from skin-draining lymph nodes, transferred into Rag1(-/-) mice proliferated in skin-draining lymph nodes, expressed a restricted T-cell receptor spectrotype and produced cytokines. Transfer of T cells into Rag1(-/-) mice had the effect of reducing bacterial sequences in skin-draining lymph nodes and in skin itself. Antibacterial effects of transferred T cells were dependent on IFNγ and IL-17A. These studies suggest a previously unrecognized role for T cells in controlling skin commensal bacteria and provide a mechanism to account for cutaneous infections and mycobacterial infections in T-cell-deficient patients.
Collapse
|
39
|
Topham DJ, Chapman TJ, Richter M. Lymphoid and extralymphoid CD4 T cells that orchestrate the antiviral immune response. Expert Rev Clin Immunol 2014; 2:267-76. [DOI: 10.1586/1744666x.2.2.267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
40
|
Brinkman CC, Peske JD, Engelhard VH. Peripheral tissue homing receptor control of naïve, effector, and memory CD8 T cell localization in lymphoid and non-lymphoid tissues. Front Immunol 2013; 4:241. [PMID: 23966998 PMCID: PMC3746678 DOI: 10.3389/fimmu.2013.00241] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 08/03/2013] [Indexed: 01/13/2023] Open
Abstract
T cell activation induces homing receptors that bind ligands on peripheral tissue vasculature, programing movement to sites of infection and injury. There are three major types of CD8 effector T cells based on homing receptor expression, which arise in distinct lymphoid organs. Recent publications indicate that naïve, effector, and memory T cell migration is more complex than once thought; while many effectors enter peripheral tissues, some re-enter lymph nodes (LN), and contain central memory precursors. LN re-entry can depend on CD62L or peripheral tissue homing receptors. Memory T cells in LN tend to express the same homing receptors as their forebears, but often are CD62Lneg. Homing receptors also control CD8 T cell tumor entry. Tumor vasculature has low levels of many peripheral tissue homing receptor ligands, but portions of it resemble high endothelial venules (HEV), enabling naïve T cell entry, activation, and subsequent effector activity. This vasculature is associated with positive prognoses in humans, suggesting it may sustain ongoing anti-tumor responses. These findings reveal new roles for homing receptors expressed by naïve, effector, and memory CD8 T cells in controlling entry into lymphoid and non-lymphoid tissues.
Collapse
Affiliation(s)
- C Colin Brinkman
- Department of Microbiology, Immunology, and Cancer Biology, Carter Immunology Center, University of Virginia School of Medicine , Charlottesville, VA , USA
| | | | | |
Collapse
|
41
|
Brinkman CC, Rouhani SJ, Srinivasan N, Engelhard VH. Peripheral tissue homing receptors enable T cell entry into lymph nodes and affect the anatomical distribution of memory cells. THE JOURNAL OF IMMUNOLOGY 2013; 191:2412-25. [PMID: 23926324 DOI: 10.4049/jimmunol.1300651] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Peripheral tissue homing receptors enable T cells to access inflamed nonlymphoid tissues. In this study, we show that two such molecules, E-selectin ligand and α4β1 integrin, enable activated and memory T cells to enter lymph nodes (LN) as well. This affects the quantitative and qualitative distribution of these cells among regional LN beds. CD8 memory T cells in LN that express these molecules were mostly CD62L(lo) and would normally be classified as effector memory cells. However, similar to central memory cells, they expanded upon Ag re-encounter. This led to differences in the magnitude of the recall response that depended on the route of immunization. These novel cells share properties of both central and effector memory cells and reside in LN based on previously undescribed mechanisms of entry.
