1
|
Struzik J, Szulc-Dąbrowska L. NF-κB as an Important Factor in Optimizing Poxvirus-Based Vaccines against Viral Infections. Pathogens 2020; 9:pathogens9121001. [PMID: 33260450 PMCID: PMC7760304 DOI: 10.3390/pathogens9121001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 11/16/2022] Open
Abstract
Poxviruses are large dsDNA viruses that are regarded as good candidates for vaccine vectors. Because the members of the Poxviridae family encode numerous immunomodulatory proteins in their genomes, it is necessary to carry out certain modifications in poxviral candidates for vaccine vectors to improve the vaccine. Currently, several poxvirus-based vaccines targeted at viral infections are under development. One of the important aspects of the influence of poxviruses on the immune system is that they encode a large array of inhibitors of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), which is the key element of both innate and adaptive immunity. Importantly, the NF-κB transcription factor induces the mechanisms associated with adaptive immunological memory involving the activation of effector and memory T cells upon vaccination. Since poxviruses encode various NF-κB inhibitor proteins, before the use of poxviral vaccine vectors, modifications that influence NF-κB activation and consequently affect the immunogenicity of the vaccine should be carried out. This review focuses on NF-κB as an essential factor in the optimization of poxviral vaccines against viral infections.
Collapse
|
2
|
Sui Y, Berzofsky JA. Myeloid Cell-Mediated Trained Innate Immunity in Mucosal AIDS Vaccine Development. Front Immunol 2020; 11:315. [PMID: 32184782 PMCID: PMC7058986 DOI: 10.3389/fimmu.2020.00315] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/07/2020] [Indexed: 12/12/2022] Open
Abstract
Trained innate immunity has recently emerged as a novel concept of innate immune cells, such as myeloid cells, exhibiting immune memory, and nonspecific heterologous immunity to protect against infections. The memory and specificity are mediated by epigenetic, metabolic, and functional reprogramming of the myeloid cells and myeloid progenitors (and/or NK cells) in the bone marrow and peripheral tissues such as gut and lung mucosa. A variety of agents, such as BCG, viruses, and their components, as well as TLR agonists, and cytokines have been shown to be involved in the induction of trained immunity. Since these agents have been widely used in AIDS vaccine development as antigen delivery vectors or adjuvants, myeloid cell mediated trained immunity might also play an important role in protecting against mucosal AIDS virus transmission or in control of virus replication in the major gut mucosal reservoir. Here we review the trained innate immunity induced by these vectors/adjuvants that have been used in AIDS vaccine studies and discuss their role in mucosal vaccine efficacy and possible utilization in AIDS vaccine development. Delineating the protective effect of the trained innate immunity mediated by myeloid cells will guide the design of novel AIDS vaccines.
Collapse
Affiliation(s)
- Yongjun Sui
- Vaccine Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Jay A Berzofsky
- Vaccine Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
3
|
Yang R, Wang L, Sheng J, Huang Q, Pan D, Xu Y, Yan J, Wang X, Dong Z, Yang M. Combinatory effects of vaccinia virus VG9 and the STAT3 inhibitor Stattic on cancer therapy. Arch Virol 2019; 164:1805-1814. [PMID: 31087190 DOI: 10.1007/s00705-019-04257-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 03/22/2019] [Indexed: 01/08/2023]
Abstract
The recombinant vaccinia virus VG9 and the STAT3 inhibitor Stattic were combined to kill cancer cells via both oncolytic activity and inhibition of STAT3 phosphorylation in cells. The combinatory anti-tumour activity of these compounds was superior to the activity of VG9 or Stattic alone in vivo. The inhibition of tumour growth occurred via increased apoptosis and autophagy pathways. Furthermore, the combinatory anti-tumour activity was more efficient than that of VG9 or Stattic alone on xenografts, especially in nude mice.
Collapse
Affiliation(s)
- Runlin Yang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, No. 20, Qianrong Road, Wuxi, 214063, China.
| | - Lizhen Wang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, No. 20, Qianrong Road, Wuxi, 214063, China
| | - Jie Sheng
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Qianhuan Huang
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Donghui Pan
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, No. 20, Qianrong Road, Wuxi, 214063, China
| | - Yuping Xu
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, No. 20, Qianrong Road, Wuxi, 214063, China
| | - Junjie Yan
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, No. 20, Qianrong Road, Wuxi, 214063, China
| | - Xinyu Wang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, No. 20, Qianrong Road, Wuxi, 214063, China
| | - Ziyue Dong
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, No. 20, Qianrong Road, Wuxi, 214063, China
| | - Min Yang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, No. 20, Qianrong Road, Wuxi, 214063, China. .,The First School of Clinical Medicine, Nanjing Medical University, Nanjing, 210029, China. .,School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, 450000, China.
| |
Collapse
|
4
|
Wong PS, Sutejo R, Chen H, Ng SH, Sugrue RJ, Tan BH. A System Based-Approach to Examine Cytokine Response in Poxvirus-Infected Macrophages. Viruses 2018; 10:v10120692. [PMID: 30563103 PMCID: PMC6316232 DOI: 10.3390/v10120692] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/29/2018] [Accepted: 11/30/2018] [Indexed: 02/07/2023] Open
Abstract
The poxviruses are large, linear, double-stranded DNA viruses about 130 to 230 kbp, that have an animal origin and evolved to infect a wide host range. Variola virus (VARV), the causative agent of smallpox, is a poxvirus that infects only humans, but other poxviruses such as monkey poxvirus and cowpox virus (CPXV) have crossed over from animals to infect humans. Therefore understanding the biology of poxviruses can devise antiviral strategies to prevent these human infections. In this study we used a system-based approach to examine the host responses to three orthopoxviruses, CPXV, vaccinia virus (VACV), and ectromelia virus (ECTV) in the murine macrophage RAW 264.7 cell line. Overall, we observed a significant down-regulation of gene expressions for pro-inflammatory cytokines, chemokines, and related receptors. There were also common and virus-specific changes in the immune-regulated gene expressions for each poxvirus-infected RAW cells. Collectively our results showed that the murine macrophage RAW 264.7 cell line is a suitable cell-based model system to study poxvirus host response.
Collapse
Affiliation(s)
- Pui-San Wong
- Defence Medical and Environmental Research Institute, DSO National Labs, Singapore 117510, Singapore.
| | - Richard Sutejo
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
| | - Hui Chen
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
| | - Sock-Hoon Ng
- Defence Medical and Environmental Research Institute, DSO National Labs, Singapore 117510, Singapore.
| | - Richard J Sugrue
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
| | - Boon-Huan Tan
- Defence Medical and Environmental Research Institute, DSO National Labs, Singapore 117510, Singapore.
- Infection and Immunity, LKC School of Medicine, Nanyang Technological University, Singapore 308232, Singapore.
| |
Collapse
|
5
|
Fernández-Escobar M, Baldanta S, Reyburn H, Guerra S. Use of functional genomics to understand replication deficient poxvirus-host interactions. Virus Res 2016; 216:1-15. [PMID: 26519757 DOI: 10.1016/j.virusres.2015.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/06/2015] [Accepted: 10/07/2015] [Indexed: 10/22/2022]
Abstract
High-throughput genomics technologies are currently being used to study a wide variety of viral infections, providing insight into which cellular genes and pathways are regulated after infection, and how these changes are related, or not, to efficient elimination of the pathogen. This article will focus on how gene expression studies of infections with non-replicative poxviruses currently used as vaccine vectors provide a global perspective of the molecular events associated with the viral infection in human cells. These high-throughput genomics approaches have the potential to lead to the identification of specific new properties of the viral vector or novel cellular targets that may aid in the development of more effective pox-derived vaccines and antivirals.
