1
|
Akhtar M, Hashmi AH, Manzoor S. The synergistic tapestry: unraveling the interplay of parvovirus B19 with other viruses. Int J Infect Dis 2025; 154:107865. [PMID: 40024517 DOI: 10.1016/j.ijid.2025.107865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025] Open
Abstract
Parvovirus (B19V) is a compact, non-enveloped, spherical virus with a single-stranded DNA genome. In immunocompetent individuals, parvovirus B19V infection is typically asymptomatic or mildly symptomatic. However, in patients with compromised immune systems, it can lead to severe anemia in patients with compromised immune systems; renal transplant recipients taking immunosuppressive therapies often experience B19-induced anemia and red cell aplasia. The coinfections of hepatitis B virus, hepatitis C virus, cytomegalovirus (CMV), HIV, and BK virus with B19V have been reportedly investigated. This review explores the interactions of B19V with other viral pathogens and provide insight into its intricate interplay in various clinical scenarios. In hepatitis B virus, B19 has been implicated in liver inflammation and disease, and, in hepatitis C virus, B19 correlates with chronic hepatitis, which may affect the progression of the disease. Immunocompromised individuals, particularly, patients with HIV and renal transplant recipients, often experience B19-induced anemia, which can be complicated by coinfection with CMV and BK. Pregnant women having coinfections of parvovirus B19 with CMV are at risk for fetal developmental complications. Its coexistence with Epstein-Barr virus can result in bone marrow failure. Notably, fatal cases of B19 and influenza A/H1N1 and more recent cases of coinfection with SARS-CoV-2, have been reported, highlighting the complex interactions between B19V and other viral pathogens.
Collapse
Affiliation(s)
- Mehnaz Akhtar
- Molecular Virology Lab, Atta-Ur-Rehman School of Applied Biological Sciences (ASAB), National University of Sciences and Technology NUST, Islamabad, Pakistan
| | | | - Sobia Manzoor
- Atta-Ur-Rehman School of Applied Biological Sciences (ASAB), National University of Sciences and Technology NUST, H-12 Campus, Islamabad, Pakistan.
| |
Collapse
|
2
|
McSteen BW, Ying XH, Lucero C, Jesudian AB. Viral etiologies of acute liver failure. World J Virol 2024; 13:97973. [PMID: 39323454 PMCID: PMC11401000 DOI: 10.5501/wjv.v13.i3.97973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/07/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024] Open
Abstract
Acute liver failure (ALF) is a rare cause of liver-related mortality worldwide, with an estimated annual global incidence of more than one million cases. While drug-induced liver injury, including acetaminophen toxicity, is the leading cause of ALF in the Western world, viral infections remain a significant cause of ALF and the most common cause in many developing nations. Given the high mortality rates associated with ALF, healthcare providers should be aware of the broad range of viral infections that have been implicated to enable early diagnosis, rapid treatment initiation when possible, and optimal management, which may include liver transplantation. This review aims to provide a summary of viral causes of ALF, diagnostic approaches, treatment options, and expected outcomes.
Collapse
Affiliation(s)
- Brian W McSteen
- Department of Medicine, New York-Presbyterian/Weill Cornell Campus, New York, NY 10021, United States
| | - Xiao-Han Ying
- Department of Medicine, New York-Presbyterian/Weill Cornell Campus, New York, NY 10021, United States
| | - Catherine Lucero
- Department of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY 10021, United States
| | - Arun B Jesudian
- Department of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY 10021, United States
| |
Collapse
|
3
|
Dai Y, Li Y, Hu X, Jiang N, Liu W, Meng Y, Zhou Y, Xu C, Xue M, Fan Y. Nonstructural protein NS17 of grass carp reovirus Honghu strain promotes virus infection by mediating cell-cell fusion and apoptosis. Virus Res 2023; 334:199150. [PMID: 37302658 PMCID: PMC10410512 DOI: 10.1016/j.virusres.2023.199150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
Fusion-associated small transmembrane (FAST) proteins can promote cell fusion, alter membrane permeability and trigger apoptosis to promote virus proliferation in orthoreoviruses. However, it is unknown whether FAST proteins perform these functions in aquareoviruses (AqRVs). Non-structural protein 17 (NS17) carried by grass carp reovirus Honghu strain (GCRV-HH196) belongs to the FAST protein family, and we preliminarily explored its relevance to virus infection. NS17 has similar domains to FAST protein NS16 of GCRV-873, comprising a transmembrane domain, a polybasic cluster, a hydrophobic patch and a polyproline motif. It was observed in the cytoplasm and the cell membrane. Overexpression of NS17 enhanced the efficiency of cell-cell fusion induced by GCRV-HH196 and promoted virus replication. Overexpression of NS17 also led to DNA fragmentation and reactive oxygen species (ROS) accumulation, and it triggered apoptosis. The findings illuminate the functions of NS17 in GCRV infection, and provide a reference for the development of novel antiviral strategies.
Collapse
Affiliation(s)
- Yanlin Dai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yiqun Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| | - Xi Hu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Nan Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Wenzhi Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yan Meng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Chen Xu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Mingyang Xue
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
4
|
Characteristics and outcomes of acute hepatitis of unknown etiology in Egypt: first report of adult adenovirus-associated hepatitis. Infection 2022:10.1007/s15010-022-01945-1. [DOI: 10.1007/s15010-022-01945-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Abstract
Purpose
Several outbreaks of acute hepatitis of unknown etiology (AHUE) in children were reported in 2022 in many countries, with adenovirus identified as the etiological agent in most of them. We aimed to evaluate the characteristics and outcomes of AHUE cases in Egypt.
Methodology
Hospitalized patients with acute hepatitis were included in the study. Drug-induced, alcoholic hepatitis, autoimmune hepatitis, and Wilson’s disease were identified either by medical history or by routine laboratory diagnosis. Molecular and serological approaches were used to investigate common viral causes of hepatitis, such as hepatitis A–E viruses, cytomegalovirus, Epstein–Barr virus, herpes simplex viruses (HSV1/2), adenovirus, parvovirus B19, and coxsackie virus.
Results
A total of 42 patients were recruited and divided into two groups: 24 cases of unknown hepatitis after excluding the common causes and 18 cases of known hepatitis. About two-thirds of the patients were male (61.9%), and the mean age was 34.55 ± 16.27 years. Jaundice, dark urine, abdominal pain and diarrhea were recorded at a higher incidence in group 1, while jaundice and fever were frequent in group 2. Fulminant hepatitis occurred in 28.6% of the cases, but the two groups did not differ significantly in terms of patient outcome, duration of hospitalization, ascites, and development of fulminant hepatitis. Adenovirus was detected in five cases (20.8%) in group 1, and one case co-infecting with hepatitis E virus in group 2. Herpes simplex virus 1/2, coxsackie virus, and parvovirus B19 were not detected in any case, while etiologies of 75% of the cases were still not confirmed. One out of the six adenovirus-infected patients died. The outcome significantly correlated with the severity of the liver disease.
Conclusion
This is the first report describing etiologies and characteristics of AHUE cases in Egypt, and interestingly, adenovirus was detected in adults. Further studies are required to determine the prevalence of this newly emerging viral hepatitis pathogens.
Collapse
|
5
|
Jalali S, Farhadi A, Rafiei Dehbidi G, Farjadian S, Sharifzadeh S, Ranjbaran R, Seyyedi N, Namdari S, Behzad-Behbahani A. The Pathogenic Aspects of Human Parvovirus B19 NS1 Protein in Chronic and Inflammatory Diseases. Interdiscip Perspect Infect Dis 2022; 2022:1639990. [PMID: 35707129 PMCID: PMC9192293 DOI: 10.1155/2022/1639990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/18/2022] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND The nonstructural protein (NS1) of human parvovirus B19 (hPVB19) is considered to be a double-edged sword in its pathogenesis. NS1 protein promotes cell death by apoptosis in erythroid-lineage cells and is also implicated in triggering and the progression of various inflammation and autoimmune disorders. OBJECTIVES We investigated the possible role of hPVB19 NS1 in the modulation of proinflammatory cytokines in nonpermissive HEK-293T cells. METHODS A plasmid containing the fully sequenced NS1 gene (pCMV6-AC-GFP-NS1) was transfected into HEK-293T cells. Transfection efficiency was assessed by fluorescent microscopy over time. Mock (pCMV6-AC-GFP) transfected cells were used as controls. The percentage of apoptotic cells was measured by flow cytometry at 24, 48, and 72 h posttransfection. Interleukin 6 (IL-6) mRNA, as a pleiotropic cytokine, was measured by real-time PCR. Furthermore, cellular supernatants were collected to determine the type and quantity of cytokines produced by mock- and NS1-transfected cells using flow cytometry. RESULTS Fold change in the expression level of IL-6 mRNA in transfected cells after 72 hr of incubation was found to be 3.01 when compared with mock-transfected cells; however, cell apoptosis did not happen over time. Also, the concentration of cytokines such as IL-2, IL-6, IL-9, IL-17A, IL-21, IL-22, interferon (IFN)-γ, and tumor necrosis factor α (TNF-α) increased in NS1-transfected cells. CONCLUSIONS Overall, our results indicated that proinflammatory cytokine levels had increased following the expression of hPVB19 NS1 in HEK-293T cells, consistent with a role for NS1 expression facilitating the upregulation of inflammatory reactions. Therefore, hPVB19 NS1 function may play a role in the progression of some chronic and inflammatory diseases.
Collapse
Affiliation(s)
- Sedigheh Jalali
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Biotechnology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Farhadi
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamreza Rafiei Dehbidi
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shirin Farjadian
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sedigheh Sharifzadeh
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Ranjbaran
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Noorossadat Seyyedi
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sepide Namdari
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Behzad-Behbahani
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Wang J, Wang Y, Li Y, Gao Y, Li Y, Jiang Z, Zhu G, Wang X. Reproduction and pathogenesis of short beak and dwarfish syndrome in Cherry Valley Pekin ducks infected with the rescued novel goose parvovirus. Virulence 2022; 13:844-858. [PMID: 35481463 PMCID: PMC9090291 DOI: 10.1080/21505594.2022.2071184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Since the outbreak of short beak and dwarfish syndrome (SBDS) in Cherry Valley Pekin ducks in China, novel goose parvovirus (NGPV) has been isolated. Till now, little is known about the NGPV pathogenesis toward Cherry Valley Pekin ducks. Besides, due to detection of duck circovirus co-infection in SBDS clinical cases, whether sole NGPV infection can reproduce all the typical symptoms of SBDS remains unclear. In this study, based on the NGPV isolate SDJN19, an infectious plasmid clone pJNm containing the entire SDJN19 genome was constructed. Transfection of pJNm in embryonated duck eggs resulted in generation of the infectious virus carrying the genetic marker, named rJNm. rJNm infection of 2-day-old Cherry Valley Pekin ducks reproduced all the typical signs of SBDS, including beak atrophy, tongue protrusion, and growth retardation. rJNm can infect Cherry Valley Pekin ducks through the horizontal transmission route, and the infected ducks exhibited the characteristic SBDS symptoms. A high level of serum precipitation antibodies (above 5log2) were induced in the surviving ducks, however, high viral loads were still detected in the duck organs, suggesting persistent NGPV infection in ducks. By incorporating the homologous Rep1 and VP1 gene from classical GPV, two chimeric viruses rJN-cVP1 and rJN-cRep1 were generated. Duck infection tests revealed that the non-structural protein Rep1 played a crucial role in the NGPV pathogenicity. The present result lays a solid foundation for further exploring how the Rep protein contributes to the NGPV pathogenesis.
