1
|
Rahangdale R, Ghormode P, Tender T, Balireddy S, Birangal S, Kishore R, Mohammad FS, Pasupuleti M, Chandrashekar H R. Anti-HSV activity of nectin-1-derived peptides targeting HSV gD: an in-silico and in-vitro approach. J Biomol Struct Dyn 2024:1-14. [PMID: 38720617 DOI: 10.1080/07391102.2024.2349525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/24/2024] [Indexed: 05/22/2024]
Abstract
Herpes simplex virus (HSV) infections affect a wide range of the global population. The emergence of resistance to the existing anti-HSV therapy highlights the necessity for an innovative strategy. The interaction of HSV gD with its main host receptor nectin-1 is a potential target for new antiviral drugs. The aim of this study was to develop a peptide derived from nectin-1 targeting HSV gD using the in-silico method and evaluate them for anti-HSV activity. Residues 59-133 of the Nectin-1 V-domain constitute the interaction interface with HSV gD. Bioinformatic tools viz., PEP-FOLD3, ClusPro 2.0, HawkDock and Desmond were used to model the peptide and confirm its binding specificity with HSV gD protein. The peptides with potential interactions were custom synthesized and anti-HSV activity was evaluated in vitro against HSV-1 and HSV-2 by CPE inhibition assay. Five peptide sequences were identified as exhibiting good interaction with HSV-gD proteins. Among them, peptide N1 (residues 76-90) offered maximum protection against HSV-1 (66.57%) and HSV-2 (71.12%) infections. Modification of the identified peptide through peptidomimetic approaches may further enhance the activity and stability of the identified peptide.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rakesh Rahangdale
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Parnavi Ghormode
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Tenzin Tender
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Sridevi Balireddy
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Sumit Birangal
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Raj Kishore
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, India
- Jawaharlal Nehru University, New Delhi, India
| | - Fayaz Shaik Mohammad
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India
| | - Mukesh Pasupuleti
- Microbiology Division, Council of Scientific and Industrial Research, Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Raghu Chandrashekar H
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
2
|
Joo HY, Baek H, Ahn CS, Park ER, Lee Y, Lee S, Han M, Kim B, Jang YH, Kwon H. Development of a novel, high-efficacy oncolytic herpes simplex virus type 1 platform equipped with two distinct retargeting modalities. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200778. [PMID: 38596302 PMCID: PMC10941007 DOI: 10.1016/j.omton.2024.200778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/03/2024] [Accepted: 02/16/2024] [Indexed: 04/11/2024]
Abstract
To retarget oncolytic herpes simplex virus (oHSV) to cancer-specific antigens, we designed a novel, double-retargeted oHSV platform that uses single-chain antibodies (scFvs) incorporated into both glycoprotein H and a bispecific adapter expressed from the viral genome to mediate infection predominantly via tumor-associated antigens. Successful retargeting was achieved using a nectin-1-detargeted HSV that remains capable of interacting with herpesvirus entry mediator (HVEM), the second canonical HSV entry receptor, and is, therefore, recognized by the adapter consisting of the virus-binding N-terminal 82 residues of HVEM fused to the target-specific scFv. We tested both an epithelial cell adhesion molecule (EpCAM)- and a human epidermal growth factor receptor 2-specific scFv separately and together to target cells expressing one, the other, or both receptors. Our results show not only dose-dependent, target receptor-specific infection in vitro, but also enhanced virus spread compared with single-retargeted virus. In addition, we observed effective infection and spreading of the EpCAM double-retargeted virus in vivo. Remarkably, a single intravenous dose of the EpCAM-specific virus eliminated all detectable tumors in a subcutaneous xenograft model, and the same intravenous dose seemed to be harmless in immunocompetent FVB/N mice. Our findings suggest that our double-retargeted oHSV platform can provide a potent, versatile, and systemically deliverable class of anti-cancer therapeutics that specifically target cancer cells while ensuring safety.
Collapse
Affiliation(s)
- Hyun-Yoo Joo
- Gencellmed Inc., Korea Institute of Radiological and Medical Sciences, Room 302 Research Building #3, Seoul, Republic of Korea
| | - Hyunjung Baek
- Gencellmed Inc., Korea Institute of Radiological and Medical Sciences, Room 302 Research Building #3, Seoul, Republic of Korea
| | - Chun-Seob Ahn
- Gencellmed Inc., Korea Institute of Radiological and Medical Sciences, Room 302 Research Building #3, Seoul, Republic of Korea
| | - Eun-Ran Park
- Gencellmed Inc., Korea Institute of Radiological and Medical Sciences, Room 302 Research Building #3, Seoul, Republic of Korea
| | - Youngju Lee
- Gencellmed Inc., Korea Institute of Radiological and Medical Sciences, Room 302 Research Building #3, Seoul, Republic of Korea
| | - Sujung Lee
- Gencellmed Inc., Korea Institute of Radiological and Medical Sciences, Room 302 Research Building #3, Seoul, Republic of Korea
| | - Mihee Han
- Gencellmed Inc., Korea Institute of Radiological and Medical Sciences, Room 302 Research Building #3, Seoul, Republic of Korea
| | - Bora Kim
- Gencellmed Inc., Korea Institute of Radiological and Medical Sciences, Room 302 Research Building #3, Seoul, Republic of Korea
| | - Yong-Hoon Jang
- Gencellmed Inc., Korea Institute of Radiological and Medical Sciences, Room 302 Research Building #3, Seoul, Republic of Korea
| | - Heechung Kwon
- Gencellmed Inc., Korea Institute of Radiological and Medical Sciences, Room 302 Research Building #3, Seoul, Republic of Korea
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| |
Collapse
|
3
|
Gao Y, Cheng J, Xu X, Li X, Zhang J, Ma D, Jiang G, Liao Y, Fan S, Niu Z, Yue R, Chang P, Zeng F, Duan S, Meng Z, Xu X, Li X, Li D, Yu L, Ping L, Zhao H, Guo M, Wang L, Wang Y, Zhang Y, Li Q. HSV-1 Infection of Epithelial Dendritic Cells Is a Critical Strategy for Interfering with Antiviral Immunity. Viruses 2022; 14:1046. [PMID: 35632787 PMCID: PMC9147763 DOI: 10.3390/v14051046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/06/2022] [Accepted: 05/12/2022] [Indexed: 11/17/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1), an α subgroup member of the human herpesvirus family, infects cells via the binding of its various envelope glycoproteins to cellular membrane receptors, one of which is herpes virus entry mediator (HVEM), expressed on dendritic cells. Here, HVEM gene-deficient mice were used to investigate the immunologic effect elicited by the HSV-1 infection of dendritic cells. Dendritic cells expressing the surface marker CD11c showed an abnormal biological phenotype, including the altered transcription of various immune signaling molecules and inflammatory factors associated with innate immunity after viral replication. Furthermore, the viral infection of dendritic cells interfered with dendritic cell function in the lymph nodes, where these cells normally play roles in activating the T-cell response. Additionally, the mild clinicopathological manifestations observed during the acute phase of HSV-1 infection were associated with viral replication in dendritic cells.
Collapse
Affiliation(s)
- Yang Gao
- Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Kunming 650000, China; (X.X.); (X.L.); (J.Z.); (D.M.); (G.J.); (Y.L.); (S.F.); (Z.N.); (R.Y.); (P.C.); (F.Z.); (S.D.); (Z.M.); (X.X.); (X.L.); (D.L.); (L.Y.); (L.P.); (H.Z.); (M.G.); (L.W.); (Y.W.); (Y.Z.); (Q.L.)
| | - Jishuai Cheng
- Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Kunming 650000, China; (X.X.); (X.L.); (J.Z.); (D.M.); (G.J.); (Y.L.); (S.F.); (Z.N.); (R.Y.); (P.C.); (F.Z.); (S.D.); (Z.M.); (X.X.); (X.L.); (D.L.); (L.Y.); (L.P.); (H.Z.); (M.G.); (L.W.); (Y.W.); (Y.Z.); (Q.L.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Scurtu LG, Jinga V, Simionescu O. Fascinating Molecular and Immune Escape Mechanisms in the Treatment of STIs (Syphilis, Gonorrhea, Chlamydia, and Herpes Simplex). Int J Mol Sci 2022; 23:ijms23073550. [PMID: 35408911 PMCID: PMC8998805 DOI: 10.3390/ijms23073550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] Open
Abstract
The incidence of syphilis, gonorrhea, chlamydia, and herpes simplex has increased over the last decade, despite the numerous prevention strategies. Worldwide scientists report a surge in drug-resistant infections, particularly in immunocompromised patients. Antigenic variations in syphilis enable long-term infection, but benzathine penicillin G maintains its efficiency, whereas macrolides should be recommended with caution. Mupirocin and zoliflodacin were recently introduced as therapies against ceftriaxone-resistant gonococcus, which poses a larger global threat. The gastrointestinal and prostatic potential reservoirs of Chlamydia trachomatis may represent the key towards complete eradication. Similar to syphilis, macrolides resistance has to be considered in genital chlamydiosis. Acyclovir-resistant HSV may respond to the novel helicase-primase inhibitors and topical imiquimod, particularly in HIV-positive patients. Novel drugs can overcome these challenges while nanocarriers enhance their potency, particularly in mucosal areas. This review summarizes the most recent and valuable discoveries regarding the immunopathogenic mechanisms of these sexually transmitted infections and discusses the challenges and opportunities of the novel molecules and nanomaterials.