Collapse
Affiliation(s)
- Mercedes Fernández-Escobar
- Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma, E-28029 Madrid, Spain
| | - Sara Baldanta
- Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma, E-28029 Madrid, Spain
| | - Hugh Reyburn
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universidad Autónoma, E-28049 Madrid, Spain
| | - Susana Guerra
- Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma, E-28029 Madrid, Spain.
| |
Collapse
|
6
|
Suppression of NYVAC Infection in HeLa Cells Requires RNase L but Is Independent of Protein Kinase R Activity. J Virol 2015; 90:2135-41. [PMID: 26656695 DOI: 10.1128/jvi.02576-15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 11/25/2015] [Indexed: 12/20/2022] Open
Abstract
Protein kinase R (PKR) and RNase L are host cell components that function to contain viral spread after infections. In this study, we analyzed the role of both proteins in the abortive infection of human HeLa cells with the poxvirus strain NYVAC, for which an inhibition of viral A27L and B5R gene expression is described. Specifically, the translation of these viral genes is independent of PKR activation, but their expression is dependent on the RNase L activity.
Collapse
|
7
|
Offerman K, Deffur A, Carulei O, Wilkinson R, Douglass N, Williamson AL. Six host-range restricted poxviruses from three genera induce distinct gene expression profiles in an in vivo mouse model. BMC Genomics 2015; 16:510. [PMID: 26153454 PMCID: PMC4495948 DOI: 10.1186/s12864-015-1659-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 05/28/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Host-range restricted poxviruses make promising vaccine vectors due to their safety profile and immunogenicity. An understanding of the host innate immune responses produced by different poxvirus vectors would aid in the assessment, selection and rational design of improved vaccines for human and veterinary applications. Novel avipoxviruses are being assessed to determine if they are different from other poxvirus vectors. Analysis of the transcriptome induced in a mouse model would aid in determining if there were significant differences between different poxvirus vectors which may reflect different adjuvant potential as well as establish if they should be further evaluated as vaccine vectors. RESULTS We compared host transcript abundance in the spleens of BALB/c mice twenty four hours after intravenous infection (10(5) pfu/mouse) with six host-restricted poxvirus species from three genera, namely Lumpy Skin Disease virus (LSDV), Canarypox virus (CNPV), Fowlpox virus (FWPV), modified vaccinia Ankara (MVA) and two novel South African avipoxviruses, Feral Pigeonpox virus (FeP2) and Penguinpox virus (PEPV). These six viruses produced qualitatively and quantitatively distinct host responses with LSDV, followed by MVA, inducing the greatest interferon (IFN) response. FeP2 and PEPV caused very little change to host transcript abundance compared to the other 4 viruses tested. CNPV and FWPV induced the up regulation of two immunoglobulin genes (Ighg and Ighg3 (IgG3)) with CNPV inducing a third, Ighm (IgM). HIV-1-specific IgG3 antibodies have been correlated with decreased risk of HIV-1 infection in the RV144 trial, which included a CNPV-based vector (Yates et al. (Sci Transl Med, 6(228) p228, 2014). Up regulation of IgG3 by CNPV and FWPV but not the other poxviruses tested in vivo, implies that these two avipoxvirus-vector backbones may be involved in stimulation of the clinically important IgG3 antibody subclass. Differential transcript abundance associated with the different poxviruses is further discussed with particular emphasis on responses related to immune responses. CONCLUSION Six, genetically diverse host-restricted poxviruses produce different responses in a mouse model early after infection. These differences may affect the immune response induced to vaccine antigen in vectors based on these viruses. The two novel avipoxviruses were clearly distinguishable from the other viruses.
Collapse
Affiliation(s)
- Kristy Offerman
- Division of Medical Virology, Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town, South Africa. .,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.
| | - Armin Deffur
- Clinical Infectious Diseases Research Initiative, University of Cape Town, Cape Town, South Africa. .,Department of Medicine, University of Cape Town, Cape Town, South Africa.
| | - Olivia Carulei
- Division of Medical Virology, Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town, South Africa. .,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.
| | - Robert Wilkinson
- Clinical Infectious Diseases Research Initiative, University of Cape Town, Cape Town, South Africa. .,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa. .,The Francis Crick Institute Mill Hill Laboratory, London, NW7 1AA, UK. .,Department of Medicine, Imperial College, London, W2 1PG, UK.
| | - Nicola Douglass
- Division of Medical Virology, Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town, South Africa. .,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.
| | - Anna-Lise Williamson
- Division of Medical Virology, Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town, South Africa. .,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa. .,National Health Laboratory Service, Groote Schuur Hospital, Cape Town, South Africa.
| |
Collapse
|
8
|
Differential induction of apoptosis, interferon signaling, and phagocytosis in macrophages infected with a panel of attenuated and nonattenuated poxviruses. J Virol 2014; 88:5511-23. [PMID: 24599993 DOI: 10.1128/jvi.00468-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Due to the essential role macrophages play in antiviral immunity, it is important to understand the intracellular and molecular processes that occur in macrophages following infection with various strains of vaccinia virus, particularly those used as vaccine vectors. Similarities as well as differences were found in macrophages infected with different poxvirus strains, particularly at the level of virus-induced apoptosis and the expression of immunomodulatory genes, as determined by microarray analyses. Interestingly, the attenuated modified vaccinia Ankara virus (MVA) was particularly efficient in triggering apoptosis and beta interferon (IFN-β) secretion and in inducing changes in the expression of genes associated with increased activation of innate immunity, setting it apart from the other five vaccinia virus strains tested. Taken together, these results increase our understanding of how these viruses interact with human macrophages, at the cellular and molecular levels, and suggest mechanisms that may underlie their utility as recombinant vaccine vectors. IMPORTANCE Our studies clearly demonstrate that there are substantial biological differences in the patterns of cellular gene expression between macrophages infected with different poxvirus strains and that these changes are due specifically to infection with the distinct viruses. For example, a clear induction in IFN-β mRNA was observed after infection with MVA but not with other poxviruses. Importantly, antiviral bioassays confirmed that MVA-infected macrophages secreted a high level of biologically active type I IFN. Similarly, the phagocytic capacity of macrophages was also specifically increased after infection with MVA. Although the main scope of this study was not to test the vaccine potential of MVA as there are several groups in the field working extensively on this aspect, the characteristics/phenotypes we observed at the in vitro level clearly highlight the inherent advantages that MVA possesses in comparison to other poxvirus strains.