Collapse
Affiliation(s)
- Jianye Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonosis, Yangzhou, Jiangsu, China
| | - Yu Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonosis, Yangzhou, Jiangsu, China
| | - Yonglin Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonosis, Yangzhou, Jiangsu, China
| | - Yuehua Gao
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Yufeng Li
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Zhiwei Jiang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonosis, Yangzhou, Jiangsu, China
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonosis, Yangzhou, Jiangsu, China
| | - Xiaobo Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonosis, Yangzhou, Jiangsu, China
| |
Collapse
|
7
|
Soto-Valerio IA, Cayetano-Cruz M, Valadez-García J, Guadarrama P, Méndez C, Bustos-Jaimes I. In vitro refolding of the structural protein VP1 of parvovirus B19 produces virus-like particles with functional VP1 unique region. Virology 2022; 570:57-66. [DOI: 10.1016/j.virol.2022.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/01/2022] [Accepted: 03/24/2022] [Indexed: 10/18/2022]
|
8
|
Arora R, Malla WA, Tyagi A, Mahajan S, Sajjanar B, Tiwari AK. Canine Parvovirus and Its Non-Structural Gene 1 as Oncolytic Agents: Mechanism of Action and Induction of Anti-Tumor Immune Response. Front Oncol 2021; 11:648873. [PMID: 34012915 PMCID: PMC8127782 DOI: 10.3389/fonc.2021.648873] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/30/2021] [Indexed: 12/15/2022] Open
Abstract
The exploration into the strategies for the prevention and treatment of cancer is far from complete. Apart from humans, cancer has gained considerable importance in animals because of increased awareness towards animal health and welfare. Current cancer treatment regimens are less specific towards tumor cells and end up harming normal healthy cells. Thus, a highly specific therapeutic strategy with minimal side effects is the need of the hour. Oncolytic viral gene therapy is one such specific approach to target cancer cells without affecting the normal cells of the body. Canine parvovirus (CPV) is an oncolytic virus that specifically targets and kills cancer cells by causing DNA damage, caspase activation, and mitochondrial damage. Non-structural gene 1 (NS1) of CPV, involved in viral DNA replication is a key mediator of cytotoxicity of CPV and can selectively cause tumor cell lysis. In this review, we discuss the oncolytic properties of Canine Parvovirus (CPV or CPV2), the structure of the NS1 protein, the mechanism of oncolytic action as well as role in inducing an antitumor immune response in different tumor models.
Collapse
Affiliation(s)
- Richa Arora
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Waseem Akram Malla
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Arpit Tyagi
- GB Pant University of Agriculture and Technology, Pantnagar, India
| | - Sonalika Mahajan
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Basavaraj Sajjanar
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Ashok Kumar Tiwari
- Division of Biological Standardisation, ICAR-Indian Veterinary Research Institute, Izatnagar, India.,ICAR - Central Avian Research Institute, Izatnagar, India
| |
Collapse
|
9
|
Chen S, Miao B, Chen N, Zhang X, Zhang X, Du Q, Huang Y, Tong D. A novel porcine parvovirus DNA-launched infectious clone carrying stable double labels as an effective genetic platform. Vet Microbiol 2019; 240:108502. [PMID: 31902505 DOI: 10.1016/j.vetmic.2019.108502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 11/04/2019] [Accepted: 11/04/2019] [Indexed: 10/25/2022]
Abstract
Porcine parvovirus (PPV) is one of the major pathogens causing reproductive failure of swine. However, its specific pathogenesis has not been fully elucidated. Infectious clone is a powerful tool for further studying the pathogenic mechanism of PPV. In the present study, a PPV infectious clone was constructed, and the clone carries His-tag and Flag-tag double-genetic marker at the end of the ns1 gene 3' terminal and vp1 gene 5' terminal, respectively. The PPV DNA fragment F1 (1-182) in 5' end and the other PPV DNA fragment F2 (4788-5074) in 3' end were synthesized and assembled to the lower copy plasmid to construct pKQLL(F1 + F2), while the PPV DNA genome as a template to amplify carrying tags sequence PPV middle DNA fragment F3 and F4 by introducing Flag and His tags sequence in primers. Subsequently, the fused fragment F3/F4 were cloned into the Stu I/Sna B I sites of pKQLL(F1 + F2) plasmid to assemble the complete full-length PPV DNA recombinant plasmids, named as pD-PPV. The pD-PPV was transfected into PK-15 cells to gain rescued PPV virus, designed as D-PPV. Moreover, D-PPV showed similar replicate capability and pathogenicity comparing to the wild-type parental PPV through in vitro and in vivo studies, and the double labels can effectively indicate the expression and localization of viral proteins. Finally, the rescued D-PPV was found to be a convenient tool for antiviral drug screening. These data indicated that the newly established reverse genetic system for PPV would be a useful tool for further studying the pathogenesis mechanisms of PPV, developing labeled vaccine and screening antiviral drug.
Collapse
Affiliation(s)
- Songbiao Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Bichen Miao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Nannan Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xuezhi Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xiujuan Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Qian Du
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yong Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Dewen Tong
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
10
|
Viral Nonstructural Protein 1 Induces Mitochondrion-Mediated Apoptosis in Mink Enteritis Virus Infection. J Virol 2019; 93:JVI.01249-19. [PMID: 31484746 DOI: 10.1128/jvi.01249-19] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 08/26/2019] [Indexed: 12/24/2022] Open
Abstract
Mink enteritis virus (MEV), an autonomous parvovirus, causes acute hemorrhagic enteritis in minks. The molecular pathogenesis of MEV infection has not been fully understood. In this study, we observed significantly increased apoptosis in the esophagus, small intestine, mesenteric lymph nodes, and kidney in minks experimentally infected with strain MEVB. In vitro infection of feline F81 cells with MEVB decreased cell viability and induced cell cycle arrest at G1 phase and apoptosis. By screening MEV nonstructural proteins (NS1 and NS2) and structural proteins (VP1 and VP2), we demonstrated that the MEV NS1 induced apoptosis in both F81 and human embryonic kidney 293T (HEK293T) cells, similar to that induced during MEV infection in minks. We found that the NS1 protein-induced apoptosis in HEK293T cells was mediated not by the death receptor but by the mitochondrial pathway, as demonstrated by mitochondrial depolarization, opening of mitochondrial transition pore, release of cytochrome c, and activation of caspase-9 and -3. Moreover, in NS1-transfected cells, we observed an increase of Bax expression and its translocation to the mitochondria, as well as an increased ratio of the Bax/Bcl-2, reactive oxygen species (ROS) production, and activated p38 mitogen-activated protein kinase (MAPK) and p53. Taken together, our results demonstrated that MEV induces apoptosis through activation of p38 MAPK and the p53-mediated mitochondrial apoptotic pathway induced by NS1 protein, which sheds light on the molecular pathogenesis of MEV infection.IMPORTANCE MEV causes fatal hemorrhagic enteritis in minks. Apoptosis is a cellular mechanism that effectively sacrifices virus-infected cells to maintain homeostasis between the virus and host. In this study, we demonstrated that MEV induces apoptosis both in vivo and in vitro Mechanistically, the viral large nonstructural protein NS1 activates p38 MAPK, which leads p53 phosphorylation to mediate the mitochondrial apoptotic pathway but not the death receptor-mediated apoptotic pathway. This is the first report to uncover the mechanism underlying MEV-induced apoptosis.
Collapse
|
11
|
Establishment of a Parvovirus B19 NS1-Expressing Recombinant Adenoviral Vector for Killing Megakaryocytic Leukemia Cells. Viruses 2019; 11:v11090820. [PMID: 31487941 PMCID: PMC6783920 DOI: 10.3390/v11090820] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/25/2019] [Accepted: 09/03/2019] [Indexed: 01/21/2023] Open
Abstract
Adenoviral viral vectors have been widely used for gene-based therapeutics, but commonly used serotype 5 shows poor transduction efficiency into hematopoietic cells. In this study, we aimed to generate a recombinant adenovirus serotype 5 (rAd5) vector that has a high efficiency in gene transfer to megakaryocytic leukemic cells with anticancer potential. We first modified the rAd5 backbone vector with a chimeric fiber gene of Ad5 and Ad11p (rAd5F11p) to increase the gene delivery efficiency. Then, the nonstructural protein NS1 of human parvovirus B19 (B19V), which induces cell cycle arrest at the G2/M phase and apoptosis, was cloned into the adenoviral shuttle vector. As the expression of parvoviral NS1 protein inhibited Ad replication and production, we engineered the cytomegalovirus (CMV) promoter, which governs NS1 expression, with two tetracycline operator elements (TetO2). Transfection of the rAd5F11p proviral vectors in Tet repressor-expressing T-REx-293 cells produced rAd in a large quantity. We further evaluated this chimeric rAd5F11p vector in gene delivery in human leukemic cells, UT7/Epo-S1. Strikingly, the novel rAd5F11p-B19NS1-GFP vector, exhibited a transduction efficiency much higher than the original vector, rAd5-B19NS1-GFP, in UT7/Epo-S1 cells, in particular, when they were transduced at a relatively low multiplicity of infection (100 viral genome copies/cell). After the transduction of rAd5F11p-B19NS1-GFP, over 90% of the UT7/Epo-S1 cells were arrested at the G2/M phase, and approximately 40%–50% of the cells were undergoing apoptosis, suggesting the novel rAd5F11P-B19NS1-GFP vector holds a promise in therapeutic potentials of megakaryocytic leukemia.