Collapse
Affiliation(s)
- Lucian G. Scurtu
- Department of Dermatology I, Colentina Clinical Hospital, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020125 Bucharest, Romania;
| | - Viorel Jinga
- Department of Urology, Clinical Hospital Prof. Dr. Th. Burghele, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 030167 Bucharest, Romania;
| | - Olga Simionescu
- Department of Dermatology I, Colentina Clinical Hospital, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020125 Bucharest, Romania;
- Correspondence:
| |
Collapse
|
5
|
Abstract
Varicella-zoster virus (VZV) maintains lifelong latency in neurons following initial infection and can subsequently be reactivated to result in herpes zoster or severe neurological manifestations such as encephalitis. Mechanisms of VZV neuropathogenesis have been challenging to study due to the strict human tropism of the virus. Although neuronal entry mediators of other herpesviruses, including herpes simplex virus, have been identified, little is known regarding how VZV enters neurons. Here, we utilize a human stem cell-based neuronal model to characterize cellular factors that mediate entry. Through transcriptional profiling of infected cells, we identify the cell adhesion molecule nectin-1 as a candidate mediator of VZV entry. Nectin-1 is highly expressed in the cell bodies and axons of neurons. Either knockdown of endogenous nectin-1 or incubation with soluble forms of nectin-1 produced in mammalian cells results in a marked decrease in infectivity of neurons. Notably, while addition of soluble nectin-1 during viral infection inhibits infectivity, addition after infection has no effect on infectivity. Ectopic expression of human nectin-1 in a cell line resistant to productive VZV infection confers susceptibility to infection. In summary, we have identified nectin-1 as a neuronal entry mediator of VZV. IMPORTANCE Varicella-zoster virus (VZV) causes chickenpox, gains access to neurons during primary infection where it resides lifelong, and can later be reactivated. Reactivation is associated with shingles and postherpetic neuralgia, as well as with severe neurologic complications, including vasculitis and encephalitis. Although the varicella vaccine substantially decreases morbidity and mortality associated with primary infection, the vaccine cannot prevent the development of neuronal latency, and vaccinated populations are still at risk for reactivation. Furthermore, immunocompromised individuals are at higher risk for VZV reactivation and associated complications. Little is known regarding how VZV enters neurons. Here, we identify nectin-1 as an entry mediator of VZV in human neurons. Identification of nectin-1 as a neuronal VZV entry mediator could lead to improved treatments and preventative measures to reduce VZV related morbidity and mortality.
Collapse
|
6
|
Antibody Screening System Using a Herpes Simplex Virus (HSV)-Based Probe To Identify a Novel Target for Receptor-Retargeted Oncolytic HSVs. J Virol 2021; 95:JVI.01766-20. [PMID: 33627393 DOI: 10.1128/jvi.01766-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 02/07/2021] [Indexed: 12/13/2022] Open
Abstract
Herpes simplex virus (HSV) is a promising tool for developing oncolytic virotherapy. We recently reported a platform for receptor-retargeted oncolytic HSVs that incorporates single-chain antibodies (scFvs) into envelope glycoprotein D (gD) to mediate virus entry via tumor-associated antigens. Therefore, it would be useful to develop an efficient system that can screen antibodies that might mediate HSV entry when they are incorporated as scFvs into gD. We created an HSV-based screening probe by the genetic fusion of a gD mutant with ablated binding capability to the authentic HSV entry receptors and the antibody-binding C domain of streptococcal protein G. This engineered virus failed to enter cells through authentic receptors. In contrast, when this virus was conjugated with an antibody specific to an antigen on the cell membrane, it specifically entered cells expressing the cognate antigen. This virus was used as a probe to identify antibodies that mediate virus entry via recognition of certain molecules on the cell membrane other than authentic receptors. Using this method, we identified an antibody specific to epiregulin (EREG), which has been investigated mainly as a secreted growth factor and not necessarily for its precursor that is expressed in a transmembrane form. We constructed an scFv from the anti-EREG antibody for insertion into the retargeted HSV platform and found that the recombinant virus entered cells specifically through EREG expressed by the cells. This novel antibody-screening system may contribute to the discovery of unique and unexpected molecules that might be used for the entry of receptor-retargeted oncolytic HSVs.IMPORTANCE The tropism of the cellular entry of HSV is dependent on the binding of the envelope gD to one of its authentic receptors. This can be fully retargeted to other receptors by inserting scFvs into gD with appropriate modifications. In theory, upon binding to the engineered gD, receptors other than authentic receptors should induce a conformational change in the gD, which activates downstream mechanisms required for viral entry. However, prerequisite factors for receptors to be used as targets of a retargeted virus remain poorly understood, and it is difficult to predict which molecules might be suitable for our retargeted HSV construct. Our HSV-based probe will allow unbiased screening of antibody-antigen pairs that mediate virus entry and might be a useful tool to identify suitable pairs for our construct and to enhance our understanding of virus-cell interactions during infection by HSV and possibly other viruses.
Collapse
|
7
|
Rudd JS, Musarrat F, Kousoulas KG. Development of a reliable bovine neuronal cell culture system and labeled recombinant bovine herpesvirus type-1 for studying virus-host cell interactions. Virus Res 2021; 293:198255. [PMID: 33338533 DOI: 10.1016/j.virusres.2020.198255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 11/22/2022]
Abstract
Bovine herpesvirus type 1 (BoHV-1) is the viral causative agent of infectious bovine rhinotracheitis and a component of the bovine respiratory complex commonly referred to as shipping fever in calves. BoHV-1 is also responsible for losses of aborted calves and reductions in dairy productivity. BoHV-1 belongs to the neurotropic alphaherpesviruses which have a predilection to infect and establish latency in sensory neurons. Neuronal cell cultures provide a useful platform for experiments investigating neuronal entry, retrograde and anterograde transport, and the establishment of latency. Rodent neuronal cell lines and primary rabbit neuronal cells have been utilized for BoHV-1, though a reliable host-specific neuronal cell culture system has not been developed. In this study, BoHV-1 readily infected bovine-derived immortalized neuronal progenitor cells (FBBC-1) differentiated in cell culture producing neurite-like projections and exhibiting neuronal cell markers NeuN and L1CAM. FBBC-1 cells expressed both nectin-1 and nectin-2 alphaherpesvirus receptors on their cell surfaces, however, nectin-2 was detected in much greater abundance than nectin-1. To facilitate investigations of BoHV-1 infection, a recombinant BoHV-1 virus expressing the green fluorescent protein (GFP) cloned into a bacterial artificial chromosome (BAC) was used to generate an mCherry-VP26 fusion protein. The BoHV-1 GFP expressing VP26mCherry labeled virus infected differentiated FBBC-1 cells as evidenced by the production of infectious virions and the expression of both GFP and mCherry fluorophores. Time-lapse live cell microscopy revealed the presence of mCherry fluorescent capsids in neuronal projections immediately after virus entry moving retrograde in a saltatory manner. Proximity ligation assays (PLA) using MDBK cells demonstrated that BoHV-1 glycoprotein D (gD) interacted more efficiently with nectin-1 than nectin-2. However, the gD interaction with nectin-2 predominated in differentiated FBBC-1 cells in comparison to the gD nectin-1 interaction. The efficiently differentiated FBBC-1 neuronal cell line and fluorescently labeled BoHV-1 virions will assist experimentation aiming to elucidate specific mechanisms of virus entry and transport in a homologous bovine neuronal cell culture system.
Collapse
Affiliation(s)
- Jared S Rudd
- Department of Pathobiological Sciences and Division of Biotechnology & Molecular Medicine School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, United States; Division of Biotechnology & Molecular Medicine School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, United States
| | - Farhana Musarrat
- Department of Pathobiological Sciences and Division of Biotechnology & Molecular Medicine School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, United States; Division of Biotechnology & Molecular Medicine School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, United States
| | - Konstantin G Kousoulas
- Department of Pathobiological Sciences and Division of Biotechnology & Molecular Medicine School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, United States; Division of Biotechnology & Molecular Medicine School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, United States.
| |
Collapse
|
8
|
Madavaraju K, Koganti R, Volety I, Yadavalli T, Shukla D. Herpes Simplex Virus Cell Entry Mechanisms: An Update. Front Cell Infect Microbiol 2021; 10:617578. [PMID: 33537244 PMCID: PMC7848091 DOI: 10.3389/fcimb.2020.617578] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/02/2020] [Indexed: 12/17/2022] Open
Abstract
Herpes simplex virus (HSV) can infect a broad host range and cause mild to life threating infections in humans. The surface glycoproteins of HSV are evolutionarily conserved and show an extraordinary ability to bind more than one receptor on the host cell surface. Following attachment, the virus fuses its lipid envelope with the host cell membrane and releases its nucleocapsid along with tegument proteins into the cytosol. With the help of tegument proteins and host cell factors, the nucleocapsid is then docked into the nuclear pore. The viral double stranded DNA is then released into the host cell’s nucleus. Released viral DNA either replicates rapidly (more commonly in non-neuronal cells) or stays latent inside the nucleus (in sensory neurons). The fusion of the viral envelope with host cell membrane is a key step. Blocking this step can prevent entry of HSV into the host cell and the subsequent interactions that ultimately lead to production of viral progeny and cell death or latency. In this review, we have discussed viral entry mechanisms including the pH-independent as well as pH-dependent endocytic entry, cell to cell spread of HSV and use of viral glycoproteins as an antiviral target.