Collapse
|
9
|
Filone CM, Caballero IS, Dower K, Mendillo ML, Cowley GS, Santagata S, Rozelle DK, Yen J, Rubins KH, Hacohen N, Root DE, Hensley LE, Connor J. The master regulator of the cellular stress response (HSF1) is critical for orthopoxvirus infection. PLoS Pathog 2014; 10:e1003904. [PMID: 24516381 PMCID: PMC3916389 DOI: 10.1371/journal.ppat.1003904] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 12/12/2013] [Indexed: 12/17/2022] Open
Abstract
The genus Orthopoxviridae contains a diverse group of human pathogens including monkeypox, smallpox and vaccinia. These viruses are presumed to be less dependent on host functions than other DNA viruses because they have large genomes and replicate in the cytoplasm, but a detailed understanding of the host factors required by orthopoxviruses is lacking. To address this topic, we performed an unbiased, genome-wide pooled RNAi screen targeting over 17,000 human genes to identify the host factors that support orthopoxvirus infection. We used secondary and tertiary assays to validate our screen results. One of the strongest hits was heat shock factor 1 (HSF1), the ancient master regulator of the cytoprotective heat-shock response. In investigating the behavior of HSF1 during vaccinia infection, we found that HSF1 was phosphorylated, translocated to the nucleus, and increased transcription of HSF1 target genes. Activation of HSF1 was supportive for virus replication, as RNAi knockdown and HSF1 small molecule inhibition prevented orthopoxvirus infection. Consistent with its role as a transcriptional activator, inhibition of several HSF1 targets also blocked vaccinia virus replication. These data show that orthopoxviruses co-opt host transcriptional responses for their own benefit, thereby effectively extending their functional genome to include genes residing within the host DNA. The dependence on HSF1 and its chaperone network offers multiple opportunities for antiviral drug development.
Collapse
Affiliation(s)
- Claire Marie Filone
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- United States Army Medical Research Institute of Infectious Diseases, Virology Division, Fort Detrick, Maryland, United States of America
- * E-mail:
| | - Ignacio S. Caballero
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Ken Dower
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Marc L. Mendillo
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Glenn S. Cowley
- The Broad Institute, Cambridge Massachusetts, United States of America
| | - Sandro Santagata
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Daniel K. Rozelle
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Judy Yen
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Kathleen H. Rubins
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Nir Hacohen
- The Broad Institute, Cambridge Massachusetts, United States of America
| | - David E. Root
- The Broad Institute, Cambridge Massachusetts, United States of America
| | - Lisa E. Hensley
- United States Army Medical Research Institute of Infectious Diseases, Virology Division, Fort Detrick, Maryland, United States of America
| | - John Connor
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| |
Collapse
|
10
|
The canarypox virus vector ALVAC induces distinct cytokine responses compared to the vaccinia virus-based vectors MVA and NYVAC in rhesus monkeys. J Virol 2013; 88:1809-14. [PMID: 24257612 DOI: 10.1128/jvi.02386-13] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Despite the growing use of poxvirus vectors as vaccine candidates for multiple pathogens and cancers, their innate stimulatory properties remain poorly characterized. Here we show that the canarypox virus-based vector ALVAC induced distinct systemic proinflammatory and antiviral cytokine and chemokine levels following the vaccination of rhesus monkeys compared to the vaccinia virus-based vectors MVA and NYVAC. These data suggest that there are substantial biological differences among leading poxvirus vaccine vectors that may influence resultant adaptive immune responses following vaccination.
Collapse
|
11
|
ISG15 is counteracted by vaccinia virus E3 protein and controls the proinflammatory response against viral infection. J Virol 2013; 88:2312-8. [PMID: 24257616 DOI: 10.1128/jvi.03293-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Conjugation of ISG15 inhibits replication of several viruses. Here, using an expression system for assaying human and mouse ISG15 conjugations (ISGylations), we have demonstrated that vaccinia virus E3 protein binds and antagonizes human and mouse ISG15 modification. To study ISGylation importance in poxvirus infection, we used a mouse model that expresses deconjugating proteases. Our results indicate that ISGylation restricts in vitro replication of the vaccinia virus VVΔE3L mutant but unconjugated ISG15 is crucial to counteract the inflammatory response produced after VVΔE3L infection.
Collapse
|
12
|
Denzler KL, Babas T, Rippeon A, Huynh T, Fukushima N, Rhodes L, Silvera PM, Jacobs BL. Attenuated NYCBH vaccinia virus deleted for the E3L gene confers partial protection against lethal monkeypox virus disease in cynomolgus macaques. Vaccine 2011; 29:9684-90. [PMID: 22001879 PMCID: PMC5001690 DOI: 10.1016/j.vaccine.2011.09.135] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Revised: 09/09/2011] [Accepted: 09/30/2011] [Indexed: 11/16/2022]
Abstract
The New York City Board of Health (NYCBH) vaccinia virus is the currently licensed vaccine for use in the US against smallpox. The vaccine under investigation in this study has been attenuated by deletion of the innate immune evasion gene, E3L, and shown to be protective in homologous virus mouse challenge and heterologous virus mouse and rabbit challenge models. In this study we compared NYCBH deleted for the E3L gene (NYCBHΔE3L) to NYCBH for the ability to induce phosphorylation of proinflammatory signaling proteins and the ability to protect cynomolgus macaques from heterologous challenge with monkeypox virus (MPXV). NYCBHΔE3L induced phosphorylation of PKR and eIF2α as well as p38, SAPK/JNK, and IRF3 which can lead to induction of proinflammatory gene transcription. Vaccination of macaques with two doses of NYCBHΔE3L resulted in negligible pock formation at the site of scarification in comparison to vaccination using a single dose of NYCBH, but still elicited neutralizing antibodies and protected 75% of the animals from mortality after challenge with MPXV. However, NYCBHΔE3L-vaccinated animals developed a high number of secondary skin lesions and blood viral load similar to that seen in unvaccinated controls. The NYCBHΔE3L-vaccinated animals that survived MPXV challenge were able to show resolution of blood viral load, a decrease in number of skin lesions, and an improved clinical score by three weeks post challenge. These results suggest that although the highly attenuated NYCBHΔE3L allows proinflammatory signal transduction to occur, it does not provide full protection against monkeypox challenge.
Collapse
Affiliation(s)
- Karen L Denzler
- Biodesign Institute, Arizona State University, Tempe, AZ 85287-5401, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Guerra S, González JM, Climent N, Reyburn H, López-Fernández LA, Nájera JL, Gómez CE, García F, Gatell JM, Gallart T, Esteban M. Selective induction of host genes by MVA-B, a candidate vaccine against HIV/AIDS. J Virol 2010; 84:8141-52. [PMID: 20534857 PMCID: PMC2916545 DOI: 10.1128/jvi.00749-10] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 05/28/2010] [Indexed: 01/08/2023] Open
Abstract
The aim of this study was to define the effects on antigen-presenting cells of the expression of HIV antigens from an attenuated poxvirus vector. We have analyzed the transcriptional changes in gene expression following infection of human immature monocyte-derived dendritic cells (DC) with recombinant modified vaccinia virus Ankara (MVA) expressing the genes encoding the gp120 and Gag-Pol-Nef antigens of HIV type 1 clade B (referred to as MVA-B) versus parental MVA infection. Using microarray technology and real-time reverse transcription-PCR, we demonstrated that the HIV proteins induced the expression of cytokines, cytokine receptors, chemokines, chemokine receptors, and molecules involved in antigen uptake and processing, including major histocompatibility complex (MHC) genes. Levels of mRNAs for interleukin-1, beta interferon, CCR8, and SCYA20 were higher after HIV antigen production. MVA-B infection also modulated the expression of antigen processing and presentation genes: the gene for MICA was upregulated, whereas those for HLA-DRA and HSPA5 were downregulated. Indeed, the increased expression of the gene for MICA, a glycoprotein related to major histocompatibility complex class I molecules, was shown to enhance the interaction between MVA-B-infected target cells and cytotoxic lymphocytes. The expression profiles of the genes for protein kinases such as JAK1 and IRAK2 were activated after HIV antigen expression. Several genes included in the JAK-STAT and mitogen-activated protein kinase signaling pathways were regulated after HIV antigen expression. Our findings provide the first gene signatures in DC of a candidate MVA-B vaccine expressing four HIV antigens and identified the biological roles of some of the regulatory genes, like that for MICA, which will help in the design of more effective MVA-derived vaccines.
