1
|
Yao M, Zhang W. Where Molecules Meet Mucus: Mutanofactins in the Oral Microbiome. ACS CENTRAL SCIENCE 2025; 11:508-510. [PMID: 40290143 PMCID: PMC12022904 DOI: 10.1021/acscentsci.5c00546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Affiliation(s)
- McKenna
Loop Yao
- Department of Chemical and
Biomolecular Engineering, University of
California, Berkeley, California 94720, United States
| | - Wenjun Zhang
- Department of Chemical and
Biomolecular Engineering, University of
California, Berkeley, California 94720, United States
| |
Collapse
|
2
|
Kolokotronis SO, Bhattacharya C, Panja R, Quate I, Seibert M, Jorgensen E, Mason CE, Hénaff EM. Metagenomic interrogation of urban Superfund site reveals antimicrobial resistance reservoir and bioremediation potential. J Appl Microbiol 2025; 136:lxaf076. [PMID: 40233938 PMCID: PMC11999716 DOI: 10.1093/jambio/lxaf076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/03/2025] [Accepted: 03/25/2025] [Indexed: 04/17/2025]
Abstract
AIMS We investigate the bioremediation potential of the microbiome of the Gowanus Canal, a contaminated waterway in Brooklyn, NY, USA, designated a Superfund site by the US Environmental Protection Agency due to high concentrations of contaminants, including polychlorinated biphenyls, petrochemicals, and heavy metals. METHODS AND RESULTS We present a metagenomic analysis of the Gowanus Canal sediment, consisting of a longitudinal study of surface sediment and a depth-based study of sediment core samples. We demonstrate that the resident microbiome includes 455 species, including extremophiles across a range of saltwater and freshwater species, which collectively encode 64 metabolic pathways related to organic contaminant degradation and 1171 genes related to heavy metal utilization and detoxification. Furthermore, our genetic screening reveals an environmental reservoir of antimicrobial resistance markers falling within 8 different classes of resistance, as well as de-novo characterization of 2319 biosynthetic gene clusters and diverse groups of secondary metabolites with biomining potential. CONCLUSION The microbiome of the Gowanus Canal is a biotechnological resource of novel metabolic functions that could aid in efforts for bioremediation, AMR reservoir mapping, and heavy metal mitigation.
Collapse
Affiliation(s)
- Sergios-Orestis Kolokotronis
- Departments of Epidemiology and Biostatistics, Medicine, and Cell Biology, SUNY Downstate Health Sciences University, 450 Clarkson Ave, Brooklyn, NY, United States
| | - Chandrima Bhattacharya
- Department of Physiology and Biophysics, Weill Cornell Medicine, 1300 York Avenue 0021, United States
| | - Rupobrata Panja
- Center for Computational and Integrative Biology, Rutgers University, 201 S Broadway Camden, NJ 08103, United States
| | - Ian Quate
- Fruit Studio, 352 Depot Street, Suite 250, Asheville, NC 28801, United States
| | - Matthew Seibert
- School of Architecture, University of Virginia, Campbell Hall, PO Box 400122, Charlottesville, VA 22904, United States
| | - Ellen Jorgensen
- Biotech without Borders, 43-01 21st St Suite 319, Long Island City, NY 11101, United States
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, 1300 York Avenue 0021, United States
| | - Elizabeth M Hénaff
- NYU Tandon School of Engineering, Integrated Design and Media, Center for Urban Science and Progress, Chemical and Biomolecular Engineering, 370 Jay Street, Brooklyn, NY 11201, United States
| |
Collapse
|
3
|
Zhang J, Zhang D, Xu Y, Zhang J, Liu R, Gao Y, Shi Y, Cai P, Zhong Z, He B, Li X, Zhou H, Chen M, Li YX. Large-scale biosynthetic analysis of human microbiomes reveals diverse protective ribosomal peptides. Nat Commun 2025; 16:3054. [PMID: 40155374 PMCID: PMC11953309 DOI: 10.1038/s41467-025-58280-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 03/14/2025] [Indexed: 04/01/2025] Open
Abstract
The human microbiome produces diverse metabolites that influence host health, yet the chemical landscape of ribosomally synthesized and post-translationally modified peptides (RiPPs)-a versatile class of bioactive compounds-remains underexplored. Here, we conduct a large-scale biosynthetic analysis of 306,481 microbial genomes from human-associated microbiomes, uncovering a broad array of yet-to-be-discovered RiPPs. These RiPPs are distributed across various body sites but show a specific enrichment in the gut and oral microbiome. Big data omics analysis reveals that numerous RiPP families are inversely related to various diseases, suggesting their potential protective effects on health. For a proof of principle study, we apply the synthetic-bioinformatic natural product (syn-BNP) approach to RiPPs and chemically synthesize nine autoinducing peptides (AIPs) for in vitro and ex vivo assay. Our findings reveal that five AIPs effectively inhibit the biofilm formation of disease-associated pathogens. Furthermore, when ex vivo testing gut microbiota from mice with inflammatory bowel disease, we observe that two AIPs can regulate the microbial community and reduce harmful species. These findings highlight the vast potential of human microbial RiPPs in regulating microbial communities and maintaining human health, emphasizing their potential for therapeutic development.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Dengwei Zhang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yi Xu
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Junliang Zhang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Runze Liu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Ying Gao
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yuqi Shi
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Peiyan Cai
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Zheng Zhong
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Beibei He
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xuechen Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Hongwei Zhou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Muxuan Chen
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| | - Yong-Xin Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
4
|
Chen N, Liu L, Wang J, Mao D, Lu H, Shishido TK, Zhi S, Chen H, He S. Novel Gene Clusters for Secondary Metabolite Synthesis in Mesophotic Sponge-Associated Bacteria. Microb Biotechnol 2025; 18:e70107. [PMID: 39962733 PMCID: PMC11832590 DOI: 10.1111/1751-7915.70107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 01/08/2025] [Accepted: 01/30/2025] [Indexed: 02/21/2025] Open
Abstract
Mesophotic coral ecosystems (MCEs) host a diverse array of sponge species, which represent a promising source of bioactive compounds. Increasing evidence suggests that sponge-associated bacteria may be the primary producers of these compounds. However, cultivating these bacteria under laboratory conditions remains a significant challenge. To investigate the rich resource of bioactive compounds synthesised by mesophotic sponge-associated bacteria, we retrieved 429 metagenome-assembled genomes (MAGs) from 15 mesophotic sponges, revealing a strong correlation between bacterial diversity and sponge species. Furthermore, we identified 1637 secondary metabolite biosynthetic gene clusters (BGCs) within these MAGs. Among the identified BGCs, terpenes were the most abundant (495), followed by 369 polyketide synthases (PKSs), 293 ribosomally synthesised and post-translationally modified peptides (RiPPs) and 135 nonribosomal peptide synthetases (NRPSs). The BGCs were classified into 1086 gene cluster families (GCFs) based on sequence similarity. Notably, only five GCFs included experimentally validated reference BGCs from the Minimum Information about a Biosynthetic Gene cluster database (MIBiG). Additionally, an unusual abundance of BGCs was detected in Entotheonella sp. (s191209.Bin93) from the Tectomicrobia phylum. In contrast, members of Proteobacteria and Acidobacteriota harboured fewer BGCs (6-7 on average), yet their high abundance in MCE sponges suggests a potentially rich reservoir of BGCs. Analysis of the BGC distribution patterns revealed that a subset of BGCs, including terpene GCFs (FAM_00447 and FAM_01046), PKS GCF (FAM_00235), and RiPPs GCF (FAM_01143), were widespread across mesophotic sponges. Furthermore, 32 GCFs were consistently present in the same MAGs across different sponges, highlighting their potential key biological roles and capacity to yield novel bioactive compounds. This study not only underscores the untapped potential of mesophotic sponge-associated bacteria as a source of bioactive compounds but also provides valuable insights into the intricate interactions between sponges and their symbiotic microbial communities.
Collapse
Affiliation(s)
- Nuo Chen
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Health Science CenterNingbo UniversityNingboZhejiangChina
- College of Food Science and EngineeringNingbo UniversityNingboZhejiangChina
| | - Liwei Liu
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Health Science CenterNingbo UniversityNingboZhejiangChina
| | - Jingxuan Wang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Health Science CenterNingbo UniversityNingboZhejiangChina
- College of Food Science and EngineeringNingbo UniversityNingboZhejiangChina
| | - Deqiang Mao
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Health Science CenterNingbo UniversityNingboZhejiangChina
- College of Food Science and EngineeringNingbo UniversityNingboZhejiangChina
| | - Hongmei Lu
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Health Science CenterNingbo UniversityNingboZhejiangChina
- College of Food Science and EngineeringNingbo UniversityNingboZhejiangChina
| | | | - Shuai Zhi
- School of Public HealthNingbo UniversityNingboZhejiangChina
| | - Hua Chen
- Mingke Biotechnology Co., Ltd.HangzhouChina
| | - Shan He
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Health Science CenterNingbo UniversityNingboZhejiangChina
- Ningbo Institute of Marine MedicinePeking UniversityNingboZhejiangChina
| |
Collapse
|
5
|
Wang Y, Shi YN, Xiang H, Shi YM. Exploring nature's battlefield: organismic interactions in the discovery of bioactive natural products. Nat Prod Rep 2024; 41:1630-1651. [PMID: 39316448 DOI: 10.1039/d4np00018h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Covering: up to March 2024.Microbial natural products have historically been a cornerstone for the discovery of therapeutic agents. Advanced (meta)genome sequencing technologies have revealed that microbes harbor far greater biosynthetic capabilities than previously anticipated. However, despite the application of CRISPR/Cas-based gene editing and high-throughput technologies to activate silent biosynthetic gene clusters, the rapid identification of new natural products has not led to a proportional increase in the discovery rate of lead compounds or drugs. A crucial issue in this gap may be insufficient knowledge about the inherent biological and physiological functions of microbial natural products. Addressing this gap necessitates recognizing that the generation of functional natural products is deeply rooted in the interactions between the producing microbes and other (micro)organisms within their ecological contexts, an understanding that is essential for harnessing their potential therapeutic benefits. In this review, we highlight the discovery of functional microbial natural products from diverse niches, including those associated with humans, nematodes, insects, fungi, protozoa, plants, and marine animals. Many of these findings result from an organismic-interaction-guided strategy using multi-omic approaches. The current importance of this topic lies in its potential to advance drug discovery in an era marked by increasing antimicrobial resistance.
Collapse
Affiliation(s)
- Yuyang Wang
- Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Yan-Ni Shi
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Hao Xiang
- Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Ming Shi
- Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Zelasko S, Swaney MH, Sandstrom S, Davenport TC, Seroogy CM, Gern JE, Kalan LR, Currie CR. Upper respiratory microbial communities of healthy populations are shaped by niche and age. MICROBIOME 2024; 12:206. [PMID: 39425237 PMCID: PMC11490146 DOI: 10.1186/s40168-024-01940-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/23/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Alterations in upper respiratory microbiomes have been implicated in shaping host health trajectories, including by limiting mucosal pathogen colonization. However, limited comparative studies of respiratory microbiome development and functioning across age groups have been performed. Herein, we perform shotgun metagenomic sequencing paired with pathogen inhibition assays to elucidate differences in nasal and oral microbiome composition and intermicrobial interactions across healthy 24-month-old infant (n = 229) and adult (n = 100) populations. RESULTS We find that beta diversity of nasal and oral microbiomes varies with age, with nasal microbiomes showing greater population-level variation compared to oral microbiomes. Infant microbiome alpha diversity was significantly lower across nasal samples and higher in oral samples, relative to adults. Accordingly, we demonstrate significant differences in genus- and species-level composition of microbiomes between sites and age groups. Antimicrobial resistome patterns likewise varied across body sites, with oral microbiomes showing higher resistance gene abundance compared to nasal microbiomes. Biosynthetic gene clusters encoding specialized metabolite production were found in higher abundance across infant oral microbiomes, relative to adults. Investigation of pathogen inhibition revealed greater inhibition of gram-negative and gram-positive bacteria by oral commensals, while nasal isolates had higher antifungal activity. CONCLUSIONS In summary, we identify significant differences in the microbial communities inhabiting nasal and oral cavities of healthy infants relative to adults. These findings inform our understanding of the interactions impacting respiratory microbiome composition and functions related to colonization resistance, with important implications for host health across the lifespan. Video Abstract.
Collapse
Affiliation(s)
- Susan Zelasko
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA.
| | - Mary Hannah Swaney
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Shelby Sandstrom
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Timothy C Davenport
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Christine M Seroogy
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - James E Gern
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Lindsay R Kalan
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Biochemistry and Biomedical Sciences, M.G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, ON, Canada
| | - Cameron R Currie
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Biochemistry and Biomedical Sciences, M.G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
7
|
Koohi-Moghadam M, Watt RM, Leung WK. Multi-site analysis of biosynthetic gene clusters from the periodontitis oral microbiome. J Med Microbiol 2024; 73. [PMID: 39378072 DOI: 10.1099/jmm.0.001898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
Background. Bacteria significantly influence human health and disease, with bacterial biosynthetic gene clusters (BGCs) being crucial in the microbiome-host and microbe-microbe interactions.Gap statement. Despite extensive research into BGCs within the human gut microbiome, their roles in the oral microbiome are less understood.Aim. This pilot study utilizes high-throughput shotgun metagenomic sequencing to examine the oral microbiota in different niches, particularly focusing on the association of BGCs with periodontitis.Methodology. We analysed saliva, subgingival plaque and supragingival plaque samples from periodontitis patients (n=23) and controls (n=16). DNA was extracted from these samples using standardized protocols. The high-throughput shotgun metagenomic sequencing was then performed to obtain comprehensive genetic information from the microbial communities present in the samples.Results. Our study identified 10 742 BGCs, with certain clusters being niche-specific. Notably, aryl polyenes and bacteriocins were the most prevalent BGCs identified. We discovered several 'novel' BGCs that are widely represented across various bacterial phyla and identified BGCs that had different distributions between periodontitis and control subjects. Our systematic approach unveiled the previously unexplored biosynthetic pathways that may be key players in periodontitis.Conclusions. Our research expands the current metagenomic knowledge of the oral microbiota in both healthy and periodontally diseased states. These findings highlight the presence of novel biosynthetic pathways in the oral cavity and suggest a complex network of host-microbe and microbe-microbe interactions, potentially influencing periodontal disease. The BGCs identified in this study pave the way for future investigations into the role of small-molecule-mediated interactions within the human oral microbiota and their impact on periodontitis.