Collapse
Affiliation(s)
- Krishnaraju Madavaraju
- Shukla Lab, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Raghuram Koganti
- Shukla Lab, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Ipsita Volety
- Shukla Lab, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Tejabhiram Yadavalli
- Shukla Lab, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Deepak Shukla
- Shukla Lab, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States.,Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
9
|
Ye ZQ, Zou CL, Chen HB, Lv QY, Wu RQ, Gu DN. Folate-conjugated herpes simplex virus for retargeting to tumor cells. J Gene Med 2020; 22:e3177. [PMID: 32096291 DOI: 10.1002/jgm.3177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/13/2020] [Accepted: 02/19/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Herpes simplex virus type 1 (HSV-1)-mediated oncolytic therapy is a promising cancer treatment modality. However, viral tropism is considered to be one of the major stumbling blocks to the development of HSV-1 as an anticancer agent. METHODS The surface of oncolytic HSV-1 G207 was covalently modified with folate-poly (ethylene glycol) conjugate (FA-PEG). The specificities and tumor targeting efficiencies of modified or unmodified G207 particles were analyzed by a real-time polymerase chain reaction at the level of cell attachment and entry. Immune responses were assessed by an interleukin-6 release assay from RAW264.7 macrophages. Biodistribution and in vivo antitumoral activity after intravenous delivery was evaluated in BALB/c nude mice bearing subcutaneous KB xenograft tumors. RESULTS FA-PEG-HSV exhibited enhanced targeting specificity for folate receptor over-expressing tumor cells and had lower immunogenicity than the unmodified HSV. In vivo, the FA-PEG-HSV group revealed an increased anti-tumor efficiency and tumor targeting specificity compared to the naked HSV. CONCLUSIONS These results indicate that folate-conjugated HSV G207 presents a folate receptor-targeted oncolytic virus with a potential therapeutic value via retargeting to tumor cells.
Collapse
Affiliation(s)
- Zhi-Qiang Ye
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Chang-Lin Zou
- Department of Chemoradiotherapy, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Han-Bin Chen
- Department of Chemoradiotherapy, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Qi-Yuan Lv
- Department of Chemoradiotherapy, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Ruo-Qi Wu
- Department of Chemoradiotherapy, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Dian-Na Gu
- Department of Chemoradiotherapy, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| |
Collapse
|
10
|
Vallbracht M, Backovic M, Klupp BG, Rey FA, Mettenleiter TC. Common characteristics and unique features: A comparison of the fusion machinery of the alphaherpesviruses Pseudorabies virus and Herpes simplex virus. Adv Virus Res 2019; 104:225-281. [PMID: 31439150 DOI: 10.1016/bs.aivir.2019.05.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Membrane fusion is a fundamental biological process that allows different cellular compartments delimited by a lipid membrane to release or exchange their respective contents. Similarly, enveloped viruses such as alphaherpesviruses exploit membrane fusion to enter and infect their host cells. For infectious entry the prototypic human Herpes simplex viruses 1 and 2 (HSV-1 and -2, collectively termed HSVs) and the porcine Pseudorabies virus (PrV) utilize four different essential envelope glycoproteins (g): the bona fide fusion protein gB and the regulatory heterodimeric gH/gL complex that constitute the "core fusion machinery" conserved in all members of the Herpesviridae; and the subfamily specific receptor binding protein gD. These four components mediate attachment and fusion of the virion envelope with the host cell plasma membrane through a tightly regulated sequential activation process. Although PrV and the HSVs are closely related and employ the same set of glycoproteins for entry, they show remarkable differences in the requirements for fusion. Whereas the HSVs strictly require all four components for membrane fusion, PrV can mediate cell-cell fusion without gD. Moreover, in contrast to the HSVs, PrV provides a unique opportunity for reversion analyses of gL-negative mutants by serial cell culture passaging, due to a limited cell-cell spread capacity of gL-negative PrV not observed in the HSVs. This allows a more direct analysis of the function of gH/gL during membrane fusion. Unraveling the molecular mechanism of herpesvirus fusion has been a goal of fundamental research for years, and yet important mechanistic details remain to be uncovered. Nevertheless, the elucidation of the crystal structures of all key players involved in PrV and HSV membrane fusion, coupled with a wealth of functional data, has shed some light on this complex puzzle. In this review, we summarize and discuss the contemporary knowledge on the molecular mechanism of entry and membrane fusion utilized by the alphaherpesvirus PrV, and highlight similarities but also remarkable differences in the requirements for fusion between PrV and the HSVs.
Collapse
Affiliation(s)
- Melina Vallbracht
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany.
| | - Marija Backovic
- Institut Pasteur, Unité de Virologie Structurale, UMR3569 (CNRS), Paris, France
| | - Barbara G Klupp
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Felix A Rey
- Institut Pasteur, Unité de Virologie Structurale, UMR3569 (CNRS), Paris, France
| | - Thomas C Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| |
Collapse
|
11
|
Xu X, Zhang Y, Li Q. Characteristics of herpes simplex virus infection and pathogenesis suggest a strategy for vaccine development. Rev Med Virol 2019; 29:e2054. [PMID: 31197909 PMCID: PMC6771534 DOI: 10.1002/rmv.2054] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/03/2019] [Accepted: 04/27/2019] [Indexed: 12/15/2022]
Abstract
Herpes simplex virus (HSV) can cause oral or genital ulcerative lesions and even encephalitis in various age groups with high infection rates. More seriously, HSV may lead to a wide range of recurrent diseases throughout a lifetime. No vaccines against HSV are currently available. The accumulated clinical research data for HSV vaccines reveal that the effects of HSV interacting with the host, especially the host immune system, may be important for the development of HSV vaccines. HSV vaccine development remains a major challenge. Thus, we focus on the research data regarding the interactions of HSV and host immune cells, including dendritic cells (DCs), innate lymphoid cells (ILCs), macrophages, and natural killer (NK) cells, and the related signal transduction pathways involved in immune evasion and cytokine production. The aim is to explore possible strategies to develop new effective HSV vaccines.
Collapse
Affiliation(s)
- Xingli Xu
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical SciencesPeking Union Medical CollegeKunmingChina
| | - Ying Zhang
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical SciencesPeking Union Medical CollegeKunmingChina
| | - Qihan Li
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical SciencesPeking Union Medical CollegeKunmingChina
| |
Collapse
|
12
|
Insertion of a ligand to HER2 in gB retargets HSV tropism and obviates the need for activation of the other entry glycoproteins. PLoS Pathog 2017; 13:e1006352. [PMID: 28423057 PMCID: PMC5411103 DOI: 10.1371/journal.ppat.1006352] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/01/2017] [Accepted: 04/13/2017] [Indexed: 11/19/2022] Open
Abstract
Herpes simplex virus (HSV) entry into the cells requires glycoproteins gD, gH/gL and gB, activated in a cascade fashion by conformational modifications induced by cognate receptors and intermolecular signaling. The receptors are nectin1 and HVEM (Herpes virus entry mediator) for gD, and αvβ6 or αvβ8 integrin for gH. In earlier work, insertion of a single chain antibody (scFv) to the cancer receptor HER2 (human epidermal growth factor receptor 2) in gD, or in gH, resulted in HSVs specifically retargeted to the HER2-positive cancer cells, hence in highly specific non-attenuated oncolytic agents. Here, the scFv to HER2 was inserted in gB (gBHER2). The insertion re-targeted the virus tropism to the HER2-positive cancer cells. This was unexpected since gB is known to be a fusogenic glycoprotein, not a tropism determinant. The gB-retargeted recombinant offered the possibility to investigate how HER2 mediated entry. In contrast to wt-gB, the activation of the chimeric gBHER2 did not require the activation of the gD and of gH/gL by their respective receptors. Furthermore, a soluble form of HER2 could replace the membrane-bound HER2 in mediating virus entry, hinting that HER2 acted by inducing conformational changes to the chimeric gB. This study shows that (i) gB can be modified and become the major determinant of HSV tropism; (ii) the chimeric gBHER2 bypasses the requirement for receptor-mediated activation of other essential entry glycoproteins.
Collapse
|
13
|
Goins WF, Hall B, Cohen JB, Glorioso JC. Retargeting of herpes simplex virus (HSV) vectors. Curr Opin Virol 2016; 21:93-101. [PMID: 27614209 DOI: 10.1016/j.coviro.2016.08.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 08/12/2016] [Indexed: 01/17/2023]
Abstract
Gene therapy applications depend on vector delivery and gene expression in the appropriate target cell. Vector infection relies on the distribution of natural virus receptors that may either not be present on the desired target cell or distributed in a manner to give off-target gene expression. Some viruses display a very limited host range, while others, including herpes simplex virus (HSV), can infect almost every cell within the human body. It is often an advantage to retarget virus infectivity to achieve selective target cell infection. Retargeting can be achieved by (i) the inclusion of glycoproteins from other viruses that have a different host-range, (ii) modification of existing viral glycoproteins or coat proteins to incorporate peptide ligands or single-chain antibodies (scFvs) that bind to the desired receptor, or (iii) employing soluble adapters that recognize both the virus and a specific receptor on the target cell. This review summarizes efforts to target HSV using these three strategies.
Collapse
Affiliation(s)
- William F Goins
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 424 BSP-2, 450 Technology Drive, Pittsburgh, PA 15219, United States.
| | - Bonnie Hall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 424 BSP-2, 450 Technology Drive, Pittsburgh, PA 15219, United States
| | - Justus B Cohen
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 424 BSP-2, 450 Technology Drive, Pittsburgh, PA 15219, United States
| | - Joseph C Glorioso
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 424 BSP-2, 450 Technology Drive, Pittsburgh, PA 15219, United States
| |
Collapse
|
14
|
Clementi N, Criscuolo E, Cappelletti F, Burioni R, Clementi M, Mancini N. Novel therapeutic investigational strategies to treat severe and disseminated HSV infections suggested by a deeper understanding of in vitro virus entry processes. Drug Discov Today 2016; 21:682-91. [PMID: 26976690 DOI: 10.1016/j.drudis.2016.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/11/2016] [Accepted: 03/04/2016] [Indexed: 01/28/2023]
Abstract
The global burden of herpes simplex virus (HSV) legitimates the critical need to develop new prevention strategies, such as drugs and vaccines that are able to fight either primary HSV infections or reactivations. Moreover, the ever-growing number of patients receiving transplants increases the number of severe HSV infections that are unresponsive to current therapies. Finally, the high global incidence of genital HSV-2 infection increases the risk of perinatal transmission to newborns, in which disseminated infection or central nervous system (CNS) involvement is frequent, with associated high morbidity and mortality rates. There are several key features shared by novel anti-HSV drugs, from currently available optimized drugs to small molecules able to interfere with various virus replication steps. However, several virological aspects of the disease and associated clinical needs highlight why an ideal anti-HSV drug has yet to be developed.