Collapse
Affiliation(s)
- Susana Guerra
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología CSIC, Campus Universidad Autónoma, E-28049 Madrid, Spain, Department of Preventive Medicine and Public Health, Universidad Autónoma, E-28029 Madrid, Spain, Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universidad Autónoma, E-28049 Madrid, Spain, Servicio de Enfermedades Infecciosas, Servicio de Inmunología, Hospital Clínic de Barcelona, AIDS Research Group, Instituto de Investigaciones Biomedicas August Pi i Sunyer (IDIBAPS), HIVACAT Program, Universidad de Barcelona, Villaroel 170, 08036 Barcelona, Spain
| | - José Manuel González
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología CSIC, Campus Universidad Autónoma, E-28049 Madrid, Spain, Department of Preventive Medicine and Public Health, Universidad Autónoma, E-28029 Madrid, Spain, Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universidad Autónoma, E-28049 Madrid, Spain, Servicio de Enfermedades Infecciosas, Servicio de Inmunología, Hospital Clínic de Barcelona, AIDS Research Group, Instituto de Investigaciones Biomedicas August Pi i Sunyer (IDIBAPS), HIVACAT Program, Universidad de Barcelona, Villaroel 170, 08036 Barcelona, Spain
| | - Núria Climent
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología CSIC, Campus Universidad Autónoma, E-28049 Madrid, Spain, Department of Preventive Medicine and Public Health, Universidad Autónoma, E-28029 Madrid, Spain, Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universidad Autónoma, E-28049 Madrid, Spain, Servicio de Enfermedades Infecciosas, Servicio de Inmunología, Hospital Clínic de Barcelona, AIDS Research Group, Instituto de Investigaciones Biomedicas August Pi i Sunyer (IDIBAPS), HIVACAT Program, Universidad de Barcelona, Villaroel 170, 08036 Barcelona, Spain
| | - Hugh Reyburn
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología CSIC, Campus Universidad Autónoma, E-28049 Madrid, Spain, Department of Preventive Medicine and Public Health, Universidad Autónoma, E-28029 Madrid, Spain, Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universidad Autónoma, E-28049 Madrid, Spain, Servicio de Enfermedades Infecciosas, Servicio de Inmunología, Hospital Clínic de Barcelona, AIDS Research Group, Instituto de Investigaciones Biomedicas August Pi i Sunyer (IDIBAPS), HIVACAT Program, Universidad de Barcelona, Villaroel 170, 08036 Barcelona, Spain
| | - Luis A. López-Fernández
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología CSIC, Campus Universidad Autónoma, E-28049 Madrid, Spain, Department of Preventive Medicine and Public Health, Universidad Autónoma, E-28029 Madrid, Spain, Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universidad Autónoma, E-28049 Madrid, Spain, Servicio de Enfermedades Infecciosas, Servicio de Inmunología, Hospital Clínic de Barcelona, AIDS Research Group, Instituto de Investigaciones Biomedicas August Pi i Sunyer (IDIBAPS), HIVACAT Program, Universidad de Barcelona, Villaroel 170, 08036 Barcelona, Spain
| | - José L. Nájera
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología CSIC, Campus Universidad Autónoma, E-28049 Madrid, Spain, Department of Preventive Medicine and Public Health, Universidad Autónoma, E-28029 Madrid, Spain, Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universidad Autónoma, E-28049 Madrid, Spain, Servicio de Enfermedades Infecciosas, Servicio de Inmunología, Hospital Clínic de Barcelona, AIDS Research Group, Instituto de Investigaciones Biomedicas August Pi i Sunyer (IDIBAPS), HIVACAT Program, Universidad de Barcelona, Villaroel 170, 08036 Barcelona, Spain
| | - Carmen E. Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología CSIC, Campus Universidad Autónoma, E-28049 Madrid, Spain, Department of Preventive Medicine and Public Health, Universidad Autónoma, E-28029 Madrid, Spain, Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universidad Autónoma, E-28049 Madrid, Spain, Servicio de Enfermedades Infecciosas, Servicio de Inmunología, Hospital Clínic de Barcelona, AIDS Research Group, Instituto de Investigaciones Biomedicas August Pi i Sunyer (IDIBAPS), HIVACAT Program, Universidad de Barcelona, Villaroel 170, 08036 Barcelona, Spain
| | - Felipe García
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología CSIC, Campus Universidad Autónoma, E-28049 Madrid, Spain, Department of Preventive Medicine and Public Health, Universidad Autónoma, E-28029 Madrid, Spain, Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universidad Autónoma, E-28049 Madrid, Spain, Servicio de Enfermedades Infecciosas, Servicio de Inmunología, Hospital Clínic de Barcelona, AIDS Research Group, Instituto de Investigaciones Biomedicas August Pi i Sunyer (IDIBAPS), HIVACAT Program, Universidad de Barcelona, Villaroel 170, 08036 Barcelona, Spain
| | - José M. Gatell
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología CSIC, Campus Universidad Autónoma, E-28049 Madrid, Spain, Department of Preventive Medicine and Public Health, Universidad Autónoma, E-28029 Madrid, Spain, Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universidad Autónoma, E-28049 Madrid, Spain, Servicio de Enfermedades Infecciosas, Servicio de Inmunología, Hospital Clínic de Barcelona, AIDS Research Group, Instituto de Investigaciones Biomedicas August Pi i Sunyer (IDIBAPS), HIVACAT Program, Universidad de Barcelona, Villaroel 170, 08036 Barcelona, Spain
| | - Teresa Gallart
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología CSIC, Campus Universidad Autónoma, E-28049 Madrid, Spain, Department of Preventive Medicine and Public Health, Universidad Autónoma, E-28029 Madrid, Spain, Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universidad Autónoma, E-28049 Madrid, Spain, Servicio de Enfermedades Infecciosas, Servicio de Inmunología, Hospital Clínic de Barcelona, AIDS Research Group, Instituto de Investigaciones Biomedicas August Pi i Sunyer (IDIBAPS), HIVACAT Program, Universidad de Barcelona, Villaroel 170, 08036 Barcelona, Spain
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología CSIC, Campus Universidad Autónoma, E-28049 Madrid, Spain, Department of Preventive Medicine and Public Health, Universidad Autónoma, E-28029 Madrid, Spain, Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universidad Autónoma, E-28049 Madrid, Spain, Servicio de Enfermedades Infecciosas, Servicio de Inmunología, Hospital Clínic de Barcelona, AIDS Research Group, Instituto de Investigaciones Biomedicas August Pi i Sunyer (IDIBAPS), HIVACAT Program, Universidad de Barcelona, Villaroel 170, 08036 Barcelona, Spain
| |
Collapse
|
14
|
Lynch HE, Ray CA, Oie KL, Pollara JJ, Petty ITD, Sadler AJ, Williams BRG, Pickup DJ. Modified vaccinia virus Ankara can activate NF-kappaB transcription factors through a double-stranded RNA-activated protein kinase (PKR)-dependent pathway during the early phase of virus replication. Virology 2009; 391:177-86. [PMID: 19596385 PMCID: PMC2765328 DOI: 10.1016/j.virol.2009.06.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 01/09/2009] [Accepted: 06/06/2009] [Indexed: 01/09/2023]
Abstract
Modified vaccinia virus Ankara (MVA), which is a promising replication-defective vaccine vector, is unusual among the orthopoxviruses in activating NF-kappaB transcription factors in cells of several types. In human embryonic kidney (HEK 293T) cells, the MVA-induced depletion of IkappaBalpha required to activate NF-kappaB is inhibited by UV-inactivation of the virus, and begins before viral DNA replication. In HEK 293T, CHO, or RK13 cells, expression of the cowpox virus CP77 early gene, or the vaccinia virus K1L early gene suppresses MVA-induced IkappaBalpha depletion. In mouse embryonic fibroblasts (MEFs), MVA induction of IkappaBalpha depletion is dependent on the expression of mouse or human double-stranded RNA-activated protein kinase (PKR). These results demonstrate that events during the early phase of MVA replication can induce PKR-mediated processes contributing both to the activation of NF-kappaB signaling, and to processes that may restrict viral replication. This property may contribute to the efficacy of this vaccine virus.