Collapse
Affiliation(s)
- C Colin Brinkman
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
42
|
Badley AD, Sainski A, Wightman F, Lewin SR. Altering cell death pathways as an approach to cure HIV infection. Cell Death Dis 2013; 4:e718. [PMID: 23846220 PMCID: PMC3730421 DOI: 10.1038/cddis.2013.248] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 05/22/2013] [Accepted: 05/29/2013] [Indexed: 12/13/2022]
Abstract
Recent cases of successful control of human immunodeficiency virus (HIV) by bone marrow transplant in combination with suppressive antiretroviral therapy (ART) and very early initiation of ART have provided proof of concept that HIV infection might now be cured. Current efforts focusing on gene therapy, boosting HIV-specific immunity, reducing inflammation and activation of latency have all been the subject of recent excellent reviews. We now propose an additional avenue of research towards a cure for HIV: targeting HIV apoptosis regulatory pathways. The central enigma of HIV disease is that HIV infection kills most of the CD4 T cells that it infects, but those cells that are spared subsequently become a latent reservoir for HIV against which current medications are ineffective. We propose that if strategies could be devised which would favor the death of all cells which HIV infects, or if all latently infected cells that release HIV would succumb to viral-induced cytotoxicity, then these approaches combined with effective ART to prevent spreading infection, would together result in a cure for HIV. This premise is supported by observations in other viral systems where the relationship between productive infection, apoptosis resistance, and the development of latency or persistence has been established. Therefore we propose that research focused at understanding the mechanisms by which HIV induces apoptosis of infected cells, and ways that some cells escape the pro-apoptotic effects of productive HIV infection are critical to devising novel and rational approaches to cure HIV infection.
Collapse
Affiliation(s)
- A D Badley
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| | | | | | | |
Collapse
|
43
|
Dwivedi V, Manickam C, Binjawadagi B, Renukaradhya GJ. PLGA nanoparticle entrapped killed porcine reproductive and respiratory syndrome virus vaccine helps in viral clearance in pigs. Vet Microbiol 2013; 166:47-58. [PMID: 23764272 PMCID: PMC7117126 DOI: 10.1016/j.vetmic.2013.04.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 04/17/2013] [Accepted: 04/30/2013] [Indexed: 01/30/2023]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a chronic viral disease of pigs, has been posing a huge economic concern to pig industry worldwide. In this study, we developed biodegradable PLGA [poly(d,l-lactide-co-glycolide)] nanoparticle-entrapped killed PRRSV vaccine (Nano-KAg), and administered intranasally to pigs once and evaluated the immune correlates. In Nano-KAg vaccinated homologous virus challenged pigs, complete clearance of viremia was observed in 2 weeks, associated with a significant increase in virus neutralizing titers only in the lungs, compared to both unvaccinated and killed vaccine vaccinated pigs. The lung homogenate and sera of Nano-KAg vaccinated pigs had higher levels of IFN-γ and lower levels of TGF-β than control groups. Restimulation of mononuclear cells isolated from the lungs, blood, BAL, and TBLN of Nano-KAg vaccinated pigs’ secreted significantly increased levels of Th1 cytokines, IFN-γ and IL-12. In addition, higher frequencies of CD3+CD8+, CD4+CD8+, and γδ T cells, and reduced frequency of Foxp3+ T-regulatory cells were observed in Nano-KAg vaccinated pigs. Thus, intranasal delivery of Nano-KAg vaccine may be a suitable strategy to elicit anti-PRRSV immune response required to better clear viremia in pigs.
Collapse
Affiliation(s)
- Varun Dwivedi
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, OH 44691, USA
| | | | | | | |
Collapse
|
44
|
Ahmed Rahim MM, Chrobak P, Priceputu E, Hanna Z, Jolicoeur P. Normal development and function but impaired memory phenotype of CD8+ T cells in transgenic mice expressing HIV-1 Nef in its natural target cells. Virology 2013; 438:84-97. [DOI: 10.1016/j.virol.2013.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 12/08/2012] [Accepted: 01/16/2013] [Indexed: 10/27/2022]
|
45
|
Proliferation-linked apoptosis of adoptively transferred T cells after IL-15 administration in macaques. PLoS One 2013; 8:e56268. [PMID: 23418547 PMCID: PMC3572023 DOI: 10.1371/journal.pone.0056268] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 01/07/2013] [Indexed: 11/19/2022] Open
Abstract
The adoptive transfer of antigen-specific effector T cells is being used to treat human infections and malignancy. T cell persistence is a prerequisite for therapeutic efficacy, but reliably establishing a high-level and durable T cell response by transferring cultured CD8+ T cells remains challenging. Thus, strategies that promote a transferred high-level T cell response may improve the efficacy of T cell therapy. Lymphodepletion enhances persistence of transferred T cells in mice in part by reducing competition for IL-15, a common γ-chain cytokine that promotes T cell memory, but lymphodepleting regimens have toxicity. IL-15 can be safely administered and has minimal effects on CD4+ regulatory T cells at low doses, making it an attractive adjunct in adoptive T cell therapy. Here, we show in lymphoreplete macaca nemestrina, that proliferation of adoptively transferred central memory-derived CD8+ effector T (TCM/E) cells is enhanced in vivo by administering IL-15. TCM/E cells migrated to memory niches, persisted, and acquired both central memory and effector memory phenotypes regardless of the cytokine treatment. Unexpectedly, despite maintaining T cell proliferation, IL-15 did not augment the magnitude of the transferred T cell response in blood, bone marrow, or lymph nodes. T cells induced to proliferate by IL-15 displayed increased apoptosis demonstrating that enhanced cycling was balanced by cell death. These results suggest that homeostatic mechanisms that regulate T cell numbers may interfere with strategies to augment a high-level T cell response by adoptive transfer of CD8+ TCM/E cells in lymphoreplete hosts.
