1
|
Turner AMW, Bashore FM, Falcinelli SD, Fox JA, Keller AL, Fenton AD, Geyer RF, Allard B, Kirchherr JL, Archin NM, James LI, Margolis DM. BET degraders reveal BRD4 disruption of 7SK and P-TEFb is critical for effective reactivation of latent HIV in CD4+ T-cells. J Virol 2025; 99:e0177724. [PMID: 40067013 PMCID: PMC11998493 DOI: 10.1128/jvi.01777-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/13/2025] [Indexed: 04/16/2025] Open
Abstract
HIV cure strategies that aim to induce viral reactivation for immune clearance leverage latency reversal agents to modulate host pathways which directly or indirectly facilitate viral reactivation. Inhibition of bromo and extra-terminal domain (BET) family member BRD4 reverses HIV latency, but enthusiasm for the use of BET inhibitors in HIV cure studies is tempered by concerns over inhibition of other BET family members and dose-limiting toxicities in oncology trials. Here, we evaluated the potential for bivalent chemical degraders targeted to the BET family as alternative latency reversal agents. We observed that despite highly potent and selective BRD4 degradation in primary CD4+ T-cells from ART-suppressed donors, BRD4 degraders failed to induce latency reversal as compared to BET inhibitors. Furthermore, BRD4 degraders failed to mimic previously observed synergistic HIV reactivation between BET inhibitors and an activator of the non-canonical NF-κB pathway. Mechanistic investigation of this discrepancy revealed that latency reversal by BET inhibitors is not related to the abatement of competition between Tat and BRD4 for P-TEFb, but rather the ability of BRD4 to disrupt 7SK and increase the levels of free P-TEFb. This activity is dependent on the shift of BRD4 from chromatin-bound to soluble and retargeting of P-TEFb to chromatin, which is dependent on intact BRD4 but independent of the bromodomains. IMPORTANCE Multiple factors and pathways contribute to the maintenance of HIV latency, including bromo and extra-terminal domain (BET) family member BRD4. While small molecule inhibitors of the BET family result in latency reversal, enthusiasm for the use of BET inhibitors in HIV cure is limited due to toxicity concerns. We examined BRD4-selective chemical degraders as alternatives to BET inhibitors but found two robust degraders failed to induce latency reversal. We observed key differences in the ability of BET inhibitors versus BET degraders to disrupt P-TEFb, a key cellular activator of transcription and a complex required for HIV reactivation. We present a new model for the role of BRD4 in HIV latency and propose that BRD4 be reconsidered as an activator rather than a repressor of HIV transcription in the context of HIV cure strategies.
Collapse
Affiliation(s)
- Anne-Marie W. Turner
- UNC HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Frances M. Bashore
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Shane D. Falcinelli
- UNC HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Joshua A. Fox
- UNC HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Alana L. Keller
- UNC HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Anthony D. Fenton
- UNC HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Renee F. Geyer
- UNC HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Brigitte Allard
- UNC HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | - Nancie M. Archin
- UNC HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Lindsey I. James
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - David M. Margolis
- UNC HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
2
|
Alternate NF-κB-Independent Signaling Reactivation of Latent HIV-1 Provirus. J Virol 2019; 93:JVI.00495-19. [PMID: 31243131 DOI: 10.1128/jvi.00495-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/16/2019] [Indexed: 12/22/2022] Open
Abstract
Current combination antiretroviral therapies (cART) are unable to eradicate HIV-1 from infected individuals because of the establishment of proviral latency in long-lived cellular reservoirs. The shock-and-kill approach aims to reactivate viral replication from the latent state (shock) using latency-reversing agents (LRAs), followed by the elimination of reactivated virus-producing cells (kill) by specific therapeutics. The NF-κB RelA/p50 heterodimer has been characterized as an essential component of reactivation of the latent HIV-1 long terminal repeat (LTR). Nevertheless, prolonged NF-κB activation contributes to the development of various autoimmune, inflammatory, and malignant disorders. In the present study, we established a cellular model of HIV-1 latency in J-Lat CD4+ T cells that stably expressed the NF-κB superrepressor IκB-α 2NΔ4 and demonstrate that conventional treatments with bryostatin-1 and hexamethylenebisacetamide (HMBA) or ionomycin synergistically reactivated HIV-1 from latency, even under conditions where NF-κB activation was repressed. Using specific calcineurin phosphatase, p38, and MEK1/MEK2 kinase inhibitors or specific short hairpin RNAs, c-Jun was identified to be an essential factor binding to the LTR enhancer κB sites and mediating the combined synergistic reactivation effect. Furthermore, acetylsalicylic acid (ASA), a potent inhibitor of the NF-κB activator kinase IκB kinase β (IKK-β), did not significantly diminish reactivation in a primary CD4+ T central memory (TCM) cell latency model. The present work demonstrates that the shock phase of the shock-and-kill approach to reverse HIV-1 latency may be achieved in the absence of NF-κB, with the potential to avoid unwanted autoimmune- and or inflammation-related side effects associated with latency-reversing strategies.IMPORTANCE The shock-and-kill approach consists of the reactivation of HIV-1 replication from latency using latency-reversing agents (LRAs), followed by the elimination of reactivated virus-producing cells. The cellular transcription factor NF-κB is considered a master mediator of HIV-1 escape from latency induced by LRAs. Nevertheless, a systemic activation of NF-κB in HIV-1-infected patients resulting from the combined administration of different LRAs could represent a potential risk, especially in the case of a prolonged treatment. We demonstrate here that conventional treatments with bryostatin-1 and hexamethylenebisacetamide (HMBA) or ionomycin synergistically reactivate HIV-1 from latency, even under conditions where NF-κB activation is repressed. Our study provides a molecular proof of concept for the use of anti-inflammatory drugs, like aspirin, capable of inhibiting NF-κB in patients under combination antiretroviral therapy during the shock-and-kill approach, to avoid potential autoimmune and inflammatory disorders that can be elicited by combinations of LRAs.
Collapse
|
3
|
Giuliani E, Desimio MG, Doria M. Hexamethylene bisacetamide impairs NK cell-mediated clearance of acute T lymphoblastic leukemia cells and HIV-1-infected T cells that exit viral latency. Sci Rep 2019; 9:4373. [PMID: 30867508 PMCID: PMC6416400 DOI: 10.1038/s41598-019-40760-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 02/19/2019] [Indexed: 12/27/2022] Open
Abstract
The hexamethylene bisacetamide (HMBA) anticancer drug was dismissed due to limited efficacy in leukemic patients but it may re-enter into the clinics in HIV-1 eradication strategies because of its recently disclosed capacity to reactivate latent virus. Here, we investigated the impact of HMBA on the cytotoxicity of natural killer (NK) cells against acute T lymphoblastic leukemia (T-ALL) cells or HIV-1-infected T cells that exit from latency. We show that in T-ALL cells HMBA upmodulated MICB and ULBP2 ligands for the NKG2D activating receptor. In a primary CD4+ T cell-based latency model, HMBA did not reactivate HIV-1, yet enhanced ULBP2 expression on cells harboring virus reactivated by prostratin (PRO). However, HMBA reduced the expression of NKG2D and its DAP10 adaptor in NK cells, hence impairing NKG2D-mediated cytotoxicity and DAP10-dependent response to IL-15 stimulation. Alongside, HMBA dampened killing of T-ALL targets by IL-15-activated NK cells and impaired NK cell-mediated clearance of PRO-reactivated HIV-1+ cells. Overall, our results demonstrate a dominant detrimental effect of HMBA on the NKG2D pathway that crucially controls NK cell-mediated killing of tumors and virus-infected cells, providing one possible explanation for poor clinical outcome in HMBA-treated cancer patients and raising concerns for future therapeutic application of this drug.