Collapse
Affiliation(s)
- Heather E Lynch
- Department of Molecular Genetics and Microbiology, Box 3020, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Yen J, Golan R, Rubins K. Vaccinia virus infection & temporal analysis of virus gene expression: Part 3. J Vis Exp 2009:1170. [PMID: 19365326 PMCID: PMC2791084 DOI: 10.3791/1170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
The family Poxviridae consists of large double-stranded DNA containing viruses that replicate exclusively in the cytoplasm of infected cells. Members of the orthopox genus include variola, the causative agent of human small pox, monkeypox, and vaccinia (VAC), the prototypic member of the virus family. Within the relatively large (approximately 200 kb) vaccinia genome, three classes of genes are encoded: early, intermediate, and late. While all three classes are transcribed by virally-encoded RNA polymerases, each class serves a different function in the life cycle of the virus. Poxviruses utilize multiple strategies for modulation of the host cellular environment during infection. In order to understand regulation of both host and virus gene expression, we have utilized genome-wide approaches to analyze transcript abundance from both virus and host cells. Here, we demonstrate time course infections of HeLa cells with Vaccinia virus and sampling RNA at several time points post-infection. Both host and viral total RNA is isolated and amplified for hybridization to microarrays for analysis of gene expression.
Collapse
Affiliation(s)
- Judy Yen
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, USA
| | | | | |
Collapse
|
16
|
Yen J, Golan R, Rubins K. Vaccinia virus infection & temporal analysis of virus gene expression: Part 2. J Vis Exp 2009:1-4. [PMID: 19363464 PMCID: PMC2791083 DOI: 10.3791/1169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The family Poxviridae consists of large double-stranded DNA containing viruses that replicate exclusively in the cytoplasm of infected cells. Members of the orthopox genus include variola, the causative agent of human small pox, monkeypox, and vaccinia (VAC), the prototypic member of the virus family. Within the relatively large (approximately 200 kb) vaccinia genome, three classes of genes are encoded: early, intermediate, and late. While all three classes are transcribed by virally-encoded RNA polymerases, each class serves a different function in the life cycle of the virus. Poxviruses utilize multiple strategies for modulation of the host cellular environment during infection. In order to understand regulation of both host and virus gene expression, we have utilized genome-wide approaches to analyze transcript abundance from both virus and host cells. Here, we demonstrate time course infections of HeLa cells with Vaccinia virus and sampling RNA at several time points post-infection. Both host and viral total RNA is isolated and amplified for hybridization to microarrays for analysis of gene expression.
Collapse
Affiliation(s)
- Judy Yen
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, USA
| | | | | |
Collapse
|
17
|
Yen J, Golan R, Rubins K. Vaccinia virus infection & temporal analysis of virus gene expression: part 1. J Vis Exp 2009:1168. [PMID: 19488021 PMCID: PMC2791082 DOI: 10.3791/1168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The family Poxviridae consists of large double-stranded DNA containing viruses that replicate exclusively in the cytoplasm of infected cells. Members of the orthopox genus include variola, the causative agent of human small pox, monkeypox, and vaccinia (VAC), the prototypic member of the virus family. Within the relatively large (~ 200 kb) vaccinia genome, three classes of genes are encoded: early, intermediate, and late. While all three classes are transcribed by virally-encoded RNA polymerases, each class serves a different function in the life cycle of the virus. Poxviruses utilize multiple strategies for modulation of the host cellular environment during infection. In order to understand regulation of both host and virus gene expression, we have utilized genome-wide approaches to analyze transcript abundance from both virus and host cells. Here, we demonstrate time course infections of HeLa cells with Vaccinia virus and sampling RNA at several time points post-infection. Both host and viral total RNA is isolated and amplified for hybridization to microarrays for analysis of gene expression.
Collapse
Affiliation(s)
- Judy Yen
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, MA, USA
| | | | | |
Collapse
|
18
|
Interplay between poxviruses and the cellular ubiquitin/ubiquitin-like pathways. FEBS Lett 2009; 583:607-14. [PMID: 19174161 DOI: 10.1016/j.febslet.2009.01.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 01/15/2009] [Accepted: 01/18/2009] [Indexed: 02/06/2023]
Abstract
Post-translational polypeptide tagging by conjugation with ubiquitin and ubiquitin-like (Ub/Ubl) molecules is a potent way to alter protein functions and/or sort specific protein targets to the proteasome for degradation. Many poxviruses interfere with the host Ub/Ubl system by encoding viral proteins that can usurp this pathway. Some of these include viral proteins of the membrane-associated RING-CH (MARCH) domain, p28/Really Interesting New Gene (RING) finger, ankyrin-repeat/F-box and Broad-complex, Tramtrack and Bric-a-Brac (BTB)/Kelch subgroups of the E3 Ub ligase superfamily. Here we describe and discuss the various strategies used by poxviruses to target and subvert the host cell Ub/Ubl systems.
Collapse
|
19
|
Abstract
As a family of viruses, poxviruses collectively exhibit a broad host range and most of the individual members are capable of replicating in a wide array of cell types from various host species, at least in vitro. At the cellular level, poxvirus tropism is dependent not upon specific cell surface receptors, but rather upon: (1) the ability of the cell to provide intracellular complementing factors needed for productive virus replication, and (2) the ability of the specific virus to successfully manipulate intracellular signaling networks that regulate cellular antiviral processes downstream of virus entry. The large genomic coding capacity of poxviruses enables the virus to express a unique collection of viral proteins that function as host range factors, which specifically target and manipulate host signaling pathways to establish optimal cellular conditions for viral replication. Functionally, the known host range factors from poxviruses have been associated with manipulation of a diverse array of cellular targets, which includes cellular kinases and phosphatases, apoptosis, and various antiviral pathways. To date, only a small number of poxvirus host range genes have been identified and studied, and only a handful of these have been functionally characterized. For this reason, poxvirus host range factors represent a potential gold mine for the discovery of novel pathogen-host protein interactions. This review summarizes our current understanding of the mechanisms by which the known poxvirus host range genes, and their encoded factors, expand tropism through the manipulation of host cell intracellular signaling pathways.