Collapse
|
46
|
Mueller SN, Gebhardt T, Carbone FR, Heath WR. Memory T cell subsets, migration patterns, and tissue residence. Annu Rev Immunol 2012; 31:137-61. [PMID: 23215646 DOI: 10.1146/annurev-immunol-032712-095954] [Citation(s) in RCA: 615] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tissues such as the skin and mucosae are frequently exposed to microbial pathogens. Infectious agents must be quickly and efficiently controlled by our immune system, but the low frequency of naive T cells specific for any one pathogen means dependence on primary responses initiated in draining lymph nodes, often allowing time for serious infection to develop. These responses imprint effectors with the capacity to home to infected tissues; this process, combined with inflammatory signals, ensures the effective targeting of primary immunity. Upon vaccination or previous pathogen exposure, increased pathogen-specific T cell numbers together with altered migratory patterns of memory T cells can greatly improve immune efficacy, ensuring infections are prevented or at least remain subclinical. Until recently, memory T cell populations were considered to comprise central memory T cells (TCM), which are restricted to the secondary lymphoid tissues and blood, and effector memory T cells (TEM), which broadly migrate between peripheral tissues, the blood, and the spleen. Here we review evidence for these two memory populations, highlight a relatively new player, the tissue-resident memory T cell (TRM), and emphasize the potential differences between the migratory patterns of CD4(+) and CD8(+) T cells. This new understanding raises important considerations for vaccine design and for the measurement of immune parameters critical to the control of infectious disease, autoimmunity, and cancer.
Collapse
Affiliation(s)
- Scott N Mueller
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | | | | | | |
Collapse
|
47
|
Fanning SL, Zilberberg J, Stein J, Vazzana K, Berger SA, Korngold R, Friedman TM. Unraveling graft-versus-host disease and graft-versus-leukemia responses using TCR Vβ spectratype analysis in a murine bone marrow transplantation model. THE JOURNAL OF IMMUNOLOGY 2012. [PMID: 23203931 DOI: 10.4049/jimmunol.1201641] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The optimum use of allogeneic blood and marrow transplantation (BMT) as a curative therapy for hematological malignancies lies in the successful separation of mature donor T cells that are host reactive and induce graft-versus-host disease (GVHD) from those that are tumor reactive and mediate graft-versus-leukemia (GVL) effects. To study whether this separation was possible in an MHC-matched murine BMT model (B10.BR→CBA) with a CBA-derived myeloid leukemia line, MMC6, we used TCR Vβ CDR3-size spectratype analysis to first show that the Vβ13 family was highly skewed in the B10.BR anti-MMC6 CD8(+) T cell response but not in the alloresponse against recipient cells alone. Transplantation of CD8(+)Vβ13(+) T cells at the dose equivalent of their constituency in 1 × 10(7) CD8(+) T cells, a dose that had been shown to mediate lethal GVHD in recipient mice, induced a slight GVL response with no concomitant GVHD. Increasing doses of CD8(+)Vβ13(+) T cells led to more significant GVL responses but also increased GVHD symptoms and associated mortality. Subsequent spectratype analysis of GVHD target tissues revealed involvement of gut-infiltrating CD8(+)Vβ13(+) T cells accounting for the observed in vivo effects. When BMT recipients were given MMC6-presensitized CD8(+)Vβ13(+) T cells, they displayed a significant GVL response with minimal GVHD. Spectratype analysis of tumor-presensitized, gut-infiltrating CD8(+)Vβ13(+) T cells showed preferential usage of tumor-reactive CDR3-size lengths, and these cells expressed increased effector memory phenotype (CD44(+)CD62L(-/lo)). Thus, Vβ spectratyping can identify T cells involved in antihost and antitumor reactivity and tumor presensitization can aid in the separation of GVHD and GVL responses.