Collapse
Affiliation(s)
- Erica Giuliani
- Laboratory of Immunoinfectivology, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Maria Giovanna Desimio
- Laboratory of Immunoinfectivology, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Margherita Doria
- Laboratory of Immunoinfectivology, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy.
| |
Collapse
|
4
|
Proust A, Barat C, Leboeuf M, Drouin J, Tremblay MJ. Contrasting effect of the latency-reversing agents bryostatin-1 and JQ1 on astrocyte-mediated neuroinflammation and brain neutrophil invasion. J Neuroinflammation 2017; 14:242. [PMID: 29228979 PMCID: PMC5725742 DOI: 10.1186/s12974-017-1019-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/01/2017] [Indexed: 12/14/2022] Open
Abstract
Background Despite effectiveness of the combined antiretroviral therapy, HIV-1 persists in long-lived latently infected cells. Consequently, new therapeutic approaches aimed at eliminating this latent reservoir are currently being developed. A “shock and kill” strategy using latency-reversing agents (LRA) to reactivate HIV-1 has been proposed. However, the impact of LRA on the central nervous system (CNS) remains elusive. Methods We used human fetal astrocytes and investigated the effects of several LRA on their functional and secretory activities. Astrocytes were infected with VSV-G-pseudotyped HIV-1 before treatment with various blood-brain barrier (BBB)-permeable LRA at subcytotoxic doses, which allow HIV-1 reactivation based on previous in vitro and clinical studies. Cells and supernatants were then used to evaluate effects of infection and LRA on (i) viability and metabolic activity of astrocytes using a colorimetric MTS assay; (ii) chemokines and proinflammatory cytokines secretion and gene expression by astrocytes using ELISA and RT-qPCR, respectively; (iii) expression of complement component 3 (C3), a proxy for astrogliosis, by RT-qPCR; (iv) glutamate uptake capacity by a fluorometric assay; and (v) modulation of neutrophil transmigration across an in vitro BBB model. Results We demonstrate that bryostatin-1 induces secretion of chemokines CCL2 and IL-8 and proinflammatory cytokines IL-6 and GM-CSF, whereas their production is repressed by JQ1. Bryostatin-1 also increases expression of complement component 3 and perturbs astrocyte glutamate homeostasis. Lastly, bryostatin-1 enhances transmigration of neutrophils across an in vitro blood-brain barrier model and induces formation of neutrophil extracellular traps. Conclusions These observations highlight the need to carefully assess the potential harmful effect to the CNS when selecting LRA for HIV-1 reactivation strategies. Electronic supplementary material The online version of this article (10.1186/s12974-017-1019-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alizé Proust
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, Québec, G1V 4G2, Canada
| | - Corinne Barat
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, Québec, G1V 4G2, Canada
| | - Mathieu Leboeuf
- Département d'obstétrique, gynécologie et reproduction, Faculté de Médecine,, Université Laval, Québec, G1V 0A6, Canada
| | - Jean Drouin
- Département de médecine familiale et d'urgence, Faculté de Médecine, Université Laval, Québec, G1V 0A6, Canada
| | - Michel J Tremblay
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, Québec, G1V 4G2, Canada. .,Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, G1V 0A6, Canada.
| |
Collapse
|
5
|
Jones RB, Mueller S, O’Connor R, Rimpel K, Sloan DD, Karel D, Wong HC, Jeng EK, Thomas AS, Whitney JB, Lim SY, Kovacs C, Benko E, Karandish S, Huang SH, Buzon MJ, Lichterfeld M, Irrinki A, Murry JP, Tsai A, Yu H, Geleziunas R, Trocha A, Ostrowski MA, Irvine DJ, Walker BD. A Subset of Latency-Reversing Agents Expose HIV-Infected Resting CD4+ T-Cells to Recognition by Cytotoxic T-Lymphocytes. PLoS Pathog 2016; 12:e1005545. [PMID: 27082643 PMCID: PMC4833318 DOI: 10.1371/journal.ppat.1005545] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 03/11/2016] [Indexed: 12/25/2022] Open
Abstract
Resting CD4+ T-cells harboring inducible HIV proviruses are a critical reservoir in antiretroviral therapy (ART)-treated subjects. These cells express little to no viral protein, and thus neither die by viral cytopathic effects, nor are efficiently cleared by immune effectors. Elimination of this reservoir is theoretically possible by combining latency-reversing agents (LRAs) with immune effectors, such as CD8+ T-cells. However, the relative efficacy of different LRAs in sensitizing latently-infected cells for recognition by HIV-specific CD8+ T-cells has not been determined. To address this, we developed an assay that utilizes HIV-specific CD8+ T-cell clones as biosensors for HIV antigen expression. By testing multiple CD8+ T-cell clones against a primary cell model of HIV latency, we identified several single agents that primed latently-infected cells for CD8+ T-cell recognition, including IL-2, IL-15, two IL-15 superagonists (IL-15SA and ALT-803), prostratin, and the TLR-2 ligand Pam3CSK4. In contrast, we did not observe CD8+ T-cell recognition of target cells following treatment with histone deacetylase inhibitors or with hexamethylene bisacetamide (HMBA). In further experiments we demonstrate that a clinically achievable concentration of the IL-15 superagonist ‘ALT-803’, an agent presently in clinical trials for solid and hematological tumors, primes the natural ex vivo reservoir for CD8+ T-cell recognition. Thus, our results establish a novel experimental approach for comparative evaluation of LRAs, and highlight ALT-803 as an LRA with the potential to synergize with CD8+ T-cells in HIV eradication strategies. Although modern therapies have greatly improved the lives of HIV-positive people with access to care, a cure remains elusive. This leaves these individuals burdened by a lifelong commitment to medication, and fails to fully restore health. Curing infection would likely require therapies that combine the ability to force the virus out the ‘latent state’ in which it hides, with immune responses able to kill unmasked infected cells, the so called “shock and kill” strategy. A critical aspect of this strategy is identifying drugs that are effective at shocking virus out of latency, known as latency reversing agents. In this study, we took the novel approach of using CD8+ T-cells, immune cells responsible for killing infected cells, as biosensors able to detect the unmasking of latently-infected cells. Using this method, we screened a panel of potential latency reversing agents. We found that while a subset of these agents exposed infected cells to the immune system, others did not. Our results establish a new method for screening potential latency reversing agents, and support the prioritization of the agents that were shown to be effective for combination with CD8+ T-cells in shock and kill strategies aimed at curing HIV infection.
Collapse
Affiliation(s)
- R. Brad Jones
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts, United States of America
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts, United States of America
- Department of Microbiology Immunology and Tropical Medicine, The George Washington University, Washington, D.C., United States of America
| | - Stefanie Mueller
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts, United States of America
| | - Rachel O’Connor
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts, United States of America
| | - Katherine Rimpel
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts, United States of America
| | - Derek D. Sloan
- Gilead Sciences, Foster City, California, United States of America
| | - Dan Karel
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts, United States of America
| | - Hing C. Wong
- Altor BioScience Corporation, Miramar, Florida, United States of America
| | - Emily K. Jeng
- Altor BioScience Corporation, Miramar, Florida, United States of America
| | - Allison S. Thomas
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts, United States of America
- Department of Microbiology Immunology and Tropical Medicine, The George Washington University, Washington, D.C., United States of America
| | - James B. Whitney
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts, United States of America
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - So-Yon Lim
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Colin Kovacs
- The Maple Leaf Medical Clinic, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Erika Benko
- The Maple Leaf Medical Clinic, Toronto, Ontario, Canada
| | - Sara Karandish
- Department of Microbiology Immunology and Tropical Medicine, The George Washington University, Washington, D.C., United States of America
| | - Szu-Han Huang
- Department of Microbiology Immunology and Tropical Medicine, The George Washington University, Washington, D.C., United States of America
| | - Maria J. Buzon
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts, United States of America
| | - Mathias Lichterfeld
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts, United States of America
| | - Alivelu Irrinki
- Gilead Sciences, Foster City, California, United States of America
| | - Jeffrey P. Murry
- Gilead Sciences, Foster City, California, United States of America
| | - Angela Tsai
- Gilead Sciences, Foster City, California, United States of America
| | - Helen Yu
- Gilead Sciences, Foster City, California, United States of America
| | - Romas Geleziunas
- Gilead Sciences, Foster City, California, United States of America
| | - Alicja Trocha
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts, United States of America
| | - Mario A. Ostrowski
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Li Ka Shing Medical Institute, St. Michael’s Hospital, Toronto, Ontario, Canad
| | - Darrell J. Irvine
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
- Department of Biological Engineering, MIT, Cambridge, Massachusetts, United States of America
| | - Bruce D. Walker
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
- * E-mail:
| |
Collapse
|
6
|
Huang H, Santoso N, Power D, Simpson S, Dieringer M, Miao H, Gurova K, Giam CZ, Elledge SJ, Zhu J. FACT Proteins, SUPT16H and SSRP1, Are Transcriptional Suppressors of HIV-1 and HTLV-1 That Facilitate Viral Latency. J Biol Chem 2015; 290:27297-27310. [PMID: 26378236 DOI: 10.1074/jbc.m115.652339] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Indexed: 11/06/2022] Open
Abstract
Our functional genomic RNAi screens have identified the protein components of the FACT (facilitates chromatin transcription) complex, SUPT16H and SSRP1, as top host factors that negatively regulate HIV-1 replication. FACT interacts specifically with histones H2A/H2B to affect assembly and disassembly of nucleosomes, as well as transcription elongation. We further investigated the suppressive role of FACT proteins in HIV-1 transcription. First, depletion of SUPT16H or SSRP1 protein enhances Tat-mediated HIV-1 LTR (long terminal repeat) promoter activity. Second, HIV-1 Tat interacts with SUPT16H but not SSRP1 protein. However, both SUPT16H and SSRP1 are recruited to LTR promoter. Third, the presence of SUPT16H interferes with the association of Cyclin T1 (CCNT1), a subunit of P-TEFb, with the Tat-LTR axis. Removing inhibitory mechanisms to permit HIV-1 transcription is an initial and key regulatory step to reverse post-integrated latent HIV-1 proviruses for purging of reservoir cells. We therefore evaluated the role of FACT proteins in HIV-1 latency and reactivation. Depletion of SUPT16H or SSRP1 protein affects both HIV-1 transcriptional initiation and elongation and spontaneously reverses latent HIV-1 in U1/HIV and J-LAT cells. Similar effects were observed with a primary CD4+ T cell model of HIV-1 latency. FACT proteins also interfere with HTLV-1 Tax-LTR-mediated transcription and viral latency, indicating that they may act as general transcriptional suppressors for retroviruses. We conclude that FACT proteins SUPT16H and SSRP1 play a key role in suppressing HIV-1 transcription and promoting viral latency, which may serve as promising gene targets for developing novel HIV-1 latency-reversing agents.