Collapse
Affiliation(s)
- Nicola Clementi
- Microbiology and Virology Unit, 'Vita-Salute San Raffaele' University, 20132 Milan, Italy.
| | - Elena Criscuolo
- Microbiology and Virology Unit, 'Vita-Salute San Raffaele' University, 20132 Milan, Italy
| | - Francesca Cappelletti
- Microbiology and Virology Unit, 'Vita-Salute San Raffaele' University, 20132 Milan, Italy
| | - Roberto Burioni
- Microbiology and Virology Unit, 'Vita-Salute San Raffaele' University, 20132 Milan, Italy
| | - Massimo Clementi
- Microbiology and Virology Unit, 'Vita-Salute San Raffaele' University, 20132 Milan, Italy
| | - Nicasio Mancini
- Microbiology and Virology Unit, 'Vita-Salute San Raffaele' University, 20132 Milan, Italy
| |
Collapse
|
15
|
Walker EB, Pritchard SM, Cunha CW, Aguilar HC, Nicola AV. Polyethylene glycol-mediated fusion of herpes simplex type 1 virions with the plasma membrane of cells that support endocytic entry. Virol J 2015; 12:190. [PMID: 26573723 PMCID: PMC4647588 DOI: 10.1186/s12985-015-0423-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/12/2015] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Mouse B78 cells and Chinese hamster ovary (CHO) cells are important to the study of HSV-1 entry because both are resistant to infection at the level of viral entry. When provided with a gD-receptor such as nectin-1, these cells support HSV-1 entry by an endocytosis pathway. Treating some viruses bound to cells with the fusogen polyethylene glycol (PEG) mediates viral fusion with the cell surface but is insufficient to rescue viral entry. It is unclear whether PEG-mediated fusion of HSV with the plasma membrane of B78 or CHO cells results in successful entry and infection. FINDINGS Treating HSV-1 bound to B78 or CHO cells with PEG allowed viral entry as measured by virus-induced beta-galactosidase activity. Based on the mechanism of PEG action, we propose that entry likely proceeds by direct fusion of HSV particles with the plasma membrane. Under the conditions tested, PEG-mediated infection of CHO cells progressed to the level of HSV late gene expression, while B78 cells supported HSV DNA replication. We tested whether proteolysis or acidification of cell-bound virions could trigger HSV fusion with the plasma membrane. Under the conditions tested, mildly acidic pH of 5-6 or the protease trypsin were not capable of triggering HSV-1 fusion as compared to PEG-treated cell-bound virions. CONCLUSIONS B78 cells and CHO cells, which typically endocytose HSV prior to viral penetration, are capable of supporting HSV-1 entry via direct penetration. HSV capsids delivered directly to the cytosol at the periphery of these cells complete the entry process. B78 and CHO cells may be utilized to screen for factors that trigger entry as a consequence of fusion of virions with the cell surface, and PEG treatment can provide a necessary control.
Collapse
Affiliation(s)
- Erik B Walker
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA.
| | - Suzanne M Pritchard
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA.
| | - Cristina W Cunha
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA.
| | - Hector C Aguilar
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA.
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, 99164, USA.
| | - Anthony V Nicola
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA.
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
16
|
The Engineering of a Novel Ligand in gH Confers to HSV an Expanded Tropism Independent of gD Activation by Its Receptors. PLoS Pathog 2015; 11:e1004907. [PMID: 25996983 PMCID: PMC4440635 DOI: 10.1371/journal.ppat.1004907] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/22/2015] [Indexed: 01/08/2023] Open
Abstract
Herpes simplex virus (HSV) enters cells by means of four essential glycoproteins - gD, gH/gL, gB, activated in a cascade fashion by gD binding to one of its receptors, nectin1 and HVEM. We report that the engineering in gH of a heterologous ligand – a single-chain antibody (scFv) to the cancer-specific HER2 receptor – expands the HSV tropism to cells which express HER2 as the sole receptor. The significance of this finding is twofold. It impacts on our understanding of HSV entry mechanism and the design of retargeted oncolytic-HSVs. Specifically, entry of the recombinant viruses carrying the scFv-HER2–gH chimera into HER2+ cells occurred in the absence of gD receptors, or upon deletion of key residues in gD that constitute the nectin1/HVEM binding sites. In essence, the scFv in gH substituted for gD-mediated activation and rendered a functional gD non-essential for entry via HER2. The activation of the gH moiety in the chimera was carried out by the scFv in cis, not in trans as it occurs with wt-gD. With respect to the design of oncolytic-HSVs, previous retargeting strategies were based exclusively on insertion in gD of ligands to cancer-specific receptors. The current findings show that (i) gH accepts a heterologous ligand. The viruses retargeted via gH (ii) do not require the gD-dependent activation, and (iii) replicate and kill cells at high efficiency. Thus, gH represents an additional tool for the design of fully-virulent oncolytic-HSVs retargeted to cancer receptors and detargeted from gD receptors. To enter cells, all herpesviruses use the core fusion glycoproteins gH/gL and gB, in addition to species-specific glycoproteins responsible for specific tropism, etc. In HSV, the additional glycoprotein is the essential gD. We engineered in gH a heterologous ligand to the HER2 cancer receptor. The recombinant viruses entered cells through HER2, independently of gD activation by its receptors, or despite deletion of key residues that are part of the receptors’ binding sites in gD. The ligand activated gH in cis. Cumulatively, the receptor-binding and activating functions of gD were no longer essential and were replaced by the heterologous ligand in gH. Relevance to translational medicine rests in the fact that gH can serve as a tool to retarget HSV tropism to cancer-specific receptors. This expands the toolkit for the design of fully-virulent oncolytic-HSVs.
Collapse
|
17
|
Lazear E, Whitbeck JC, Zuo Y, Carfí A, Cohen GH, Eisenberg RJ, Krummenacher C. Induction of conformational changes at the N-terminus of herpes simplex virus glycoprotein D upon binding to HVEM and nectin-1. Virology 2013; 448:185-95. [PMID: 24314649 DOI: 10.1016/j.virol.2013.10.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 09/07/2013] [Accepted: 10/12/2013] [Indexed: 11/15/2022]
Abstract
Herpes simplex virus entry is initiated by glycoprotein D (gD) binding to a cellular receptor, such as HVEM or nectin-1. gD is activated by receptor-induced displacement of the C-terminus from the core of the glycoprotein. Binding of HVEM requires the formation of an N-terminal hairpin loop of gD; once formed this loop masks the nectin-1 binding site on the core of gD. We found that HVEM and nectin-1 exhibit non-reciprocal competition for binding to gD. The N-terminus of gD does not spontaneously form a stable hairpin in the absence of receptor and HVEM does not appear to rely on a pre-existing hairpin for binding to gD(3C-38C) mutants. However, HVEM function is affected by mutations that impair optimal hairpin formation. Furthermore, nectin-1 induces a new conformation of the N-terminus of gD. We conclude that the conformation of the N-terminus of gD is actively modified by the direct action of both receptors.
Collapse
Affiliation(s)
- Eric Lazear
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Galdiero S, Falanga A, Tarallo R, Russo L, Galdiero E, Cantisani M, Morelli G, Galdiero M. Peptide inhibitors against herpes simplex virus infections. J Pept Sci 2013; 19:148-58. [PMID: 23389903 DOI: 10.1002/psc.2489] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 01/07/2013] [Accepted: 01/08/2013] [Indexed: 11/07/2022]
Abstract
Herpes simplex virus (HSV) is a significant human pathogen causing mucocutaneous lesions primarily in the oral or genital mucosa. Although acyclovir (ACV) and related nucleoside analogs provide successful treatment, HSV remains highly prevalent worldwide and is a major cofactor for the spread of human immunodeficiency virus. Encephalitis, meningitis, and blinding keratitis are among the most severe diseases caused by HSV. ACV resistance poses an important problem for immunocompromised patients and highlights the need for new safe and effective agents; therefore, the development of novel strategies to eradicate HSV is a global public health priority. Despite the continued global epidemic of HSV and extensive research, there have been few major breakthroughs in the treatment or prevention of the virus since the introduction of ACV in the 1980s. A therapeutic strategy at the moment not fully addressed is the use of small peptide molecules. These can be either modeled on viral proteins or derived from antimicrobial peptides. Any peptide that interrupts protein-protein or viral protein-host cell membrane interactions is potentially a novel antiviral drug and may be a useful tool for elucidating the mechanisms of viral entry. This review summarizes current knowledge and strategies in the development of synthetic and natural peptides to inhibit HSV infectivity.
Collapse
Affiliation(s)
- Stefania Galdiero
- Department of Pharmacy, University of Naples Federico II, Via Mezzocannone 16, 80134, Napoli, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Baldwin J, Shukla D, Tiwari V. Members of 3-O-Sulfotransferases (3-OST) Family: A Valuable Tool from Zebrafish to Humans for Understanding Herpes Simplex Virus Entry. Open Virol J 2013; 7:5-11. [PMID: 23358893 PMCID: PMC3553493 DOI: 10.2174/1874357901307010005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 09/28/2012] [Accepted: 10/17/2012] [Indexed: 11/30/2022] Open
Abstract
The journey of many viruses to infect cells begins when the virus first binds to cell surface heparan sulfate (HS). The initial step of cell attachment or binding during herpes simplex virus type-1 (HSV-1) entry is mediated by envelope glycoprotein B (gB) and C (gC). The binding is followed by fusion between virus envelope and cell membrane during which HSV-1 glycoprotein D (gD) interacts with a modified form of HS know as 3-O-sulfated heparan sulfate (3-OS HS). The rare modification of 3-O-sulfation on HS chain is governed by enzymes known as 3-O-sulfotransferase (3-OST). Currently, there are seven isoforms of human 3-OSTs that have been identified, and with the exception of 3-OST-1, all other 3-OST isoforms allow HSV-1 entry and spread. Recently, the product of the zebrafish (ZF)-encoded 3-OST-3 was also recognized as a gD receptor, which mediates HSV-1 entry and cell-cell fusion similar to human 3-OST-3. Interestingly, the ZF system expresses multiple isoforms of 3-OST which could be very useful for studying the involvement of HS and 3-OS HS in virus tropism and virus-induced inflammation. In addition, therapeutic targeting of 3-OST generated HS is likely to bring about novel interventions against HSV-1. In this review we have taken a closer look at the potential of both human and ZF encoded 3-OSTs as valuable tools in HSV entry and inflammation studies.