Collapse
|
12
|
Puttaraksa K, Pirttinen H, Karvonen K, Nykky J, Naides SJ, Gilbert L. Parvovirus B19V Nonstructural Protein NS1 Induces Double-Stranded Deoxyribonucleic Acid Autoantibodies and End-Organ Damage in Nonautoimmune Mice. J Infect Dis 2019; 219:1418-1429. [PMID: 30346568 PMCID: PMC6468957 DOI: 10.1093/infdis/jiy614] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 10/17/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Viral infection is implicated in development of autoimmunity. Parvovirus B19 (B19V) nonstructural protein, NS1, a helicase, covalently modifies self double-stranded deoxyribonucleic acid (dsDNA) and induces apoptosis. This study tested whether resulting apoptotic bodies (ApoBods) containing virally modified dsDNA could induce autoimmunity in an animal model. METHODS BALB/c mice were inoculated with (1) pristane-induced, (2) B19V NS1-induced, or (3) staurosporine-induced ApoBods. Serum was tested for dsDNA autoantibodies by Crithidia luciliae staining and enzyme-linked immunosorbent assay. Brain, heart, liver, and kidney pathology was examined. Deposition of self-antigens in glomeruli was examined by staining with antibodies to dsDNA, histones H1 and H4, and TATA-binding protein. RESULTS The B19V NS1-induced ApoBod inoculation induced dsDNA autoantibodies in a dose-dependent fashion. Histopathological features of immune-mediated organ damage were evident in pristane-induced and NS1-induced ApoBod groups; severity scores were higher in these groups than in staurosporine-treated groups. Tissue damage was dependent on NS1-induced ApoBod dose. Nucleosomal antigens were deposited in target tissue from pristane-induced and NS1-induced ApoBod inoculated groups, but not in the staurosporine-induced ApoBod inoculated group. CONCLUSIONS This study demonstrated proof of principle in an animal model that virally modified dsDNA in apoptotic bodies could break tolerance to self dsDNA and induce dsDNA autoantibodies and end-organ damage.
Collapse
Affiliation(s)
- Kanoktip Puttaraksa
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Finland
| | - Heidi Pirttinen
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Finland
| | - Kati Karvonen
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Finland
| | - Jonna Nykky
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Finland
| | - Stanley J Naides
- Quest Diagnostics Nichols Institute, Immunology R&D, San Juan Capistrano, California
| | - Leona Gilbert
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Finland
| |
Collapse
|
13
|
Pabisiak K, Stępniewska J, Ciechanowski K. Pure Red Cell Aplasia After Kidney Transplantation: Parvovirus B19 Culprit or Coincidence? Ann Transplant 2019; 24:123-131. [PMID: 30833537 PMCID: PMC6419532 DOI: 10.12659/aot.913663] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Anemia is present even in long-term observation after kidney transplantation. Observational study results indicate the presence of chronic post-transplantation anemia in 1 in 3 recipients. An extreme form of erythroid line dysfunction is pure red cell aplasia (PRCA). It may be caused by immunosuppressive treatment per se or a side effect, opportunistic pathogen activation. Parvovirus B19 (PV B19) infection is quite likely the cause of refractory normocytic anemia in immunocompromised patients. Case Report In this case report we discuss biological and clinical features of this phenomenon and the treatment strategies, based on 2 PRCA cases in kidney transplant recipients. Additionally, a systematic review of published reports of PV B19 related PRCA in kidney recipients is presented. Conclusions PV replication should be ruled out in cases of persistent and/or refractory anemia after kidney transplantation. The established first-line treatment of PRCA is passive immunization. Taking into account cost effectiveness, a decrease in immunosuppression load is reasonable under careful control of allograft function.
Collapse
Affiliation(s)
- Krzysztof Pabisiak
- Department of Nephrology Transplantation and Internal Medicine, Pomeranian Medical University, Szczecin, Poland
| | - Joanna Stępniewska
- Department of Nephrology Transplantation and Internal Medicine, Pomeranian Medical University, Szczecin, Poland
| | - Kazimierz Ciechanowski
- Department of Nephrology Transplantation and Internal Medicine, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
14
|
Ganaie SS, Qiu J. Recent Advances in Replication and Infection of Human Parvovirus B19. Front Cell Infect Microbiol 2018; 8:166. [PMID: 29922597 PMCID: PMC5996831 DOI: 10.3389/fcimb.2018.00166] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/02/2018] [Indexed: 11/28/2022] Open
Abstract
Parvovirus B19 (B19V) is pathogenic to humans and causes bone marrow failure diseases and various other inflammatory disorders. B19V infection exhibits high tropism for human erythroid progenitor cells (EPCs) in the bone marrow and fetal liver. The exclusive restriction of B19V replication to erythroid lineage cells is partly due to the expression of receptor and co-receptor(s) on the cell surface of human EPCs and partly depends on the intracellular factors essential for virus replication. We first summarize the latest developments in the viral entry process and the host cellular factors or pathways critical for B19V replication. We discuss the role of hypoxia, erythropoietin signaling and STAT5 activation in the virus replication. The B19V infection-induced DNA damage response (DDR) and cell cycle arrest at late S-phase are two key events that promote B19V replication. Lately, the virus infection causes G2 arrest, followed by the extensive cell death of EPCs that leads to anemia. We provide the current understanding of how B19V exploits the cellular resources and manipulate pathways for efficient virus replication. B19V encodes a single precursor mRNA (pre-mRNA), which undergoes alternate splicing and alternative polyadenylation to generate at least 12 different species of mRNA transcripts. The post-transcriptional processing of B19V pre-mRNA is tightly regulated through cis-acting elements and trans-acting factors flanking the splice donor or acceptor sites. Overall, in this review, we focus on the recent advances in the molecular virology and pathogenesis of B19V infection.
Collapse
Affiliation(s)
- Safder S Ganaie
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Jianming Qiu
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
15
|
Brennan PN, Donnelly MC, Simpson KJ. Systematic review: non A-E, seronegative or indeterminate hepatitis; what is this deadly disease? Aliment Pharmacol Ther 2018; 47:1079-1091. [PMID: 29468698 DOI: 10.1111/apt.14566] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/20/2017] [Accepted: 01/22/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND A significant proportion of cases of acute liver failure (ALF) do not have an identifiable cause; so called "non A-E," "non A, non B, non C," "seronegative" or "indeterminate" hepatitis. However, this entity is clinically not well described. AIM To collate the known incidence and outcomes in indeterminate hepatitis. This systematic review sought to identify potential aetiologies that ought to be considered, and identify likely future objectives in classification and treatment strategies for indeterminate hepatitis. METHODS Literature review to determine aetiological factors, prevalence and outcomes relating to indeterminate hepatitis. RESULTS There is significant heterogeneity within the reported cases of indeterminate hepatitis in the literature. Some of the potential infective aetiologies which are reviewed here include: parvovirus B19 (PVB19), herpes simplex virus (HSV), Toga-Like Virus and the Annelloviridae (including SEN-V). Interestingly, this condition predominately affects middle aged women, with subacute progression of the liver failure. In addition, the prognosis of indeterminate hepatitis is poor, with reduced spontaneous survival compared with other causes of acute liver failure and increased need for emergency liver transplantation. CONCLUSIONS Whilst various pathological processes have been implicated in the development of indeterminate hepatitis, the specific cause remains elusive. There is an urgent need for general consensus on a specific definition and exclusion of confounding aetiologies with coordinated multicentre investigation of this rare condition to identify aetiology and develop therapies to reduce the significant mortality and need for emergency liver transplantation associated with this condition.
Collapse
Affiliation(s)
- P N Brennan
- Department of Hepatology and Scottish Liver Transplant Unit, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - M C Donnelly
- Department of Hepatology and Scottish Liver Transplant Unit, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - K J Simpson
- Department of Hepatology and Scottish Liver Transplant Unit, Royal Infirmary of Edinburgh, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
16
|
Liu P, Chen S, Wang M, Cheng A. The role of nuclear localization signal in parvovirus life cycle. Virol J 2017; 14:80. [PMID: 28410597 PMCID: PMC5391597 DOI: 10.1186/s12985-017-0745-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/29/2017] [Indexed: 12/30/2022] Open
Abstract
Parvoviruses are small, non-enveloped viruses with an approximately 5.0 kb, single-stranded DNA genome. Usually, the parvovirus capsid gene contains one or more nuclear localization signals (NLSs), which are required for guiding the virus particle into the nucleus through the nuclear pore. However, several classical NLSs (cNLSs) and non-classical NLSs (ncNLSs) have been identified in non-structural genes, and the ncNLSs can also target non-structural proteins into the nucleus. In this review, we have summarized recent research findings on parvovirus NLSs. The capsid protein of the adeno-associated virus has four potential nuclear localization sequences, named basic region 1 (BR), BR2, BR3 and BR4. BR3 was identified as an NLS by fusing it with green fluorescent protein. Moreover, BR3 and BR4 are required for infectivity and virion assembly. In Protoparvovirus, the canine parvovirus has a common cNLS located in the VP1 unique region, similar to parvovirus minute virus of mice (MVM) and porcine parvovirus. Moreover, an ncNLS is found in the C-terminal region of MVM VP1/2. Parvovirus B19 also contains an ncNLS in the C-terminal region of VP1/2, which is essential for the nuclear transport of VP1/VP2. Approximately 1 or 2 cNLSs and 1 ncNLS have been reported in the non-structural protein of bocaviruses. Understanding the role of the NLS in the process of parvovirus infection and its mechanism of nuclear transport will contribute to the development of therapeutic vaccines and novel antiviral medicines.
Collapse
Affiliation(s)
- Peng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu, Sichuan, 611130, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu, Sichuan, 611130, China. .,Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, 611130, China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China.
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu, Sichuan, 611130, China.,Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu, Sichuan, 611130, China. .,Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, 611130, China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
17
|
Abstract
Parvovirus B19 (B19V) and human bocavirus 1 (HBoV1), members of the large Parvoviridae family, are human pathogens responsible for a variety of diseases. For B19V in particular, host features determine disease manifestations. These viruses are prevalent worldwide and are culturable in vitro, and serological and molecular assays are available but require careful interpretation of results. Additional human parvoviruses, including HBoV2 to -4, human parvovirus 4 (PARV4), and human bufavirus (BuV) are also reviewed. The full spectrum of parvovirus disease in humans has yet to be established. Candidate recombinant B19V vaccines have been developed but may not be commercially feasible. We review relevant features of the molecular and cellular biology of these viruses, and the human immune response that they elicit, which have allowed a deep understanding of pathophysiology.