Collapse
Affiliation(s)
- Huachao Huang
- Departments of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642
| | - Netty Santoso
- Departments of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642
| | - Derek Power
- Departments of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642
| | - Sydney Simpson
- the School of Arts and Sciences, University of Rochester, Rochester, New York 14627
| | - Michael Dieringer
- the School of Arts and Sciences, University of Rochester, Rochester, New York 14627
| | - Hongyu Miao
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, New York 14642
| | - Katerina Gurova
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York 14263
| | - Chou-Zen Giam
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Stephen J Elledge
- the Division of Genetics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Boston, Massachusetts 02115; Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | - Jian Zhu
- Departments of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642; Departments of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642.
| |
Collapse
|
7
|
Murry JP, Godoy J, Mukim A, Swann J, Bruce JW, Ahlquist P, Bosque A, Planelles V, Spina CA, Young JAT. Sulfonation pathway inhibitors block reactivation of latent HIV-1. Virology 2014; 471-473:1-12. [PMID: 25310595 DOI: 10.1016/j.virol.2014.08.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 06/16/2014] [Accepted: 08/18/2014] [Indexed: 12/12/2022]
Abstract
Long-lived pools of latently infected cells are a significant barrier to the development of a cure for HIV-1 infection. A better understanding of the mechanisms of reactivation from latency is needed to facilitate the development of novel therapies that address this problem. Here we show that chemical inhibitors of the sulfonation pathway prevent virus reactivation, both in latently infected J-Lat and U1 cell lines and in a primary human CD4+ T cell model of latency. In each of these models, sulfonation inhibitors decreased transcription initiation from the HIV-1 promoter. These inhibitors block transcription initiation at a step that lies downstream of nucleosome remodeling and affects RNA polymerase II recruitment to the viral promoter. These results suggest that the sulfonation pathway acts by a novel mechanism to regulate efficient virus transcription initiation during reactivation from latency, and further that augmentation of this pathway could be therapeutically useful.
Collapse
Affiliation(s)
- Jeffrey P Murry
- Nomis Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA 92037, USA; Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Joseph Godoy
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA; Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Amey Mukim
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA; Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Justine Swann
- Nomis Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA 92037, USA; Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - James W Bruce
- Morgridge Institute for Research, Madison, WI, USA; Institute for Molecular Virology, University of Wisconsin, Madison, WI, USA; McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI, USA; Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Paul Ahlquist
- Morgridge Institute for Research, Madison, WI, USA; Institute for Molecular Virology, University of Wisconsin, Madison, WI, USA; McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI, USA; Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Alberto Bosque
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA; Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Vicente Planelles
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA; Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Celsa A Spina
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA; Department of Pathology, University of California, San Diego, La Jolla, CA, USA; Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - John A T Young
- Nomis Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA 92037, USA; Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
8
|
Badley AD, Sainski A, Wightman F, Lewin SR. Altering cell death pathways as an approach to cure HIV infection. Cell Death Dis 2013; 4:e718. [PMID: 23846220 PMCID: PMC3730421 DOI: 10.1038/cddis.2013.248] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 05/22/2013] [Accepted: 05/29/2013] [Indexed: 12/13/2022]
Abstract
Recent cases of successful control of human immunodeficiency virus (HIV) by bone marrow transplant in combination with suppressive antiretroviral therapy (ART) and very early initiation of ART have provided proof of concept that HIV infection might now be cured. Current efforts focusing on gene therapy, boosting HIV-specific immunity, reducing inflammation and activation of latency have all been the subject of recent excellent reviews. We now propose an additional avenue of research towards a cure for HIV: targeting HIV apoptosis regulatory pathways. The central enigma of HIV disease is that HIV infection kills most of the CD4 T cells that it infects, but those cells that are spared subsequently become a latent reservoir for HIV against which current medications are ineffective. We propose that if strategies could be devised which would favor the death of all cells which HIV infects, or if all latently infected cells that release HIV would succumb to viral-induced cytotoxicity, then these approaches combined with effective ART to prevent spreading infection, would together result in a cure for HIV. This premise is supported by observations in other viral systems where the relationship between productive infection, apoptosis resistance, and the development of latency or persistence has been established. Therefore we propose that research focused at understanding the mechanisms by which HIV induces apoptosis of infected cells, and ways that some cells escape the pro-apoptotic effects of productive HIV infection are critical to devising novel and rational approaches to cure HIV infection.
Collapse
Affiliation(s)
- A D Badley
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| | | | | | | |
Collapse
|
9
|
Van Lint C, Bouchat S, Marcello A. HIV-1 transcription and latency: an update. Retrovirology 2013; 10:67. [PMID: 23803414 PMCID: PMC3699421 DOI: 10.1186/1742-4690-10-67] [Citation(s) in RCA: 247] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 05/29/2013] [Indexed: 12/11/2022] Open
Abstract
Combination antiretroviral therapy, despite being potent and life-prolonging, is not curative and does not eradicate HIV-1 infection since interruption of treatment inevitably results in a rapid rebound of viremia. Reactivation of latently infected cells harboring transcriptionally silent but replication-competent proviruses is a potential source of persistent residual viremia in cART-treated patients. Although multiple reservoirs may exist, the persistence of resting CD4+ T cells carrying a latent infection represents a major barrier to eradication. In this review, we will discuss the latest reports on the molecular mechanisms that may regulate HIV-1 latency at the transcriptional level, including transcriptional interference, the role of cellular factors, chromatin organization and epigenetic modifications, the viral Tat trans-activator and its cellular cofactors. Since latency mechanisms may also operate at the post-transcriptional level, we will consider inhibition of nuclear RNA export and inhibition of translation by microRNAs as potential barriers to HIV-1 gene expression. Finally, we will review the therapeutic approaches and clinical studies aimed at achieving either a sterilizing cure or a functional cure of HIV-1 infection, with a special emphasis on the most recent pharmacological strategies to reactivate the latent viruses and decrease the pool of viral reservoirs.
Collapse
Affiliation(s)
- Carine Van Lint
- Université Libre de Bruxelles (ULB), Service of Molecular Virology, Institute of Molecular Biology and Medicine, 12, Rue des Profs Jeener et Brachet, 6041, Gosselies, Belgium.
| | | | | |
Collapse
|
10
|
Rasmussen TA, Tolstrup M, Winckelmann A, Østergaard L, Søgaard OS. Eliminating the latent HIV reservoir by reactivation strategies: advancing to clinical trials. Hum Vaccin Immunother 2013; 9:790-9. [PMID: 23563519 PMCID: PMC3903897 DOI: 10.4161/hv.23202] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Combination antiretroviral therapy (cART) has transformed HIV from a deadly to a chronic disease, but HIV patients are still burdened with excess morbidity and mortality, long-term toxicities from cART, stigmatization, and insufficient access to cART worldwide. Thus, a cure for HIV would have enormous impact on society as well as the individual. As the complexity and mechanisms of HIV persistence during therapy are being unraveled, new therapeutic targets for HIV eradication are discovered. Substances that activate HIV production in the latently infected cells have recently received much attention. By turning on expression of latent HIV proviruses, reactivation strategies could contribute to the eradication HIV infection. Compounds that are currently being or soon to be tested in clinical trials are emphasized. The results from these trials will provide important clues as to whether or not reactivating strategies could become significant components of a cure for HIV.