Collapse
Affiliation(s)
- John Baldwin
- Department of Microbiology & Immunology, Midwestern University, Downers Grove, IL 60515, USA
| | | | | |
Collapse
|
20
|
Li P, Sheng J, Liu Y, Li J, Liu J, Wang F. Heparosan-derived heparan sulfate/heparin-like compounds: one kind of potential therapeutic agents. Med Res Rev 2012; 33:665-92. [PMID: 22495734 DOI: 10.1002/med.21263] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Heparan sulfate (HS) is a highly sulfated glycosaminoglycan and exists in all animal tissues. HS and heparin are very similar, except that heparin has higher level of sulfation and higher content of iduronic acid. Despite the fact that it is a century-old drug, heparin remains as a top choice for treating thrombotic disorders. Pharmaceutical heparin is derived from porcine intestine or bovine lung via a long supply chain. This supply chain is vulnerable to the contamination of animal pathogens. Therefore, new methods for manufacturing heparin or heparin-like substances devoid of animal tissues have been explored by many researchers, among which, modifications of heparosan, the capsular polysaccharide of Escherichia coli K5 strain, is one of the promising approaches. Heparosan has a structure similar to unmodified backbone of natural HS and heparin. It is feasible to obtain HS or heparin derivatives by modifying heparosan with chemical or enzymatic methods. These derivatives display different biological activities, such as anticoagulant, anti-inflammatory, anticancer, and antiviral activities. This review focuses on the recent studies of synthesis, activity, and structure-activity relationship of HS/heparin-like derivatives prepared from heparosan.
Collapse
Affiliation(s)
- Pingli Li
- Institute of Biochemical and Biotechnological Drug & National Glycoengineering Research Center, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | | | | | | | | | | |
Collapse
|
21
|
Zhang GR, Zhao H, Cao H, Geller AI. Overexpression of either lysine-specific demethylase-1 or CLOCK, but not Co-Rest, improves long-term expression from a modified neurofilament promoter, in a helper virus-free HSV-1 vector system. Brain Res 2012; 1436:157-67. [PMID: 22208646 PMCID: PMC3287058 DOI: 10.1016/j.brainres.2011.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 11/08/2011] [Accepted: 12/05/2011] [Indexed: 10/14/2022]
Abstract
Long-term expression from helper virus-free Herpes Simplex Virus (HSV-1) vectors is required for many specific neural gene therapies and studies on neuronal physiology. We previously developed a promoter that supports long-term, neuron-specific expression by fusing the chicken ß-globin insulator (INS), followed by an upstream enhancer from the rat tyrosine hydroxylase (TH) promoter, to a neurofilament heavy gene (NFH) promoter. Here, we examined the capability of specific transcription factors to further improve long-term expression from this promoter. Following a HSV-1 virus infection, the virus genome is localized to promyelocytic leukemia protein (PML) nuclear bodies (NB). At these sites, specific cellular transcription factors interact with HSV-1 encoded transcription factors, and together regulate HSV-1 gene expression. Importantly, lysine-specific demethylase-1 (LSD1), CLOCK, and Co-Rest each activate HSV-1 gene expression. However, gene expression from HSV-1 vectors differs in a number of important aspects from the virus, including no HSV-1 genes are expressed. Nonetheless, these observations raise the possibility that specific transcription factors may improve long-term expression from specific promoters in HSV-1 vectors. Here, we show that overexpression of either LSD1 or CLOCK improves long-term expression from the INS-TH-NFH promoter, but overexpression of Co-Rest supports levels of long-term expression similar to those supported by a control vector. Further, overexpression of LSD1 is compatible with neuron-specific expression. Thus, overexpressing specific transcription factors can improve long-term expression from specific cellular promoters in HSV-1 vectors, and the chromatin structure of the vector has an important role in enabling expression.
Collapse
Affiliation(s)
- Guo-rong Zhang
- Department of Neurology, West Roxbury VA Hospital/Harvard Medical School, W. Roxbury, MA 02132
| | - Hua Zhao
- Department of Neurology, West Roxbury VA Hospital/Harvard Medical School, W. Roxbury, MA 02132
| | - Haiyan Cao
- Department of Neurology, West Roxbury VA Hospital/Harvard Medical School, W. Roxbury, MA 02132
| | - Alfred I. Geller
- Department of Neurology, West Roxbury VA Hospital/Harvard Medical School, W. Roxbury, MA 02132
| |
Collapse
|
22
|
Baek H, Kim JH, Noh YT, Kwon H. The soluble amino-terminal region of HVEM mediates efficient herpes simplex virus type 1 infection of gD receptor-negative cells. Virol J 2012; 9:15. [PMID: 22239829 DOI: 10.1186/1743-422x-9-15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 01/13/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Previous studies from our own and other labs reported the surprising finding that the soluble V domain of the herpes simplex virus type 1 (HSV-1) entry receptor nectin-1 can both block HSV infection of receptor-bearing cells and mediate infection of receptor-deficient cells. Here we show that this property is not unique to nectin-1. We generated a pair of truncated, soluble forms of the other major HSV-1 entry receptor, herpes virus entry mediator (HVEM or HveA), and examined its effects on HSV-1 infection of receptor-deficient cells. RESULTS In cultures of CHO-K1 cells, sHveA102 comprising the two amino-terminal cysteine-rich pseudorepeats (CRPs) of HVEM enabled infection of greater than 80% of the cells at an MOI of 3, while sHveA162 comprising the complete ectodomain failed to mediate infection. Both sHveA102 and sHveA162 blocked infection of CHO-K1 cells stably expressing HVEM in a dose-dependent manner, indicating that both were capable of binding to viral gD. We found that sHveA102-mediated infection involves pH-independent endocytosis whereas HSV infection of HVEM-expressing CHO-K1 cells is known to be pH-dependent. CONCLUSIONS Our results suggest that the C-terminal portion of the soluble HVEM ectodomain inhibits gD activation and that this effect is neutralized in the full-length form of HVEM in normal infection.
Collapse
Affiliation(s)
- Hyunjung Baek
- Division of Radiation Oncology, Korea Institute of Radiological and Medical Sciences, 215-4, Gongneung-Dong, Nowon-Ku, Seoul 139-706, South Korea
| | | | | | | |
Collapse
|
23
|
Zhang N, Yan J, Lu G, Guo Z, Fan Z, Wang J, Shi Y, Qi J, Gao GF. Binding of herpes simplex virus glycoprotein D to nectin-1 exploits host cell adhesion. Nat Commun 2011; 2:577. [DOI: 10.1038/ncomms1571] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 10/26/2011] [Indexed: 12/16/2022] Open
|
24
|
Herpes simplex virus infects most cell types in vitro: clues to its success. Virol J 2011; 8:481. [PMID: 22029482 PMCID: PMC3223518 DOI: 10.1186/1743-422x-8-481] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 10/26/2011] [Indexed: 01/10/2023] Open
Abstract
Herpes simplex virus (HSV) type-1 and type-2 have evolved numerous strategies to infect a wide range of hosts and cell types. The result is a very successful prevalence of the virus in the human population infecting 40-80% of people worldwide. HSV entry into host cell is a multistep process that involves the interaction of the viral glycoproteins with various cell surface receptors. Based on the cell type, HSV enter into host cell using different modes of entry. The combination of various receptors and entry modes has resulted in a virus that is capable of infecting virtually all cell types. Identifying the common rate limiting steps of the infection may help the development of antiviral agents that are capable of preventing the virus entry into host cell. In this review we describe the major features of HSV entry that have contributed to the wide susceptibility of cells to HSV infection.
Collapse
|
25
|
Fusing structure and function: a structural view of the herpesvirus entry machinery. Nat Rev Microbiol 2011; 9:369-81. [PMID: 21478902 DOI: 10.1038/nrmicro2548] [Citation(s) in RCA: 331] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Herpesviruses are double-stranded DNA, enveloped viruses that infect host cells through fusion with either the host cell plasma membrane or endocytic vesicle membranes. Efficient infection of host cells by herpesviruses is remarkably more complex than infection by other viruses, as it requires the concerted effort of multiple glycoproteins and involves multiple host receptors. The structures of the major viral glycoproteins and a number of host receptors involved in the entry of the prototypical herpesviruses, the herpes simplex viruses (HSVs) and Epstein-Barr virus (EBV), are now known. These structural studies have accelerated our understanding of HSV and EBV binding and fusion by revealing the conformational changes that occur on virus-receptor binding, depicting potential sites of functional protein and lipid interactions, and identifying the probable viral fusogen.