Collapse
Affiliation(s)
- Stacey L Fanning
- John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ 07601, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Hamilton SE, Jameson SC. CD8 T cell memory: it takes all kinds. Front Immunol 2012; 3:353. [PMID: 23230436 PMCID: PMC3515884 DOI: 10.3389/fimmu.2012.00353] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 11/06/2012] [Indexed: 12/12/2022] Open
Abstract
Understanding the mechanisms that regulate the differentiation and maintenance of CD8+ memory T cells is fundamental to the development of effective T cell-based vaccines. Memory cell differentiation is influenced by the cytokines that accompany T cell priming, the history of previous antigen encounters, and the tissue sites into which memory cells migrate. These cues combine to influence the developing CD8+ memory pool, and recent work has revealed the importance of multiple transcription factors, metabolic molecules, and surface receptors in revealing the type of memory cell that is generated. Paired with increasingly meticulous subsetting and sorting of memory populations, we now know the CD8+ memory pool to be phenotypically and functionally heterogeneous in nature. This includes both recirculating and tissue-resident memory populations, and cells with varying degrees of inherent longevity and protective function. These data point to the importance of tailored vaccine design. Here we discuss how the diversity of the memory CD8+ T cell pool challenges the notion that “one size fits all” for pathogen control, and how distinct memory subsets may be suited for distinct aspects of protective immunity.
Collapse
Affiliation(s)
- Sara E Hamilton
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School Minneapolis, MN, USA
| | | |
Collapse
|
49
|
Deletion of the viral anti-apoptotic gene F1L in the HIV/AIDS vaccine candidate MVA-C enhances immune responses against HIV-1 antigens. PLoS One 2012; 7:e48524. [PMID: 23119046 PMCID: PMC3485360 DOI: 10.1371/journal.pone.0048524] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 09/26/2012] [Indexed: 01/28/2023] Open
Abstract
Vaccinia virus (VACV) encodes an anti-apoptotic Bcl-2-like protein F1 that acts as an inhibitor of caspase-9 and of the Bak/Bax checkpoint but the role of this gene in immune responses is not known. Because dendritic cells that have phagocytosed apoptotic infected cells cross-present viral antigens to cytotoxic T cells inducing an antigen-specific immunity, we hypothesized that deletion of the viral anti-apoptotic F1L gene might have a profound effect on the capacity of poxvirus vectors to activate specific immune responses to virus-expressed recombinant antigens. This has been tested in a mouse model with an F1L deletion mutant of the HIV/AIDS vaccine candidate MVA-C that expresses Env and Gag-Pol-Nef antigens (MVA-C-ΔF1L). The viral gene F1L is not required for virus replication in cultured cells and its deletion in MVA-C induces extensive apoptosis and expression of immunomodulatory genes in infected cells. Analysis of the immune responses induced in BALB/c mice after DNA prime/MVA boost revealed that, in comparison with parental MVA-C, the mutant MVA-C-ΔF1L improves the magnitude of the HIV-1-specific CD8 T cell adaptive immune responses and impacts on the CD8 T cell memory phase by enhancing the magnitude of the response, reducing the contraction phase and changing the memory differentiation pattern. These findings reveal the immunomodulatory role of F1L and that the loss of this gene is a valid strategy for the optimization of MVA as vaccine vector.
Collapse
|
50
|
Peripheral tissue surveillance and residency by memory T cells. Trends Immunol 2012; 34:27-32. [PMID: 23036434 DOI: 10.1016/j.it.2012.08.008] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Revised: 08/21/2012] [Accepted: 08/21/2012] [Indexed: 11/24/2022]
Abstract
T cell immunity has long been described in terms of two circulating memory populations. Central memory T (T(CM)) cells migrate between the secondary lymphoid organs and are capable of mounting a recall proliferative response on pathogen re-encounter, whereas effector memory T (T(EM)) cells traffic between blood and extralymphoid compartments for effective peripheral immune surveillance. It is now clear that there exists a third category of memory cells that never returns to the circulation. These tissue-resident memory T (T(RM)) cells are phenotypically distinct from T(EM) cells, persist in elevated numbers in areas involved in prior infection and have been implicated in various immune phenomena, such as the control of persisting infections and immune disorders in fixed regions of the body.
Collapse
|