Collapse
|
11
|
Dhamija N, Rawat P, Mitra D. Epigenetic regulation of HIV-1 persistence and evolving strategies for virus eradication. Subcell Biochem 2013; 61:479-505. [PMID: 23150264 DOI: 10.1007/978-94-007-4525-4_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Despite the intense effort put by researchers globally to understand Human Immunodeficiency Virus (HIV-1) pathogenesis since its discovery 30 years ago, the acquired knowledge till date is not good enough to eradicate HIV-1 from an infected individual. HIV-1 infects cells of the human immune system and integrates into the host cell genome thereby leading to persistent infection in these cells. Based on the activation status of the cells, the infection could be productive or result in latent infection. The current regimen used to treat HIV-1 infection in an AIDS patient includes combination of antiretroviral drugs called Highly Active Anti-Retroviral Therapy (HAART). A major challenge for the success of HAART has been these latent reservoirs of HIV which remain hidden and pose major hurdle for the eradication of virus. Combination of HAART therapy with simultaneous activation of latent reservoirs of HIV-1 seems to be the future of anti-retroviral therapy; however, this will require a much better understanding of the mechanisms and regulation of HIV-1 latency. In this chapter, we have tried to elaborate on HIV-1 latency, highlighting the strategies employed by the virus to ensure persistence in the host with specific focus on epigenetic regulation of latency. A complete understanding of HIV-1 latency will be extremely essential for ultimate eradication of HIV-1 from the human host.
Collapse
Affiliation(s)
- Neeru Dhamija
- National Centre for Cell Science, NCCS Complex, Pune University Campus, Ganeshkhind, Pune, 411007, India
| | | | | |
Collapse
|
12
|
Ying H, Zhang Y, Zhou X, Qu X, Wang P, Liu S, Lu D, Zhu H. Selective histonedeacetylase inhibitor M344 intervenes in HIV-1 latency through increasing histone acetylation and activation of NF-kappaB. PLoS One 2012; 7:e48832. [PMID: 23166597 PMCID: PMC3499534 DOI: 10.1371/journal.pone.0048832] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 10/05/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Histone deacetylase (HDAC) inhibitors present an exciting new approach to activate HIV production from latently infected cells to potentially enhance elimination of these cells and achieve a cure. M344, a novel HDAC inhibitor, shows robust activity in a variety of cancer cells and relatively low toxicity compared to trichostatin A (TSA). However, little is known about the effects and action mechanism of M344 in inducing HIV expression in latently infected cells. METHODOLOGY/PRINCIPAL FINDINGS Using the Jurkat T cell model of HIV latency, we demonstrate that M344 effectively reactivates HIV-1 gene expression in latently infected cells. Moreover, M344-mediated activation of the latent HIV LTR can be strongly inhibited by a NF-κB inhibitor aspirin. We further show that M344 acts by increasing the acetylation of histone H3 and histone H4 at the nucleosome 1 (nuc-1) site of the HIV-1 long terminal repeat (LTR) and by inducing NF-κB p65 nuclear translocation and direct RelA DNA binding at the nuc-1 region of the HIV-1 LTR. We also found that M344 synergized with prostratin to activate the HIV-1 LTR promoter in latently infected cells. CONCLUSIONS/SIGNIFICANCE These results suggest the potential of M344 in anti-latency therapies and an important role for histone modifications and NF-κB transcription factors in regulating HIV-1 LTR gene expression.
Collapse
Affiliation(s)
- Hao Ying
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Yuhao Zhang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Xin Zhou
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiying Qu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Pengfei Wang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Sijie Liu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Daru Lu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Huanzhang Zhu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
- * E-mail:
| |
Collapse
|
13
|
Abstract
Recent advances in antiretroviral therapy (ART) have drastically improved the quality of life for people with HIV infection. However, owing to the persistence of latent HIV in the presence of therapy, patients must remain on therapy indefinitely. Currently, the solution to the HIV pandemic rests on the prevention of new infections and many decades of ART for the steadily expanding number of people infected worldwide. ART is costly, requires ongoing medical care, and can have side effects, thereby preventing its universal availability. Therefore, to escape the ironic burdens of therapy, efforts have begun to develop treatments for latent HIV infection. Current approaches propose either complete eradication of infection or induction of a state of stringent control over viral replication without ART. This review will discuss these strategies in detail and their potential for clinical development.
Collapse
|
14
|
Remoli AL, Marsili G, Battistini A, Sgarbanti M. The development of immune-modulating compounds to disrupt HIV latency. Cytokine Growth Factor Rev 2012; 23:159-72. [PMID: 22766356 DOI: 10.1016/j.cytogfr.2012.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Antiretroviral therapy (ART) has proved highly effective in suppressing HIV-1 replication and disease progression. Nevertheless, ART has failed to eliminate the virus from infected individuals. The main obstacle to HIV-1 eradication is the persistence of cellular viral reservoirs. Therefore, the "shock-and-kill" strategy was proposed consisting of inducing HIV-1 escape from latency, in the presence of ART. This is followed by the elimination of reactivated, virus-producing cells. Immune modulators, including protein kinase C (PKC) activators, anti-leukemic drugs and histone deacetylase inhibitors (HDACis) have all demonstrated efficacy in the reactivation of latent virus replication. This review will focus on the potential use of these small molecules in the "shock and kill" strategy, the molecular basis for their action and the potential advantages of their immune-modulating activities.
Collapse
Affiliation(s)
- Anna Lisa Remoli
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy.
| | | | | | | |
Collapse
|
15
|
The ubiquitin ligase Siah1 controls ELL2 stability and formation of super elongation complexes to modulate gene transcription. Mol Cell 2012; 46:325-34. [PMID: 22483617 DOI: 10.1016/j.molcel.2012.03.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 12/27/2011] [Accepted: 03/08/2012] [Indexed: 01/06/2023]
Abstract
Super elongation complexes (SECs) contain two different transcription elongation factors, P-TEFb and ELL1/2, linked by the scaffolding protein AFF4 or AFF1. They stimulate the expression of both normal and disease-related genes, especially those of HIV or those involved in leukemogenesis. Among all SEC subunits, ELL2 is stoichiometrically limiting and uniquely regulated at the level of protein stability. Here we identify the RING domain protein Siah1, but not the homologous Siah2, as the E3 ubiquitin ligase for ELL2 polyubiquitination and proteasomal degradation. Siah1 cannot access and ubiquitinate ELL2 bound to AFF4, although, at high concentrations, it also degrades AFF4/1 to destroy SECs. Prostratin and HMBA, two well-studied activators of HIV transcription and latency, enhance ELL2 accumulation and SECs formation largely through decreasing Siah1 expression and ELL2 polyubiquitination. Given its importance in formation of SECs, the Siah1 ubiquitination pathway provides a fresh avenue for developing strategies to control disease-related transcription.
Collapse
|
16
|
Dahiya S, Nonnemacher MR, Wigdahl B. Deployment of the human immunodeficiency virus type 1 protein arsenal: combating the host to enhance viral transcription and providing targets for therapeutic development. J Gen Virol 2012; 93:1151-1172. [PMID: 22422068 DOI: 10.1099/vir.0.041186-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Despite the success of highly active antiretroviral therapy in combating human immunodeficiency virus type 1 (HIV-1) infection, the virus still persists in viral reservoirs, often in a state of transcriptional silence. This review focuses on the HIV-1 protein and regulatory machinery and how expanding knowledge of the function of individual HIV-1-coded proteins has provided valuable insights into understanding HIV transcriptional regulation in selected susceptible cell types. Historically, Tat has been the most studied primary transactivator protein, but emerging knowledge of HIV-1 transcriptional regulation in cells of the monocyte-macrophage lineage has more recently established that a number of the HIV-1 accessory proteins like Vpr may directly or indirectly regulate the transcriptional process. The viral proteins Nef and matrix play important roles in modulating the cellular activation pathways to facilitate viral replication. These observations highlight the cross talk between the HIV-1 transcriptional machinery and cellular activation pathways. The review also discusses the proposed transcriptional regulation mechanisms that intersect with the pathways regulated by microRNAs and how development of the knowledge of chromatin biology has enhanced our understanding of key protein-protein and protein-DNA interactions that form the HIV-1 transcriptome. Finally, we discuss the potential pharmacological approaches to target viral persistence and enhance effective transcription to purge the virus in cellular reservoirs, especially within the central nervous system, and the novel therapeutics that are currently in various stages of development to achieve a much superior prognosis for the HIV-1-infected population.