Collapse
Affiliation(s)
- Steven J Werden
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | | | | |
Collapse
|
20
|
Guerra S, Cáceres A, Knobeloch KP, Horak I, Esteban M. Vaccinia virus E3 protein prevents the antiviral action of ISG15. PLoS Pathog 2008; 4:e1000096. [PMID: 18604270 PMCID: PMC2434199 DOI: 10.1371/journal.ppat.1000096] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Accepted: 05/29/2008] [Indexed: 01/15/2023] Open
Abstract
The ubiquitin-like modifier ISG15 is one of the most predominant proteins induced by type I interferons (IFN). In this study, murine embryo fibroblast (MEFs) and mice lacking the gene were used to demonstrate a novel role of ISG15 as a host defense molecule against vaccinia virus (VACV) infection. In MEFs, the growth of replication competent Western Reserve (WR) VACV strain was affected by the absence of ISG15, but in addition, virus lacking E3 protein (VVDeltaE3L) that is unable to grow in ISG15+/+ cells replicated in ISG15-deficient cells. Inhibiting ISG15 with siRNA or promoting its expression in ISG15-/- cells with a lentivirus vector showed that VACV replication was controlled by ISG15. Immunoprecipitation analysis revealed that E3 binds ISG15 through its C-terminal domain. The VACV antiviral action of ISG15 and its interaction with E3 are events independent of PKR (double-stranded RNA-dependent protein kinase). In mice lacking ISG15, infection with VVDeltaE3L caused significant disease and mortality, an effect not observed in VVDeltaE3L-infected ISG15+/+ mice. Pathogenesis in ISG15-deficient mice infected with VVDeltaE3L or with an E3L deletion mutant virus lacking the C-terminal domain triggered an enhanced inflammatory response in the lungs compared with ISG15+/+-infected mice. These findings showed an anti-VACV function of ISG15, with the virus E3 protein suppressing the action of the ISG15 antiviral factor.
Collapse
Affiliation(s)
- Susana Guerra
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología CSIC, Campus Universidad Autónoma, Madrid, Spain
- Department of Preventive Medicine and Public Health, Universidad Autónoma, Madrid, Spain
- * E-mail: (SG); (ME)
| | - Ana Cáceres
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología CSIC, Campus Universidad Autónoma, Madrid, Spain
| | - Klaus-Peter Knobeloch
- Abteilung Molekulare Genetik, Leibniz Institut fur Molekulare Pharmakologie, Berlin, Germany
| | - Ivan Horak
- Abteilung Molekulare Genetik, Leibniz Institut fur Molekulare Pharmakologie, Berlin, Germany
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología CSIC, Campus Universidad Autónoma, Madrid, Spain
- * E-mail: (SG); (ME)
| |
Collapse
|
21
|
Mooij P, Balla-Jhagjhoorsingh SS, Koopman G, Beenhakker N, van Haaften P, Baak I, Nieuwenhuis IG, Kondova I, Wagner R, Wolf H, Gómez CE, Nájera JL, Jiménez V, Esteban M, Heeney JL. Differential CD4+ versus CD8+ T-cell responses elicited by different poxvirus-based human immunodeficiency virus type 1 vaccine candidates provide comparable efficacies in primates. J Virol 2008; 82:2975-88. [PMID: 18184713 PMCID: PMC2258966 DOI: 10.1128/jvi.02216-07] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Accepted: 12/13/2007] [Indexed: 12/20/2022] Open
Abstract
Poxvirus vectors have proven to be highly effective for boosting immune responses in diverse vaccine settings. Recent reports reveal marked differences in the gene expression of human dendritic cells infected with two leading poxvirus-based human immunodeficiency virus (HIV) vaccine candidates, New York vaccinia virus (NYVAC) and modified vaccinia virus Ankara (MVA). To understand how complex genomic changes in these two vaccine vectors translate into antigen-specific systemic immune responses, we undertook a head-to-head vaccine immunogenicity and efficacy study in the pathogenic HIV type 1 (HIV-1) model of AIDS in Indian rhesus macaques. Differences in the immune responses in outbred animals were not distinguished by enzyme-linked immunospot assays, but differences were distinguished by multiparameter fluorescence-activated cell sorter analysis, revealing a difference between the number of animals with both CD4(+) and CD8(+) T-cell responses to vaccine inserts (MVA) and those that elicit a dominant CD4(+) T-cell response (NYVAC). Remarkably, vector-induced differences in CD4(+)/CD8(+) T-cell immune responses persisted for more than a year after challenge and even accompanied antigenic modulation throughout the control of chronic infection. Importantly, strong preexposure HIV-1/simian immunodeficiency virus-specific CD4(+) T-cell responses did not prove deleterious with respect to accelerated disease progression. In contrast, in this setting, animals with strong vaccine-induced polyfunctional CD4(+) T-cell responses showed efficacies similar to those with stronger CD8(+) T-cell responses.
Collapse
Affiliation(s)
- Petra Mooij
- Department of Virology, Biomedical Primate Research Centre (BPRC), P.O. Box 3306, 2280 GH Rijswijk, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Gómez CE, Nájera JL, Domingo-Gil E, Ochoa-Callejero L, González-Aseguinolaza G, Esteban M. Virus distribution of the attenuated MVA and NYVAC poxvirus strains in mice. J Gen Virol 2007; 88:2473-2478. [PMID: 17698656 DOI: 10.1099/vir.0.83018-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recombinant vaccinia viruses based on the attenuated NYVAC and MVA strains are promising vaccine candidates against a broad spectrum of diseases. Whilst these vectors are safe and immunogenic in animals and humans, little is known about their comparative behaviour in vivo. In this investigation, a head-to-head analysis was carried out of virus dissemination in mice inoculated by the mucosal or systemic route with replication-competent (WRluc) and attenuated recombinant (MVAluc and NYVACluc) viruses expressing the luciferase gene. Bioluminescence imaging showed that, in contrast to WRluc, the attenuated recombinants expressed the reporter gene transiently, with MVAluc expression limited to the first 24 h and NYVACluc giving a longer signal, up to 72 h post-infection, for most of the routes assayed. Moreover, luciferase levels in MVAluc-infected tissues peaked earlier than those in tissues infected by NYVACluc. These findings may be of immunological relevance when these vectors are used as recombinant vaccines.