Collapse
Affiliation(s)
- Jianming Qiu
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | | | - Neal S Young
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
18
|
Sanchez JL, Romero Z, Quinones A, Torgeson KR, Horton NC. DNA Binding and Cleavage by the Human Parvovirus B19 NS1 Nuclease Domain. Biochemistry 2016; 55:6577-6593. [PMID: 27809499 DOI: 10.1021/acs.biochem.6b00534] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Infection with human parvovirus B19 (B19V) has been associated with a myriad of illnesses, including erythema infectiosum (Fifth disease), hydrops fetalis, arthropathy, hepatitis, and cardiomyopathy, and also possibly the triggering of any number of different autoimmune diseases. B19V NS1 is a multidomain protein that plays a critical role in viral replication, with predicted nuclease, helicase, and gene transactivation activities. Herein, we investigate the biochemical activities of the nuclease domain (residues 2-176) of B19V NS1 (NS1-nuc) in sequence-specific DNA binding of the viral origin of replication sequences, as well as those of promoter sequences, including the viral p6 and the human p21, TNFα, and IL-6 promoters previously identified in NS1-dependent transcriptional transactivation. NS1-nuc was found to bind with high cooperativity and with multiple (five to seven) copies to the NS1 binding elements (NSBE) found in the viral origin of replication and the overlapping viral p6 promoter DNA sequence. NS1-nuc was also found to bind cooperatively with at least three copies to the GC-rich Sp1 binding sites of the human p21 gene promoter. Only weak or nonspecific binding of NS1-nuc to the segments of the TNFα and IL-6 promoters was found. Cleavage of DNA by NS1-nuc occurred at the expected viral sequence (the terminal resolution site), but only in single-stranded DNA, and NS1-nuc was found to covalently attach to the 5' end of the DNA at the cleavage site. Off-target cleavage by NS1-nuc was also identified.
Collapse
Affiliation(s)
- Jonathan L Sanchez
- Department of Chemistry and Biochemistry, University of Arizona , Tucson, Arizona 85721, United States
| | - Zachary Romero
- Department of Chemistry and Biochemistry, University of Arizona , Tucson, Arizona 85721, United States.,Undergraduate Research Opportunities Consortium-Minorities Health Disparity Program (UROC-MHD), University of Arizona Graduate College, University of Arizona , Tucson, Arizona 85721, United States
| | - Angelica Quinones
- Department of Chemistry and Biochemistry, University of Arizona , Tucson, Arizona 85721, United States.,Undergraduate Research Opportunities Consortium-Minorities Health Disparity Program (UROC-MHD), University of Arizona Graduate College, University of Arizona , Tucson, Arizona 85721, United States.,BUILDing SCHOLARS Program, University of Texas at El Paso , El Paso, Texas 79968, United States
| | - Kristiane R Torgeson
- Department of Chemistry and Biochemistry, University of Arizona , Tucson, Arizona 85721, United States
| | - Nancy C Horton
- Department of Chemistry and Biochemistry, University of Arizona , Tucson, Arizona 85721, United States
| |
Collapse
|
19
|
Garigliany M, Gilliaux G, Jolly S, Casanova T, Bayrou C, Gommeren K, Fett T, Mauroy A, Lévy E, Cassart D, Peeters D, Poncelet L, Desmecht D. Feline panleukopenia virus in cerebral neurons of young and adult cats. BMC Vet Res 2016; 12:28. [PMID: 26895627 PMCID: PMC4759964 DOI: 10.1186/s12917-016-0657-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 02/15/2016] [Indexed: 12/16/2022] Open
Abstract
Background Perinatal infections with feline panleukopenia virus (FPV) have long been known to be associated with cerebellar hypoplasia in kittens due to productive infection of dividing neuroblasts. FPV, like other parvoviruses, requires dividing cells to replicate which explains the usual tropism of the virus for the digestive tract, lymphoid tissues and bone marrow in older animals. Results In this study, the necropsy and histopathological analyses of a series of 28 cats which died from parvovirus infection in 2013 were performed. Infections were confirmed by real time PCR and immunohistochemistry in several organs. Strikingly, while none of these cats showed cerebellar atrophy or cerebellar positive immunostaining, some of them, including one adult, showed a bright positive immunostaining for viral antigens in cerebral neurons (diencephalon). Furthermore, infected neurons were negative by immunostaining for p27Kip1, a cell cycle regulatory protein, while neighboring, uninfected, neurons were positive, suggesting a possible re-entry of infected neurons into the mitotic cycle. Next-Generation Sequencing and PCR analyses showed that the virus infecting cat brains was FPV and presented a unique substitution in NS1 protein sequence. Given the role played by this protein in the control of cell cycle and apoptosis in other parvoviral species, it is tempting to hypothesize that a cause-to-effect between this NS1 mutation and the capacity of this FPV strain to infect neurons in adult cats might exist. Conclusions This study provides the first evidence of infection of cerebral neurons by feline panleukopenia virus in cats, including an adult. A possible re-entry into the cell cycle by infected neurons has been observed. A mutation in the NS1 protein sequence of the FPV strain involved could be related to its unusual cellular tropism. Further research is needed to clarify this point.
Collapse
Affiliation(s)
- Mutien Garigliany
- Department of Morphology and Pathology, University of Liège, Liège, Belgium.
| | - Gautier Gilliaux
- Department of Morphology and Pathology, University of Liège, Liège, Belgium.
| | - Sandra Jolly
- Department of Morphology and Pathology, University of Liège, Liège, Belgium.
| | - Tomas Casanova
- Department of Morphology and Pathology, University of Liège, Liège, Belgium.
| | - Calixte Bayrou
- Department of Morphology and Pathology, University of Liège, Liège, Belgium.
| | - Kris Gommeren
- Department of Clinical Sciences, University of Liège, Liège, Belgium.
| | - Thomas Fett
- Department of Infectious and Parasitic Diseases, Centre for Fundamental and Applied Research for Animals & Health, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium.
| | - Axel Mauroy
- Department of Infectious and Parasitic Diseases, Centre for Fundamental and Applied Research for Animals & Health, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium.
| | - Etienne Lévy
- Department of Morphology and Pathology, University of Liège, Liège, Belgium.
| | - Dominique Cassart
- Department of Morphology and Pathology, University of Liège, Liège, Belgium.
| | - Dominique Peeters
- Department of Clinical Sciences, University of Liège, Liège, Belgium.
| | - Luc Poncelet
- Laboratory of Anatomy, Biomechanics and Organogenesis, Faculty of Medicine, Free University of Brussels, Brussels, Belgium.
| | - Daniel Desmecht
- Department of Morphology and Pathology, University of Liège, Liège, Belgium.
| |
Collapse
|
20
|
Zhao X, Xiang H, Bai X, Fei N, Huang Y, Song X, Zhang H, Zhang L, Tong D. Porcine parvovirus infection activates mitochondria-mediated apoptotic signaling pathway by inducing ROS accumulation. Virol J 2016; 13:26. [PMID: 26880103 PMCID: PMC4755023 DOI: 10.1186/s12985-016-0480-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 02/01/2016] [Indexed: 01/06/2023] Open
Abstract
Background Porcine parvovirus (PPV) infection primarily causes reproductive failure of pregnant swine and results in host cell death. Boars, as an important disseminator, shed PPV to sows via semen. PPV infects and numerously replicates in boar testicle, which results in damage of swine testicle in vivo. Reactive oxygen species (ROS), a mediator of cell apoptosis, play a crucial role in the mitochondria apoptotic pathway. However, whether PPV infection induces ST cells apoptosis and ROS accumulation is still unclear. Methods To determine the effects of PPV infection on the apoptosis, we detected morphological changes, DNA ladder, activities of caspases, and expression of PARP in PPV-infected ST cells. Moreover, aiming to investigate the effect of PPV infection on the mitochondrial apoptotic pathway and ROS accumulation, we detected the Δψm, apoptosis-related genes, and ROS. To investigate the role of ROS in the process of PPV-induced apoptosis, the ST cells were infected with PPV and treated with the ROS antioxidants. The ROS level was measured using Reactive Oxygen Species Assay Kit and the Δψm, expression level of Bcl-2, translocation of Bax, and redistribution of mitochondria cytochrome c were tested. Results In this study, we demonstrated that PPV infection could induce apoptosis that was characterized by morphological changes, DNA fragmentation and activation of caspases. Moreover, PPV infection suppressed Bcl-2 expression, enhanced Bax expression and translocation to mitochondria, decreased the mitochondrial transmembrane potential, and triggered the release of cytochrome c, which caused the subsequent activation of caspase-9 and caspase-3 and initiation of apoptosis. However, during the process of PPV-induced apoptosis, the protein levels of Fas and FasL were not affected. Further studies showed that PPV infection caused ROS accumulation. Inhibition of ROS could reduce mitochondrial transmembrane potential and could significantly block ST cells apoptosis via suppressing Bax translocation, cytochrome c and caspase-3 activation. Conclusions All these results suggest that PPV-induced ROS accumulation mediates apoptosis in ST cells, which provided theoretical basis for the molecular pathogenesis of PPV infection.
Collapse
Affiliation(s)
- Xiaomin Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Hailing Xiang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Xiaoyuan Bai
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Naijiao Fei
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Yong Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Xiangjun Song
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Hongling Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Liang Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Dewen Tong
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
21
|
Gupta SK, Sahoo AP, Rosh N, Gandham RK, Saxena L, Singh AK, Harish DR, Tiwari AK. Canine parvovirus NS1 induced apoptosis involves mitochondria, accumulation of reactive oxygen species and activation of caspases. Virus Res 2015; 213:46-61. [PMID: 26555166 DOI: 10.1016/j.virusres.2015.10.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/08/2015] [Accepted: 10/14/2015] [Indexed: 12/27/2022]
Abstract
The non-structural protein (NS1) of parvoviruses plays an important role in viral replication and is thought to be responsible for inducing cell death. However, the detailed mechanism and the pathways involved in canine parvovirus type 2 NS1 (CPV2.NS1) induced apoptosis are not yet known. In the present study, we report that expression of CPV2.NS1 in HeLa cells arrests cells in G1 phase of the cell cycle and the apoptosis is mitochondria mediated as indicated by mitochondrial depolarization, release of cytochrome-c and activation of caspase 9. Treatment of cells with caspase 9 inhibitor Z-LEHD-FMK reduced the induction of apoptosis significantly. We also report that expression of CPV2.NS1 causes accumulation of reactive oxygen species (ROS) and treatment with an antioxidant reduces the ROS levels and the extent of apoptosis. Our results provide an insight into the mechanism of CPV2.NS1 induced apoptosis, which might prove valuable in developing NS1 protein as an oncolytic agent.