Collapse
Affiliation(s)
- Satinder Dahiya
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| |
Collapse
|
17
|
Victoriano AFB, Okamoto T. Transcriptional control of HIV replication by multiple modulators and their implication for a novel antiviral therapy. AIDS Res Hum Retroviruses 2012; 28:125-38. [PMID: 22077140 DOI: 10.1089/aid.2011.0263] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Transcriptional regulation is critical for the human immunodeficiency virus 1 (HIV-1) life cycle and is the only step at which the virus amplifies the content of its genetic information. Numerous known and still unknown transcriptional factors, both host and viral, regulate HIV-1 gene expression and latency. This article is a comprehensive review of transcription factors involved in HIV-1 gene expression and presents the significant implications of nuclear factor kappa B (NF-κB) and the HIV-1 transactivator of transcription (Tat) protein. We include recent findings on chromatin remodeling toward HIV transcription and its therapeutic implication is also discussed. The current status of small-molecular-weight compounds that affect HIV transcription is also described.
Collapse
Affiliation(s)
- Ann Florence B. Victoriano
- Department of Molecular and Cellular Biology, Nagoya City University Graduate School for Medical Sciences, Nagoya, Japan
- Japanese Foundation for AIDS Prevention, Tokyo, Japan
| | - Takashi Okamoto
- Department of Molecular and Cellular Biology, Nagoya City University Graduate School for Medical Sciences, Nagoya, Japan
| |
Collapse
|
18
|
Ai N, Hu X, Ding F, Yu B, Wang H, Lu X, Zhang K, Li Y, Han A, Lin W, Liu R, Chen R. Signal-induced Brd4 release from chromatin is essential for its role transition from chromatin targeting to transcriptional regulation. Nucleic Acids Res 2011; 39:9592-604. [PMID: 21890894 PMCID: PMC3239188 DOI: 10.1093/nar/gkr698] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Bromodomain-containing protein Brd4 is shown to persistently associate with chromosomes during mitosis for transmitting epigenetic memory across cell divisions. During interphase, Brd4 also plays a key role in regulating the transcription of signal-inducible genes by recruiting positive transcription elongation factor b (P-TEFb) to promoters. How the chromatin-bound Brd4 transits into a transcriptional regulation mode in response to stimulation, however, is largely unknown. Here, by analyzing the dynamics of Brd4 during ultraviolet or hexamethylene bisacetamide treatment, we show that the signal-induced release of chromatin-bound Brd4 is essential for its functional transition. In untreated cells, almost all Brd4 is observed in association with interphase chromatin. Upon treatment, Brd4 is released from chromatin, mostly due to signal-triggered deacetylation of nucleosomal histone H4 at acetylated-lysine 5/8 (H4K5ac/K8ac). Through selective association with the transcriptional active form of P-TEFb that has been liberated from the inactive multi-subunit complex in response to treatment, the released Brd4 mediates the recruitment of this active P-TEFb to promoter, which enhances transcription at the stage of elongation. Thus, through signal-induced release from chromatin and selective association with the active form of P-TEFb, the chromatin-bound Brd4 switches its role to mediate the recruitment of P-TEFb for regulating the transcriptional elongation of signal-inducible genes.
Collapse
Affiliation(s)
- Nanping Ai
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Choudhary SK, Margolis DM. Curing HIV: Pharmacologic approaches to target HIV-1 latency. Annu Rev Pharmacol Toxicol 2011; 51:397-418. [PMID: 21210747 DOI: 10.1146/annurev-pharmtox-010510-100237] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
HIV-1 infection persists even after years of antiretroviral therapy (ART). Although ART can halt viral replication and thereby reduce viremia to clinically undetectable levels, proviral latency established within the host genome remains largely unaffected by ART and can replenish systemic infection following interruption of therapy. Pharmacologic strategies, which not only target viral replication but also deplete proviral infection, are required for successful clearance of HIV-1 infection. This review highlights the current understanding of molecular mechanisms that establish and maintain HIV-1 latency in its major reservoir, the resting memory CD4(+) T cell. We also identify the molecular targets that might be exploited to induce HIV-1 expression, remove epigenetic restrictions, or enhance effective transcription. Finally, we discuss the potential pharmacologic approaches toward targeting viral persistence in different cellular and anatomical reservoirs to achieve a cure of HIV-1 infection.
Collapse
Affiliation(s)
- Shailesh K Choudhary
- Departments of Medicine, University of North Carolina at Chapel Hill, 27599, USA
| | | |
Collapse
|
20
|
He N, Zhou Q. New insights into the control of HIV-1 transcription: when Tat meets the 7SK snRNP and super elongation complex (SEC). J Neuroimmune Pharmacol 2011; 6:260-8. [PMID: 21360054 PMCID: PMC3087102 DOI: 10.1007/s11481-011-9267-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 02/15/2011] [Indexed: 12/18/2022]
Abstract
Recent studies aimed at elucidating the mechanism controlling HIV-1 transcription have led to the identification and characterization of two multi-subunit complexes that both contain P-TEFb, a human transcription elongation factor and co-factor for activation of HIV-1 gene expression by the viral Tat protein. The first complex, termed the 7SK snRNP, acts as a reservoir where active P-TEFb can be withdrawn by Tat to stimulate HIV-1 transcription. The second complex, termed the super elongation complex (SEC), represents the form of P-TEFb delivered by Tat to the paused RNA polymerase II at the viral long terminal repeat during Tat transactivation. Besides P-TEFb, SEC also contains other elongation factors/co-activators, and they cooperatively stimulate HIV-1 transcription. Recent data also indicate SEC as a target for the mixed lineage leukemia (MLL) protein to promote the expression of MLL target genes and leukemogenesis. Given their roles in HIV-1/AIDS and cancer, further characterization of 7SK snRNP and SEC will help develop strategies to suppress aberrant transcriptional elongation caused by uncontrolled P-TEFb activation. As both complexes are also important for normal cellular gene expression, studying their structures and functions will elucidate the mechanisms that control metazoan transcriptional elongation in general.
Collapse
Affiliation(s)
- Nanhai He
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Qiang Zhou
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720 USA
| |
Collapse
|
21
|
Colin L, Van Lint C. Molecular control of HIV-1 postintegration latency: implications for the development of new therapeutic strategies. Retrovirology 2009; 6:111. [PMID: 19961595 PMCID: PMC2797771 DOI: 10.1186/1742-4690-6-111] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2009] [Accepted: 12/04/2009] [Indexed: 02/07/2023] Open
Abstract
The persistence of HIV-1 latent reservoirs represents a major barrier to virus eradication in infected patients under HAART since interruption of the treatment inevitably leads to a rebound of plasma viremia. Latency establishes early after infection notably (but not only) in resting memory CD4+ T cells and involves numerous host and viral trans-acting proteins, as well as processes such as transcriptional interference, RNA silencing, epigenetic modifications and chromatin organization. In order to eliminate latent reservoirs, new strategies are envisaged and consist of reactivating HIV-1 transcription in latently-infected cells, while maintaining HAART in order to prevent de novo infection. The difficulty lies in the fact that a single residual latently-infected cell can in theory rekindle the infection. Here, we review our current understanding of the molecular mechanisms involved in the establishment and maintenance of HIV-1 latency and in the transcriptional reactivation from latency. We highlight the potential of new therapeutic strategies based on this understanding of latency. Combinations of various compounds used simultaneously allow for the targeting of transcriptional repression at multiple levels and can facilitate the escape from latency and the clearance of viral reservoirs. We describe the current advantages and limitations of immune T-cell activators, inducers of the NF-κB signaling pathway, and inhibitors of deacetylases and histone- and DNA- methyltransferases, used alone or in combinations. While a solution will not be achieved by tomorrow, the battle against HIV-1 latent reservoirs is well- underway.