Collapse
|
26
|
Nakano K, Kobayashi M, Nakamura KI, Nakanishi T, Asano R, Kumagai I, Tahara H, Kuwano M, Cohen JB, Glorioso JC. Mechanism of HSV infection through soluble adapter-mediated virus bridging to the EGF receptor. Virology 2011; 413:12-8. [PMID: 21382632 DOI: 10.1016/j.virol.2011.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 12/13/2010] [Accepted: 02/11/2011] [Indexed: 12/19/2022]
Abstract
Herpes simplex virus entry into cells requires the binding of envelope glycoprotein D (gD) to an entry receptor. Depending on the cell, entry occurs by different mechanisms, including fusion at the cell surface or endocytosis. Here we examined the entry mechanism through a non-HSV receptor mediated by a soluble bi-specific adapter protein composed of recognition elements for gD and the EGF receptor (EGFR). Virus entered into endosomes using either EGF or an EGFR-specific single chain antibody (scFv) for receptor recognition. Infection was less efficient with the EGF adapter which could be attributed to its weaker binding to a viral gD. Infection mediated by the scFv adapter was pH sensitive, indicating that gD-EGFR bridging alone was insufficient for capsid release from endosomes. We also show that the scFv adapter enhanced infection of EGFR-expressing tumor tissue in vivo. Our results indicate that adapters may retarget HSV infection without drastically changing the entry mechanism.
Collapse
Affiliation(s)
- Kenji Nakano
- Innovation Center for Medical Redox Navigation, Kyushu University, Fukuoka, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Enveloped viruses penetrate their cell targets following the merging of their membrane with that of the cell. This fusion process is catalyzed by one or several viral glycoproteins incorporated on the membrane of the virus. These envelope glycoproteins (EnvGP) evolved in order to combine two features. First, they acquired a domain to bind to a specific cellular protein, named "receptor." Second, they developed, with the help of cellular proteins, a function of finely controlled fusion to optimize the replication and preserve the integrity of the cell, specific to the genus of the virus. Following the activation of the EnvGP either by binding to their receptors and/or sometimes the acid pH of the endosomes, many changes of conformation permit ultimately the action of a specific hydrophobic domain, the fusion peptide, which destabilizes the cell membrane and leads to the opening of the lipidic membrane. The comprehension of these mechanisms is essential to develop medicines of the therapeutic class of entry inhibitor like enfuvirtide (Fuzeon) against human immunodeficiency virus (HIV). In this chapter, we will summarize the different envelope glycoprotein structures that viruses develop to achieve membrane fusion and the entry of the virus. We will describe the different entry pathways and cellular proteins that viruses have subverted to allow infection of the cell and the receptors that are used. Finally, we will illustrate more precisely the recent discoveries that have been made within the field of the entry process, with a focus on the use of pseudoparticles. These pseudoparticles are suitable for high-throughput screenings that help in the development of natural or artificial inhibitors as new therapeutics of the class of entry inhibitors.
Collapse
Affiliation(s)
- François-Loic Cosset
- Université de Lyon, UCB-Lyon1, IFR128, Lyon, France,INSERM, U758, Lyon, France,Ecole Normale Supérieure de Lyon, Lyon, France
| | - Dimitri Lavillette
- Université de Lyon, UCB-Lyon1, IFR128, Lyon, France,INSERM, U758, Lyon, France,Ecole Normale Supérieure de Lyon, Lyon, France
| |
Collapse
|
28
|
Baek H, Uchida H, Jun K, Kim JH, Kuroki M, Cohen JB, Glorioso JC, Kwon H. Bispecific adapter-mediated retargeting of a receptor-restricted HSV-1 vector to CEA-bearing tumor cells. Mol Ther 2010; 19:507-14. [PMID: 20924362 DOI: 10.1038/mt.2010.207] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The safety and efficacy of viral therapies for solid tumors can be enhanced by redirecting the virus infection to tumor-specific cell-surface markers. Successful retargeting of herpes simplex virus type 1 (HSV-1) has been achieved using vectors that carry a modified envelope glycoprotein D (gD) engineered to interact directly with novel receptors. In addition, soluble bridging molecules (adapters) have been used to link gD indirectly to cell-specific receptors. Here, we describe the development of an adapter connecting gD to the common tumor antigen carcinoembryonic antigen (CEA). The adapter consisted of a CEA-specific single-chain antibody fused to the gD-binding region of the gD receptor, herpes virus entry mediator (HVEM). We used this adapter in combination with a vector that is detargeted for recognition of the widely expressed gD receptor nectin-1, but retains an intact binding region for the less common HVEM. We show that the adapter enabled infection of HSV-resistant Chinese hamster ovary (CHO) cells expressing ectopic CEA and nectin-1/CEA-bearing human gastric carcinoma cells that are resistant to the vector alone. We observed cell-to-cell spread following adapter-mediated infection in vitro and reduced tumor growth in vivo, indicating that this method of vector retargeting may provide a novel strategy for tumor-specific delivery of tumoricidal HSV.
Collapse
Affiliation(s)
- Hyunjung Baek
- Division of Radiation Oncology, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
29
|
A double mutation in glycoprotein gB compensates for ineffective gD-dependent initiation of herpes simplex virus type 1 infection. J Virol 2010; 84:12200-9. [PMID: 20861246 DOI: 10.1128/jvi.01633-10] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Herpes simplex virus (HSV) entry into cells is triggered by the binding of envelope glycoprotein D (gD) to a specific receptor, such as nectin-1 or herpesvirus entry mediator (HVEM), resulting in activation of the fusion effectors gB and gH and virus penetration. Here we report the identification of a hyperactive gB allele, D285N/A549T, selected by repeat passage of a gD mutant virus defective for nectin-1 binding through cells that express a gD-binding-impaired mutant nectin-1. The gB allele in a wild-type virus background enabled the use of other nectins as virus entry receptors. In addition, combination of the mutant allele with an epidermal growth factor receptor (EGFR)-retargeted gD gene yielded dramatically increased EGFR-specific virus entry compared to retargeted virus carrying wild-type gB. Entry of the gB mutant virus into nectin-1-bearing cells was markedly accelerated compared to that of wild-type virus, suggesting that the gB mutations affect a rate-limiting step in entry. Our observations indicate that ineffective gD activation can be complemented by hypersensitization of a downstream component of the entry cascade to gD signaling.
Collapse
|
30
|
Li Q, Ali MA, Wang K, Sayre D, Hamel FG, Fischer ER, Bennett RG, Cohen JI. Insulin degrading enzyme induces a conformational change in varicella-zoster virus gE, and enhances virus infectivity and stability. PLoS One 2010; 5:e11327. [PMID: 20593027 PMCID: PMC2892511 DOI: 10.1371/journal.pone.0011327] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 04/25/2010] [Indexed: 11/19/2022] Open
Abstract
Varicella-zoster virus (VZV) glycoprotein E (gE) is essential for virus infectivity and binds to a cellular receptor, insulin-degrading enzyme (IDE), through its unique amino terminal extracellular domain. Previous work has shown IDE plays an important role in VZV infection and virus cell-to-cell spread, which is the sole route for VZV spread in vitro. Here we report that a recombinant soluble IDE (rIDE) enhances VZV infectivity at an early step of infection associated with an increase in virus internalization, and increases cell-to-cell spread. VZV mutants lacking the IDE binding domain of gE were impaired for syncytia formation and membrane fusion. Pre-treatment of cell-free VZV with rIDE markedly enhanced the stability of the virus over a range of conditions. rIDE interacted with gE to elicit a conformational change in gE and rendered it more susceptible to proteolysis. Co-incubation of rIDE with gE modified the size of gE. We propose that the conformational change in gE elicited by IDE enhances infectivity and stability of the virus and leads to increased fusogenicity during VZV infection. The ability of rIDE to enhance infectivity of cell-free VZV over a wide range of incubation times and temperatures suggests that rIDE may be useful for increasing the stability of varicella or zoster vaccines.
Collapse
Affiliation(s)
- Qingxue Li
- Laboratory of Clinical Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mir A. Ali
- Laboratory of Clinical Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kening Wang
- Laboratory of Clinical Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Dean Sayre
- Laboratory of Clinical Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Frederick G. Hamel
- Research Service, Omaha VA Medical Center and the Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Elizabeth R. Fischer
- Research Technology Branch, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, Montana, United States of America
| | - Robert G. Bennett
- Research Service, Omaha VA Medical Center and the Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Jeffrey I. Cohen
- Laboratory of Clinical Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
31
|
Vanover J, Kintner J, Whittimore J, Schoborg RV. Interaction of herpes simplex virus type 2 (HSV-2) glycoprotein D with the host cell surface is sufficient to induce Chlamydia trachomatis persistence. MICROBIOLOGY-SGM 2010; 156:1294-1302. [PMID: 20110302 DOI: 10.1099/mic.0.036566-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
When presented with certain unfavourable environmental conditions, Chlamydia trachomatis reticulate bodies (RBs) enter into a viable, yet non-cultivable state called persistence. Previously, we established an in vitro C. trachomatis and herpes simplex virus type 2 (HSV-2) co-infection model. These data indicate that (i) viral co-infection stimulates chlamydial persistence, (ii) productive HSV replication is not required for persistence induction, and (iii) HSV-induced persistence is not mediated by any currently characterized anti-chlamydial pathway or persistence inducer. In this study we demonstrated that chlamydial infectivity, though initially suppressed, recovered within 44 h of co-infection with UV-inactivated HSV-2, demonstrating that HSV-induced persistence is reversible. Co-incubation of chemically fixed, HSV-2-infected inducer cells with viable, C. trachomatis-infected responder cells both suppressed production of infectious chlamydial progeny and stimulated formation of swollen, aberrantly shaped RBs. In addition, pre-incubation of viral particles with viral glycoprotein D (gD)-specific neutralizing antibody prevented co-infection-induced persistence. Finally, exposure of C. trachomatis-infected cells to a soluble, recombinant HSV-2 gD : Fc fusion protein decreased production of infectious EBs to a degree similar to that observed in co-infected cultures. Thus, we conclude that interaction of HSV gD with the host cell surface is sufficient to trigger a novel host anti-chlamydial response that restricts chlamydial development.