Collapse
Affiliation(s)
- Shishir Kumar Gupta
- Molecular Biology Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar-243122, India.
| | - Aditya Prasad Sahoo
- Molecular Biology Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar-243122, India
| | - Nighil Rosh
- Molecular Biology Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar-243122, India
| | - Ravi Kumar Gandham
- Molecular Biology Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar-243122, India
| | - Lovleen Saxena
- Molecular Biology Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar-243122, India
| | - Arvind Kumar Singh
- Molecular Biology Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar-243122, India
| | - D R Harish
- Molecular Biology Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar-243122, India
| | - Ashok Kumar Tiwari
- Molecular Biology Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar-243122, India.
| |
Collapse
|
22
|
Page C, François C, Goëb V, Duverlie G. Human parvovirus B19 and autoimmune diseases. Review of the literature and pathophysiological hypotheses. J Clin Virol 2015; 72:69-74. [DOI: 10.1016/j.jcv.2015.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/04/2015] [Accepted: 09/22/2015] [Indexed: 10/23/2022]
|
23
|
Tu M, Liu F, Chen S, Wang M, Cheng A. Role of capsid proteins in parvoviruses infection. Virol J 2015; 12:114. [PMID: 26239432 PMCID: PMC4524367 DOI: 10.1186/s12985-015-0344-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 07/15/2015] [Indexed: 11/30/2022] Open
Abstract
The parvoviruses are widely spread in many species and are among the smallest DNA animal viruses. The parvovirus is composed of a single strand molecule of DNA wrapped into an icosahedral capsid. In a viral infection, the massy capsid participates in the entire viral infection process, which is summarized in this review. The capsid protein VP1 is primarily responsible for the infectivity of the virus, and the nuclear localization signal (NLS) of the VP1 serves as a guide to assist the viral genome in locating the nucleus. The dominant protein VP2 provides an “anti-receptor”, which interacts with the cellular receptor and leads to the further internalization of virus, and, the N-terminal of VP2 also cooperates with the VP1 to prompt the process of nucleus translocation. Additionally, a cleavage protein VP3 is a part of the capsid, which exists only in several members of the parvovirus family; however, the function of this cleavage protein remains to be fully determined. Parvoviruses can suffer from the extreme environmental conditions such as low pH, or even escape from the recognition of pattern recognition receptors (PRRs), due to the protection of the stable capsid, which is thought to be an immune escape mechanism. The applications of the capsid proteins to the screening and the treatment of diseases are also discussed. The processes of viral infection should be noted, because understanding the virus-host interactions will contribute to the development of therapeutic vaccines.
Collapse
Affiliation(s)
- Mengyu Tu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China.
| | - Fei Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China.
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China. .,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China.
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China. .,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China.
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China. .,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China.
| |
Collapse
|
24
|
Gupta SK, Gandham RK, Sahoo AP, Tiwari AK. Viral genes as oncolytic agents for cancer therapy. Cell Mol Life Sci 2015; 72:1073-94. [PMID: 25408521 PMCID: PMC11113997 DOI: 10.1007/s00018-014-1782-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 10/29/2014] [Accepted: 11/13/2014] [Indexed: 12/20/2022]
Abstract
Many viruses have the ability to modulate the apoptosis, and to accomplish it; viruses encode proteins which specifically interact with the cellular signaling pathways. While some viruses encode proteins, which inhibit the apoptosis or death of the infected cells, there are viruses whose encoded proteins can kill the infected cells by multiple mechanisms, including apoptosis. A particular class of these viruses has specific gene(s) in their genomes which, upon ectopic expression, can kill the tumor cells selectively without affecting the normal cells. These genes and their encoded products have demonstrated great potential to be developed as novel anticancer therapeutic agents which can specifically target and kill the cancer cells leaving the normal cells unharmed. In this review, we will discuss about the viral genes having specific cancer cell killing properties, what is known about their functioning, signaling pathways and their therapeutic applications as anticancer agents.
Collapse
Affiliation(s)
- Shishir Kumar Gupta
- Molecular Biology Lab, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122 UP India
| | - Ravi Kumar Gandham
- Molecular Biology Lab, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122 UP India
| | - A. P. Sahoo
- Molecular Biology Lab, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122 UP India
| | - A. K. Tiwari
- Molecular Biology Lab, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122 UP India
| |
Collapse
|
25
|
Nykky J, Vuento M, Gilbert L. Role of mitochondria in parvovirus pathology. PLoS One 2014; 9:e86124. [PMID: 24465910 PMCID: PMC3897641 DOI: 10.1371/journal.pone.0086124] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 12/09/2013] [Indexed: 01/06/2023] Open
Abstract
Proper functioning of the mitochondria is crucial for the survival of the cell. Viruses are able to interfere with mitochondrial functions as they infect the host cell. Parvoviruses are known to induce apoptosis in infected cells, but the role of the mitochondria in parvovirus induced cytopathy is only partially known. Here we demonstrate with confocal and electron microscopy that canine parvovirus (CPV) associated with the mitochondrial outer membrane from the onset of infection. During viral entry a transient depolarization of the mitochondrial transmembrane potential and increase in ROS level was detected. Subsequently, mitochondrial homeostasis was normalized shortly, as detected by repolarization of the mitochondrial membrane and decrease of ROS. Indeed, activation of cell survival signalling through ERK1/2 cascade was observed early in CPV infected cells. At 12 hours post infection, concurrent with the expression of viral non-structural protein 1, damage to the mitochondrial structure and depolarization of its membrane were apparent. Results of this study provide additional insight of parvovirus pathology and also more general information of virus-mitochondria association.
Collapse
Affiliation(s)
- Jonna Nykky
- Department of Biological and Environmental Science, and Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Matti Vuento
- Department of Biological and Environmental Science, and Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Leona Gilbert
- Department of Biological and Environmental Science, and Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
- * E-mail:
| |
Collapse
|
26
|
Saxena L, Kumar GR, Saxena S, Chaturvedi U, Sahoo AP, Singh LV, Santra L, Palia SK, Desai GS, Tiwari AK. Apoptosis induced by NS1 gene of Canine Parvovirus-2 is caspase dependent and p53 independent. Virus Res 2013; 173:426-30. [PMID: 23416147 DOI: 10.1016/j.virusres.2013.01.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 01/27/2013] [Accepted: 01/28/2013] [Indexed: 12/13/2022]
Abstract
Apoptosis is programmed cell death that normally occurs during development and aging in multicellular animals. Apoptosis also occurs as a defense mechanism against disease or harmful external agents. It can be initiated by a variety of stimuli including viruses and viral proteins. Canine parvovirus type 2 (CPV-2) that causes acute disease in dogs has been found to induce cell cycle arrest and DNA damage leading to cellular lysis. Though non structural protein 1 (NS1) of many parvoviruses has been found to be apoptotic, no report on the apoptotic potential of NS1 of CPV-2 (CPV-2.NS1) exists. In this study, we evaluated the apoptotic potential of CPV-2.NS1 in HeLa cells. CPV-2.NS1 has been found to induce apoptosis which was evident through characteristic DNA fragmentation, increase in hypodiploid cell count, phosphatidyl serine translocation and activation of caspase-3. Increase in caspase-3 activity and no change in p53 activity with time in CPV-2.NS1 expressing HeLa cells showed the induction of apoptosis to be caspase dependent and p53 independent.
Collapse
Affiliation(s)
- Lovleen Saxena
- Molecular Biology Lab, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Thammasri K, Rauhamäki S, Wang L, Filippou A, Kivovich V, Marjomäki V, Naides SJ, Gilbert L. Human parvovirus B19 induced apoptotic bodies contain altered self-antigens that are phagocytosed by antigen presenting cells. PLoS One 2013; 8:e67179. [PMID: 23776709 PMCID: PMC3680405 DOI: 10.1371/journal.pone.0067179] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 05/15/2013] [Indexed: 12/03/2022] Open
Abstract
Human parvovirus B19 (B19V) from the erythrovirus genus is known to be a pathogenic virus in humans. Prevalence of B19V infection has been reported worldwide in all seasons, with a high incidence in the spring. B19V is responsible for erythema infectiosum (fifth disease) commonly seen in children. Its other clinical presentations include arthralgia, arthritis, transient aplastic crisis, chronic anemia, congenital anemia, and hydrops fetalis. In addition, B19V infection has been reported to trigger autoimmune diseases such as systemic lupus erythematosus and rheumatoid arthritis. However, the mechanisms of B19V participation in autoimmunity are not fully understood. B19V induced chronic disease and persistent infection suggests B19V can serve as a model for viral host interactions and the role of viruses in the pathogenesis of autoimmune diseases. Here we investigate the involvement of B19V in the breakdown of immune tolerance. Previously, we demonstrated that the non-structural protein 1 (NS 1) of B19V induces apoptosis in non-permissive cells lines and that this protein can cleave host DNA as well as form NS1-DNA adducts. Here we provide evidence that through programmed cell death, apoptotic bodies (ApoBods) are generated by B19V NS1 expression in a non-permissive cell line. Characterization of purified ApoBods identified potential self-antigens within them. In particular, signature self-antigens such as Smith, ApoH, DNA, histone H4 and phosphatidylserine associated with autoimmunity were present in these ApoBods. In addition, when purified ApoBods were introduced to differentiated macrophages, recognition, engulfment and uptake occurred. This suggests that B19V can produce a source of self-antigens for immune cell processing. The results support our hypothesis that B19V NS1-DNA adducts, and nucleosomal and lysosomal antigens present in ApoBods created in non-permissive cell lines, are a source of self-antigens.