Collapse
Affiliation(s)
- Laurence Colin
- Institut de Biologie et de Médecine Moléculaires (IBMM), Université Libre de Bruxelles (ULB), Gosselies, Belgium.
| | | |
Collapse
|
22
|
Dahl V, Josefsson L, Palmer S. HIV reservoirs, latency, and reactivation: prospects for eradication. Antiviral Res 2009; 85:286-94. [PMID: 19808057 DOI: 10.1016/j.antiviral.2009.09.016] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 09/24/2009] [Accepted: 09/30/2009] [Indexed: 12/11/2022]
Abstract
Current antiretroviral therapy effectively suppresses but does not eradicate HIV-1 infection. During therapy patients maintain a persistent low-level viremia requiring lifelong adherence to antiretroviral therapies. This viremia may arise from latently infected reservoirs such as resting memory CD4+ T-cells or sanctuary sites where drug penetration is suboptimal. Understanding the mechanisms of HIV latency will help efforts to eradicate the infection. This review examines the dynamics of persistent viremia, viral reservoirs, the mechanisms behind viral latency, and methods to purge the viral reservoirs. This article forms part of a special issue of Antiviral Research marking the 25th anniversary of antiretroviral drug discovery and development, vol. 85, issue 1, 2010.
Collapse
Affiliation(s)
- Viktor Dahl
- Swedish Institute for Infectious Disease Control, Karolinska Institutet, Nobels väg 18, SE-171 82 Solna, Sweden
| | | | | |
Collapse
|
23
|
Graci JD, Colacino JM, Peltz SW, Dougherty JP, Gu Z. HIV Type-1 Latency: Targeted Induction of Proviral Reservoirs. ACTA ACUST UNITED AC 2009; 19:177-87. [DOI: 10.1177/095632020901900501] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
HIV type-1 (HIV-1) can establish a state of latency in infected patients, most notably in resting CD4+ T-cells. This long-lived reservoir allows for rapid re-emergence of viraemia upon cessation of highly active antiretroviral therapy, even after extensive and seemingly effective treatment. Successful depletion of such latent reservoirs is probably essential to ‘cure’ HIV-1 infection and will require therapeutic agents that can specifically and efficiently act on cells harbouring latent HIV-1 provirus. The mechanisms underlying HIV-1 latency are not well characterized, and it is becoming clear that numerous factors, both cell- and virus-derived, are involved in the maintenance of proviral latency. The interplay of these various factors in the context of viral reactivation is still poorly understood. In this article, we review the current knowledge regarding the mechanisms underlying maintenance of HIV-1 latency, both transcriptional and post-transcriptional, with a focus on potential targets that might be exploited to therapeutically purge latent proviral reservoirs from infected patients.
Collapse
Affiliation(s)
| | | | | | - Joseph P Dougherty
- Department of Molecular Genetics, Microbiology, and Immunology, University of Medicine & Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Zhengxian Gu
- PTC Therapeutics, Inc., South Plainfield, NJ, USA
| |
Collapse
|
24
|
Richman DD, Margolis DM, Delaney M, Greene WC, Hazuda D, Pomerantz RJ. The challenge of finding a cure for HIV infection. Science 2009; 323:1304-7. [PMID: 19265012 DOI: 10.1126/science.1165706] [Citation(s) in RCA: 660] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although combination therapy for HIV infection represents a triumph for modern medicine, chronic suppressive therapy is required to contain persistent infection in reservoirs such as latently infected CD4+ lymphocytes and cells of the macrophage-monocyte lineage. Despite its success, chronic suppressive therapy is limited by its cost, the requirement of lifelong adherence, and the unknown effects of long-term treatment. This review discusses our current understanding of suppressive antiretroviral therapy, the latent viral reservoir, and the needs for and challenges of attacking this reservoir to achieve a cure.
Collapse
Affiliation(s)
- Douglas D Richman
- San Diego VA Healthcare System and University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0679, USA.
| | | | | | | | | | | |
Collapse
|
25
|
A limited group of class I histone deacetylases acts to repress human immunodeficiency virus type 1 expression. J Virol 2009; 83:4749-56. [PMID: 19279091 DOI: 10.1128/jvi.02585-08] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Silencing of the integrated human immunodeficiency virus type 1 (HIV-1) genome in resting CD4(+) T cells is a significant contributor to the persistence of infection, allowing the virus to evade both immune detection and pharmaceutical attack. Nonselective histone deacetylase (HDAC) inhibitors are capable of inducing expression of quiescent HIV-1 in latently infected cells. However, potent global HDAC inhibition can induce host toxicity. To determine the specific HDACs that regulate HIV-1 transcription, we evaluated HDAC1 to HDAC11 RNA expression and protein expression and compartmentalization in the resting CD4(+) T cells of HIV-1-positive, aviremic patients. HDAC1, -3, and -7 had the highest mRNA expression levels in these cells. Although all HDACs were detected in resting CD4(+) T cells by Western blot analysis, HDAC5, -8, and -11 were primarily sequestered in the cytoplasm. Using chromatin immunoprecipitation assays, we detected HDAC1, -2, and -3 at the HIV-1 promoter in Jurkat J89GFP cells. Targeted inhibition of HDACs by small interfering RNA demonstrated that HDAC2 and HDAC3 contribute to repression of HIV-1 long terminal repeat expression in the HeLa P4/R5 cell line model of latency. Together, these results suggest that HDAC inhibitors specific for a limited number of class I HDACs may offer a targeted approach to the disruption of persistent HIV-1 infection.
Collapse
|
26
|
Abstract
Highly active antiretroviral therapy (HAART) has markedly decreased morbidity and mortality in human immunodeficiency virus type 1 (HIV-1)-infected individuals in the developed world. Successful therapy often results in stable plasma levels of HIV-1 RNA below the limits of detection of commercial assays. Nonetheless, HIV-1 has not been cured by HAART. The causes of persistence of HIV infection in the face of current therapy appear to be multifactorial: latent but replication-competent provirus in resting CD4+ T cells, cryptic viral expression below the limits of detection of clinical assays, and viral sanctuary sites might all contribute to persistence. Clearance of HIV infection will almost certainly require a multimodality approach that includes potent suppression of HIV replication, therapies that reach all compartments of residual HIV replication and depletion of any reservoirs of persistent, quiescent proviral infection. This review highlights the basic mechanisms for the establishment and maintenance of viral reservoirs and pharmaceutical approaches towards their elimination.
Collapse
|
27
|
Archin NM, Espeseth A, Parker D, Cheema M, Hazuda D, Margolis DM. Expression of latent HIV induced by the potent HDAC inhibitor suberoylanilide hydroxamic acid. AIDS Res Hum Retroviruses 2009; 25:207-12. [PMID: 19239360 DOI: 10.1089/aid.2008.0191] [Citation(s) in RCA: 284] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Histone deacetylases (HDACs) act on histones within the nucleosome-bound promoter of human immunodeficiency virus type 1 (HIV-1) to maintain proviral latency. HDAC inhibition leads to promoter expression and the escape of HIV from latency. We evaluated the ability of the potent inhibitor recently licensed for use in oncology, suberoylanilide hydroxamic acid (SAHA; Vorinostat), selective for Class I HDACs, to induce HIV promoter expression in cell lines and virus production from the resting CD4(+) T cells of antiretroviral-treated, aviremic HIV-infected patients. In J89, a Jurkat T cell line infected with a single HIV genome encoding the enhanced green fluorescence protein (EGFP) within the HIV genome, SAHA induced changes at nucleosome 1 of the HIV promoter in chromatin immunoprecipitation (ChIP) assays in concert with EGFP expression. In the resting CD4(+) T cells of antiretroviral-treated, aviremic HIV-infected patients clinically achievable exposures to SAHA induced virus outgrowth ex vivo. These results suggest that potent, selective HDAC inhibitors may allow improved targeting of persistent proviral HIV infection, and define parameters for in vivo studies using SAHA.