Collapse
Affiliation(s)
- Mohamad Koohi-Moghadam
- Division of Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, PR China
- Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, PR China
| | - Rory M Watt
- Division of Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, PR China
| | - W Keung Leung
- Division of Periodontology and Implant Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, PR China
| |
Collapse
|
8
|
Tanwar H, Gnanasekaran JM, Allison D, Chuang LS, He X, Aimetti M, Baima G, Costalonga M, Cross RK, Sears C, Mehandru S, Cho J, Colombel JF, Raufman JP, Thumbigere-Math V. Unravelling the Oral-Gut Axis: Interconnection Between Periodontitis and Inflammatory Bowel Disease, Current Challenges, and Future Perspective. J Crohns Colitis 2024; 18:1319-1341. [PMID: 38417137 PMCID: PMC11324343 DOI: 10.1093/ecco-jcc/jjae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/04/2023] [Accepted: 02/27/2024] [Indexed: 03/01/2024]
Abstract
As the opposite ends of the orodigestive tract, the oral cavity and the intestine share anatomical, microbial, and immunological ties that have bidirectional health implications. A growing body of evidence suggests an interconnection between oral pathologies and inflammatory bowel disease [IBD], implying a shift from the traditional concept of independent diseases to a complex, reciprocal cycle. This review outlines the evidence supporting an 'oral-gut' axis, marked by a higher prevalence of periodontitis and other oral conditions in IBD patients and vice versa. We present an in-depth examination of the interconnection between oral pathologies and IBD, highlighting the shared microbiological and immunological pathways, and proposing a 'multi-hit' hypothesis in the pathogenesis of periodontitis-mediated intestinal inflammation. Furthermore, the review underscores the critical need for a collaborative approach between dentists and gastroenterologists to provide holistic oral-systemic healthcare.
Collapse
Affiliation(s)
- Himanshi Tanwar
- Division of Periodontology, University of Maryland School of Dentistry, Baltimore, MD, USA
| | | | - Devon Allison
- Division of Periodontology, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Ling-shiang Chuang
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xuesong He
- Department of Microbiology, The Forsyth Institute, Cambridge, MA, USA
| | - Mario Aimetti
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - Giacomo Baima
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - Massimo Costalonga
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - Raymond K Cross
- Division of Gastroenterology & Hepatology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Cynthia Sears
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Saurabh Mehandru
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Judy Cho
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jean-Frederic Colombel
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jean-Pierre Raufman
- Division of Gastroenterology & Hepatology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Vivek Thumbigere-Math
- Division of Periodontology, University of Maryland School of Dentistry, Baltimore, MD, USA
- National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, USA
| |
Collapse
|
9
|
Semmler F, Regis Belisário-Ferrari M, Kulosa M, Kaysser L. The Metabolic Potential of the Human Lung Microbiome. Microorganisms 2024; 12:1448. [PMID: 39065215 PMCID: PMC11278768 DOI: 10.3390/microorganisms12071448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/05/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
The human lung microbiome remains largely underexplored, despite its potential implications in the pharmacokinetics of inhaled drugs and its involvement in lung diseases. Interactions within these bacterial communities and with the host are complex processes which often involve microbial small molecules. In this study, we employed a computational approach to describe the metabolic potential of the human lung microbiome. By utilizing antiSMASH and BiG-SCAPE software, we identified 1831 biosynthetic gene clusters for the production of specialized metabolites in a carefully compiled genome database of lung-associated bacteria and fungi. It was shown that RiPPs represent the largest class of natural products within the bacteriome, while NRPs constitute the largest class of natural products in the lung mycobiome. All predicted BGCs were further categorized into 767 gene cluster families, and a subsequent network analysis highlighted that these families are widely distributed and contain many uncharacterized members. Moreover, in-depth annotation allowed the assignment of certain gene clusters to putative lung-specific functions within the microbiome, such as osmoadaptation or surfactant synthesis. This study establishes the lung microbiome as a prolific source for secondary metabolites and lays the groundwork for detailed investigation of this unique environment.
Collapse
Affiliation(s)
| | | | | | - Leonard Kaysser
- Department of Pharmaceutical Biology, Institute for Drug Discovery, University of Leipzig, 04317 Leipzig, Germany; (F.S.); (M.R.B.-F.); (M.K.)
| |
Collapse
|
10
|
Tang J, Baker JL. The salivary virome during childhood dental caries. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595360. [PMID: 38826395 PMCID: PMC11142174 DOI: 10.1101/2024.05.22.595360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
While many studies have examined the bacterial taxa associated with dental caries, the most common chronic infectious disease globally, little is known about the caries-associated virome. In this study, the salivary viromes of 21 children with severe caries (>2 dentin lesions) and 23 children with healthy dentition were examined. 2,485 viral metagenome-assembled genomes (vMAGs) were identified, binned, and quantified from the metagenomic assemblies. These vMAGs were mostly phage, and represented 1,547 unique species-level vOTUs, 247 of which appear to be novel. The metagenomes were also queried for all 3,835 unique species-level vOTUs of DNA viruses with a human host on NCBI Virus, however all but Human betaherpesvirus 7 were at very low abundance in the saliva. The oral viromes of the children with caries exhibited significantly different beta diversity compared to the oral virome of the children with healthy dentition; several vOTUs predicted to infect Pauljensenia and Neisseria were strongly correlated with health, and two vOTUs predicted to infect Saccharibacteria and Prevotella histicola, respectively, were correlated with caries. Co-occurrence analysis indicated that phage typically co-occurred with both their predicted hosts and with bacteria that were themselves associated with the same disease status. Overall, this study provided the sequences of 53 complete or nearly complete novel oral phages and illustrated the significance of the oral virome in the context of dental caries, which has been largely overlooked. This work represents an important step towards the identification and study of phage therapy candidates which treat or prevent caries pathogenesis.
Collapse
Affiliation(s)
- Jonah Tang
- Department of Oral Rehabilitation & Biosciences, OHSU School of Dentistry, Portland, OR, USA
| | - Jonathon L. Baker
- Department of Oral Rehabilitation & Biosciences, OHSU School of Dentistry, Portland, OR, USA
- Genomic Medicine Group, J. Craig Venter Institute, La Jolla, CA, USA
| |
Collapse
|
11
|
Sengupta S, Pabbaraja S, Mehta G. Natural products from the human microbiome: an emergent frontier in organic synthesis and drug discovery. Org Biomol Chem 2024; 22:4006-4030. [PMID: 38669195 DOI: 10.1039/d4ob00236a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Often referred to as the "second genome", the human microbiome is at the epicenter of complex inter-habitat biochemical networks like the "gut-brain axis", which has emerged as a significant determinant of cognition, overall health and well-being, as well as resistance to antibiotics and susceptibility to diseases. As part of a broader understanding of the nexus between the human microbiome, diseases and microbial interactions, whether encoded secondary metabolites (natural products) play crucial signalling roles has been the subject of intense scrutiny in the recent past. A major focus of these activities involves harvesting the genomic potential of the human microbiome via bioinformatics guided genome mining and culturomics. Through these efforts, an impressive number of structurally intriguing antibiotics, with enhanced chemical diversity vis-à-vis conventional antibiotics have been isolated from human commensal bacteria, thereby generating considerable interest in their total synthesis and expanding their therapeutic space for drug discovery. These developments augur well for the discovery of new drugs and antibiotics, particularly in the context of challenges posed by mycobacterial resistance and emerging new diseases. The current landscape of various synthetic campaigns and drug discovery initiatives on antibacterial natural products from the human microbiome is captured in this review with an intent to stimulate further activities in this interdisciplinary arena among the new generation.
Collapse
Affiliation(s)
- Saumitra Sengupta
- School of Chemistry, University of Hyderabad, Hyderabad-500046, India.
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
| | - Srihari Pabbaraja
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Goverdhan Mehta
- School of Chemistry, University of Hyderabad, Hyderabad-500046, India.
| |
Collapse
|
12
|
Zhang Y, Zhi Q, Shi J, Jin Z, Zhou Z, Chen Z. Characterization and functional prediction of the dental plaque microbiome in patients with alveolar clefts. Front Cell Infect Microbiol 2024; 14:1361206. [PMID: 38800834 PMCID: PMC11119321 DOI: 10.3389/fcimb.2024.1361206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/15/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction Alveolar cleft (AC) is a common congenital defect in people with cleft lip and palate (CLP). Alveolar bone grafting (ABG) is typically performed during adolescence, resulting in the fissure remaining in the mouth for a longer length of time. Patients with AC have a greater rate of oral diseases such as dental caries than the normal population, and the precise characteristics of the bacterial alterations caused by AC are unknown. Methods We recruited a total of 87 subjects and collected dental plaque samples from AC adolescents (AAP), post-operative ABG adolescents (PAP), healthy control adolescents (CAP), AC young adults (AYP), post-operative ABG young adults (PYP), and healthy control young adults (CYP). The sequencing of 16S rRNA genes was performed. Results The microbial composition of plaque from alveolar cleft patients differed significantly from age-matched healthy controls. Linear discriminant analysis effect size (LEfSe) analysis revealed that AAP was enriched for Neisseria, Haemophilus, Fusobacterium, Rhodococcus, Aggregatibacter, Gemella, and Porphyromonas, whereas AYP was enriched for Capnocytophaga, Rhodococcus, and Actinomyces-f0332. There were phenotypic differences in facultatively anaerobic, Gram-negative, Gram-positive, and oxidative stress tolerance between the AYP group with longer alveolar cleft and the healthy control group according to Bugbase phenotypic predictions. Alveolar bone grafting did not alter the functional phenotype of alveolar cleft patients but reduced the number of differential genera between alveolar cleft patients and healthy controls at both ages. Conclusions Our study systematically characterized the supragingival plaque microbiota of alveolar cleft patients, post-alveolar bone grafting patients, and matched healthy controls in two ages to gain a better understanding of plaque ecology and microbiology associated with alveolar clefts.
Collapse
Affiliation(s)
- Yuehua Zhang
- Department of Orthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Qiang Zhi
- Department of Implant Dentistry, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Stomatology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiajun Shi
- Department of Orthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Zehua Jin
- Department of Orthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Zhuojun Zhou
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
- Department of General Dentistry, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenqi Chen
- Department of Orthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
13
|
Reuben RC, Torres C. Bacteriocins: potentials and prospects in health and agrifood systems. Arch Microbiol 2024; 206:233. [PMID: 38662051 PMCID: PMC11045635 DOI: 10.1007/s00203-024-03948-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/26/2024]
Abstract
Bacteriocins are highly diverse, abundant, and heterogeneous antimicrobial peptides that are ribosomally synthesized by bacteria and archaea. Since their discovery about a century ago, there has been a growing interest in bacteriocin research and applications. This is mainly due to their high antimicrobial properties, narrow or broad spectrum of activity, specificity, low cytotoxicity, and stability. Though initially used to improve food quality and safety, bacteriocins are now globally exploited for innovative applications in human, animal, and food systems as sustainable alternatives to antibiotics. Bacteriocins have the potential to beneficially modulate microbiota, providing viable microbiome-based solutions for the treatment, management, and non-invasive bio-diagnosis of infectious and non-infectious diseases. The use of bacteriocins holds great promise in the modulation of food microbiomes, antimicrobial food packaging, bio-sanitizers and antibiofilm, pre/post-harvest biocontrol, functional food, growth promotion, and sustainable aquaculture. This can undoubtedly improve food security, safety, and quality globally. This review highlights the current trends in bacteriocin research, especially the increasing research outputs and funding, which we believe may proportionate the soaring global interest in bacteriocins. The use of cutting-edge technologies, such as bioengineering, can further enhance the exploitation of bacteriocins for innovative applications in human, animal, and food systems.
Collapse
Affiliation(s)
- Rine Christopher Reuben
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain.
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain
| |
Collapse
|
14
|
Zelasko S, Swaney MH, Sandstrom S, Davenport TC, Seroogy CM, Gern JE, Kalan LR, Currie CR. Upper respiratory microbial communities of healthy populations are shaped by niche and age. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.14.589416. [PMID: 38645133 PMCID: PMC11030450 DOI: 10.1101/2024.04.14.589416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Background Alterations in upper respiratory microbiomes have been implicated in shaping host health trajectories, including by limiting mucosal pathogen colonization. However, limited comparative studies of respiratory microbiome development and functioning across age groups have been performed. Herein, we perform shotgun metagenomic sequencing paired with pathogen inhibition assays to elucidate differences in nasal and oral microbiome composition and functioning across healthy 24-month-old infant (n=229) and adult (n=100) populations. Results We find that beta diversity of nasal and oral microbiomes varies with age, with nasal microbiomes showing greater population-level variation compared to oral microbiomes. Infant microbiome alpha diversity was significantly lower across nasal samples and higher in oral samples, relative to adults. Accordingly, we demonstrate significant differences in genus- and species-level composition of microbiomes between sites and age groups. Antimicrobial resistome patterns likewise varied across body sites, with oral microbiomes showing higher resistance gene abundance compared to nasal microbiomes. Biosynthetic gene clusters encoding specialized metabolite production were found in higher abundance across infant oral microbiomes, relative to adults. Investigation of pathogen inhibition revealed greater inhibition of gram-negative and gram-positive bacteria by oral commensals, while nasal isolates had higher antifungal activity. Conclusions In summary, we identify significant differences in the microbial communities inhabiting nasal and oral cavities of healthy infants relative to adults. These findings inform our understanding of the interactions impacting respiratory microbiome composition and functioning, with important implications for host health across the lifespan.