Collapse
Affiliation(s)
- Kanoktip Thammasri
- Department of Biological and Environmental Sciences and Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Sanna Rauhamäki
- Department of Biological and Environmental Sciences and Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Liping Wang
- Department of Biological and Environmental Sciences and Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Artemis Filippou
- Department of Biological and Environmental Sciences and Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Violetta Kivovich
- Pennsylvania State College of Medicine/Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - Varpu Marjomäki
- Department of Biological and Environmental Sciences and Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Stanley J. Naides
- Quest Diagnostics Nichols Institute, San Juan Capistrano, California, United States of America
| | - Leona Gilbert
- Department of Biological and Environmental Sciences and Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
- * E-mail:
| |
Collapse
|
28
|
|
29
|
5-Phenylselenyl- and 5-methylselenyl-methyl-2'-deoxyuridine induce oxidative stress, DNA damage, and caspase-2-dependent apoptosis in cancer cells. Apoptosis 2012; 17:200-16. [PMID: 22002103 DOI: 10.1007/s10495-011-0665-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In the present study, we investigated the signaling pathways implicated in the induction of apoptosis by two modified nucleosides, 5-phenylselenyl-methyl-2'-deoxyuridine (PhSe-T) and 5-methylselenyl-methyl-2'-deoxyuridine (MeSe-T), using human cancer cell lines. The induction of apoptosis was associated with proteolytic activation of caspase-3 and -9, PARP cleavage, and decreased levels of IAP family members, including c-IAP-1 and c-IAP-2, but had no effect on XIAP and survivin. PhSe-T and MeSe-T also enhanced the activities of caspase-2 and -8, Bid cleavage, and the conformational activation of Bax. Additionally, nucleoside derivative-induced apoptosis was inhibited by the selective inhibitors of caspase-2, -3, -8, and -9 and also by si-RNAs against caspase-2, -3, -8, and -9; however, inhibition of caspase-2 and -3 was more effective at preventing apoptosis than inhibition of caspase-8 and -9. Moreover, the inhibition of caspase-2 activation by the pharmacological inhibitor z-VDVAD-fmk or by the knockdown of protein expression using siRNA suppressed nucleoside derivative-induced caspase-3 activation, but not vice versa. PhSe-T and MeSe-T also induced a Δψ(m) loss via a CsA-insensitive mechanism, ROS production, and DNA damage, including strand breaks. Moreover, ROS scavengers such as NAC, tiron, and quercetin inhibited nucleoside derivative-induced ROS generation and apoptosis by blocking the sequential activation of caspase-2 and -3, indicating the role of ROS in caspase-2-mediated apoptosis. Taken together, these results indicate that caspase-2 acts upstream of caspase-3 and that caspase-2 functions in response to DNA damage in both PhSe-T- and MeSe-T-induced apoptosis. Our results also suggest that ROS are critical regulators of the sequential activation of caspase-2 and -3 in nucleoside derivative-treated cancer cells.
Collapse
|
30
|
Kivovich V, Gilbert L, Vuento M, Naides SJ. The putative metal coordination motif in the endonuclease domain of human Parvovirus B19 NS1 is critical for NS1 induced S phase arrest and DNA damage. Int J Biol Sci 2011; 8:79-92. [PMID: 22211107 PMCID: PMC3248650 DOI: 10.7150/ijbs.8.79] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 11/02/2011] [Indexed: 12/14/2022] Open
Abstract
The non-structural proteins (NS) of the parvovirus family are highly conserved multi-functional molecules that have been extensively characterized and shown to be integral to viral replication. Along with NTP-dependent helicase activity, these proteins carry within their sequences domains that allow them to bind DNA and act as nucleases in order to resolve the concatameric intermediates developed during viral replication. The parvovirus B19 NS1 protein contains sequence domains highly similar to those previously implicated in the above-described functions of NS proteins from adeno-associated virus (AAV), minute virus of mice (MVM) and other non-human parvoviruses. Previous studies have shown that transient transfection of B19 NS1 into human liver carcinoma (HepG2) cells initiates the intrinsic apoptotic cascade, ultimately resulting in cell death. In an effort to elucidate the mechanism of mammalian cell demise in the presence of B19 NS1, we undertook a mutagenesis analysis of the protein's endonuclease domain. Our studies have shown that, unlike wild-type NS1, which induces an accumulation of DNA damage, S phase arrest and apoptosis in HepG2 cells, disruptions in the metal coordination motif of the B19 NS1 protein reduce its ability to induce DNA damage and to trigger S phase arrest and subsequent apoptosis. These studies support our hypothesis that, in the absence of replicating B19 genomes, NS1-induced host cell DNA damage is responsible for apoptotic cell death observed in parvoviral infection of non-permissive mammalian cells.
Collapse
Affiliation(s)
- Violetta Kivovich
- Pennsylvania State College of Medicine/ Milton S. Hershey Medical Center, Hershey, PA, USA
| | | | | | | |
Collapse
|
31
|
Abstract
Despite considerable advances in our understanding of myocarditis pathogenesis, the clinical management of myocarditis has changed relatively little in the last few years. This review aims to help bridge the widening gap between recent mechanistic insights, which are largely derived from animal models, and their potential impact on disease burden. We illustrate the pathogenetic mechanisms that are prime targets for novel therapeutic interventions. Pathway and pathogen-specific molecular diagnostic tests have expanded the role for endomyocardial biopsy. State of the art cardiac magnetic resonance imaging can now provide non-invasive tissue characterization and localize inflammatory infiltrates but imaging techniques are misleading if infectious agents are involved. We emphasize the gaps in our current clinical knowledge, particularly with respect to aetiology-based therapy, and suggest opportunities for high impact, translational investigations.
Collapse
|
32
|
Exindari M, Chatzidimitriou D, Melidou A, Gioula G, Ziogou L, Diza E. Epidemiological and clinical characteristics of human parvovirus B19 infections during 2006-2009 in Northern Greece. Hippokratia 2011; 15:157-160. [PMID: 22110299 PMCID: PMC3209680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Background. Parvovirus B19 infects children and adults, often causing erythema infectiosum, polyarthritis, but also aplastic crisis in patients with chronic haemolytic anaemia, rash, fever and fetal hydrops or fetal death. This study aims at the detection of acute parvovirus B19 infections during 2006-2009 in northern Greece on epidemiological and clinical aspect.Material and methods. Specimens were obtained from 63 patients, who addressed to hospitals, suspected for acute parvovirus B19 infection (17 in 2006, 29 in 2007, 10 in 2008 and 7 in 2009). Thirty (47.6%) were children (one day - 15 years old) and 33 (52.4%) were adults (16-65 years old). The infection was shown by PCR in whole blood and/or pleural fluid and supported by detection of specific IgM antibodies in the patients' blood serum, which was performed by ELISA.Results. Twenty (31.7%) out of the 63 specimens were found to be positive: 3/17 (17.6 %) in 2006, 16/29 (55.2 %) in 2007, none in 2008 and 1/7 (14.3%) in 2009, p=0.0002. Positive children were found 10/30 (33.3%) and positive adults 10/33 (30.3%). Specific IgM antibodies were detected in all 20 positive patients. Children developed hematological disorders, mainly types of anemia (6 cases), hydrothorax/ascites (2 cases), arthritis (1 case), and liver transplant rejection (1 case). Adults were presented with pregnancy complications (2 cases), arthralgia/arthritis (4 cases), febrile syndromes (3 cases) and atypical rash (1 case).Conclusions. In conclusion, an annual variation in the circulation of parvovirus B19 was noticed, presenting an increase of acute infections in northern Greece during 2007. Regarding serious cases, although children and adults seemed equally affected, differences in clinical manifestations were observed between them, with hematological dysfunctions predominant in childhood.
Collapse
Affiliation(s)
- M Exindari
- 2 Department of Microbiology, Medical School, Aristotle University of Thessaloniki, Greece
| | | | | | | | | | | |
Collapse
|
33
|
Poole BD, Kivovich V, Gilbert L, Naides SJ. Parvovirus B19 nonstructural protein-induced damage of cellular DNA and resultant apoptosis. Int J Med Sci 2011; 8:88-96. [PMID: 21278893 PMCID: PMC3030141 DOI: 10.7150/ijms.8.88] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 01/13/2011] [Indexed: 12/19/2022] Open
Abstract
Parvovirus B19 is a widespread virus with diverse clinical presentations. The viral nonstructural protein, NS1, binds to and cleaves the viral genome, and induces apoptosis when transfected into nonpermissive cells, such as hepatocytes. We hypothesized that the cytotoxicity of NS1 in such cells results from chromosomal DNA damage caused by the DNA-nicking and DNA-attaching activities of NS1. Upon testing this hypothesis, we found that NS1 covalently binds to cellular DNA and is modified by PARP, an enzyme involved in repairing single-stranded DNA nicks. We furthermore discovered that the DNA nick repair pathway initiated by poly(ADPribose)polymerase and the DNA repair pathways initiated by ATM/ATR are necessary for efficient apoptosis resulting from NS1 expression.
Collapse
Affiliation(s)
- Brian D Poole
- Huck Institute for Life Sciences, Pennsylvania State University College of Medicine/Milton S. Hershey Medical Center, Hershey, PA, USA
| | | | | | | |
Collapse
|
34
|
Chen AY, Guan W, Lou S, Liu Z, Kleiboeker S, Qiu J. Role of erythropoietin receptor signaling in parvovirus B19 replication in human erythroid progenitor cells. J Virol 2010; 84:12385-12396. [PMID: 20861249 PMCID: PMC2976398 DOI: 10.1128/jvi.01229-10] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 09/14/2010] [Indexed: 01/10/2023] Open
Abstract
Parvovirus B19 (B19V) infection is highly restricted to human erythroid progenitor cells. Although previous studies have led to the theory that the basis of this tropism is receptor expression, this has been questioned by more recent observation. In the study reported here, we have investigated the basis of this tropism, and a potential role of erythropoietin (Epo) signaling, in erythroid progenitor cells (EPCs) expanded ex vivo from CD34(+) hematopoietic cells in the absence of Epo (CD36(+)/Epo(-) EPCs). We show, first, that CD36(+)/Epo(-) EPCs do not support B19V replication, in spite of B19V entry, but Epo exposure either prior to infection or after virus entry enabled active B19V replication. Second, when Janus kinase 2 (Jak2) phosphorylation was inhibited using the inhibitor AG490, phosphorylation of the Epo receptor (EpoR) was also inhibited, and B19V replication in ex vivo-expanded erythroid progenitor cells exposed to Epo (CD36(+)/Epo(+) EPCs) was abolished. Third, expression of constitutively active EpoR in CD36(+)/Epo(-) EPCs led to efficient B19V replication. Finally, B19V replication in CD36(+)/Epo(+) EPCs required Epo, and the replication response was dose dependent. Our findings demonstrate that EpoR signaling is absolutely required for B19V replication in ex vivo-expanded erythroid progenitor cells after initial virus entry and at least partly accounts for the remarkable tropism of B19V infection for human erythroid progenitors.