Collapse
Affiliation(s)
- Carmen Elena Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, Ciudad Universitaria Cantoblanco, 28049 Madrid, Spain
| | - José Luis Nájera
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, Ciudad Universitaria Cantoblanco, 28049 Madrid, Spain
| | - Elena Domingo-Gil
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, Ciudad Universitaria Cantoblanco, 28049 Madrid, Spain
| | - Laura Ochoa-Callejero
- Division of Hepatology and Gene Therapy, Center for Investigation in Applied Medicine (CIMA), University of Navarra, 31080 Pamplona, Spain
| | - Gloria González-Aseguinolaza
- Division of Hepatology and Gene Therapy, Center for Investigation in Applied Medicine (CIMA), University of Navarra, 31080 Pamplona, Spain
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, Ciudad Universitaria Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
23
|
Guerra S, Nájera JL, González JM, López-Fernández LA, Climent N, Gatell JM, Gallart T, Esteban M. Distinct gene expression profiling after infection of immature human monocyte-derived dendritic cells by the attenuated poxvirus vectors MVA and NYVAC. J Virol 2007; 81:8707-21. [PMID: 17537851 PMCID: PMC1951336 DOI: 10.1128/jvi.00444-07] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although recombinants based on the attenuated poxvirus vectors MVA and NYVAC are currently in clinical trials, the nature of the genes triggered by these vectors in antigen-presenting cells is poorly characterized. Using microarray technology and various analysis conditions, we compared specific changes in gene expression profiling following MVA and NYVAC infection of immature human monocyte-derived dendritic cells (MDDC). Microarray analysis was performed at 6 h postinfection, since these viruses induced extensive cytopathic effects, rRNA breakdown, and apoptosis at late times postinfection. MVA- and NYVAC-infected MDDC shared upregulation of 195 genes compared to uninfected cells: MVA specifically upregulated 359 genes, and NYVAC upregulated 165 genes. Microarray comparison of NYVAC and MVA infection revealed 544 genes with distinct expression patterns after poxvirus infection and 283 genes specifically upregulated after MVA infection. Both vectors upregulated genes for cytokines, cytokine receptors, chemokines, chemokine receptors, and molecules involved in antigen uptake and processing, including major histocompatibility complex genes. mRNA levels for interleukin 12beta (IL-12beta), beta interferon, and tumor necrosis factor alpha were higher after MVA infection than after NYVAC infection. The expression profiles of transcription factors such as NF-kappaB/Rel and STAT were regulated similarly by both viruses; in contrast, OASL, MDA5, and IRIG-I expression increased only during MVA infection. Type I interferon, IL-6, and Toll-like receptor pathways were specifically induced after MVA infection. Following MVA or NYVAC infection in MDDC, we found similarities as well as differences between these virus strains in the expression of cellular genes with immunological function, which should have an impact when these vectors are used as recombinant vaccines.
Collapse
Affiliation(s)
- Susana Guerra
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, E-28049 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Grinde B, Gayorfar M, Hoddevik G. Modulation of gene expression in a human cell line caused by poliovirus, vaccinia virus and interferon. Virol J 2007; 4:24. [PMID: 17338811 PMCID: PMC1821010 DOI: 10.1186/1743-422x-4-24] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Accepted: 03/05/2007] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The project was initiated to describe the response of a human embryonic fibroblast cell line to the replication of two different viruses, and, more specifically, to look for candidate genes involved in viral defense. For this purpose, the cells were synchronously infected with poliovirus in the absence or presence of interferon-alpha, or with vaccinia virus, a virus that is not inhibited by interferon. By comparing the changes in transcriptosome due to these different challenges, it should be possible to suggest genes that might be involved in defense. RESULTS The viral titers were sufficient to yield productive infection in a majority of the cells. The cells were harvested in triplicate at various time-points, and the transcriptosome compared with mock infected cells using oligo-based, global 35 k microarrays. While there was very limited similarities in the response to the different viruses, a large proportion of the genes up-regulated by interferon-alpha were also up-regulated by poliovirus. Interferon-alpha inhibited poliovirus replication, but there were no signs of any interferons being induced by poliovirus. The observations suggest that the cells do launch an antiviral response to poliovirus in the absence of interferon. Analyses of the data led to a list of candidate antiviral genes. Functional information was limited, or absent, for most of the candidate genes. CONCLUSION The data are relevant for our understanding of how the cells respond to poliovirus and vaccinia virus infection. More annotations, and more microarray studies with related viruses, are required in order to narrow the list of putative defence-related genes.
Collapse
Affiliation(s)
- Bjørn Grinde
- Division of Infectious Disease Control, Norwegian Institute of Public Health, PO Box 4404 Nydalen, 0403 Oslo, Norway
| | - Marc Gayorfar
- Division of Infectious Disease Control, Norwegian Institute of Public Health, PO Box 4404 Nydalen, 0403 Oslo, Norway
| | - Gunnar Hoddevik
- Division of Infectious Disease Control, Norwegian Institute of Public Health, PO Box 4404 Nydalen, 0403 Oslo, Norway
| |
Collapse
|
25
|
Gómez CE, Nájera JL, Jiménez V, Bieler K, Wild J, Kostic L, Heidari S, Chen M, Frachette MJ, Pantaleo G, Wolf H, Liljeström P, Wagner R, Esteban M. Generation and immunogenicity of novel HIV/AIDS vaccine candidates targeting HIV-1 Env/Gag-Pol-Nef antigens of clade C. Vaccine 2006; 25:1969-92. [PMID: 17224219 DOI: 10.1016/j.vaccine.2006.11.051] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Revised: 11/06/2006] [Accepted: 11/23/2006] [Indexed: 11/20/2022]
Abstract
Recombinants based on the attenuated vaccinia virus strains MVA and NYVAC are considered candidate vectors against different human diseases. In this study we have generated and characterized in BALB/c and in transgenic HHD mice the immunogenicity of two attenuated poxvirus vectors expressing in a single locus (TK) the codon optimized HIV-1 genes encoding gp120 and Gag-Pol-Nef (GPN) polyprotein of clade C (referred as MVA-C and NYVAC-C). In HHD mice primed with either MVA-C or NYVAC-C, or primed with DNA-C and boosted with the poxvirus vectors, the splenic T cell responses against clade C peptides spanning gp120/GPN was broad and mainly directed against Gag-1, Env-1 and Env-2 peptide pools. In BALB/c mice immunized with the homologous or the heterologous combination of poxvirus vectors or with Semliki forest virus (SFV) vectors expressing gp120/GPN, the immune response was also broad but the most immunogenic peptides were Env-1, GPN-1 and GPN-2. Differences in the magnitude of the cellular immune responses were observed between the poxvirus vectors depending on the protocol used. The specific cellular immune response triggered by the poxvirus vectors was Th1 type. The cellular response against the vectors was higher for NYVAC than for MVA in both HHD and BALB/c mice, but differences in viral antigen recognition between the vectors was observed in sera from the poxvirus-immunized animals. These results demonstrate the immunogenic potential of MVA-C and NYVAC-C as novel vaccine candidates against clade C of HIV-1.