Collapse
Affiliation(s)
- Susan Zelasko
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mary Hannah Swaney
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Shelby Sandstrom
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Timothy C. Davenport
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Christine M. Seroogy
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - James E. Gern
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Lindsay R. Kalan
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- M.G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Cameron R. Currie
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- M.G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
15
|
Lin X, Hu T, Wu Z, Li L, Wang Y, Wen D, Liu X, Li W, Liang H, Jin X, Xu X, Wang J, Yang H, Kristiansen K, Xiao L, Zou Y. Isolation of potentially novel species expands the genomic and functional diversity of Lachnospiraceae. IMETA 2024; 3:e174. [PMID: 38882499 PMCID: PMC11170972 DOI: 10.1002/imt2.174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/06/2023] [Indexed: 06/18/2024]
Abstract
The Lachnospiraceae family holds promise as a source of next-generation probiotics, yet a comprehensive delineation of its diversity is lacking, hampering the identification of suitable strains for future applications. To address this knowledge gap, we conducted an in-depth genomic and functional analysis of 1868 high-quality genomes, combining data from public databases with our new isolates. This data set represented 387 colonization-selective species-level clusters, of which eight genera represented multilineage clusters. Pan-genome analysis, single-nucleotide polymorphism (SNP) identification, and probiotic functional predictions revealed that species taxonomy, habitats, and geography together shape the functional diversity of Lachnospiraceae. Moreover, analyses of associations with atherosclerotic cardiovascular disease (ACVD) and inflammatory bowel disease (IBD) indicated that several strains of potentially novel Lachnospiraceae species possess the capacity to reduce the abundance of opportunistic pathogens, thereby imparting potential health benefits. Our findings shed light on the untapped potential of novel species enabling knowledge-based selection of strains for the development of next-generation probiotics holding promise for improving human health and disease management.
Collapse
Affiliation(s)
- Xiaoqian Lin
- BGI Research Shenzhen China
- School of Bioscience and Biotechnology South China University of Technology Guangzhou China
| | | | - Zhinan Wu
- BGI Research Shenzhen China
- College of Life Sciences University of Chinese Academy of Sciences Beijing China
| | | | | | | | - Xudong Liu
- BGI Research Shenzhen China
- College of Life Sciences University of Chinese Academy of Sciences Beijing China
| | - Wenxi Li
- BGI Research Shenzhen China
- School of Bioscience and Biotechnology South China University of Technology Guangzhou China
| | | | | | - Xun Xu
- BGI Research Shenzhen China
| | - Jian Wang
- BGI Research Shenzhen China
- James D. Watson Institute of Genome Sciences Hangzhou China
| | - Huanming Yang
- BGI Research Shenzhen China
- James D. Watson Institute of Genome Sciences Hangzhou China
| | - Karsten Kristiansen
- BGI Research Shenzhen China
- Laboratory of Genomics and Molecular Biomedicine University of Copenhagen Copenhagen Denmark
| | - Liang Xiao
- BGI Research Shenzhen China
- College of Life Sciences University of Chinese Academy of Sciences Beijing China
- Shenzhen Engineering Laboratory of Detection and Intervention of human intestinal microbiome, BGI-Shenzhen Shenzhen China
| | - Yuanqiang Zou
- BGI Research Shenzhen China
- Laboratory of Genomics and Molecular Biomedicine University of Copenhagen Copenhagen Denmark
- Shenzhen Engineering Laboratory of Detection and Intervention of human intestinal microbiome, BGI-Shenzhen Shenzhen China
| |
Collapse
|
16
|
Sikdar R, Beauclaire MV, Lima BP, Herzberg MC, Elias MH. N-acyl homoserine lactone signaling modulates bacterial community associated with human dental plaque. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.585217. [PMID: 38559107 PMCID: PMC10980036 DOI: 10.1101/2024.03.15.585217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
N-acyl homoserine lactones (AHLs) are small diffusible signaling molecules that mediate a cell density-dependent bacterial communication system known as quorum sensing (QS). AHL-mediated QS regulates gene expression to control many critical bacterial behaviors including biofilm formation, pathogenicity, and antimicrobial resistance. Dental plaque is a complex multispecies oral biofilm formed by successive colonization of the tooth surface by groups of commensal, symbiotic, and pathogenic bacteria, which can contribute to tooth decay and periodontal diseases. While the existence and roles of AHL-mediated QS in oral microbiota have been debated, recent evidence indicates that AHLs play significant roles in oral biofilm development and community dysbiosis. The underlying mechanisms, however, remain poorly characterized. To better understand the importance of AHL signaling in dental plaque formation, we manipulated AHL signaling by adding AHL lactonases or exogenous AHL signaling molecules. We find that AHLs can be detected in dental plaque grown under 5% CO2 conditions, but not when grown under anaerobic conditions, and yet anaerobic cultures are still responsive to AHLs. QS signal disruption using lactonases leads to changes in microbial population structures in both planktonic and biofilm states, changes that are dependent on the substrate preference of the used lactonase but mainly result in the increase in the abundance of commensal and pioneer colonizer species. Remarkably, the opposite manipulation, that is the addition of exogenous AHLs increases the abundance of late colonizer bacterial species. Hence, this work highlights the importance of AHL-mediated QS in dental plaque communities, its potential different roles in anaerobic and aerobic parts of dental plaque, and underscores the potential of QS interference in the control of periodontal diseases.
Collapse
Affiliation(s)
- Rakesh Sikdar
- Biotechnology Institute, University of Minnesota, Saint Paul, MN 55108, USA
| | - Mai V. Beauclaire
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Saint Paul, MN 55108, USA
| | - Bruno P. Lima
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mark C. Herzberg
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mikael H. Elias
- Biotechnology Institute, University of Minnesota, Saint Paul, MN 55108, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Saint Paul, MN 55108, USA
| |
Collapse
|
17
|
Bloch S, Hager-Mair FF, Andrukhov O, Schäffer C. Oral streptococci: modulators of health and disease. Front Cell Infect Microbiol 2024; 14:1357631. [PMID: 38456080 PMCID: PMC10917908 DOI: 10.3389/fcimb.2024.1357631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/05/2024] [Indexed: 03/09/2024] Open
Abstract
Streptococci are primary colonizers of the oral cavity where they are ubiquitously present and an integral part of the commensal oral biofilm microflora. The role oral streptococci play in the interaction with the host is ambivalent. On the one hand, they function as gatekeepers of homeostasis and are a prerequisite for the maintenance of oral health - they shape the oral microbiota, modulate the immune system to enable bacterial survival, and antagonize pathogenic species. On the other hand, also recognized pathogens, such as oral Streptococcus mutans and Streptococcus sobrinus, which trigger the onset of dental caries belong to the genus Streptococcus. In the context of periodontitis, oral streptococci as excellent initial biofilm formers have an accessory function, enabling late biofilm colonizers to inhabit gingival pockets and cause disease. The pathogenic potential of oral streptococci fully unfolds when their dissemination into the bloodstream occurs; streptococcal infection can cause extra-oral diseases, such as infective endocarditis and hemorrhagic stroke. In this review, the taxonomic diversity of oral streptococci, their role and prevalence in the oral cavity and their contribution to oral health and disease will be discussed, focusing on the virulence factors these species employ for interactions at the host interface.
Collapse
Affiliation(s)
- Susanne Bloch
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- Department of Chemistry, Institute of Biochemistry, NanoGlycobiology Research Group, Universität für Bodenkultur Wien, Vienna, Austria
| | - Fiona F. Hager-Mair
- Department of Chemistry, Institute of Biochemistry, NanoGlycobiology Research Group, Universität für Bodenkultur Wien, Vienna, Austria
| | - Oleh Andrukhov
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Christina Schäffer
- Department of Chemistry, Institute of Biochemistry, NanoGlycobiology Research Group, Universität für Bodenkultur Wien, Vienna, Austria
| |
Collapse
|
18
|
Matějková T, Dodoková A, Kreisinger J, Stopka P, Stopková R. Microbial, proteomic, and metabolomic profiling of the estrous cycle in wild house mice. Microbiol Spectr 2024; 12:e0203723. [PMID: 38171017 PMCID: PMC10846187 DOI: 10.1128/spectrum.02037-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 11/20/2023] [Indexed: 01/05/2024] Open
Abstract
Symbiotic microbial communities affect the host immune system and produce molecules contributing to the odor of an individual. In many mammalian species, saliva and vaginal fluids are important sources of chemical signals that originate from bacterial metabolism and may act as honest signals of health and reproductive status. In this study, we aimed to define oral and vaginal microbiomes and their dynamics throughout the estrous cycle in wild house mice. In addition, we analyzed a subset of vaginal proteomes and metabolomes to detect potential interactions with microbiomes. 16S rRNA sequencing revealed that both saliva and vagina are dominated by Firmicutes and Proteobacteria but differ at the genus level. The oral microbiome is more stable during the estrous cycle and most abundant bacteria belong to the genera Gemella and Streptococcus, while the vaginal microbiome shows higher bacterial diversity and dynamics during the reproductive cycle and is characterized by the dominance of Muribacter and Rodentibacter. These two genera cover around 50% of the bacterial community during estrus. Proteomic profiling of vaginal fluids revealed specific protein patterns associated with different estrous phases. Highly expressed proteins in estrus involve the keratinization process thus providing estrus markers (e.g., Hrnr) while some proteins are downregulated such as immune-related proteins that limit bacterial growth (Camp, Clu, Elane, Lyz2, and Ngp). The vaginal metabolome contains volatile compounds potentially involved in chemical communication, for example, ketones, aldehydes, and esters of carboxylic acids. Data integration of all three OMICs data sets revealed high correlations, thus providing evidence that microbiomes, host proteomes, and metabolomes may interact.IMPORTANCEOur data revealed dynamic changes in vaginal, but not salivary, microbiome composition during the reproductive cycle of wild mice. With multiple OMICs platforms, we provide evidence that changes in microbiota in the vaginal environment are accompanied by changes in the proteomic and metabolomics profiles of the host. This study describes the natural microbiota of wild mice and may contribute to a better understanding of microbiome-host immune system interactions during the hormonal and cellular changes in the female reproductive tract. Moreover, analysis of volatiles in the vaginal fluid shows particular substances that can be involved in chemical communication and reproductive behavior.
Collapse
Affiliation(s)
- Tereza Matějková
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Vestec, Czechia
| | - Alica Dodoková
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Vestec, Czechia
| | - Jakub Kreisinger
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Vestec, Czechia
| | - Pavel Stopka
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Vestec, Czechia
| | - Romana Stopková
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Vestec, Czechia
| |
Collapse
|
19
|
Li S, Zhang Y, Zong J, Liu Y, Tang Y, Lu J, Chen Y. Production improvement of an antioxidant in cariogenic Streptococcus mutans UA140. J Appl Microbiol 2024; 135:lxae017. [PMID: 38268415 DOI: 10.1093/jambio/lxae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/06/2024] [Accepted: 01/22/2024] [Indexed: 01/26/2024]
Abstract
AIMS This study aimed to improve the production of mutantioxidin, an antioxidant encoded by a biosynthetic gene cluster (mao) in Streptococcus mutans UA140, through a series of optimization methods. METHOD AND RESULTS Through the construction of mao knockout strain S. mutans UA140∆mao, we identified mutantioxidin as the antioxidant encoded by mao and verified its antioxidant activity through a reactive oxygen species (ROS) tolerance assay. By optimizing the culture medium and fermentation time, 72 h of fermentation in chemically defined medium (CDM) medium was determined as the optimal fermentation conditions. Based on two promoters commonly used in Streptococcus (ldhp and xylS1p), eight promoter refactoring strains were constructed, nevertheless all showed impaired antioxidant production. In-frame deletion and complementation experiments demonstrated the positive regulatory role of mao1 and mao2, on mao. Afterward, the mao1 and mao2, overexpression strain S. mutans UA140/pDL278:: mao1mao2, were constructed, in which the production of mutantioxidin was improved significantly. CONCLUSIONS In this study, through a combination of varied strategies such as optimization of fermentation conditions and overexpression of regulatory genes, production of mutantioxidin was increased by 10.5 times ultimately.
Collapse
Affiliation(s)
- Shuyu Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110006, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuwei Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianfa Zong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yufeng Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yue Tang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jincai Lu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110006, China
| | - Yihua Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
20
|
Na HS, Jung NY, Song Y, Kim SY, Kim HJ, Lee JY, Chung J. A distinctive subgingival microbiome in patients with periodontitis and Alzheimer's disease compared with cognitively unimpaired periodontitis patients. J Clin Periodontol 2024; 51:43-53. [PMID: 37853506 DOI: 10.1111/jcpe.13880] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/04/2023] [Accepted: 09/06/2023] [Indexed: 10/20/2023]
Abstract
AIM Periodontitis is caused by dysbiosis of oral microbes and is associated with increased cognitive decline in Alzheimer's disease (AD), and recently, a potential functional link was proposed between oral microbes and AD. We compared the oral microbiomes of patients with or without AD to evaluate the association between oral microbes and AD in periodontitis. MATERIALS AND METHODS Periodontitis patients with AD (n = 15) and cognitively unimpaired periodontitis patients (CU) (n = 14) were recruited for this study. Each patient underwent an oral examination and neuropsychological evaluation. Buccal, supragingival and subgingival plaque samples were collected, and microbiomes were analysed by next-generation sequencing. Alpha diversity, beta diversity, linear discriminant analysis effect size, analysis of variance-like differential expression analysis and network analysis were used to compare group oral microbiomes. RESULTS All 29 participants had moderate to severe periodontitis. Group buccal and supragingival samples were indistinguishable, but subgingival samples demonstrated significant alpha and beta diversity differences. Differential analysis showed subgingival samples of the AD group had higher prevalence of Atopobium rimae, Dialister pneumosintes, Olsenella sp. HMT 807, Saccharibacteria (TM7) sp. HMT 348 and several species of Prevotella than the CU group. Furthermore, subgingival microbiome network analysis revealed a distinct, closely connected network in the AD group comprised of various Prevotella spp. and several anaerobic bacteria. CONCLUSIONS A unique microbial composition was discovered in the subgingival region in the AD group. Specifically, potential periodontal pathogens were found to be more prevalent in the subgingival plaque samples of the AD group. These bacteria may possess a potential to worsen periodontitis and other systemic diseases. We recommend that AD patients receive regular, careful dental check-ups to ensure proper oral hygiene management.