Collapse
Affiliation(s)
- Nancie M. Archin
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Amy Espeseth
- Merck Research Laboratories, West Point, Pennsylvania 19486
| | - Daniel Parker
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Manzoor Cheema
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Daria Hazuda
- Merck Research Laboratories, West Point, Pennsylvania 19486
| | - David M. Margolis
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
28
|
Burnett JC, Miller-Jensen K, Shah PS, Arkin AP, Schaffer DV. Control of stochastic gene expression by host factors at the HIV promoter. PLoS Pathog 2009; 5:e1000260. [PMID: 19132086 PMCID: PMC2607019 DOI: 10.1371/journal.ppat.1000260] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Accepted: 12/09/2008] [Indexed: 12/21/2022] Open
Abstract
The HIV promoter within the viral long terminal repeat (LTR) orchestrates many aspects of the viral life cycle, from the dynamics of viral gene expression and replication to the establishment of a latent state. In particular, after viral integration into the host genome, stochastic fluctuations in viral gene expression amplified by the Tat positive feedback loop can contribute to the formation of either a productive, transactivated state or an inactive state. In a significant fraction of cells harboring an integrated copy of the HIV-1 model provirus (LTR-GFP-IRES-Tat), this bimodal gene expression profile is dynamic, as cells spontaneously and continuously flip between active (Bright) and inactive (Off) expression modes. Furthermore, these switching dynamics may contribute to the establishment and maintenance of proviral latency, because after viral integration long delays in gene expression can occur before viral transactivation. The HIV-1 promoter contains cis-acting Sp1 and NF-κB elements that regulate gene expression via the recruitment of both activating and repressing complexes. We hypothesized that interplay in the recruitment of such positive and negative factors could modulate the stability of the Bright and Off modes and thereby alter the sensitivity of viral gene expression to stochastic fluctuations in the Tat feedback loop. Using model lentivirus variants with mutations introduced in the Sp1 and NF-κB elements, we employed flow cytometry, mRNA quantification, pharmacological perturbations, and chromatin immunoprecipitation to reveal significant functional differences in contributions of each site to viral gene regulation. Specifically, the Sp1 sites apparently stabilize both the Bright and the Off states, such that their mutation promotes noisy gene expression and reduction in the regulation of histone acetylation and deacetylation. Furthermore, the NF-κB sites exhibit distinct properties, with κB site I serving a stronger activating role than κB site II. Moreover, Sp1 site III plays a particularly important role in the recruitment of both p300 and RelA to the promoter. Finally, analysis of 362 clonal cell populations infected with the viral variants revealed that mutations in any of the Sp1 sites yield a 6-fold higher frequency of clonal bifurcation compared to that of the wild-type promoter. Thus, each Sp1 and NF-κB site differentially contributes to the regulation of viral gene expression, and Sp1 sites functionally “dampen” transcriptional noise and thereby modulate the frequency and maintenance of this model of viral latency. These results may have biomedical implications for the treatment of HIV latency. After HIV genome integration into the host chromosome, the viral promoter coordinates a complex set of inputs to control the establishment of viral latency, the onset of viral gene expression, and the ensuing gene expression levels. Among these inputs are chromatin structure at the site of integration, host transcription factors, and the virally encoded transcriptional regulator Tat. Importantly, transcriptional noise from host and viral transcriptional regulators may play a critical role in the decision between replication versus latency, because stochastic fluctuations in gene expression are amplified by a Tat-mediated positive transcriptional feedback loop. To evaluate the individual contributions of key transcription factor binding elements in gene expression dynamics, we employ model HIV viruses with mutations introduced into numerous promoter elements. Extensive analysis of gene expression dynamics and transcription factor recruitment to the viral promoter reveals that each site differentially contributes to viral gene expression and to the establishment of a low expression state that may contribute to viral latency. This systems-level approach elucidates the synergistic contributions of host and viral factors to the dynamics, magnitudes, and stochastic effects in viral gene expression, as well as provides insights into mechanisms that contribute to proviral latency.
Collapse
Affiliation(s)
- John C Burnett
- Department of Chemical Engineering and the Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California, United States of America
| | | | | | | | | |
Collapse
|
29
|
Contreras X, Schweneker M, Chen CS, McCune JM, Deeks SG, Martin J, Peterlin BM. Suberoylanilide hydroxamic acid reactivates HIV from latently infected cells. J Biol Chem 2009; 284:6782-9. [PMID: 19136668 DOI: 10.1074/jbc.m807898200] [Citation(s) in RCA: 240] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human immunodeficiency virus (HIV) persists in a latent form in infected individuals treated effectively with highly active antiretroviral therapy (HAART). In part, these latent proviruses account for the rebound in viral replication observed after treatment interruption. A major therapeutic challenge is to purge this reservoir. In this study, we demonstrate that suberoylanilide hydroxamic acid (SAHA) reactivates HIV from latency in chronically infected cell lines and primary cells. Indeed, P-TEFb, a critical transcription cofactor for HIV, is released and then recruited to the viral promoter upon stimulation with SAHA. The phosphatidylinositol 3-kinase/Akt pathway is involved in the initiation of these events. Using flow cytometry-based single cell analysis of protein phosphorylation, we demonstrate that SAHA activates this pathway in several subpopulations of T cells, including memory T cells that are the major viral reservoir in peripheral blood. Importantly, SAHA activates HIV replication in peripheral blood mononuclear cells from individuals treated effectively with HAART. Thus SAHA, which is a Food and Drug Administration-approved drug, might be considered to accelerate the decay of the latent reservoir in HAART-treated infected humans.
Collapse
Affiliation(s)
- Xavier Contreras
- Department of Medicine, University of California, San Francisco, California 94143, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Choudhary SK, Archin NM, Margolis DM. Hexamethylbisacetamide and disruption of human immunodeficiency virus type 1 latency in CD4(+) T cells. J Infect Dis 2008; 197:1162-70. [PMID: 18419522 DOI: 10.1086/529525] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Novel therapeutic approaches are needed to attack persistent proviral human immunodeficiency type 1 (HIV-1) infection. Hexamethylbisacetamide (HMBA), a hybrid bipolar compound, induces expression of the HIV-1 promoter in the long terminal repeat (LTR) region in a Tat-independent manner but mimics the effect of Tat, overcoming barriers to LTR expression and increasing the processivity of LTR transcription complexes. METHODS We studied alterations in cellular factors and their LTR occupancy induced by HMBA in models of latent HIV-1 infection. We measured the induction of viral outgrowth by HMBA in resting CD4(+) T cells from aviremic HIV-1-infected donors. RESULTS HMBA induced outgrowth of HIV-1 from resting CD4(+) T cells recovered from aviremic patients treated with antiretroviral therapy (ART). HMBA triggered cyclin-dependent kinase 9 (CDK9) recruitment to the LTR, a key factor in the induction of efficient HIV-1 expression, via an unexpected interaction with the transcription factor Sp1. The availability of Sp1 and Sp1 DNA binding sites were necessary for HMBA-induced CDK9 recruitment and LTR expression. HMBA signaling via both protein kinase C mu and phosphatidylinositol 3-kinase appeared to contribute to LTR induction. CONCLUSIONS The novel mechanism through which HMBA disrupts latent HIV-1 infection involves 2 cellular kinases that may be therapeutically exploited to induce expression of persistent proviral HIV-1.
Collapse
Affiliation(s)
- Shailesh K Choudhary
- Departments of Medicine, University of North Carolina at Chapel Hill 27599-7435, USA
| | | | | |
Collapse
|
31
|
Burris CA, de Silva S, Narrow WC, Casey AE, Lotta LT, Federoff HJ, Bowers WJ. Hexamethylene bisacetamide leads to reduced helper virus-free HSV-1 amplicon expression titers via suppression of ICP0. J Gene Med 2008; 10:152-64. [PMID: 18058952 PMCID: PMC2440655 DOI: 10.1002/jgm.1130] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The herpes simplex virus (HSV)-derived amplicon vector has evolved into a promising gene transfer platform for widespread DNA delivery in gene replacement strategies and vaccine development given its ease of molecular manipulation, large transgene capacity, and transduction efficiencies of numerous cell types in vivo. The recent development of helper virus-free packaging methodologies bodes well for this vector system in its eventual implementation as a clinically viable therapeutic modality. For realization of clinical application, efforts have been made to enhance yields and quality of helper-free amplicon stocks. Hexamethylene bisacetamide (HMBA), a hybrid polar compound that exhibits stimulatory activity of HSV-1 immediate-early gene expression, has been employed as a standard reagent in helper virus-free packaging given its purported mode of action on virus gene expression kinetics. Unexpectedly, we have found that HMBA exhibits no titer-enhancing activity; in contrast, the compound enhances the proportion of amplicon virions that are non-expressive. Omission of HMBA during vector packaging led to a marked reduction in the ratios of vector genome-transducing to transgene-expressing virions. This effect was neither packaging-cell-specific nor amplicon-promoter-dependent. Analysis of resultant vector stocks indicated amplicon genome replication/concatenation was unaffected, but the level of particle-associated ICP0 was reduced in stocks packaged in the presence of HMBA. Inclusion of a co-transfected, ICP0-expressing plasmid into the packaging process led to significant rescue of amplicon expression titers, indicating that regulation of ICP0 concentrations is critical for maintenance of the amplicon genome expressive state.