Collapse
MESH Headings
- AIDS Vaccines/genetics
- AIDS Vaccines/immunology
- Animals
- Base Sequence
- Codon/genetics
- Gene Products, gag/genetics
- Gene Products, gag/immunology
- Gene Products, nef/genetics
- Gene Products, nef/immunology
- Gene Products, pol/genetics
- Gene Products, pol/immunology
- Genetic Vectors
- HIV Antigens/genetics
- HIV Antigens/immunology
- HIV Envelope Protein gp120/genetics
- HIV Envelope Protein gp120/immunology
- HIV-1/genetics
- HIV-1/immunology
- Humans
- Immunization, Secondary
- Interferon-gamma/biosynthesis
- Interleukin-2/biosynthesis
- Mice
- Mice, Inbred BALB C
- Mice, Transgenic
- Models, Animal
- Molecular Sequence Data
- Semliki forest virus
- Spleen/immunology
- T-Lymphocytes/immunology
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccinia virus
- Viral Vaccines
- nef Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- Carmen Elena Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, Ciudad Universitaria Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Gómez CE, Nájera JL, Jiménez EP, Jiménez V, Wagner R, Graf M, Frachette MJ, Liljeström P, Pantaleo G, Esteban M. Head-to-head comparison on the immunogenicity of two HIV/AIDS vaccine candidates based on the attenuated poxvirus strains MVA and NYVAC co-expressing in a single locus the HIV-1BX08 gp120 and HIV-1(IIIB) Gag-Pol-Nef proteins of clade B. Vaccine 2006; 25:2863-85. [PMID: 17113200 DOI: 10.1016/j.vaccine.2006.09.090] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Revised: 09/06/2006] [Accepted: 09/21/2006] [Indexed: 11/26/2022]
Abstract
In this investigation we have generated and defined the immunogenicity of two novel HIV/AIDS vaccine candidates based on the highly attenuated vaccinia virus strains, MVA and NYVAC, efficiently expressing in the same locus (TK) and under the same viral promoter the codon optimized HIV-1 genes encoding gp120 and Gag-Pol-Nef antigens of clade B (referred as MVA-B and NYVAC-B). In infected human HeLa cells, gp120 is released from cells and GPN is produced as a polyprotein; NYVAC-B induces severe apoptosis but not MVA-B. The two poxvirus vectors showed genetic stability of the inserts. In BALB/c and in transgenic HHD mice for human HLA-A2 class I, both vectors are efficient immunogens and induced broad cellular immune responses against peptides represented in the four HIV-1 antigens. Some differences were observed in the magnitude and breadth of the immune response in the mouse models. In DNA prime/poxvirus boost protocols, the strongest immune response, as measured by fresh IFN-gamma and IL-2 ELISPOT, was obtained in BALB/c mice boosted with NYVAC-B, while in HHD mice there were no differences between the poxvirus vectors. When the prime/boost was performed with homologous or with combination of poxvirus vectors, the protocols MVA-B/MVA-B and NYVAC-B/NYVAC-B, or the combination NYVAC-B/MVA-B gave the most consistent broader immune response in both mouse models, although the magnitude of the overall response was higher for the DNA-B/poxvirus-B regime. All of the immunization protocols induced some humoral response against the gp160 protein from HIV-1 clone LAV. Our findings indicate that MVA-B and NYVAC-B meet the criteria to be potentially useful vaccine candidates against HIV/AIDS.
Collapse
MESH Headings
- AIDS Vaccines/genetics
- AIDS Vaccines/immunology
- Animals
- Antigens, Viral/biosynthesis
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Apoptosis/immunology
- Base Sequence
- Chick Embryo
- Fusion Proteins, gag-pol/biosynthesis
- Fusion Proteins, gag-pol/genetics
- Fusion Proteins, gag-pol/immunology
- Gene Products, nef/biosynthesis
- Gene Products, nef/genetics
- Gene Products, nef/immunology
- Genomic Instability
- HIV Envelope Protein gp120/biosynthesis
- HIV Envelope Protein gp120/genetics
- HIV Envelope Protein gp120/immunology
- HLA-A2 Antigen/immunology
- HeLa Cells
- Humans
- Mice
- Mice, Inbred BALB C
- Mice, Transgenic
- Molecular Sequence Data
- Polymerase Chain Reaction/methods
- Poxviridae/genetics
- Poxviridae/immunology
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/immunology
- Viral Vaccines/genetics
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Carmen Elena Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, Ciudad Universitaria Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Deng L, Dai P, Ding W, Granstein RD, Shuman S. Vaccinia virus infection attenuates innate immune responses and antigen presentation by epidermal dendritic cells. J Virol 2006; 80:9977-87. [PMID: 17005676 PMCID: PMC1617288 DOI: 10.1128/jvi.00354-06] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Accepted: 07/05/2006] [Indexed: 11/20/2022] Open
Abstract
Langerhans cells (LCs) are antigen-presenting cells in the skin that play sentinel roles in host immune defense by secreting proinflammatory molecules and activating T cells. Here we studied the interaction of vaccinia virus with XS52 cells, a murine epidermis-derived dendritic cell line that serves as a surrogate model for LCs. We found that vaccinia virus productively infects XS52 cells, yet this infection displays an atypical response to anti-poxvirus agents. Whereas adenosine N1-oxide blocked virus production and viral protein synthesis during a synchronous infection, cytosine arabinoside had no effect at concentrations sufficient to prevent virus replication in BSC40 monkey kidney cells. Vaccinia virus infection of XS52 cells not only failed to elicit the production of various cytokines, including tumor necrosis factor alpha (TNF-alpha), interleukin-1beta (IL-1beta), IL-6, IL-10, IL-12 p40, alpha interferon (IFN-alpha), and IFN-gamma, it actively inhibited the production of proinflammatory cytokines TNF-alpha and IL-6 by XS52 cells in response to exogenous lipopolysaccharide (LPS) or poly(I:C). Infection with a vaccinia virus mutant lacking the E3L gene resulted in TNF-alpha secretion in the absence of applied stimuli. Infection of XS52 cells or BSC40 cells with the DeltaE3L virus, but not wild-type vaccinia virus, triggered proteolytic decay of IkappaBalpha. These results suggest a novel role for the E3L protein as an antagonist of the NF-kappaB signaling pathway. DeltaE3L-infected XS52 cells secreted higher levels of TNF-alpha and IL-6 in response to LPS and poly(I:C) than did cells infected with the wild-type virus. XS52 cells were productively infected by a vaccinia virus mutant lacking the K1L gene. DeltaK1L-infected cells secreted higher levels of TNF-alpha and IL-6 in response to LPS than wild-type virus-infected cells. Vaccinia virus infection of primary LCs harvested from mouse epidermis was nonpermissive, although a viral reporter protein was expressed in the infected LCs. Vaccinia virus infection of primary LCs strongly inhibited their capacity for antigen-specific activation of T cells. Our results highlight suppression of the skin immune response as a feature of orthopoxvirus infection.
Collapse
Affiliation(s)
- Liang Deng
- Molecular Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
28
|
Nájera JL, Gómez CE, Domingo-Gil E, Gherardi MM, Esteban M. Cellular and biochemical differences between two attenuated poxvirus vaccine candidates (MVA and NYVAC) and role of the C7L gene. J Virol 2006; 80:6033-47. [PMID: 16731942 PMCID: PMC1472566 DOI: 10.1128/jvi.02108-05] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The poxvirus strains NYVAC and MVA are two candidate vectors for the development of vaccines against a broad spectrum of diseases. Although these attenuated virus strains have proven to be safe in animals and humans, little is known about their comparative behavior in vitro. In contrast with MVA, NYVAC infection triggers greater cytopathic effect in a range of permissive and nonpermissive cell lines. The yields of NYVAC cell-associated virus in permissive cells (BHK-21) were slightly reduced compared with those of MVA infection. During the course of infection in HeLa cells, there is a translational block induced by NYVAC late in infection, which correlated with a marked increase in phosphorylation levels of the initiation factor eIF-2alpha. In contrast to MVA, the synthesis of certain late viral proteins was only blocked in NYVAC-infected HeLa cells. Electron microscopy (EM) analysis revealed that morphogenesis of NYVAC in HeLa cells was blocked at the stage of formation of immature viral forms. Phase-contrast microscopy, EM, flow cytometry, and rRNA analyses demonstrated that contrary to MVA, NYVAC infection induces potent apoptosis, a phenomenon dependent on activation of caspases and RNase L. Apoptosis induced by NYVAC was prevented when the virus gene C7L was placed back into the NYVAC genome, recovering the ability of NYVAC to replicate in HeLa cells and maintaining the attenuated phenotype in mice. Overall, our findings demonstrate distinct behavior between NYVAC and MVA strains in cultured cells, as well as a new role for the C7L viral gene as an inhibitor of apoptosis in NYVAC infection.
Collapse
Affiliation(s)
- José Luis Nájera
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, Ciudad Universitaria Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|