Collapse
Affiliation(s)
- Hee Sam Na
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
- Oral Genomics Research Center, Pusan National University, Yangsan, Republic of Korea
| | - Na-Yeon Jung
- Department of Neurology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine and Research Institute for Convergence of Biomedical Science and Technology, Yangsan, Republic of Korea
| | - Yuri Song
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
- Oral Genomics Research Center, Pusan National University, Yangsan, Republic of Korea
| | - Si Yeong Kim
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
- Oral Genomics Research Center, Pusan National University, Yangsan, Republic of Korea
| | - Hyun-Joo Kim
- Department of Periodontology, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
- Dental Research Institute, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
| | - Ju Youn Lee
- Department of Periodontology, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
- Dental Research Institute, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
| | - Jin Chung
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
- Oral Genomics Research Center, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
21
|
Akomoneh EA, Gestels Z, Abdellati S, Vereecken K, Bartholomeeusen K, Van den Bossche D, Kenyon C, Manoharan-Basil SS. Genome Mining Uncovers NRPS and PKS Clusters in Rothia dentocariosa with Inhibitory Activity against Neisseria Species. Antibiotics (Basel) 2023; 12:1592. [PMID: 37998794 PMCID: PMC10668837 DOI: 10.3390/antibiotics12111592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023] Open
Abstract
The growing global threat of antimicrobial resistance is reaching a crisis point as common bacterial infections, including those caused by pathogenic Neisseria species, are becoming increasingly untreatable. This is compelling the scientific community to search for new antimicrobial agents, taking advantage of computational mining and using whole genome sequences to discover natural products from the human microbiome with antibiotic effects. In this study, we investigated the crude extract from a Rothia dentocariosa strain with demonstrated antimicrobial activity against pathogenic Neisseria spp. by spot-on-lawn assay. The genomic DNA of the R. dentocariosa strain was sequenced, and bioinformatic evaluation was performed using antiSMASH and PRISM to search for biosynthetic gene clusters (BGCs). The crude extract with potential antimicrobial activity was run on Tricine-SDS-PAGE, and the putative peptides were characterised using liquid chromatography-tandem mass spectrometry (LC-MS). The crude extract inhibited the growth of the pathogenic Neisseria spp. Six BGCs were identified corresponding to non-ribosomal peptide synthases (NRPSs), polyketide synthases (PKSs), and ribosomally synthesised and post-translationally modified peptides. Three peptides were also identified corresponding to Actinorhodin polyketide putative beta-ketoacyl synthase 1. These findings serve as a useful reference to facilitate the research and development of NRPS and PKS as antimicrobial products against multidrug-resistant N. gonorrhoeae.
Collapse
Affiliation(s)
- Elvis Achondou Akomoneh
- HIV/STI Unit, Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, 2000 Antwerp, Belgium; (E.A.A.); (Z.G.); (S.S.M.-B.)
- Department of Microbiology and Parasitology, University of Bamenda, Bambili P.O. Box 39, Cameroon
| | - Zina Gestels
- HIV/STI Unit, Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, 2000 Antwerp, Belgium; (E.A.A.); (Z.G.); (S.S.M.-B.)
| | - Saïd Abdellati
- Clinical Reference Laboratory, Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (S.A.); (D.V.d.B.)
| | - Katleen Vereecken
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (K.V.); (K.B.)
| | - Koen Bartholomeeusen
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (K.V.); (K.B.)
| | - Dorien Van den Bossche
- Clinical Reference Laboratory, Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (S.A.); (D.V.d.B.)
| | - Chris Kenyon
- HIV/STI Unit, Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, 2000 Antwerp, Belgium; (E.A.A.); (Z.G.); (S.S.M.-B.)
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (K.V.); (K.B.)
- Department of Medicine, University of Cape Town, Cape Town 7700, South Africa
| | - Sheeba Santhini Manoharan-Basil
- HIV/STI Unit, Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, 2000 Antwerp, Belgium; (E.A.A.); (Z.G.); (S.S.M.-B.)
| |
Collapse
|
22
|
Aleti G, Troyer EA, Hong S. G protein-coupled receptors: A target for microbial metabolites and a mechanistic link to microbiome-immune-brain interactions. Brain Behav Immun Health 2023; 32:100671. [PMID: 37560037 PMCID: PMC10407893 DOI: 10.1016/j.bbih.2023.100671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/11/2023] Open
Abstract
Human-microorganism interactions play a key role in human health. However, the underlying molecular mechanisms remain poorly understood. Small-molecules that offer a functional readout of microbe-microbe-human relationship are of great interest for deeper understanding of the inter-kingdom crosstalk at the molecular level. Recent studies have demonstrated that small-molecules from gut microbiota act as ligands for specific human G protein-coupled receptors (GPCRs) and modulate a range of human physiological functions, offering a mechanistic insight into the microbe-human interaction. To this end, we focused on analysis of bacterial metabolites that are currently recognized to bind to GPCRs and are found to activate the known downstream signaling pathways. We further mapped the distribution of these molecules across the public mass spectrometry-based metabolomics data, to identify the presence of these molecules across body sites and their association with health status. By combining this with RNA-Seq expression and spatial localization of GPCRs from a public human protein atlas database, we inferred the most predominant GPCR-mediated microbial metabolite-human cell interactions regulating gut-immune-brain axis. Furthermore, by evaluating the intestinal absorption properties and blood-brain barrier permeability of the small-molecules we elucidated their molecular interactions with specific human cell receptors, particularly expressed on human intestinal epithelial cells, immune cells and the nervous system that are shown to hold much promise for clinical translational potential. Furthermore, we provide an overview of an open-source resource for simultaneous interrogation of bioactive molecules across the druggable human GPCRome, a useful framework for integration of microbiome and metabolite cataloging with mechanistic studies for an improved understanding of gut microbiota-immune-brain molecular interactions and their potential therapeutic use.
Collapse
Affiliation(s)
- Gajender Aleti
- Department of Food and Animal Sciences, Tennessee State University, Nashville, TN, 37209, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Emily A. Troyer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Suzi Hong
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
23
|
Parga A, Balboa S, Otero-Casal P, Otero A. New Preventive Strategy against Oral Biofilm Formation in Caries-Active Children: An In Vitro Study. Antibiotics (Basel) 2023; 12:1263. [PMID: 37627682 PMCID: PMC10451667 DOI: 10.3390/antibiotics12081263] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Quorum quenching (QQ) is the inhibition of bacterial communication, i.e., quorum sensing (QS). QS is a key mechanism in regulating biofilm formation and phenotype in complex bacterial communities, such as those found within cariogenic biofilms. Whereas QQ approaches were shown to effectively reduce biomass, knowledge of their impact on the taxonomic composition of oral polymicrobial biofilms remains scarce. Here, we investigate the effect of the QQ lactonase Aii20J on biomass production and taxonomical composition of biofilms. We collected supragingival plaque samples from 10 caries-free and 10 caries-active children and cultured them to generate in vitro biofilms. We describe significant biomass reductions upon Aii20J exposure, as assessed by crystal violet assays. Taxonomical profiling using 16S rRNA gene amplicon sequencing revealed no significant changes in bacterial composition at the genus level. Interestingly, at the species level Aii20J-treatment increased the abundance of Streptococcus cristatus and Streptococcus salivarius. Both S. cristatus and S. salivarius express pH-buffering enzymes (arginine deiminase and urease, respectively) that catalyze ammonia production, thereby potentially raising local pH and counteracting the biofilm's cariogenic potential. Within the limitations of the study, our findings provide evidence of the biofilm-modulating ability of QQ and offer novel insights into alternative strategies to restore homeostasis within dysbiotic ecosystems.
Collapse
Affiliation(s)
- Ana Parga
- Department of Microbiology and Parasitology, CIBUS-Faculty of Biology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Sabela Balboa
- Department of Microbiology and Parasitology, Center of Cross-Disciplinary Research in Environmental Technologies (CRETUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Paz Otero-Casal
- Department of Surgery and Medical-Surgical Specialties, Faculty of Medicine and Odontology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Unit of Oral Health, Centro de Saúde Santa Comba-Negreira, SERGAS, 15841 Santa Comba, Spain
| | - Ana Otero
- Department of Microbiology and Parasitology, CIBUS-Faculty of Biology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| |
Collapse
|
24
|
Zheng T, Jing M, Gong T, Yan J, Wang X, Xu M, Zhou X, Zeng J, Li Y. Regulatory mechanisms of exopolysaccharide synthesis and biofilm formation in Streptococcus mutans. J Oral Microbiol 2023; 15:2225257. [PMID: 37346997 PMCID: PMC10281425 DOI: 10.1080/20002297.2023.2225257] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/23/2023] Open
Abstract
Background Dental caries is a chronic, multifactorial and biofilm-mediated oral bacterial infection affecting almost every age group and every geographical region. Streptococcus mutans is considered an important pathogen responsible for the initiation and development of dental caries. It produces exopolysaccharides in situ to promote the colonization of cariogenic bacteria and coordinate dental biofilm development. Objective The understanding of the regulatory mechanism of S. mutans biofilm formation can provide a theoretical basis for the prevention and treatment of caries. Design At present, an increasing number of studies have identified many regulatory systems in S. mutans that regulate biofilm formation, including second messengers (e.g. c-di-AMP, Ap4A), transcription factors (e.g. EpsR, RcrR, StsR, AhrC, FruR), two-component systems (e.g. CovR, VicR), small RNA (including sRNA0426, srn92532, and srn133489), acetylation modifications (e.g. ActG), CRISPR-associated proteins (e.g. Cas3), PTS systems (e.g. EIIAB), quorum-sensing signaling system (e.g. LuxS), enzymes (including Dex, YidC, CopZ, EzrA, lmrB, SprV, RecA, PdxR, MurI) and small-molecule metabolites. Results This review summarizes the recent progress in the molecular regulatory mechanisms of exopolysaccharides synthesis and biofilm formation in S. mutans.
Collapse
Affiliation(s)
- Ting Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Meiling Jing
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tao Gong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiangchuan Yan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaowan Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mai Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jumei Zeng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
25
|
Son M, Song Y, Yu Y, Kim SY, Huh JB, Bae EB, Cho WT, Na HS, Chung J. The oral microbiome of implant-abutment screw holes compared with the peri-implant sulcus and natural supragingival plaque in healthy individuals. J Periodontal Implant Sci 2023; 53:53.e20. [PMID: 37336525 DOI: 10.5051/jpis.2300100005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/14/2023] [Accepted: 04/27/2023] [Indexed: 06/21/2023] Open
Abstract
PURPOSE An implant-supported prosthesis consists of an implant fixture, an abutment, an internal screw that connects the abutment to the implant fixture, and the upper prosthesis. Numerous studies have investigated the microorganisms present on the implant surface, surrounding tissues, and the subgingival microflora associated with peri-implantitis. However, there is limited information regarding the microbiome within the internal screw space. In this study, microbial samples were collected from the supragingival surfaces of natural teeth, the peri-implant sulcus, and the implant-abutment screw hole, in order to characterize the microbiome of the internal screw space in healthy subjects. METHODS Samples were obtained from the supragingival region of natural teeth, the peri-implant sulcus, and the implant screw hole in 20 healthy subjects. DNA was extracted, and the V3-V4 region of the 16S ribosomal RNA was sequenced for microbiome analysis. Alpha diversity, beta diversity, linear discriminant analysis effect size (LEfSe), and network analysis were employed to compare the characteristics of the microbiomes. RESULTS We observed significant differences in beta diversity among the samples. Upon analyzing the significant taxa using LEfSe, the microbial composition of the implant-abutment screw hole's microbiome was found to be similar to that of the other sampling sites' microbiomes. Moreover, the microbiome network analysis revealed a unique network complexity in samples obtained from the implant screw hole compared to those from the other sampling sites. CONCLUSIONS The bacterial composition of the biofilm collected from the implant-abutment screw hole exhibited significant differences compared to the supra-structure of the implant. Therefore, long-term monitoring and management of not only the peri-implant tissue but also the implant screw are necessary.
Collapse
Affiliation(s)
- MinKee Son
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan, Korea
| | - Yuri Song
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan, Korea
- Oral Genomics Research Center, Pusan National University, Yangsan, Korea
| | - Yeuni Yu
- Interdisciplinary Program of Genomic Science, Pusan National University, Yangsan, Korea
- Department of Biomedical Informatics, School of Medicine, Pusan National University, Busan, Korea
| | - Si Yeong Kim
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan, Korea
- Dental Research Institute, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan, Korea
| | - Jung-Bo Huh
- Dental Research Institute, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan, Korea
- Department of Prosthodontics, School of Dentistry, Pusan National University, Yangsan, Korea
| | - Eun-Bin Bae
- Dental Research Institute, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan, Korea
- Department of Prosthodontics, School of Dentistry, Pusan National University, Yangsan, Korea
| | - Won-Tak Cho
- Dental Research Institute, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan, Korea
- Department of Prosthodontics, School of Dentistry, Pusan National University, Yangsan, Korea
| | - Hee Sam Na
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan, Korea
- Oral Genomics Research Center, Pusan National University, Yangsan, Korea
- Dental Research Institute, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan, Korea
| | - Jin Chung
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan, Korea
- Oral Genomics Research Center, Pusan National University, Yangsan, Korea
- Dental Research Institute, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan, Korea.
| |
Collapse
|
26
|
Correia GD, Marchesi JR, MacIntyre DA. Moving beyond DNA: towards functional analysis of the vaginal microbiome by non-sequencing-based methods. Curr Opin Microbiol 2023; 73:102292. [PMID: 36931094 DOI: 10.1016/j.mib.2023.102292] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 03/17/2023]
Abstract
Over the last two decades, sequencing-based methods have revolutionised our understanding of niche-specific microbial complexity. In the lower female reproductive tract, these approaches have enabled identification of bacterial compositional structures associated with health and disease. Application of metagenomics and metatranscriptomics strategies have provided insight into the putative function of these communities but it is increasingly clear that direct measures of microbial and host cell function are required to understand the contribution of microbe-host interactions to pathophysiology. Here we explore and discuss current methods and approaches, many of which rely upon mass-spectrometry, being used to capture functional insight into the vaginal mucosal interface. In addition to improving mechanistic understanding, these methods offer innovative solutions for the development of diagnostic and therapeutic strategies designed to improve women's health.