Collapse
Affiliation(s)
- Clark A Burris
- Department of Neurology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
CBF-1 promotes transcriptional silencing during the establishment of HIV-1 latency. EMBO J 2007; 26:4985-95. [PMID: 18007589 DOI: 10.1038/sj.emboj.7601928] [Citation(s) in RCA: 185] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Accepted: 10/24/2007] [Indexed: 01/12/2023] Open
Abstract
The establishment of HIV proviral latency requires the creation of repressive chromatin structures that impair the initiation of transcription and restrict RNAP II elongation. We have found that C-promoter binding factor-1 (CBF-1), a CSL (CBF-1, Su(H) and Lag-1)-type transcription factor and key effector of the Notch signaling pathway, is a remarkably potent and specific inhibitor of the HIV-1 LTR promoter. Knockdown of endogenous CBF-1 using specific small hairpin RNAs expressed on lentiviral vectors results in the partial reactivation of latent HIV proviruses, recruitment of RNAP II, loss of histone deacetylases and the concomitant acetylation of histones. An important property of any repressor utilized to establish HIV latency is that it must become displaced or deactivated upon T-cell activation. Consistent with this hypothesis, CBF-1 mRNA and protein levels are highest in quiescent or unstimulated T cells but decline rapidly in response to proliferative stimulation such as activation of the T-cell receptor or treatment with TNF-alpha. We conclude that CBF-1 is a previously overlooked factor that induces transcriptional silencing during the establishment of HIV latency.
Collapse
|
33
|
Contreras X, Barboric M, Lenasi T, Peterlin BM. HMBA releases P-TEFb from HEXIM1 and 7SK snRNA via PI3K/Akt and activates HIV transcription. PLoS Pathog 2007; 3:1459-69. [PMID: 17937499 PMCID: PMC2014796 DOI: 10.1371/journal.ppat.0030146] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Accepted: 08/21/2007] [Indexed: 01/27/2023] Open
Abstract
Hexamethylene bisacetamide (HMBA) is a potent inducer of cell differentiation and HIV production in chronically infected cells. However, its mechanism of action remains poorly defined. In this study, we demonstrate that HMBA activates transiently the PI3K/Akt pathway, which leads to the phosphorylation of HEXIM1 and the subsequent release of active positive transcription elongation factor b (P-TEFb) from its transcriptionally inactive complex with HEXIM1 and 7SK small nuclear RNA (snRNA). As a result, P-TEFb is recruited to the HIV promoter to stimulate transcription elongation and viral production. Despite the continuous presence of HMBA, the released P-TEFb reassembles rapidly with 7SK snRNA and HEXIM1. In contrast, a mutant HEXIM1 protein that cannot be phosphorylated and released from P-TEFb and 7SK snRNA via the PI3K/Akt pathway antagonizes this HMBA-mediated induction of viral production. Thus, our studies reveal how HIV transcription is induced by HMBA and suggest how modifications in the equilibrium between active and inactive P-TEFb could contribute to cell differentiation. The reservoir of HIV in infected people remains an insurmountable problem in the era of highly active antiretroviral therapy. Thus, the virus persists despite the best possible treatment. HIV hides in many cells and tissues, where its genome is not expressed. Thus, neither drugs nor the immune system can eradicate it from the body. One hope is to activate the production of HIV in these reservoirs in the presence of optimal treatment. Strategies aimed at activating hematopoetic cells and thus viral replication have been tried and failed. In this report, we targeted a specific host transcriptional complex that is essential for the transcription of HIV genome. Its activation should not lead to generalized stimulation of the immune system. Indeed, paradoxically, hexamethylene bisacetamide (HMBA) and related compounds lead to cellular differentiation and apoptosis. By studying properties of these differentiation agents, we discovered that they activate transiently transcription of HIV, be it in stable cell lines or in primary infected cells. Thus, compounds related to HMBA, some of which have now been approved for clinical use, could be tried to diminish or eliminate the reservoir of HIV in optimally treated infected individuals.
Collapse
Affiliation(s)
- Xavier Contreras
- Departments of Medicine, Microbiology, and Immunology, Rosalind Russell Medical Research Center, University of California San Francisco, San Francisco, California, United States of America
| | - Matjaz Barboric
- Departments of Medicine, Microbiology, and Immunology, Rosalind Russell Medical Research Center, University of California San Francisco, San Francisco, California, United States of America
| | - Tina Lenasi
- Departments of Medicine, Microbiology, and Immunology, Rosalind Russell Medical Research Center, University of California San Francisco, San Francisco, California, United States of America
| | - B. Matija Peterlin
- Departments of Medicine, Microbiology, and Immunology, Rosalind Russell Medical Research Center, University of California San Francisco, San Francisco, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
34
|
Abstract
The course of HIV infection is arrested by antiretroviral therapy (ART). However, life-long ART is undesirable. To eradicate infection, strategies are needed to deplete the rare population of proviral genomes that persist and reemerge if ART is interrupted. Proviral HIV persists due to the simultaneous deficiency of factors required to allow proviral expression and virion production, and a predominance of factors that obstruct proviral expression. Combining ART with global inducers of T-cell activation has so far failed to eradicate HIV infection. One approach to the selective removal of obstacles to proviral expression, inhibition of the chromatin remodeling enzyme histone deacetylase, has entered clinical testing. Additional approaches may be needed. Ultimately, therapies that eliminate rare cells that persistently express HIV and interrupt low levels of viremia that persist in some patients may be required to render depletion of proviral HIV infection clinically relevant, and lead to the clearance of HIV infection.
Collapse
Affiliation(s)
- David M Margolis
- Department of Medicine, 3302 Michael Hooker Research Building, CB#7435, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7435, USA.
| |
Collapse
|
35
|
Williams SA, Greene WC. Regulation of HIV-1 latency by T-cell activation. Cytokine 2007; 39:63-74. [PMID: 17643313 PMCID: PMC2063506 DOI: 10.1016/j.cyto.2007.05.017] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 05/23/2007] [Accepted: 05/30/2007] [Indexed: 01/06/2023]
Abstract
HIV-infected patients harbor approximately 10(5)-10(6) memory CD4 T-cells that contain fully integrated but transcriptionally silent HIV proviruses. While small in number, these latently infected cells form a drug-insensitive reservoir that importantly contributes to the life-long persistence of HIV despite highly effective antiviral therapy. In tissue culture, latent HIV proviruses can be activated when their cellular hosts are exposed to select proinflammatory cytokines or their T-cell receptors are ligated. However, due to a lack of potency and/or dose-limiting toxicity, attempts to purge virus from this latent reservoir in vivo with immune-activating agents, such as anti-CD3 antibodies and IL-2, have failed. A deeper understanding of the molecular underpinnings of HIV latency is clearly required, including determining whether viral latency is actively reinforced by transcriptional repressors, defining which inducible host transcription factors most effectively antagonize latency, and elucidating the role of chromatin in viral latency. Only through such an improved understanding will it be possible to identify combination therapies that might allow complete purging of the latent reservoir and to realize the difficult and elusive goal of complete eradication of HIV in infected patients.
Collapse
Affiliation(s)
- Samuel A. Williams
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, CA, 94141-1230
- Department of Physiology, University of California, San Francisco, CA, 94141-1230
- Department of Medicine, University of California, San Francisco, CA, 94141-1230
| | - Warner C. Greene
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, CA, 94141-1230
- Department of Medicine, University of California, San Francisco, CA, 94141-1230
- Department of Microbiology and Immunology, University of California, San Francisco, CA, 94141-1230
- *Corresponding author. Mailing address: Gladstone Institute of Virology and Immunology, 1650 Owens Street, San Francisco, CA, 94158, Phone: (415) 734-2000, Fax: (415) 355-0153,
| |
Collapse
|
36
|
Abstract
Current therapies do not eradicate HIV from infected patients. Indeed, HIV hides in a latent form insensitive to these therapies. Thus, one priority is to purge these latent reservoirs. But what mechanisms are responsible for latency and what are the reservoirs of latently infected cells? The present knowledge in terms of HIV latency is still incomplete and current therapeutic strategies fail to eradicate completely latently infected cells. What could the future bring?
Collapse
Affiliation(s)
- Xavier Contreras
- University of California San Francisco, 533 Parnassus avenue, Room U432, 94143, San Francisco, CA, USA
| | | | | |
Collapse
|