Collapse
Affiliation(s)
- J Vanover
- Department of Microbiology, East Tennessee State University, James H. Quillen College of Medicine, Johnson City, TN 37614, USA
| | - J Kintner
- Department of Microbiology, East Tennessee State University, James H. Quillen College of Medicine, Johnson City, TN 37614, USA
| | - J Whittimore
- Department of Microbiology, East Tennessee State University, James H. Quillen College of Medicine, Johnson City, TN 37614, USA
| | - R V Schoborg
- Department of Microbiology, East Tennessee State University, James H. Quillen College of Medicine, Johnson City, TN 37614, USA
| |
Collapse
|
32
|
Chiu YG, Bowers WJ, Lim ST, Ryan DA, Federoff HJ. Effects of herpes simplex virus amplicon transduction on murine dendritic cells. Hum Gene Ther 2010; 20:442-52. [PMID: 19199821 DOI: 10.1089/hum.2008.160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The herpes simplex virus (HSV)-based amplicon is a versatile vaccine platform that has been preclinically vetted as a gene-based immunotherapeutic for cancer, HIV, and neurodegenerative disorders. Although it is well known that injection of dendritic cells (DCs) transduced ex vivo with helper virus-free HSV amplicon vectors expressing disease-relevant antigens induces antigen-specific immune responses, the cellular receptor(s) by which the amplicon virion gains entry into DCs, as well as the effects that viral vector transduction impinges on the physiological status of these cells, is less understood. Herein, we examine the effects of amplicon transduction on mouse bone marrow-derived DCs. We demonstrate that HSV-1 cellular receptors HveC and HveA are expressed on the cell surface of murine DCs, and that HSV amplicons transduce DCs at high efficiency (>90%) with minimal effects on cell viability. Transduction of dendritic cells with amplicons induces a transient DC maturation phenotype as represented by self-limited upregulation of MHCII and CD11c markers. Mature DCs are less sensitive to HSV amplicon transduction than immature DCs regarding DC-related surface marker maintenance. From this and our previous work, we conclude that HSV amplicons transduce DCs efficiently, but impart differential and transient physiological effects on mature and immature DC pools, which will facilitate fine-tuning of this vaccination platform and further exploit its potential in immunotherapy.
Collapse
Affiliation(s)
- Yahui Grace Chiu
- Division of Allergy, Immunology, and Rheumatology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | | | | | |
Collapse
|
33
|
Dermody TS, Kirchner E, Guglielmi KM, Stehle T. Immunoglobulin superfamily virus receptors and the evolution of adaptive immunity. PLoS Pathog 2009; 5:e1000481. [PMID: 19956667 PMCID: PMC2777377 DOI: 10.1371/journal.ppat.1000481] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Terence S. Dermody
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- * E-mail: (TSD); (TS)
| | - Eva Kirchner
- Interfaculty Institute for Biochemistry, University of Tuebingen, Tuebingen, Germany
| | - Kristen M. Guglielmi
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Thilo Stehle
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Interfaculty Institute for Biochemistry, University of Tuebingen, Tuebingen, Germany
- * E-mail: (TSD); (TS)
| |
Collapse
|
34
|
Patel AR, Romanelli P, Roberts B, Kirsner RS. Herpes simplex virus: a histopathologic study of the depth of herpetic wounds. Int J Dermatol 2009; 48:36-40. [PMID: 19126048 DOI: 10.1111/j.1365-4632.2009.03788.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Herpes is a prevalent, infectious disease that can occur anywhere on the body; it is found primarily on the face and genitalia. Herpes simplex virus type 1 (HSV-1) and herpes simplex virus type 2 (HSV-2) are the DNA viruses that cause human herpes. Clinically, HSV-1 and HSV-2 infections produce lesions generally located on the mucocutaneous junctions of the face and genitalia. At times, vesicular lesions may ulcerate, leaving recalcitrant wounds that are challenging to treat. Until now, the basis of treatment has been related to the eradication of the viral infection. Little attention has focused on the consequence of the viral infection and the resulting wounds, specifically whether this represents an epidermal or dermal injury. METHODS Using 10 herpetic lesions from different individuals, we studied the depth of the injury via routine hematoxylin and eosin stains, as well as periodic acid-Schiff (PAS) and type IV collagen stains, which demonstrate the presence of the basement membrane. RESULTS In all cases, we found an inflammatory infiltrate in the dermis and selective disruption of the basement membrane. CONCLUSION This suggests that herpetic lesions involve the dermis and are best classified as partial-thickness wounds.
Collapse
Affiliation(s)
- Asha R Patel
- Department of Dermatology and Cutaneous Surgery, University of Miami Leonard M. Miller School of Medicine, Miami, Florida 33101, USA
| | | | | | | |
Collapse
|
35
|
Abstract
Herpes simplex virus type-1 (HSV-1) is one of many pathogens that use the cell surface glycosaminoglycan heparan sulfate as a receptor. Heparan sulfate is highly expressed on the surface and extracellular matrix of virtually all cell types making it an ideal receptor. Heparan sulfate interacts with HSV-1 envelope glycoproteins gB and gC during the initial attachment step during HSV-1 entry. In addition, a modified form of heparan sulfate, known as 3-O-sulfated heparan sulfate, interacts with HSV-1 gD to induce fusion between the viral envelope and host cell membrane. The 3-O-sulfation of heparan sulfate is a rare modification which occurs during the biosynthesis of heparan sulfate that is carried out by a family of enzymes known as 3-O-sulfotransferases. Due to its involvement in multiple steps of the infection process, heparan sulfate has been a prime target for the development of agents to inhibit HSV entry. Understanding how heparan sulfate functions during HSV-1 infection may not only be critical for inhibiting infection by this virus, but it may also be crucial in the fight against many other pathogens as well.
Collapse
Affiliation(s)
- Christopher D O'Donnell
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | |
Collapse
|
36
|
Engineered disulfide bonds in herpes simplex virus type 1 gD separate receptor binding from fusion initiation and viral entry. J Virol 2007; 82:700-9. [PMID: 18032483 DOI: 10.1128/jvi.02192-07] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glycoprotein D (gD) is the receptor binding protein of herpes simplex virus (HSV) and binds to at least two distinct protein receptors, herpesvirus entry mediator (HVEM) and nectin-1. While both receptor binding regions are found within the first 234 amino acids, a crystal structure shows that the C terminus of the gD ectodomain normally occludes the receptor binding sites. Receptor binding must therefore displace the C terminus, and this conformational change is postulated to be required for inducing fusion via gB and gH/gL. When cysteine residues are introduced at positions 37 and 302 of gD, a disulfide bond is formed that stabilizes the C terminus and prevents binding to either receptor. We speculated that if disulfide bonds were engineered further upstream, receptor binding might be separated from the induction of fusion. To test this, we made five additional double cysteine mutants, each potentially introducing a disulfide bond between the ectodomain C terminus and the core of the gD ectodomain. The two mutants predicted to impose the greatest constraint were unable to bind receptors or mediate cell-cell fusion. However, the three mutants with the most flexible C terminus bound well to both HVEM and nectin-1. Two of these mutants were impaired in cell-cell fusion and null-virus complementation. Importantly, a third mutant in this group was nonfunctional in both assays. This mutant clearly separates the role of gD in triggering fusion from its role in receptor binding. Based upon the properties of the panel of mutants we conclude that fusion requires greater flexibility of the gD ectodomain C terminus than does receptor binding.
Collapse
|
37
|
Tiwari V, O'Donnell C, Copeland RJ, Scarlett T, Liu J, Shukla D. Soluble 3-O-sulfated heparan sulfate can trigger herpes simplex virus type 1 entry into resistant Chinese hamster ovary (CHO-K1) cells. J Gen Virol 2007; 88:1075-1079. [PMID: 17374750 DOI: 10.1099/vir.0.82476-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) interaction with glycoprotein D (gD) receptors facilitates virus entry into cells. Chinese hamster ovary (CHO-K1) cells lacking cellular receptors allow virus to attach, but not to enter, implying a role for receptors during the post-attachment (entry) phase of HSV-1 infection. Here, it is shown that the presence of soluble heparan sulfate (HS) modified by 3-O-sulfotransferase-3 (3-OST-3), but not by 3-OST-1, triggered HSV-1 entry into resistant CHO-K1 cells. It was further demonstrated that a CHO-K1 mutant deficient in glycosaminoglycan synthesis became susceptible to entry when spinoculated in the presence of 3-OST-3-modified soluble HS, indicating that the role of the gD receptor is to trigger entry rather than cell attachment. In separate experiments, 3-OST-3-modified soluble HS also triggered fusion of HSV-1 glycoprotein-expressing cells with CHO-K1 cells. Taken together, these results show that association of gD with cell surface-bound receptor is not essential for HSV-1 entry and spread.
Collapse
Affiliation(s)
- Vaibhav Tiwari
- Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Christopher O'Donnell
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ronald J Copeland
- Division of Medicinal Chemistry and Natural Products, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Tanya Scarlett
- Division of Medicinal Chemistry and Natural Products, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jian Liu
- Division of Medicinal Chemistry and Natural Products, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Deepak Shukla
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
38
|
Campadelli-Fiume G, Amasio M, Avitabile E, Cerretani A, Forghieri C, Gianni T, Menotti L. The multipartite system that mediates entry of herpes simplex virus into the cell. Rev Med Virol 2007; 17:313-26. [PMID: 17573668 DOI: 10.1002/rmv.546] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The multipartite entry-fusion system of herpes simplex virus is made of a quartet of glycoproteins-gD, gB, gH.gL-and three alternative gD receptors, herpesvirus entry mediator (HVEM), nectin1 and modified sites on heparan sulphate. This multipartite system recapitulates the basic steps of virus-cell fusion, i.e. receptor recognition, triggering of fusion and fusion execution. Specifically, in addition to serving as the receptor-binding glycoprotein, gD triggers fusion through a specialised domain, named pro-fusion domain (PFD), located C-terminally in the ectodomain. In the unliganded gD the C-terminal region folds around the N-terminal region, such that gD adopts a closed autoinhibited conformation. In HVEM- and nectin1-bound gD the C-terminal region is displaced (opened conformation). gD is the tool for modification of HSV tropism, through insertion of ligands to heterologous tumour-specific receptors. It is discussed whether gD responds to the interaction with the natural and the heterologous receptors by adopting similar conformations, and whether the closed-to-open switch in conformation is a generalised mechanism of activation. A peculiar recombinant highlighted that the central Ig-folded core of gD may not encode executable functions for entry and that the 219-314 aa segment may be sufficient to trigger fusion. With respect to fusion execution, gB appears to be a prospective fusogen based on its coiled-coil trimeric structure, similar to that of another fusion glycoprotein. On the other hand, gH exhibits molecular elements typical of class 1 fusion glycoproteins, in particular heptad repeats and strong tendency to interact with lipids. Whether fusion execution is carried out by gB or gH.gL, or both glycoproteins in complex or sequentially remains to be determined.