Collapse
Affiliation(s)
- Gonçalo Ds Correia
- Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, UK; March of Dimes Prematurity Research Centre at Imperial College London, London, UK
| | - Julian R Marchesi
- March of Dimes Prematurity Research Centre at Imperial College London, London, UK; Centre for Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, Imperial College London, London W2 1NY, UK
| | - David A MacIntyre
- Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, UK; March of Dimes Prematurity Research Centre at Imperial College London, London, UK.
| |
Collapse
|
27
|
Du R, Xiong W, Xu L, Xu Y, Wu Q. Metagenomics reveals the habitat specificity of biosynthetic potential of secondary metabolites in global food fermentations. MICROBIOME 2023; 11:115. [PMID: 37210545 DOI: 10.1186/s40168-023-01536-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/28/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND Fermented foods are considered to be beneficial for human health. Secondary metabolites determined by biosynthetic gene clusters (BGCs) are precious bioactive compounds with various biological activities. However, the diversity and distribution of the biosynthetic potential of secondary metabolites in global food fermentations remain largely unknown. In this study, we performed a large-scale and comprehensive investigation for the BGCs in global food fermentations by metagenomics analysis. RESULTS We recovered 653 bacterial metagenome-assembled genomes (MAGs) from 367 metagenomic sequencing datasets covering 15 general food fermentation types worldwide. In total, 2334 secondary metabolite BGCs, including 1003 novel BGCs, were identified in these MAGs. Bacillaceae, Streptococcaceae, Streptomycetaceae, Brevibacteriaceae and Lactobacillaceae contained high abundances of novel BGCs (≥ 60 novel BGCs). Among 2334 BGCs, 1655 were habitat-specific, originating from habitat-specific species (80.54%) and habitat-specific genotypes within multi-habitat species (19.46%) in different food fermentation types. Biological activity analysis suggested that 183 BGC-producing secondary metabolites exhibited high probabilities of antibacterial activity (> 80%). These 183 BGCs were distributed across all 15 food fermentation types, and cheese fermentation contained the most BGC number. CONCLUSIONS This study demonstrates that food fermentation systems are an untapped reservoir of BGCs and bioactive secondary metabolites, and it provides novel insights into the potential human health benefits of fermented foods. Video Abstract.
Collapse
Affiliation(s)
- Rubing Du
- Lab of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Wu Xiong
- Laboratory of Bio-Interactions and Crop Health, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Lei Xu
- Lab of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Yan Xu
- Lab of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Qun Wu
- Lab of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
28
|
张 梦, 程 兴, 徐 欣. [Latest Findings on Polyketides/Non-ribosomal Peptides That Are Secondary Metabolites of Streptococcus mutans]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2023; 54:685-691. [PMID: 37248606 PMCID: PMC10475436 DOI: 10.12182/20230560302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Indexed: 05/31/2023]
Abstract
Dental caries is a chronic infectious disease that occurs in the hard tissue of teeth under the influence of multiple factors, among which bacteria being a key factor. Streptococcus mutans ( S. mutans) is considered a major pathogen that causes caries. Secondary metabolites, including bacteriocins and polyketides/non-ribosomal peptides, are a class of small-molecule compounds synthesized by S. mutans. To date, polyketides/non-ribosomal peptides identified in S. mutans include mutanobactin, mutanocyclin, and mutanofactin, which are synthesized by the mub, muc, and muf biosynthetic gene clusters, respectively. These polyketides/non-ribosomal peptides play important roles in bacterial inter-species competition, oxidative stress, and biofilm formation. In this review, we provided an overview of the synthesis, function and regulation of three polyketides/non-ribosomal peptides of S. mutans, including mutanobactin, mutanocyclin, and mutanofactin, aiming to provide new insights into the cariogenic mechanism of S. mutans and to promote the better management of dental caries.
Collapse
Affiliation(s)
- 梦碟 张
- 口腔疾病研究国家重点实验室,国家口腔疾病临床医学研究中心,四川大学华西口腔医院 牙体牙髓病科 (成都 610041)The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Department of Cariology and Endodontics, Sichuan University, Chengdu 610041, China
| | - 兴群 程
- 口腔疾病研究国家重点实验室,国家口腔疾病临床医学研究中心,四川大学华西口腔医院 牙体牙髓病科 (成都 610041)The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Department of Cariology and Endodontics, Sichuan University, Chengdu 610041, China
| | - 欣 徐
- 口腔疾病研究国家重点实验室,国家口腔疾病临床医学研究中心,四川大学华西口腔医院 牙体牙髓病科 (成都 610041)The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Department of Cariology and Endodontics, Sichuan University, Chengdu 610041, China
| |
Collapse
|
29
|
Stubbendieck RM, Dissanayake E, Burnham PM, Zelasko SE, Temkin MI, Wisdorf SS, Vrtis RF, Gern JE, Currie CR. Rothia from the Human Nose Inhibit Moraxella catarrhalis Colonization with a Secreted Peptidoglycan Endopeptidase. mBio 2023; 14:e0046423. [PMID: 37010413 PMCID: PMC10128031 DOI: 10.1128/mbio.00464-23] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 04/04/2023] Open
Abstract
Moraxella catarrhalis is found almost exclusively within the human respiratory tract. This pathobiont is associated with ear infections and the development of respiratory illnesses, including allergies and asthma. Given the limited ecological distribution of M. catarrhalis, we hypothesized that we could leverage the nasal microbiomes of healthy children without M. catarrhalis to identify bacteria that may represent potential sources of therapeutics. Rothia was more abundant in the noses of healthy children compared to children with cold symptoms and M. catarrhalis. We cultured Rothia from nasal samples and determined that most isolates of Rothia dentocariosa and "Rothia similmucilaginosa" were able to fully inhibit the growth of M. catarrhalis in vitro, whereas isolates of Rothia aeria varied in their ability to inhibit M. catarrhalis. Using comparative genomics and proteomics, we identified a putative peptidoglycan hydrolase called secreted antigen A (SagA). This protein was present at higher relative abundance in the secreted proteomes of R. dentocariosa and R. similmucilaginosa than in those from non-inhibitory R. aeria, suggesting that it may be involved in M. catarrhalis inhibition. We produced SagA from R. similmucilaginosa in Escherichia coli and confirmed its ability to degrade M. catarrhalis peptidoglycan and inhibit its growth. We then demonstrated that R. aeria and R. similmucilaginosa reduced M. catarrhalis levels in an air-liquid interface culture model of the respiratory epithelium. Together, our results suggest that Rothia restricts M. catarrhalis colonization of the human respiratory tract in vivo. IMPORTANCE Moraxella catarrhalis is a pathobiont of the respiratory tract, responsible for ear infections in children and wheezing illnesses in children and adults with chronic respiratory diseases. Detection of M. catarrhalis during wheezing episodes in early life is associated with the development of persistent asthma. There are currently no effective vaccines for M. catarrhalis, and most clinical isolates are resistant to the commonly prescribed antibiotics amoxicillin and penicillin. Given the limited niche of M. catarrhalis, we hypothesized that other nasal bacteria have evolved mechanisms to compete against M. catarrhalis. We found that Rothia are associated with the nasal microbiomes of healthy children without Moraxella. Next, we demonstrated that Rothia inhibit M. catarrhalis in vitro and on airway cells. We identified an enzyme produced by Rothia called SagA that degrades M. catarrhalis peptidoglycan and inhibits its growth. We suggest that Rothia or SagA could be developed as highly specific therapeutics against M. catarrhalis.
Collapse
Affiliation(s)
- Reed M. Stubbendieck
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Eishika Dissanayake
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Peter M. Burnham
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Susan E. Zelasko
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mia I. Temkin
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Sydney S. Wisdorf
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Rose F. Vrtis
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - James E. Gern
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Cameron R. Currie
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- David Braley Centre for Antibiotic Discovery, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
30
|
Impact of high altitude on composition and functional profiling of oral microbiome in Indian male population. Sci Rep 2023; 13:4038. [PMID: 36899053 PMCID: PMC10006418 DOI: 10.1038/s41598-023-30963-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 03/03/2023] [Indexed: 03/12/2023] Open
Abstract
The oral cavity of human contains bacteria that are critical for maintaining the homeostasis of the body. External stressors such as high altitude (HA) and low oxygen affect the human gut, skin and oral microbiome. However, compared to the human gut and skin microbiome, studies demonstrating the impact of altitude on human oral microbiota are currently scarce. Alterations in the oral microbiome have been reported to be associated with various periodontal diseases. In light of the increased occurrence of HA oral health related problems, the effect of HA on the oral salivary microbiome was investigated. We conducted a pilot study in 16 male subjects at two different heights i.e., H1 (210 m) and H2 (4420 m). Total of 31 saliva samples,16 at H1 and 15 at H2 were analyzed by utilizing the 16S rRNA high-throughput sequencing, to explore the relationship between the HA environment and salivary microbiota. The preliminary results suggesting that, the most abundant microbiome at the phylum level are: Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria. Interestingly, 11 genera were identified at the both heights with different relative abundances. In addition, the salivary microbiome was more diverse at H1 compared to H2 as demonstrated by decreased alpha diversity. Further, predicted functional results indicate that microbial metabolic profiles significantly decreased at H2 as compared to H1, including two major metabolic pathways involving carbohydrates, and amino acids. Our findings show that HA induces shifts in the composition and structure of human oral microbiota which can affect host health homeostasis.
Collapse
|
31
|
Levitan O, Ma L, Giovannelli D, Burleson DB, McCaffrey P, Vala A, Johnson DA. The gut microbiome–Does stool represent right? Heliyon 2023; 9:e13602. [PMID: 37101508 PMCID: PMC10123208 DOI: 10.1016/j.heliyon.2023.e13602] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Many stool-based gut microbiome studies have highlighted the importance of the microbiome. However, we hypothesized that stool is a poor proxy for the inner-colonic microbiome and that studying stool samples may be inadequate to capture the true inner-colonic microbiome. To test this hypothesis, we conducted prospective clinical studies with up to 20 patients undergoing an FDA-cleared gravity-fed colonic lavage without oral purgative pre-consumption. The objective of this study was to present the analysis of inner-colonic microbiota obtained non-invasively during the lavage and how these results differ from stool samples. The inner-colonic samples represented the descending, transverse, and ascending colon. All samples were analyzed for 16S rRNA and shotgun metagenomic sequences. The taxonomic, phylogenetic, and biosynthetic gene cluster analyses showed a distinctive biogeographic gradient and revealed differences between the sample types, especially in the proximal colon. The high percentage of unique information found only in the inner-colonic effluent highlights the importance of these samples and likewise the importance of collecting them using a method that can preserve these distinctive signatures. We proposed that these samples are imperative for developing future biomarkers, targeted therapeutics, and personalized medicine.
Collapse
|
32
|
Parga A, Muras A, Otero-Casal P, Arredondo A, Soler-Ollé A, Àlvarez G, Alcaraz LD, Mira A, Blanc V, Otero A. The quorum quenching enzyme Aii20J modifies in vitro periodontal biofilm formation. Front Cell Infect Microbiol 2023; 13:1118630. [PMID: 36816581 PMCID: PMC9932050 DOI: 10.3389/fcimb.2023.1118630] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction Recent studies have revealed the presence of N-acyl-homoserine lactones (AHLs) quorum sensing (QS) signals in the oral environment. Yet, their role in oral biofilm development remains scarcely investigated. The use of quorum quenching (QQ) strategies targeting AHLs has been described as efficient for the control of pathogenic biofilms. Here, we evaluate the use of a highly active AHL-targeting QQ enzyme, Aii20J, to modulate oral biofilm formation in vitro. Methods The effect of the QQ enzyme was studied in in vitro multispecies biofilms generated from oral samples taken from healthy donors and patients with periodontal disease. Subgingival samples were used as inocula, aiming to select members of the microbiota of the periodontal pocket niche in the in vitro biofilms. Biofilm formation abilities and microbial composition were studied upon treating the biofilms with the QQ enzyme Aii20J. Results and Discussion The addition of the enzyme resulted in significant biofilm mass reductions in 30 - 60% of the subgingival-derived biofilms, although standard AHLs could not be found in the supernatants of the cultured biofilms. Changes in biofilm mass were not accompanied by significant alterations of bacterial relative abundance at the genus level. The investigation of 125 oral supragingival metagenomes and a synthetic subgingival metagenome revealed a surprisingly high abundance and broad distribution of homologous of the AHL synthase HdtS and several protein families of AHL receptors, as well as an enormous presence of QQ enzymes, pointing to the existence of an intricate signaling network in oral biofilms that has been so far unreported, and should be further investigated. Together, our findings support the use of Aii20J to modulate polymicrobial biofilm formation without changing the microbiome structure of the biofilm. Results in this study suggest that AHLs or AHL-like molecules affect oral biofilm formation, encouraging the application of QQ strategies for oral health improvement, and reinforcing the importance of personalized approaches to oral biofilm control.
Collapse
Affiliation(s)
- Ana Parga
- Department of Microbiology and Parasitology, CIBUS-Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Andrea Muras
- Department of Microbiology and Parasitology, CIBUS-Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Paz Otero-Casal
- Department of Surgery and Medical-Surgical Specialties, Faculty of Medicine and Odontology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Unit of Oral Health, Santa Comba-Negreira, (CS) SERGAS, Santiago de Compostela, Spain
| | - Alexandre Arredondo
- Department of Microbiology, Dentaid Research Center, Cerdanyola Del Vallès, Spain
| | - Agnès Soler-Ollé
- Department of Microbiology, Dentaid Research Center, Cerdanyola Del Vallès, Spain
| | - Gerard Àlvarez
- Department of Microbiology, Dentaid Research Center, Cerdanyola Del Vallès, Spain
| | - Luis D. Alcaraz
- Department of Cellular Biology, Faculty of Sciences, National Autonomous University of Mexico, Coyoacán, Mexico
| | - Alex Mira
- Department of Genomics and Health, FISABIO Foundation, Valencia, Spain
| | - Vanessa Blanc
- Department of Microbiology, Dentaid Research Center, Cerdanyola Del Vallès, Spain
| | - Ana Otero
- Department of Microbiology and Parasitology, CIBUS-Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- *Correspondence: Ana Otero,
| |
Collapse
|
33
|
Baker JL. The Baker Lab at the OHSU School of Dentistry: leveraging bioinformatics and molecular biology to discover how the bacteria that live in our mouth impact human health and disease. OHSU SCHOOL OF DENTISTRY ANTHOLOGY 2023; 1:3-11. [PMID: 38784447 PMCID: PMC11114080 DOI: 10.6083/bpxhc42395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The microorganisms living in the human oral cavity, collectively known as the oral microbiota, play a critical role in not only oral health, but systemic and overall health. The Baker Lab leverages emerging technologies in bioinformatics and molecular biology to answer fundamental questions regarding the ecology, physiology, and pathogenesis of the oral microbiota. We use a microbial 'omics approach, which has included pioneering the use of nanopore sequencing on saliva and oral bacterial RNA. The resulting work discovered novel bacterial species and biosynthetic pathways which impact the ecology of the oral microbiota and its relationship to human disease. This article will briefly define the oral microbiota. It will also summarize how bioinformatics and 'omics-based research have revolutionized oral health research. The article will then provide a broad summary of our past, present and future research and educational programs.