Collapse
Affiliation(s)
- Aaron Yun Chen
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, Department of Infectious Diseases, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China, ViraCor Laboratories, Lee's Summit, Missouri
| | - Wuxiang Guan
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, Department of Infectious Diseases, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China, ViraCor Laboratories, Lee's Summit, Missouri
| | - Sai Lou
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, Department of Infectious Diseases, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China, ViraCor Laboratories, Lee's Summit, Missouri
| | - Zhengwen Liu
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, Department of Infectious Diseases, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China, ViraCor Laboratories, Lee's Summit, Missouri
| | - Steve Kleiboeker
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, Department of Infectious Diseases, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China, ViraCor Laboratories, Lee's Summit, Missouri
| | - Jianming Qiu
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, Department of Infectious Diseases, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China, ViraCor Laboratories, Lee's Summit, Missouri
| |
Collapse
|
35
|
Abstract
The cytopathic effects induced during parvovirus infection have been widely documented. Parvovirus infection-induced cell death is often directly associated with disease outcomes (e.g., anemia resulting from loss of erythroid progenitors during parvovirus B19 infection). Apoptosis is the major form of cell death induced by parvovirus infection. However, nonapoptotic cell death, namely necrosis, has also been reported during infection of the minute virus of mice, parvovirus H-1 and bovine parvovirus. Recent studies have revealed multiple mechanisms underlying the cell death during parvovirus infection. These mechanisms vary in different parvoviruses, although the large nonstructural protein (NS)1 and the small NS proteins (e.g., the 11 kDa of parvovirus B19), as well as replication of the viral genome, are responsible for causing infection-induced cell death. Cell cycle arrest is also common, and contributes to the cytopathic effects induced during parvovirus infection. While viral NS proteins have been indicated to induce cell cycle arrest, increasing evidence suggests that a cellular DNA damage response triggered by an invading single-stranded parvoviral genome is the major inducer of cell cycle arrest in parvovirus-infected cells. Apparently, in response to infection, cell death and cell cycle arrest of parvovirus-infected cells are beneficial to the viral cell lifecycle (e.g., viral DNA replication and virus egress). In this article, we will discuss recent advances in the understanding of the mechanisms underlying parvovirus infection-induced cell death and cell cycle arrest.
Collapse
Affiliation(s)
- Aaron Yun Chen
- Department of Microbiology, Molecular Genetics & Immunology, University of Kansas Medical Center, Mail Stop 3029, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| | | |
Collapse
|
36
|
Mogensen TH, Jensen JMB, Hamilton-Dutoit S, Larsen CS. Chronic hepatitis caused by persistent parvovirus B19 infection. BMC Infect Dis 2010; 10:246. [PMID: 20727151 PMCID: PMC2936411 DOI: 10.1186/1471-2334-10-246] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 08/20/2010] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Human infection with parvovirus B19 may lead to a diverse spectrum of clinical manifestations, including benign erythema infectiosum in children, transient aplastic crisis in patients with haemolytic anaemia, and congenital hydrops foetalis. These different diseases represent direct consequences of the ability of parvovirus B19 to target the erythroid cell lineage. However, accumulating evidence suggests that this virus can also infect other cell types resulting in diverse clinical manifestations, of which the pathogenesis remains to be fully elucidated. This has prompted important questions regarding the tropism of the virus and its possible involvement in a broad range of infectious and autoimmune medical conditions. CASE PRESENTATION Here, we present an unusual case of persistent parvovirus B19 infection as a cause of chronic hepatitis. This patient had persistent parvovirus B19 viraemia over a period of more than four years and displayed signs of chronic hepatitis evidenced by fluctuating elevated levels of ALAT and a liver biopsy demonstrating chronic hepatitis. Other known causes of hepatitis and liver damage were excluded. In addition, the patient was evaluated for immunodeficiency, since she had lymphopenia both prior to and following clearance of parvovirus B19 infection. CONCLUSIONS In this case report, we describe the current knowledge on the natural history and pathogenesis of parvovirus B19 infection, and discuss the existing evidence of parvovirus B19 as a cause of acute and chronic hepatitis. We suggest that parvovirus B19 was the direct cause of this patient's chronic hepatitis, and that she had an idiopathic lymphopenia, which may have predisposed her to persistent infection, rather than bone marrow depression secondary to infection. In addition, we propose that her liver involvement may have represented a viral reservoir. Finally, we suggest that clinicians should be aware of parvovirus B19 as an unusual aetiology of chronic hepatitis, when other causes have been ruled out.
Collapse
Affiliation(s)
- Trine H Mogensen
- Department of Infectious Diseases, Aarhus University Hospital, Skejby, DK-8200 Aarhus N, Denmark.
| | | | | | | |
Collapse
|
37
|
Nykky J, Tuusa JE, Kirjavainen S, Vuento M, Gilbert L. Mechanisms of cell death in canine parvovirus-infected cells provide intuitive insights to developing nanotools for medicine. Int J Nanomedicine 2010; 5:417-28. [PMID: 20957163 PMCID: PMC2950399 DOI: 10.2147/ijn.s10579] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Indexed: 01/10/2023] Open
Abstract
Viruses have great potential as nanotools in medicine for gene transfer, targeted gene delivery, and oncolytic cancer virotherapy. Here we have studied cell death mechanisms of canine parvovirus (CPV) to increase the knowledge on the CPV life cycle in order to facilitate the development of better parvovirus vectors. Morphological studies of CPV-infected Norden laboratory feline kidney (NLFK) cells and canine fibroma cells (A72) displayed characteristic apoptotic events. Apoptosis was further confirmed by activation of caspases and cellular DNA damage. However, results from annexin V-propidium iodide (PI) labeling and membrane polarization assays indicated disruption of the plasma membrane uncommon to apoptosis. These results provide evidence that secondary necrosis followed apoptosis. In addition, two human cancer cell lines were found to be infected by CPV. This necrotic event over apoptotic cell death and infection in human cells provide insightful information when developing CPV as a nanotool for cancer treatments.
Collapse
Affiliation(s)
- Jonna Nykky
- Nanoscience Center and Department of Biological and Environmental Science, University of Jyväskylä, Finland
| | | | | | | | | |
Collapse
|
38
|
Abstract
Since its discovery, human parvovirus B19 (B19V), now termed erythrovirus, has been associated with many clinical situations (neurological and myocardium infections, persistent B19V DNAemia) in addition to the prototype clinical manifestations, i.e., erythema infectiosum and erythroblastopenia crisis. In 2002, the use of new molecular tools led to the characterization of three different genotypes of human B19 erythrovirus. Although the genomic organization is conserved, the geographic distribution of the different genotypes varies worldwide, and the nucleotidic divergences can impact the molecular diagnosis of B19 virus infection. The cell cycle of the virus remains partially unresolved; however, recent studies have shed light on the mechanism of cell entry and the interactions of B19V proteins with apoptosis pathways.
Collapse
|
39
|
Kivovich V, Gilbert L, Vuento M, Naides SJ. Parvovirus B19 genotype specific amino acid substitution in NS1 reduces the protein's cytotoxicity in culture. Int J Med Sci 2010; 7:110-9. [PMID: 20567611 PMCID: PMC2880839 DOI: 10.7150/ijms.7.110] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Accepted: 05/24/2010] [Indexed: 11/05/2022] Open
Abstract
A clinical association between idiopathic liver disease and parvovirus B19 infection has been observed. Fulminant liver failure, not associated with other liver-tropic viruses, has been attributed to B19 in numerous reports, suggesting a possible role for B19 components in the extensive hepatocyte cytotoxicity observed in this condition. A recent report by Abe and colleagues (Int J Med Sci. 2007;4:105-9) demonstrated a link between persistent parvovirus B19 genotype I and III infection and fulminant liver failure. The genetic analysis of isolates obtained from these patients demonstrated a conservation of key amino acids in the nonstructural protein 1 (NS1) of the disease-associated genotypes. In this report we examine a conserved residue identified by Abe and colleagues and show that substitution of isoleucine 181 for methionine, as occurs in B19 genotype II, results in the reduction of B19 NS1-induced cytotoxicity of liver cells. Our results support the hypothesis that in the setting of persistent B19 infection, direct B19 NS1-induced cytotoxicity may play a role in idiopathic fulminant liver failure.
Collapse
|
40
|
The small 11 kDa nonstructural protein of human parvovirus B19 plays a key role in inducing apoptosis during B19 virus infection of primary erythroid progenitor cells. Blood 2009; 115:1070-80. [PMID: 19861680 DOI: 10.1182/blood-2009-04-215756] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Human parvovirus B19 (B19V) infection shows a strong erythroid tropism and drastically destroys erythroid progenitor cells, thus leading to most of the disease outcomes associated with B19V infection. In this study, we systematically examined the 3 B19V nonstructural proteins, 7.5 kDa, 11 kDa, and NS1, for their function in inducing apoptosis in transfection of primary ex vivo-expanded erythroid progenitor cells, in comparison with apoptosis induced during B19V infection. Our results show that 11 kDa is a more significant inducer of apoptosis than NS1, whereas 7.5 kDa does not induce apoptosis. Furthermore, we determined that caspase-10, an initiator caspase in death receptor signaling, is the most active caspase in apoptotic erythroid progenitors induced by 11 kDa and NS1 as well as during B19V infection. More importantly, cytoplasm-localized 11 kDa is expressed at least 100 times more than nucleus-localized NS1 at the protein level in primary erythroid progenitor cells infected with B19V; and inhibition of 11 kDa expression using antisense oligos targeting specifically to the 11 kDa-encoding mRNAs reduces apoptosis significantly during B19V infection of erythroid progenitor cells. Taken together, these results demonstrate that the 11 kDa protein contributes to erythroid progenitor cell death during B19V infection.
Collapse
|
41
|
Pongratz G, Lindner J, Modrow S, Schimanski S, Schölmerich J, Fleck M. Persistent parvovirus B19 infection detected by specific CD4+ T-cell responses in a patient with hepatitis and polyarthritis. J Intern Med 2009; 266:296-301. [PMID: 19549095 DOI: 10.1111/j.1365-2796.2009.02117.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We, here, report the case of a parvovirus B19 infection in an immunocompetent male patient presenting with acute hepatitis and polyarthritis. To follow the course of infection, we used a previously established enzyme-linked immunosorbent spot assay (ELISPOT) technique to detect CD4+ T cells specific for viral proteins. Even though symptoms of arthritis and hepatitis resolved in the immunocompetent individual within a few weeks, viral DNA in serum and CD4+ T cells specific for the viral protein VP1 unique region were still detectable more than 6 month after the onset of symptoms, thus pointing to a persistent state of infection. On the basis of this observation, we hypothesize that the intensity of liver involvement correlates with the likelihood of developing persistent parvovirus B19 infection. The described ELISPOT technique to detect virus-specific CD4+ T cells provides an excellent tool to analyse the state of parvovirus B19 infection for future studies to test this hypothesis.