Collapse
Affiliation(s)
- Gabriella Campadelli-Fiume
- Department of Experimental Pathology, Section on Microbiology and Virology, Alma Mater Studiorum, University of Bologna, Bologna, Italy.
| | | | | | | | | | | | | |
Collapse
|
39
|
Nectin-2-mediated entry of a syncytial strain of herpes simplex virus via pH-independent fusion with the plasma membrane of Chinese hamster ovary cells. Virol J 2006; 3:105. [PMID: 17192179 PMCID: PMC1779275 DOI: 10.1186/1743-422x-3-105] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Accepted: 12/27/2006] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Herpes simplex virus (HSV) can utilize multiple pathways to enter host cells. The factors that determine which route is taken are not clear. Chinese hamster ovary (CHO) cells that express glycoprotein D (gD)-binding receptors are model cells that support a pH-dependent, endocytic entry pathway for all HSV strains tested to date. Fusion-from-without (FFWO) is the induction of target cell fusion by addition of intact virions to cell monolayers in the absence of viral protein expression. The receptor requirements for HSV-induced FFWO are not known. We used the syncytial HSV-1 strain ANG path as a tool to evaluate the complex interplay between receptor usage, membrane fusion, and selection of entry pathway. RESULTS Inhibitors of endocytosis and endosome acidification blocked ANG path entry into CHO cells expressing nectin-1 receptors, but not CHO-nectin-2 cells. Thus, under these conditions, nectin-2 mediates pH-independent entry at the plasma membrane. In addition, CHO-nectin-2 cells supported pH-dependent, endocytic entry of different strains of HSV-1, including rid1 and HFEM. The kinetics of ANG path entry was rapid (t1/2 of 5-10 min) regardless of entry route. However, HSV-1 ANG path entry by fusion with the CHO-nectin-2 cell plasma membrane was more efficient and resulted in larger syncytia. ANG path virions added to the surface of CHO-nectin-2 cells, but not receptor-negative CHO cells or CHO-nectin-1 cells, induced rapid FFWO. CONCLUSION HSV-1 ANG path can enter CHO cells by either endocytic or non-endocytic pathways depending on whether nectin-1 or nectin-2 is present. In addition to these cellular receptors, one or more viral determinants is important for the selection of entry pathway. HSV-induced FFWO depends on the presence of an appropriate gD-receptor in the target membrane. Nectin-1 and nectin-2 target ANG path to divergent cellular pathways, and these receptors may have different roles in triggering viral membrane fusion.
Collapse
|
40
|
Abstract
This review analyses recent structural results that provide clues about a possible molecular mechanism for the transmission of a fusogenic signal among the envelope glycoproteins of the herpes simplex virus on receptor binding by glycoprotein gD. This signal triggers the membrane-fusion machinery of the virus--contained in glycoproteins gB, gH and gL--to induce the merging of viral and cellular membranes, and to allow virus entry into target cells. This activating process parallels that of gamma-retroviruses, in which receptor binding by the amino-terminal domain of the envelope protein activates the fusogenic potential of the virion in a similar way, despite the different organization of the envelope complexes of these two types of viruses. Therefore, the new structural results on the interaction of gD with its receptors might also provide insights into the mechanism of fusogenic signal transmission in gamma-retroviruses. Furthermore, the fusion activation parallels with retroviruses, together with the recently reported structural homology of gB with the rhabdovirus envelope glycoprotein indicate that the complex entry apparatus of herpesviruses appears to be functionally related to that of simpler enveloped viruses.
Collapse
Affiliation(s)
- Félix A Rey
- Unité de Virologie Structurale and Centre National de la Recherche Scientifique, Institut Pasteur, 25 Rue du Dr Roux, 75015 Paris, France.
| |
Collapse
|
41
|
Tsvitov M, Frampton AR, Shah WA, Wendell SK, Ozuer A, Kapacee Z, Goins WF, Cohen JB, Glorioso JC. Characterization of soluble glycoprotein D-mediated herpes simplex virus type 1 infection. Virology 2006; 360:477-91. [PMID: 17157347 PMCID: PMC1920560 DOI: 10.1016/j.virol.2006.10.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 07/07/2006] [Accepted: 10/16/2006] [Indexed: 11/21/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) entry into permissive cells involves attachment to cell-surface glycosaminoglycans (GAGs) and fusion of the virus envelope with the cell membrane triggered by the binding of glycoprotein D (gD) to cognate receptors. In this study, we characterized the observation that soluble forms of the gD ectodomain (sgD) can mediate entry of gD-deficient HSV-1. We examined the efficiency and receptor specificity of this activity and used sequential incubation protocols to determine the order and stability of the initial interactions required for entry. Surprisingly, virus binding to GAGs did not increase the efficiency of sgD-mediated entry and gD-deficient virus was capable of attaching to GAG-deficient cells in the absence of sgD. These observations suggested a novel binding interaction that may play a role in normal HSV infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Joseph C. Glorioso
- *To whom correspondence should be addressed: Joseph C. Glorioso, Professor and Chairman, Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, E1246 Biomedical Science Tower, Pittsburgh, PA 15261, Phone: (412) 648-8105; Fax: (412) 624-8997, E-mail address:
| |
Collapse
|
42
|
Li Q, Ali MA, Cohen JI. Insulin degrading enzyme is a cellular receptor mediating varicella-zoster virus infection and cell-to-cell spread. Cell 2006; 127:305-16. [PMID: 17055432 PMCID: PMC7125743 DOI: 10.1016/j.cell.2006.08.046] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Revised: 05/25/2006] [Accepted: 08/07/2006] [Indexed: 11/29/2022]
Abstract
Varicella-zoster virus (VZV) causes chickenpox and shingles. While varicella is likely spread as cell-free virus to susceptible hosts, the virus is transmitted by cell-to-cell spread in the body and in vitro. Since VZV glycoprotein E (gE) is essential for virus infection, we postulated that gE binds to a cellular receptor. We found that insulin-degrading enzyme (IDE) interacts with gE through its extracellular domain. Downregulation of IDE by siRNA, or blocking of IDE with antibody, with soluble IDE protein extracted from liver, or with bacitracin inhibited VZV infection. Cell-to-cell spread of virus was also impaired by blocking IDE. Transfection of cell lines impaired for VZV infection with a plasmid expressing human IDE resulted in increased entry and enhanced infection with cell-free and cell-associated virus. These studies indicate that IDE is a cellular receptor for both cell-free and cell-associated VZV.
Collapse
Affiliation(s)
- Qingxue Li
- Medical Virology Section, Laboratory of Clinical Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892 USA
| | - Mir A. Ali
- Medical Virology Section, Laboratory of Clinical Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892 USA
| | - Jeffrey I. Cohen
- Medical Virology Section, Laboratory of Clinical Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892 USA
- Corresponding author
| |
Collapse
|
43
|
Whitbeck JC, Zuo Y, Milne RSB, Cohen GH, Eisenberg RJ. Stable association of herpes simplex virus with target membranes is triggered by low pH in the presence of the gD receptor, HVEM. J Virol 2006; 80:3773-80. [PMID: 16571794 PMCID: PMC1440471 DOI: 10.1128/jvi.80.8.3773-3780.2006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Using a liposome-binding assay, we investigated the requirements for activation of herpes simplex virus (HSV) into a state capable of membrane interaction. Virions were mixed with liposomes along with the ectodomain of one of three gD receptors (HVEMt, nectin-1t, or nectin-2t) and incubated under different pH and temperature conditions. Virions failed to associate with liposomes in the presence of nectin-1 or nectin-2 at any temperature or pH tested. In contrast, HVEMt triggered association of HSV with liposomes at pH 5.3 or 5.0 when incubated at 37 degrees C, suggesting that HVEM binding and mildly acidic pH at a physiological temperature provide coactivation signals, allowing virus association with membranes. Virions incubated with HVEMt at 37 degrees C without liposomes rapidly lost infectivity upon exposure to pH 5.0, suggesting that these conditions lead to irreversible virus inactivation in the absence of target membranes. Consistent with the idea that soluble receptor molecules provide a trigger for HSV entry, HVEMt promoted virus entry into receptor-deficient CHO K1 cells. However, in B78H1 cells, HVEMt promoted virus entry with markedly lower efficiency. Interestingly, HSV entry into receptor-bearing CHO K1 cells has been shown to proceed via a pH-dependent manner, whereas HSV entry into receptor-bearing B78H1 cells is pH independent. Based on these observations, we propose that the changes triggered by HVEM and mildly acidic pH that allow liposome association are similar or identical to changes that occur during pH-dependent HSV entry.
Collapse
Affiliation(s)
- J Charles Whitbeck
- School of Dental Medicine, University of Pennsylvania, 4010 Locust Street, Levy Building, Room 212, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | |
Collapse
|