Collapse
Affiliation(s)
- Jonathon L Baker
- Department of Oral Rehabilitation & Biosciences, School of Dentistry, Oregon Health & Science University
| |
Collapse
|
34
|
Zhang XX, Lv QB, Yan QL, Zhang Y, Guo RC, Meng JX, Ma H, Qin SY, Zhu QH, Li CQ, Liu R, Liu G, Li SH, Sun DB, Ni HB. A Catalog of over 5,000 Metagenome-Assembled Microbial Genomes from the Caprinae Gut Microbiota. Microbiol Spectr 2022; 10:e0221122. [PMID: 36321901 PMCID: PMC9769736 DOI: 10.1128/spectrum.02211-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/10/2022] [Indexed: 12/24/2022] Open
Abstract
Most microbiome studies regarding the ruminant digestive tract have focused on the rumen microbiota, whereas only a few studies were performed on investigating the gut microbiota of ruminants, which limits our understanding of this important component. Herein, the gut microbiota of 30 Caprinae animals (sheep and goats) from six provinces in China was characterized using ultradeep (>100 Gbp per sample) metagenome shotgun sequencing. An inventory of Caprinae gut microbial species containing 5,046 metagenomic assembly genomes (MAGs) was constructed. Particularly, 2,530 of the genomes belonged to uncultured candidate species. These genomes largely expanded the genomic repository of the current microbes in the Caprinae gut. Several enzymes and biosynthetic gene clusters encoded by these Caprinae gut species were identified. In summary, our study extends the gut microbiota characteristics of Caprinae and provides a basis for future studies on animal production and animal health. IMPORTANCE We constructed a microbiota catalog containing 5,046 MAGs from Caprinae gut from six regions of China. Most of the MAGs do not overlap known databases and appear to be potentially new species. We also characterized the functional spectrum of these MAGs and analyzed the differences between different regions. Our study enriches the understanding of taxonomic, functional, and metabolic diversity of Caprinae gut microbiota. We are confident that the manuscript will be of utmost interest to a wide range of readers and be widely applied in future research.
Collapse
Affiliation(s)
- Xiao-Xuan Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
- Heilongjiang Provincial Key Laboratory of the Prevention and Control of Bovine Diseases, College of Animal Science, Heilongjiang Bayi Agriculture University, Daqing, Heilongjiang Province, China
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs of the People's Republic of China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Qing-Bo Lv
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
- Heilongjiang Provincial Key Laboratory of the Prevention and Control of Bovine Diseases, College of Animal Science, Heilongjiang Bayi Agriculture University, Daqing, Heilongjiang Province, China
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs of the People's Republic of China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Qiu-Long Yan
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning Province, China
| | - Yue Zhang
- Puensum Genetech Institute, Wuhan, Hubei Province, China
| | - Ruo-Chun Guo
- Puensum Genetech Institute, Wuhan, Hubei Province, China
| | - Jin-Xin Meng
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - He Ma
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Si-Yuan Qin
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
- Center for Biological Disaster Prevention and Control, National Forestry and Grassland Administration, Shenyang, Liaoning Province, China
| | - Qing-He Zhu
- Heilongjiang Provincial Key Laboratory of the Prevention and Control of Bovine Diseases, College of Animal Science, Heilongjiang Bayi Agriculture University, Daqing, Heilongjiang Province, China
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs of the People's Republic of China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Chun-Qiu Li
- Heilongjiang Provincial Key Laboratory of the Prevention and Control of Bovine Diseases, College of Animal Science, Heilongjiang Bayi Agriculture University, Daqing, Heilongjiang Province, China
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs of the People's Republic of China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Rui Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Gang Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Sheng-Hui Li
- Puensum Genetech Institute, Wuhan, Hubei Province, China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Dong-Bo Sun
- Heilongjiang Provincial Key Laboratory of the Prevention and Control of Bovine Diseases, College of Animal Science, Heilongjiang Bayi Agriculture University, Daqing, Heilongjiang Province, China
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs of the People's Republic of China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Hong-Bo Ni
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs of the People's Republic of China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
35
|
Long-Read Metagenome-Assembled Genomes Improve Identification of Novel Complete Biosynthetic Gene Clusters in a Complex Microbial Activated Sludge Ecosystem. mSystems 2022; 7:e0063222. [PMID: 36445112 PMCID: PMC9765116 DOI: 10.1128/msystems.00632-22] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Microorganisms produce a wide variety of secondary/specialized metabolites (SMs), the majority of which are yet to be discovered. These natural products play multiple roles in microbiomes and are important for microbial competition, communication, and success in the environment. SMs have been our major source of antibiotics and are used in a range of biotechnological applications. In silico mining for biosynthetic gene clusters (BGCs) encoding the production of SMs is commonly used to assess the genetic potential of organisms. However, as BGCs span tens to over 200 kb, identifying complete BGCs requires genome data that has minimal assembly gaps within the BGCs, a prerequisite that was previously only met by individually sequenced genomes. Here, we assess the performance of the currently available genome mining platform antiSMASH on 1,080 high-quality metagenome-assembled bacterial genomes (HQ MAGs) previously produced from wastewater treatment plants (WWTPs) using a combination of long-read (Oxford Nanopore) and short-read (Illumina) sequencing technologies. More than 4,200 different BGCs were identified, with 88% of these being complete. Sequence similarity clustering of the BGCs implies that the majority of this biosynthetic potential likely encodes novel compounds, and few BGCs are shared between genera. We identify BGCs in abundant and functionally relevant genera in WWTPs, suggesting a role of secondary metabolism in this ecosystem. We find that the assembly of HQ MAGs using long-read sequencing is vital to explore the genetic potential for SM production among the uncultured members of microbial communities. IMPORTANCE Cataloguing secondary metabolite (SM) potential using genome mining of metagenomic data has become the method of choice in bioprospecting for novel compounds. However, accurate biosynthetic gene cluster (BGC) detection requires unfragmented genomic assemblies, which have been technically difficult to obtain from metagenomes until very recently with new long-read technologies. Here, we determined the biosynthetic potential of activated sludge (AS), the microbial community used in resource recovery and wastewater treatment, by mining high-quality metagenome-assembled genomes generated from long-read data. We found over 4,000 BGCs, including BGCs in abundant process-critical bacteria, with no similarity to the BGCs of characterized products. We show how long-read MAGs are required to confidently assemble complete BGCs, and we determined that the AS BGCs from different studies have very little overlap, suggesting that AS is a rich source of biosynthetic potential and new bioactive compounds.
Collapse
|
36
|
Clark KA, Bushin LB, Seyedsayamdost MR. RaS-RiPPs in Streptococci and the Human Microbiome. ACS BIO & MED CHEM AU 2022; 2:328-339. [PMID: 35996476 PMCID: PMC9389541 DOI: 10.1021/acsbiomedchemau.2c00004] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
Radical S-adenosylmethionine (RaS) enzymes have
quickly advanced to one of the most abundant and versatile enzyme
superfamilies known. Their chemistry is predicated upon reductive
homolytic cleavage of a carbon–sulfur bond in cofactor S-adenosylmethionine forming an oxidizing carbon-based radical,
which can initiate myriad radical transformations. An emerging role
for RaS enzymes is their involvement in the biosynthesis of ribosomally
synthesized and post-translationally modified peptides (RiPPs), a
natural product family that has become known as RaS-RiPPs. These metabolites
are especially prevalent in human and mammalian microbiomes because
the complex chemistry of RaS enzymes gives rise to correspondingly
complex natural products with minimal cellular energy and genomic
fingerprint, a feature that is advantageous in microbes with small,
host-adapted genomes in competitive environments. Herein, we review
the discovery and characterization of RaS-RiPPs from the human microbiome
with a focus on streptococcal bacteria. We discuss the varied chemical
modifications that RaS enzymes introduce onto their peptide substrates
and the diverse natural products that they give rise to. The majority
of RaS-RiPPs remain to be discovered, providing an intriguing avenue
for future investigations at the intersection of metalloenzymology,
chemical ecology, and the human microbiome.
Collapse
Affiliation(s)
- Kenzie A Clark
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Leah B Bushin
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Mohammad R Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States.,Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
37
|
Giordano-Kelhoffer B, Lorca C, March Llanes J, Rábano A, del Ser T, Serra A, Gallart-Palau X. Oral Microbiota, Its Equilibrium and Implications in the Pathophysiology of Human Diseases: A Systematic Review. Biomedicines 2022; 10:biomedicines10081803. [PMID: 36009350 PMCID: PMC9405223 DOI: 10.3390/biomedicines10081803] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/19/2022] [Accepted: 07/23/2022] [Indexed: 02/06/2023] Open
Abstract
Imbalances of the oral microbiota and dysbiosis have traditionally been linked to the occurrence of teeth and oral diseases. However, recent findings indicate that this microbiota exerts relevant influence in systemic health. Dysbiosis of the oral microbiota is implicated in the apparition and progression of cardiovascular, neurodegenerative and other major human diseases. In fact, the oral microbiota are the second most diverse and largely populated microbiota of the human body and its relationships with systemic health, although widely explored, they still lack of proper integration. The purpose of this systematic review is thus to widely examine the implications of oral microbiota in oral, cardiovascular and neurodegenerative diseases to offer integrative and up-to-date interpretations. To achieve that aim, we identified a total of 121 studies curated in PUBMED from the time interval January 2003–April 2022, which after careful screening resulted in 79 studies included. The reviewed scientific literature provides plausible vias of implication of dysbiotic oral microbiota in systemic human diseases, and encourages further research to continue elucidating the highly relevant and still poorly understood implications of this niche microbiota in systemic health. PROSPERO Registration Number: CRD42022299692. This systematic review follows relevant PRISMA guidelines.
Collapse
Affiliation(s)
- Barbara Giordano-Kelhoffer
- Faculty of Dentistry, Universitat Internacional de Catalunya (UIC), 08017 Barcelona, Spain;
- Bioengineering Institute of Technology, Faculty of Health Sciences, Universitat Internacional de Catalunya (UIC), 08017 Barcelona, Spain
- Faculty of Health Sciences, Valencian International University, 46002 Valencia, Spain
- Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRB Lleida), Neuroscience Area, +Pec Proteomics Research Group (+PPRG), University Hospital Arnau de Vilanova (HUAV), 25198 Lleida, Spain;
| | - Cristina Lorca
- Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRB Lleida), Neuroscience Area, +Pec Proteomics Research Group (+PPRG), University Hospital Arnau de Vilanova (HUAV), 25198 Lleida, Spain;
- IMDEA—Food Research Institute, +Pec Proteomics, Campus of International Excellence UAM + CSIC, Old Cantoblanco Hospital, 8 Crta. Canto Blanco, 28049 Madrid, Spain
| | - Jaume March Llanes
- NeuroPGA Research Group—Psychology Department, University of Lleida (UdL), 25001 Lleida, Spain;
| | - Alberto Rábano
- Alzheimer’s Centre Reina Sofia—CIEN Foundation, 28031 Madrid, Spain; (A.R.); (T.d.S.)
| | - Teodoro del Ser
- Alzheimer’s Centre Reina Sofia—CIEN Foundation, 28031 Madrid, Spain; (A.R.); (T.d.S.)
| | - Aida Serra
- IMDEA—Food Research Institute, +Pec Proteomics, Campus of International Excellence UAM + CSIC, Old Cantoblanco Hospital, 8 Crta. Canto Blanco, 28049 Madrid, Spain
- Correspondence: (A.S.); (X.G.-P.); Tel.: +34-91-7278-100 (A.S.); +34-97-3702-224 (X.G.-P.)
| | - Xavier Gallart-Palau
- Faculty of Health Sciences, Valencian International University, 46002 Valencia, Spain
- Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRB Lleida), Neuroscience Area, +Pec Proteomics Research Group (+PPRG), University Hospital Arnau de Vilanova (HUAV), 25198 Lleida, Spain;
- Psychology Department, University of Lleida (UdL), 25001 Lleida, Spain
- Correspondence: (A.S.); (X.G.-P.); Tel.: +34-91-7278-100 (A.S.); +34-97-3702-224 (X.G.-P.)
| |
Collapse
|
38
|
Abstract
Fusobacterium nucleatum is a common constituent of the oral microbiota in both periodontal health and disease. Previously, we discovered ornithine cross-feeding between F. nucleatum and Streptococcus gordonii, where S. gordonii secretes ornithine via an arginine-ornithine antiporter (ArcD), which in turn supports the growth and biofilm development of F. nucleatum; however, broader metabolic aspects of F. nucleatum within polymicrobial communities and their impact on periodontal pathogenesis have not been addressed. Here, we show that when cocultured with S. gordonii, F. nucleatum increased amino acid availability to enhance the production of butyrate and putrescine, a polyamine produced by ornithine decarboxylation. Coculture with Veillonella parvula, another common inhabitant of the oral microbiota, also increased lysine availability, promoting cadaverine production by F. nucleatum. We confirmed that ArcD-dependent S. gordonii-excreted ornithine induces synergistic putrescine production, and mass spectrometry imaging revealed that this metabolic capability creates a putrescine-rich microenvironment on the surface of F. nucleatum biofilms. We further demonstrated that polyamines caused significant changes in the biofilm phenotype of a periodontal pathogen, Porphyromonas gingivalis, with putrescine accelerating the biofilm life cycle of maturation and dispersal. This phenomenon was also observed with putrescine derived from S. gordonii-F. nucleatum coculture. Lastly, analysis of plaque samples revealed cooccurrence of P. gingivalis with genetic modules for putrescine production by S. gordonii and F. nucleatum. Overall, our results highlight the ability of F. nucleatum to induce synergistic polyamine production within multispecies consortia and provide insight into how the trophic web in oral biofilm ecosystems can eventually shape disease-associated communities. IMPORTANCE Periodontitis is caused by a pathogenic shift in subgingival biofilm ecosystems, which is accompanied by alterations in microbiome composition and function, including changes in the metabolic activity of the biofilm, which comprises multiple commensals and pathogens. While Fusobacterium nucleatum is a common constituent of the supra- and subgingival biofilms, its metabolic integration within polymicrobial communities and the impact on periodontal pathogenesis are poorly understood. Here, we report that amino acids supplied by other commensal bacteria induce polyamine production by F. nucleatum, creating polyamine-rich microenvironments. Polyamines reportedly have diverse functions in bacterial physiology and possible involvement in periodontal pathogenesis. We show that the F. nucleatum-integrated trophic network yielding putrescine from arginine through ornithine accelerates the biofilm life cycle of Porphyromonas gingivalis, a periodontal pathogen, from the planktonic state through biofilm formation to dispersal. This work provides insight into how cooperative metabolism within oral biofilms can tip the balance toward periodontitis.