Collapse
Affiliation(s)
- G Pongratz
- Department of Internal Medicine I, University Medical Center Regensburg, Regensburg, Germany.
| | | | | | | | | | | |
Collapse
|
42
|
Bonvicini F, Filippone C, Manaresi E, Zerbini M, Musiani M, Gallinella G. HepG2 hepatocellular carcinoma cells are a non-permissive system for B19 virus infection. J Gen Virol 2009; 89:3034-3038. [PMID: 19008390 DOI: 10.1099/vir.0.2008/004341-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Parvovirus B19 has been associated with liver dysfunction and has been considered a potential aetiological agent of fulminant hepatitis and hepatitis-associated aplastic anaemia. The possible effects of B19 virus infection on the liver have been investigated using HepG2 hepatocellular carcinoma cells as a model system, but the reported results are inconsistent. To investigate this relationship further, this study followed the course of B19 virus infection of HepG2 cells in terms of viral DNA, RNA and protein production by quantitative PCR, RT-PCR and immunofluorescence assays. The data showed that B19 virus is able to bind and possibly enter HepG2 cells, but that viral genome replication or transcription is not supported and that viral proteins are not produced. As far as HepG2 cells can be considered a representative model system, any possible pathogenic role of B19 virus on the liver cannot be ascribed to infection or to a direct cytopathic effect on hepatocytes.
Collapse
Affiliation(s)
| | | | | | | | - Monica Musiani
- Department of Microbiology, University of Bologna, Bologna, Italy
| | | |
Collapse
|
43
|
Corcioli F, Zakrzewska K, Rinieri A, Fanci R, Innocenti M, Civinini R, De Giorgi V, Di Lollo S, Azzi A. Tissue persistence of parvovirus B19 genotypes in asymptomatic persons. J Med Virol 2008; 80:2005-11. [DOI: 10.1002/jmv.21289] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
44
|
Duechting A, Tschöpe C, Kaiser H, Lamkemeyer T, Tanaka N, Aberle S, Lang F, Torresi J, Kandolf R, Bock CT. Human parvovirus B19 NS1 protein modulates inflammatory signaling by activation of STAT3/PIAS3 in human endothelial cells. J Virol 2008; 82:7942-7952. [PMID: 18550668 PMCID: PMC2519586 DOI: 10.1128/jvi.00891-08] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Accepted: 06/04/2008] [Indexed: 12/14/2022] Open
Abstract
The pathogenic mechanism by which parvovirus B19 may induce inflammatory cardiomyopathy (iCMP) is complex but is known to involve inflammatory processes, possibly including activation of JAK/STAT signaling. The nonstructural B19 protein NS1 acts as a transactivator triggering signaling cascades that eventually lead to activation of interleukin 6 (IL-6). We examined the impact of NS1 on modulation of STAT signaling in human endothelial cells (HMEC-1). The NS1 sequences were identified from B19 DNA isolated from the myocardia of patients with fatal iCMP. B19 infection as well as NS1 overexpression in HMEC-1 cells produced a significant upregulation in the phosphorylation of both tyrosine(705) and serine(727) STAT3 (P < 0.05). The increased STAT3 phosphorylation was accompanied by dimerization, nuclear translocation, and DNA binding of pSTAT3. In contrast, NS1 expression did not result in increased STAT1 activation. Notably, the expression levels of the negative regulators of STAT activation, SOCS1 and SOCS3, were not altered by NS1. However, the level of PIAS3 was upregulated in NS1-expressing HMEC-1 cells. Analysis of the transcriptional activation of target genes revealed that NS1-induced STAT3 signaling was associated with upregulation of genes involved in immune response (e.g., the IFNAR1 and IL-2 genes) and downregulation of genes associated with viral defense (e.g., the OAS1 and TYK2 genes). Our results demonstrate that B19 NS1 modulates the STAT/PIAS pathway. The NS1-induced upregulation of STAT3/PIAS3 in the absence of STAT1 phosphorylation and the lack of SOCS1/SOCS3 activation may contribute to the mechanisms by which B19 evades the immune response and establishes persistent infection in human endothelial cells. Thus, NS1 may play a critical role in the mechanism of viral pathogenesis in B19-associated iCMP.
Collapse
Affiliation(s)
- Anja Duechting
- Department of Molecular Pathology, Institute for Pathology, University of Tuebingen, 72076 Tuebingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Davy C, Doorbar J. G2/M cell cycle arrest in the life cycle of viruses. Virology 2007; 368:219-26. [PMID: 17675127 PMCID: PMC7103309 DOI: 10.1016/j.virol.2007.05.043] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Revised: 03/29/2007] [Accepted: 05/23/2007] [Indexed: 11/30/2022]
Abstract
There is increasing evidence that viral infection, expression of viral protein or the presence of viral DNA causes the host cell cycle to arrest during G2/M. The mechanisms used by viruses to cause arrest vary widely; some involve the activation of the cellular pathways that induce arrest in response to DNA damage, while others use completely novel means. The analysis of virus-mediated arrest has not been proven easy, and in most cases the consequences of arrest for the virus life cycle are not well defined. However, a number of effects of arrest are being investigated and it will be interesting to see to what extent perturbation of the G2/M transition is involved in viral infections.
Collapse
|
46
|
Hokynar K, Norja P, Hedman K, Söderlund-Venermo M. Tissue persistence and prevalence of B19 virus types 1–3. Future Virol 2007. [DOI: 10.2217/17460794.2.4.377] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Human parvovirus B19 is a minute ssDNA virus that causes a wide variety of diseases, including erythema infectiosum, arthropathy, anemias and fetal death. In addition to the B19 prototype, two new variants (B19 types 2 and 3) have been identified. After primary infection, B19 genomic DNA has been shown to persist in solid tissues of not only symptomatic but also of constitutionally healthy, immunocompetent individuals. The viral DNA persists as an intact molecule without persistence-specific mutations, and via a storage mechanism with life-long capacity. Thus, the mere presence of B19 DNA in tissue cannot be used as a diagnostic criterion, although a possible role in the pathology of diseases, for example through mRNA or protein production, cannot be excluded. The molecular mechanism, host-cell type and possible clinical significance of tissue persistence are yet to be elucidated.
Collapse
Affiliation(s)
- Kati Hokynar
- University of Helsinki, Haartman Institute, Department of Virology, PO Box 21 (Haartmaninkatu 3), FIN-00014, Finland
| | - Päivi Norja
- University of Helsinki, Haartman Institute, Department of Virology, PO Box 21 (Haartmaninkatu 3), FIN-00014, Finland
| | - Klaus Hedman
- University of Helsinki & Helsinki University Central Hospital Laboratory, Haartman Institute, Department of Virology, PO Box 21 (Haartmaninkatu 3), FIN-00014, Finland
| | - Maria Söderlund-Venermo
- University of Helsinki, Haartman Institute, Department of Virology, PO Box 21 (Haartmaninkatu 3), FIN-00014, Finland
| |
Collapse
|
47
|
Abe K, Kiuchi T, Tanaka K, Edamoto Y, Aiba N, Sata T. Characterization of erythrovirus B19 genomes isolated in liver tissues from patients with fulminant hepatitis and biliary atresia who underwent liver transplantation. Int J Med Sci 2007; 4:105-9. [PMID: 17479159 PMCID: PMC1852398 DOI: 10.7150/ijms.4.105] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Accepted: 04/05/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fulminant hepatitis and biliary atresia are serious problems and their causes have not been explained well. We investigated whether or not erythrovirus B19 is a candidate etiologic agent in such liver disease patients who had undergone liver transplantation. METHODS Liver tissues from 47 patients consisted of 28 fulminant hepatitis and 19 biliary atresia were examined to detect B19 genes by PCR and further analyzed their genomic characterization. RESULTS B19 DNA was detected by nested PCR in 10 of 28 cases (35.7%) livers in the fulminant hepatitis group and 7 of 19 (36.8%) livers in the biliary atresia group, respectively (statistically not significant). Importantly, among the 8 hepatic B19 DNA-positive patients who had paired samples of liver and serum, the serum B19 genome was detectable in only one case. B19 mRNA was identified in all of 10 fulminant hepatitis cases with hepatic B19 DNA, but only 1 out of 7 (14.3%) cases in biliary atresia tested. Furthermore, we obtained ten isolates having the B19 genome with nearly full-length sequences. Interestingly, phylogenetic analysis based on the NS1 gene revealed three different clusters: two for isolates from fulminant hepatitis and the other for isolates from biliary atresia. CONCLUSIONS Our results presented here suggested that B19 may be an etiologic agent of fulminant hepatitis.
Collapse
Affiliation(s)
- Kenji Abe
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
48
|
Abdel-Latif L, Murray BK, Renberg RL, O'Neill KL, Porter H, Jensen JB, Johnson FB. Cell death in bovine parvovirus-infected embryonic bovine tracheal cells is mediated by necrosis rather than apoptosis. J Gen Virol 2006; 87:2539-2548. [PMID: 16894192 DOI: 10.1099/vir.0.81915-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The helper-independent bovine parvovirus (BPV) was studied to determine its effect on host embryonic bovine tracheal (EBTr) cells: whether the ultimate outcome of infection results in apoptotic cell death or cell death by necrosis. Infected cells were observed for changes marking apoptosis. Observations of alterations in nuclear morphology, membrane changes, apoptotic body formation, membrane phosphatidylserine inversions, caspase activation and cell DNA laddering in infected cells were not indicative of apoptosis. On the other hand, at the end of the virus replication cycle, infected cells released viral haemagglutinin and infectious virus particles, as would be expected from cell membrane failure. Moreover, the infected cells released lactate dehydrogenase (LDH), release of which is a marker of necrosis. LDH release into the cell medium correlated directly with viral m.o.i. and time post-infection. Furthermore, assessment of mitochondrial dehydrogenase activity was consistent with cell death by necrosis. Taken together, these findings indicate that cell death in BPV-infected EBTr cells is due to necrosis, as defined by infected-cell membrane failure and release of the cell contents into the extracellular environment.
Collapse
Affiliation(s)
- Lubna Abdel-Latif
- Department of Microbiology and Molecular Biology, Brigham Young University, 887 WIDB, Provo, UT 84602, USA
| | - Byron K Murray
- Department of Microbiology and Molecular Biology, Brigham Young University, 887 WIDB, Provo, UT 84602, USA
| | - Rebecca L Renberg
- Department of Microbiology and Molecular Biology, Brigham Young University, 887 WIDB, Provo, UT 84602, USA
| | - Kim L O'Neill
- Department of Microbiology and Molecular Biology, Brigham Young University, 887 WIDB, Provo, UT 84602, USA
| | - Heidi Porter
- Department of Microbiology and Molecular Biology, Brigham Young University, 887 WIDB, Provo, UT 84602, USA
| | - James B Jensen
- Department of Microbiology and Molecular Biology, Brigham Young University, 887 WIDB, Provo, UT 84602, USA
| | - F Brent Johnson
- Department of Microbiology and Molecular Biology, Brigham Young University, 887 WIDB, Provo, UT 84602, USA
| |
Collapse
|