Collapse
|
39
|
Özçam M, Oh JH, Tocmo R, Acharya D, Zhang S, Astmann TJ, Heggen M, Ruiz-Ramírez S, Li F, Cheng CC, Vivas E, Rey FE, Claesen J, Bugni TS, Walter J, van Pijkeren JP. A secondary metabolite drives intraspecies antagonism in a gut symbiont that is inhibited by cell-wall acetylation. Cell Host Microbe 2022; 30:824-835.e6. [PMID: 35443156 DOI: 10.1016/j.chom.2022.03.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 12/16/2021] [Accepted: 03/25/2022] [Indexed: 11/03/2022]
Abstract
The mammalian microbiome encodes numerous secondary metabolite biosynthetic gene clusters; yet, their role in microbe-microbe interactions is unclear. Here, we characterized two polyketide synthase gene clusters (fun and pks) in the gut symbiont Limosilactobacillus reuteri. The pks, but not the fun, cluster encodes antimicrobial activity. Forty-one of 51 L. reuteri strains tested are sensitive to Pks products; this finding was independent of strains' host origin. Sensitivity to Pks was also established in intraspecies competition experiments in gnotobiotic mice. Comparative genome analyses between Pks-resistant and -sensitive strains identified an acyltransferase gene (act) unique to Pks-resistant strains. Subsequent cell-wall analysis of wild-type and act mutant strains showed that Act acetylates cell-wall components, providing resistance to Pks-mediated killing. Additionally, pks mutants lost their competitive advantage, while act mutants lost their Pks resistance in in vivo competition assays. These findings provide insight into how closely related gut symbionts can compete and co-exist in the gastrointestinal tract.
Collapse
Affiliation(s)
- Mustafa Özçam
- Department of Food Science, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jee-Hwan Oh
- Department of Food Science, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Restituto Tocmo
- Department of Food Science, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Deepa Acharya
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Shenwei Zhang
- Department of Food Science, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Theresa J Astmann
- Department of Food Science, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Mark Heggen
- Department of Food Science, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | - Fuyong Li
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Christopher C Cheng
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Eugenio Vivas
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Federico E Rey
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jan Claesen
- Department of Cardiovascular and Metabolic Sciences and Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Tim S Bugni
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jens Walter
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2P5, Canada; Department of Medicine and APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland; School of Microbiology, University College Cork, Cork T12 YT20, Ireland
| | - Jan-Peter van Pijkeren
- Department of Food Science, University of Wisconsin-Madison, Madison, WI 53706, USA; Food Research Institute, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
40
|
Fobofou SA, Savidge T. Microbial metabolites: cause or consequence in gastrointestinal disease? Am J Physiol Gastrointest Liver Physiol 2022; 322:G535-G552. [PMID: 35271353 PMCID: PMC9054261 DOI: 10.1152/ajpgi.00008.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 01/31/2023]
Abstract
Systems biology studies have established that changes in gastrointestinal microbiome composition and function can adversely impact host physiology. Notable diseases synonymously associated with dysbiosis include inflammatory bowel diseases, cancer, metabolic disorders, and opportunistic and recurrent pathogen infections. However, there is a scarcity of mechanistic data that advances our understanding of taxonomic correlations with pathophysiological host-microbiome interactions. Generally, to survive a hostile gut environment, microbes are highly metabolically active and produce trans-kingdom signaling molecules to interact with competing microorganisms and the host. These specialized metabolites likely play important homeostatic roles, and identifying disease-specific taxa and their effector pathways can provide better strategies for diagnosis, treatment, and prevention, as well as the discovery of innovative therapeutics. The signaling role of microbial biotransformation products such as bile acids, short-chain fatty acids, polysaccharides, and dietary tryptophan is increasingly recognized, but little is known about the identity and function of metabolites that are synthesized by microbial biosynthetic gene clusters, including ribosomally synthesized and posttranslationally modified peptides (RiPPs), nonribosomal peptides (NRPs), polyketides (PKs), PK-NRP hybrids, and terpenes. Here we consider how bioactive natural products directly encoded by the human microbiome can contribute to the pathophysiology of gastrointestinal disease, cancer, autoimmune, antimicrobial-resistant bacterial and viral infections (including COVID-19). We also present strategies used to discover these compounds and the biological activities they exhibit, with consideration of therapeutic interventions that could emerge from understanding molecular causation in gut microbiome research.
Collapse
Affiliation(s)
- Serge Alain Fobofou
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
- Department of Pathology, Texas Children's Microbiome Center, Texas Children's Hospital, Houston, Texas
| | - Tor Savidge
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
- Department of Pathology, Texas Children's Microbiome Center, Texas Children's Hospital, Houston, Texas
| |
Collapse
|
41
|
Lu F, Qi GG, Fang W, Zhang X, Zhou J, Yu XF, Li XJ. Causes of Emergency Bleeding after Nonsurgical Periodontal Therapy in Adult Periodontitis Patients: A Retrospective Analysis. Appl Bionics Biomech 2022; 2022:1579574. [PMID: 35392359 PMCID: PMC8983271 DOI: 10.1155/2022/1579574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Emergency gingival uncontrollable bleeding after nonsurgical periodontal therapy (NSPT) could be caused by a variety of factors; local oral factors are the main cause of gingival bleeding in most patients. Because the doctor will do a good job of evaluating the patient's physical condition before nonsurgical periodontal therapy. This study is subjected to evaluate the possible factors associated with emergency uncontrollable bleeding within 24-48 hours after NSPT. Material and Methods. A total of fifty-eight patients with emergency bleeding after NSPT in the past four years were enrolled. The related factors in patients, such as age, gender, clotting function, systemic diseases, and baseline periodontitis severity, were analyzed. The site-related factors, such as tooth type, tooth distribution, and alveolar bone resorption at the bleeding site, were compared. The possible relationship of the parameters to the causes of emergency bleeding with NSPT was also evaluated. RESULTS Gingival bleeding after NSPT was registered. In this retrospective study, a total of 58 patients were selected. There were 29 males and 29 females, aged from 20 to 67 years old, with an average age of 35.21 ± 10.09 years. Among them, 8.6% were over 50 years old, and 91.4% were under 50 years old. Completed evaluations were performed in 15.5% gingivitis and 84.5% periodontitis. The causes of emergency bleeding after nonsurgical periodontal therapy in this study were residual subgingival calculus or granulation tissue in 63.79% of cases: severe gingival inflammation, 29.32%; gum trauma, 3.45%; and poor compliance, 3.45%. The therapy method before bleeding includes supragingival scaling accounted for 72.4% and subgingival scaling accounted for 27.6%. 23 cases of horizontal absorption at the bleeding site accounted for 39.66%, and 35 cases of angular absorption accounted for 60.34%. Bleeding of maxillary posterior teeth accounted for 34.48%; mandibular anterior teeth accounted for 15.52%; mandibular anterior teeth accounted for 8.62%; and mandibular posterior teeth accounted for 18.97%; multiple sites accounted for 22.41%; eliminating residual subgingival calculus and granulation tissue were the main and most effective hemostatic methods, 86.21%. CONCLUSION Residual subgingival calculus or granulation tissue and severe gingival inflammation were the main causes of emergency gingival bleeding after nonsurgical periodontal therapy. Severe gingival inflammation causing emergency bleeding was more common in maxillary posterior teeth areas. Angular alveolar bone resorption was more likely to cause bleeding than horizontal resorption. Careful debridement of residual subgingival calculus and granulation tissue was the main hemostatic method.
Collapse
Affiliation(s)
- Fei Lu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Gang-Gang Qi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Wen Fang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Xin Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Jing Zhou
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Xue-Fen Yu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Xiao-Jun Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| |
Collapse
|
42
|
Aleti G, Kohn JN, Troyer EA, Weldon K, Huang S, Tripathi A, Dorrestein PC, Swafford AD, Knight R, Hong S. Salivary bacterial signatures in depression-obesity comorbidity are associated with neurotransmitters and neuroactive dipeptides. BMC Microbiol 2022; 22:75. [PMID: 35287577 PMCID: PMC8919597 DOI: 10.1186/s12866-022-02483-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 02/25/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Depression and obesity are highly prevalent, often co-occurring conditions marked by inflammation. Microbiome perturbations are implicated in obesity-inflammation-depression interrelationships, but how the microbiome mechanistically contributes to pathology remains unclear. Metabolomic investigations into microbial neuroactive metabolites may offer mechanistic insights into host-microbe interactions. Using 16S sequencing and untargeted mass spectrometry of saliva, and blood monocyte inflammation regulation assays, we identified key microbes, metabolites and host inflammation in association with depressive symptomatology, obesity, and depressive symptomatology-obesity comorbidity. RESULTS Gram-negative bacteria with inflammation potential were enriched relative to Gram-positive bacteria in comorbid obesity-depression, supporting the inflammation-oral microbiome link in obesity-depression interrelationships. Oral microbiome was more highly predictive of depressive symptomatology-obesity co-occurrences than of obesity or depressive symptomatology independently, suggesting specific microbial signatures associated with obesity-depression co-occurrences. Mass spectrometry analysis revealed significant changes in levels of signaling molecules of microbiota, microbial or dietary derived signaling peptides and aromatic amino acids among depressive symptomatology, obesity and comorbid obesity-depression. Furthermore, integration of the microbiome and metabolomics data revealed that key oral microbes, many previously shown to have neuroactive potential, co-occurred with potential neuropeptides and biosynthetic precursors of the neurotransmitters dopamine, epinephrine and serotonin. CONCLUSIONS Together, our findings offer novel insights into oral microbial-brain connection and potential neuroactive metabolites involved.
Collapse
Affiliation(s)
- Gajender Aleti
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jordan N Kohn
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Emily A Troyer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Kelly Weldon
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Shi Huang
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA
| | - Anupriya Tripathi
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA
| | - Pieter C Dorrestein
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Austin D Swafford
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, 92093, USA
| | - Rob Knight
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Suzi Hong
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA.
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
43
|
Uranga C, Nelson KE, Edlund A, Baker JL. Tetramic Acids Mutanocyclin and Reutericyclin A, Produced by Streptococcus mutans Strain B04Sm5 Modulate the Ecology of an in vitro Oral Biofilm. FRONTIERS IN ORAL HEALTH 2022; 2:796140. [PMID: 35048077 PMCID: PMC8757879 DOI: 10.3389/froh.2021.796140] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/29/2021] [Indexed: 01/04/2023] Open
Abstract
The human oral microbiome consists of diverse microbes actively communicating and interacting through a variety of biochemical mechanisms. Dental caries is a major public health issue caused by fermentable carbohydrate consumption that leads to dysbiosis of the oral microbiome. Streptococcus mutans is a known major contributor to caries pathogenesis, due to its exceptional ability to form biofilms in the presence of sucrose, as well as to its acidophilic lifestyle. S. mutans can also kill competing bacteria, which are typically health associated, through the production of bacteriocins and other small molecules. A subset of S. mutans strains encode the muc biosynthetic gene cluster (BGC), which was recently shown to produce the tetramic acids, mutanocyclin and reutericyclins A, B, and C. Reutericyclin A displayed strong antimicrobial activity and mutanocyclin appeared to be anti-inflammatory; however the effect of these compounds, and the carriage of muc by S. mutans, on the ecology of the oral microbiota is not known, and was examined here using a previously developed in vitro biofilm model derived from human saliva. While reutericyclin significantly inhibited in vitro biofilm formation and acid production at sub-nanomolar concentrations, mutanocyclin did not present any activity until the high micromolar range. 16S rRNA gene sequencing revealed that reutericyclin drastically altered the biofilm community composition, while mutanocyclin showed a more specific effect, reducing the relative abundance of cariogenic Limosilactobacillus fermentum. Mutanocyclin or reutericyclin produced by the S. mutans strains amended to the community did not appear to affect the community in the same way as the purified compounds, although the results were somewhat confounded by the differing growth rates of the S. mutans strains. Regardless of the strain added, the addition of S. mutans to the in vitro community significantly increased the abundance of S. mutans and Veillonella infantium, only. Overall, this study illustrates that reutericyclin A and mutanocyclin do impact the ecology of a complex in vitro oral biofilm; however, further research is needed to determine the extent to which the production of these compounds affects the virulence of S. mutans.
Collapse
Affiliation(s)
- Carla Uranga
- Genomic Medicine Group, J. Craig Venter Institute, La Jolla, CA, United States
| | - Karen E Nelson
- Genomic Medicine Group, J. Craig Venter Institute, La Jolla, CA, United States
| | - Anna Edlund
- Genomic Medicine Group, J. Craig Venter Institute, La Jolla, CA, United States.,Department of Pediatrics, UC San Diego School of Medicine, San Diego, CA, United States
| | - Jonathon L Baker
- Genomic Medicine Group, J. Craig Venter Institute, La Jolla, CA, United States.,Department of Pediatrics, UC San Diego School of Medicine, San Diego, CA, United States
| |
Collapse
|
44
|
Liao G, Tang X. Mining the Microbial Chemistry behind Tooth Decay. Biochemistry 2021; 61:2779-2781. [PMID: 34813289 DOI: 10.1021/acs.biochem.1c00652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ge Liao
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.,Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Xiaoyu Tang
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
45
|
Chevrette MG, Handelsman J. Needles in haystacks: reevaluating old paradigms for the discovery of bacterial secondary metabolites. Nat Prod Rep 2021; 38:2083-2099. [PMID: 34693961 DOI: 10.1039/d1np00044f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Covering: up to 2021Natural products research is in the midst of a renaissance ushered in by a modern understanding of microbiology and the technological explosions of genomics and metabolomics. As the exploration of uncharted chemical space expands into high-throughput discovery campaigns, it has become increasingly clear how design elements influence success: (bio)geography, habitat, community dynamics, culturing/induction methods, screening methods, dereplication, and more. We explore critical considerations and assumptions in natural products discovery. We revisit previous estimates of chemical rediscovery and discuss their relatedness to study design and producer taxonomy. Through frequency analyses of biosynthetic gene clusters in publicly available genomic data, we highlight phylogenetic biases that influence rediscovery rates. Through selected examples of how study design at each level determines discovery outcomes, we discuss the challenges and opportunities for the future of high-throughput natural product discovery.
Collapse
Affiliation(s)
- Marc G Chevrette
- Wisconsin Institute for Discovery and Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA.
| | - Jo Handelsman
- Wisconsin Institute for Discovery and Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
46
|
Heilbronner S, Krismer B, Brötz-Oesterhelt H, Peschel A. The microbiome-shaping roles of bacteriocins. Nat Rev Microbiol 2021; 19:726-739. [PMID: 34075213 DOI: 10.1038/s41579-021-00569-w] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2021] [Indexed: 02/05/2023]
Abstract
The microbiomes on human body surfaces affect health in multiple ways. They include not only commensal or mutualistic bacteria but also potentially pathogenic bacteria, which can enter sterile tissues to cause invasive infection. Many commensal bacteria produce small antibacterial molecules termed bacteriocins that have the capacity to eliminate specific colonizing pathogens; as such, bacteriocins have attracted increased attention as potential microbiome-editing tools. Metagenome-based and activity-based screening approaches have strongly expanded our knowledge of the abundance and diversity of bacteriocin biosynthetic gene clusters and the properties of a continuously growing list of bacteriocin classes. The dynamic acquisition, diversification or loss of bacteriocin genes can shape the fitness of a bacterial strain that is in competition with bacteriocin-susceptible bacteria. However, a bacteriocin can only provide a competitive advantage if its fitness benefit exceeds the metabolic cost of production, if it spares crucial mutualistic partner strains and if major competitors cannot develop resistance. In contrast to most currently available antibiotics, many bacteriocins have only narrow activity ranges and could be attractive agents for precision therapy and prevention of infections. A common scientific strategy involving multiple disciplines is needed to uncover the immense potential of microbiome-shaping bacteriocins.
Collapse
Affiliation(s)
- Simon Heilbronner
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Infection Biology, University of Tübingen, Tübingen, Germany. .,Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany.
| | - Bernhard Krismer
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Infection Biology, University of Tübingen, Tübingen, Germany.,Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
| | - Heike Brötz-Oesterhelt
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany.,Interfaculty Institute of Microbiology and Infection Medicine, Department of Microbial Bioactive Compounds, University of Tübingen, Tübingen, Germany
| | - Andreas Peschel
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Infection Biology, University of Tübingen, Tübingen, Germany. .,Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
47
|
Torralba MG, Aleti G, Li W, Moncera KJ, Lin YH, Yu Y, Masternak MM, Golusinski W, Golusinski P, Lamperska K, Edlund A, Freire M, Nelson KE. Oral Microbial Species and Virulence Factors Associated with Oral Squamous Cell Carcinoma. MICROBIAL ECOLOGY 2021; 82:1030-1046. [PMID: 33155101 PMCID: PMC8551143 DOI: 10.1007/s00248-020-01596-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 09/01/2020] [Indexed: 05/14/2023]
Abstract
The human microbiome has been the focus of numerous research efforts to elucidate the pathogenesis of human diseases including cancer. Oral cancer mortality is high when compared with other cancers, as diagnosis often occurs during late stages. Its prevalence has increased in the USA over the past decade and accounts for over 40,000 new cancer patients each year. Additionally, oral cancer pathogenesis is not fully understood and is likely multifactorial. To unravel the relationships that are associated with the oral microbiome and their virulence factors, we used 16S rDNA and metagenomic sequencing to characterize the microbial composition and functional content in oral squamous cell carcinoma (OSCC) tumor tissue, non-tumor tissue, and saliva from 18 OSCC patients. Results indicate a higher number of bacteria belonging to the Fusobacteria, Bacteroidetes, and Firmicutes phyla associated with tumor tissue when compared with all other sample types. Additionally, saliva metaproteomics revealed a significant increase of Prevotella in five OSCC subjects, while Corynebacterium was mostly associated with ten healthy subjects. Lastly, we determined that there are adhesion and virulence factors associated with Streptococcus gordonii as well as from known oral pathogens belonging to the Fusobacterium genera found mostly in OSCC tissues. From these results, we propose that not only will the methods utilized in this study drastically improve OSCC diagnostics, but the organisms and specific virulence factors from the phyla detected in tumor tissue may be excellent biomarkers for characterizing disease progression.
Collapse
Affiliation(s)
- Manolito G Torralba
- Department of Genomic Medicine, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA.
| | - Gajender Aleti
- Department of Genomic Medicine, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - Weizhong Li
- Department of Genomic Medicine, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - Kelvin Jens Moncera
- Department of Genomic Medicine, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - Yi-Han Lin
- Department of Genomic Medicine, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - Yanbao Yu
- Department of Genomic Medicine, J. Craig Venter Institute, 9605 Medical Center Drive Suite 150, Rockville, MD, 20850, USA
| | - Michal M Masternak
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Central Florida Blvd, Orlando, FL, 32827, USA
| | - Wojciech Golusinski
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, Garbary 15, 61-866, Poznan, Poland
| | - Pawel Golusinski
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, Garbary 15, 61-866, Poznan, Poland
- Department of Otolaryngology and Maxillofacial Surgery, University of Zielona Gora, Podgórna 50, 65-246, Zielona Góra, Poland
| | - Katarzyna Lamperska
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, 15th Garbary Street, room 5025, 61-866, Poznan, Poland
| | - Anna Edlund
- Department of Genomic Medicine, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - Marcelo Freire
- Department of Genomic Medicine, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - Karen E Nelson
- Department of Genomic Medicine, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| |
Collapse
|
48
|
Biogeography of Bacterial Communities and Specialized Metabolism in Human Aerodigestive Tract Microbiomes. Microbiol Spectr 2021; 9:e0166921. [PMID: 34704787 PMCID: PMC8549736 DOI: 10.1128/spectrum.01669-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The aerodigestive tract (ADT) is the primary portal through which pathogens and other invading microbes enter the body. As the direct interface with the environment, we hypothesize that the ADT microbiota possess biosynthetic gene clusters (BGCs) for antibiotics and other specialized metabolites to compete with both endogenous and exogenous microbes. From 1,214 bacterial genomes, representing 136 genera and 387 species that colonize the ADT, we identified 3,895 BGCs. To determine the distribution of BGCs and bacteria in different ADT sites, we aligned 1,424 metagenomes, from nine different ADT sites, onto the predicted BGCs. We show that alpha diversity varies across the ADT and that each site is associated with distinct bacterial communities and BGCs. We identify specific BGC families enriched in the buccal mucosa, external naris, gingiva, and tongue dorsum despite these sites harboring closely related bacteria. We reveal BGC enrichment patterns indicative of the ecology at each site. For instance, aryl polyene and resorcinol BGCs are enriched in the gingiva and tongue, which are colonized by many anaerobes. In addition, we find that streptococci colonizing the tongue and cheek possess different ribosomally synthesized and posttranslationally modified peptide BGCs. Finally, we highlight bacterial genera with BGCs but are underexplored for specialized metabolism and demonstrate the bioactivity of Actinomyces against other bacteria, including human pathogens. Together, our results demonstrate that specialized metabolism in the ADT is extensive and that by exploring these microbiomes further, we will better understand the ecology and biogeography of this system and identify new bioactive natural products. IMPORTANCE Bacteria produce specialized metabolites to compete with other microbes. Though the biological activities of many specialized metabolites have been determined, our understanding of their ecology is limited, particularly within the human microbiome. As the aerodigestive tract (ADT) faces the external environment, bacteria colonizing this tract must compete both among themselves and with invading microbes, including human pathogens. We analyzed the genomes of ADT bacteria to identify biosynthetic gene clusters (BGCs) for specialized metabolites. We found that the majority of ADT BGCs are uncharacterized and the metabolites they encode are unknown. We mapped the distribution of BGCs across the ADT and determined that each site is associated with its own distinct bacterial community and BGCs. By further characterizing these BGCs, we will inform our understanding of ecology and biogeography across the ADT, and we may uncover new specialized metabolites, including antibiotics.
Collapse
|
49
|
Pascal Andreu V, Augustijn HE, van den Berg K, van der Hooft JJJ, Fischbach MA, Medema MH. BiG-MAP: an Automated Pipeline To Profile Metabolic Gene Cluster Abundance and Expression in Microbiomes. mSystems 2021; 6:e0093721. [PMID: 34581602 PMCID: PMC8547482 DOI: 10.1128/msystems.00937-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/24/2021] [Indexed: 12/28/2022] Open
Abstract
Microbial gene clusters encoding the biosynthesis of primary and secondary metabolites play key roles in shaping microbial ecosystems and driving microbiome-associated phenotypes. Although effective approaches exist to evaluate the metabolic potential of such bacteria through identification of these metabolic gene clusters in their genomes, no automated pipelines exist to profile the abundance and expression levels of such gene clusters in microbiome samples to generate hypotheses about their functional roles, and to find associations with phenotypes of interest. Here, we describe BiG-MAP, a bioinformatic tool to profile abundance and expression levels of gene clusters across metagenomic and metatranscriptomic data and evaluate their differential abundance and expression under different conditions. To illustrate its usefulness, we analyzed 96 metagenomic samples from healthy and caries-associated human oral microbiome samples and identified 252 gene clusters, including unreported ones, that were significantly more abundant in either phenotype. Among them, we found the muc operon, a gene cluster known to be associated with tooth decay. Additionally, we found a putative reuterin biosynthetic gene cluster from a Streptococcus strain to be enriched but not exclusively found in healthy samples; metabolomic data from the same samples showed masses with fragmentation patterns consistent with (poly)acrolein, which is known to spontaneously form from the products of the reuterin pathway and has been previously shown to inhibit pathogenic Streptococcus mutans strains. Thus, we show how BiG-MAP can be used to generate new hypotheses on potential drivers of microbiome-associated phenotypes and prioritize the experimental characterization of relevant gene clusters that may mediate them. IMPORTANCE Microbes play an increasingly recognized role in determining host-associated phenotypes by producing small molecules that interact with other microorganisms or host cells. The production of these molecules is often encoded in syntenic genomic regions, also known as gene clusters. With the increasing numbers of (multi)omics data sets that can help in understanding complex ecosystems at a much deeper level, there is a need to create tools that can automate the process of analyzing these gene clusters across omics data sets. This report presents a new software tool called BiG-MAP, which allows assessing gene cluster abundance and expression in microbiome samples using metagenomic and metatranscriptomic data. Here, we describe the tool and its functionalities, as well as its validation using a mock community. Finally, using an oral microbiome data set, we show how it can be used to generate hypotheses regarding the functional roles of gene clusters in mediating host phenotypes.
Collapse
Affiliation(s)
| | | | - Koen van den Berg
- Bioinformatics Group, Wageningen University, Wageningen, the Netherlands
| | | | - Michael A. Fischbach
- Department of Bioengineering, Stanford University, Stanford, California, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, California, USA
- ChEM-H, Stanford University, Stanford, California, USA
| | - Marnix H. Medema
- Bioinformatics Group, Wageningen University, Wageningen, the Netherlands
| |
Collapse
|
50
|
Sedghi L, DiMassa V, Harrington A, Lynch SV, Kapila YL. The oral microbiome: Role of key organisms and complex networks in oral health and disease. Periodontol 2000 2021; 87:107-131. [PMID: 34463991 PMCID: PMC8457218 DOI: 10.1111/prd.12393] [Citation(s) in RCA: 333] [Impact Index Per Article: 83.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
States of oral health and disease reflect the compositional and functional capacities of, as well as the interspecies interactions within, the oral microbiota. The oral cavity exists as a highly dynamic microbial environment that harbors many distinct substrata and microenvironments that house diverse microbial communities. Specific to the oral cavity, the nonshedding dental surfaces facilitate the development of highly complex polymicrobial biofilm communities, characterized not only by the distinct microbes comprising them, but cumulatively by their activities. Adding to this complexity, the oral cavity faces near-constant environmental challenges, including those from host diet, salivary flow, masticatory forces, and introduction of exogenous microbes. The composition of the oral microbiome is shaped throughout life by factors including host genetics, maternal transmission, as well as environmental factors, such as dietary habits, oral hygiene practice, medications, and systemic factors. This dynamic ecosystem presents opportunities for oral microbial dysbiosis and the development of dental and periodontal diseases. The application of both in vitro and culture-independent approaches has broadened the mechanistic understandings of complex polymicrobial communities within the oral cavity, as well as the environmental, local, and systemic underpinnings that influence the dynamics of the oral microbiome. Here, we review the present knowledge and current understanding of microbial communities within the oral cavity and the influences and challenges upon this system that encourage homeostasis or provoke microbiome perturbation, and thus contribute to states of oral health or disease.
Collapse
Affiliation(s)
- Lea Sedghi
- Department of Orofacial SciencesSchool of DentistryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Vincent DiMassa
- Department of MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Anthony Harrington
- Department of MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Susan V. Lynch
- Department of MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Yvonne L. Kapila
- Department of Orofacial SciencesSchool of DentistryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|