1
|
Nakayama Y, Ihara F, Okuzaki D, Nishikawa Y, Sasai M, Yamamoto M. Toxoplasma GRA15 expression on dendritic cells inhibits B cell differentiation and antibody production. Parasitol Int 2025; 105:102995. [PMID: 39557359 DOI: 10.1016/j.parint.2024.102995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 11/20/2024]
Abstract
One of the dense granule proteins named GRA15 in Toxoplasma gondii (T. gondii), is known to support an innate immune response in host through activation of NF-κB. However, little is known about advantages of GRA15 for parasites. By examining the role of GRA15 in the host-parasite interactions, it was clarified that GRA15 in T. gondii suppressed acquired immune responses in host. Wild-type parasite infection to C57BL/6 mice resulted in lower titers of T. gondii antibody and lower plasma cell counts compared to Δgra15 T. gondii. To identify host cells in which GRA15 acts to suppress antibody production, we generated conditional knock-in mice that express GRA15 in specific cell lineages. Anti-T. gondii antibodies were not reduced in macrophages of conditional knock-in mice after infection with Δgra15 T. gondii, while the production of T. gondii antibody was suppressed in dendritic cells of the conditional knock-in mice (CD11c-Cre/GRA15cKI). In the CD11c-Cre/GRA15cKI immunized with ovalbumin (OVA), the titers of anti-OVA antibody were reduced compared to control mice. Furthermore, the number of OVA antigen-specific T cells was also decreased in CD11c-Cre/GRA15cKI. These data showed that GRA15 in dendritic cells suppressed T cell-mediated humoral immunity. These findings might implicate the pathological significance of GRA15 and facilitate Toxoplasma vaccines production.
Collapse
Affiliation(s)
- Yuki Nakayama
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan; Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Fumiaki Ihara
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan; Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Daisuke Okuzaki
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan; Laboratory of Human Immunology (Single Cell Genomics), WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan; Bioinformatics Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Miwa Sasai
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan; Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan; Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan; Center for Advances Modalities and Drug Delivery Systems, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan; Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan; Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan; Center for Advances Modalities and Drug Delivery Systems, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
2
|
Wang ZX, Jiao WJ, Yang Y, Liu HL, Wang HL. Role of inflammasomes in Toxoplasma and Plasmodium infections. Parasit Vectors 2024; 17:466. [PMID: 39548522 PMCID: PMC11566176 DOI: 10.1186/s13071-024-06529-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 10/08/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND The detection of pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs) by multimeric protein complexes, known as inflammasomes, triggers an inflammatory response, which is a critical component of the innate immune system. This inflammatory response plays a pivotal role in host resistance against parasitic infections, presenting a significant global health challenge. METHODS We systematically searched for relevant articles from the Pubmed and the Web of Science database to summarize current insights into how inflammasomes function in preventing infections caused by the apicomplexan parasites Toxoplasma and Plasmodium. RESULTS In vivo and in vitro studies have extensively explored inflammasomes such as the absent in melanoma 2 (AIM2), NLR family pyrin-containing protein 1 (NLRP1), NLRP3, and NLRP12 inflammasomes, alongside noncanonical inflammasomes, with particular emphasis on the NLRP1 and the NLRP3 inflammasome during Toxoplasma gondii infection or the AIM2 and the NLRP3 inflammasome at various stages of Plasmodium infection. Toxoplasma gondii interacts with inflammasomes to activate or inhibit immune responses. CONCLUSIONS Inflammasomes control parasite burden and parasite-induced cell death, contribute to immune recognition and inflammatory responses and thus influence apicomplexan parasite-associated pathogenesis and the severity of clinical outcomes. Hence, inflammasomes play crucial roles in the progression and outcomes of toxoplasmosis and malaria. A comprehensive understanding of how parasitic infections modulate inflammasome activity enhances insight into host immune responses against parasites.
Collapse
Affiliation(s)
- Zhi-Xin Wang
- School of Basic Medicine, Basic Medical Sciences Center, Shanxi Medical University, Jinzhong, 030600, Shanxi, China
| | - Wan-Jun Jiao
- School of Basic Medicine, Basic Medical Sciences Center, Shanxi Medical University, Jinzhong, 030600, Shanxi, China
| | - Yong Yang
- School of Basic Medicine, Basic Medical Sciences Center, Shanxi Medical University, Jinzhong, 030600, Shanxi, China
| | - Hong-Li Liu
- School of Basic Medicine, Basic Medical Sciences Center, Shanxi Medical University, Jinzhong, 030600, Shanxi, China.
| | - Hai-Long Wang
- School of Basic Medicine, Basic Medical Sciences Center, Shanxi Medical University, Jinzhong, 030600, Shanxi, China.
| |
Collapse
|
3
|
ten Hoeve AL, Rodriguez ME, Säflund M, Michel V, Magimel L, Ripoll A, Yu T, Hakimi MA, Saeij JPJ, Ozata DM, Barragan A. Hypermigration of macrophages through the concerted action of GRA effectors on NF-κB/p38 signaling and host chromatin accessibility potentiates Toxoplasma dissemination. mBio 2024; 15:e0214024. [PMID: 39207098 PMCID: PMC11481493 DOI: 10.1128/mbio.02140-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Mononuclear phagocytes facilitate the dissemination of the obligate intracellular parasite Toxoplasma gondii. Here, we report how a set of secreted parasite effector proteins from dense granule organelles (GRA) orchestrates dendritic cell-like chemotactic and pro-inflammatory activation of parasitized macrophages. These effects enabled efficient dissemination of the type II T. gondii lineage, a highly prevalent genotype in humans. We identify novel functions for effectors GRA15 and GRA24 in promoting CCR7-mediated macrophage chemotaxis by acting on NF-κB and p38 mitogen-activated protein kinase signaling pathways, respectively, with contributions by GRA16/18 and counter-regulation by effector TEEGR. Furthermore, GRA28 boosted chromatin accessibility and GRA15/24/NF-κB-dependent transcription at the Ccr7 gene locus in primary macrophages. In vivo, adoptively transferred macrophages infected with wild-type T. gondii outcompeted macrophages infected with a GRA15/24 double mutant in migrating to secondary organs in mice. The data show that T. gondii, rather than being passively shuttled, actively promotes its dissemination by inducing a finely regulated pro-migratory state in parasitized human and murine phagocytes via co-operating polymorphic GRA effectors. IMPORTANCE Intracellular pathogens can hijack the cellular functions of infected host cells to their advantage, for example, for intracellular survival and dissemination. However, how microbes orchestrate the hijacking of complex cellular processes, such as host cell migration, remains poorly understood. As such, the common parasite Toxoplasma gondii actively invades the immune cells of humans and other vertebrates and modifies their migratory properties. Here, we show that the concerted action of a number of secreted effector proteins from the parasite, principally GRA15 and GRA24, acts on host cell signaling pathways to activate chemotaxis. Furthermore, the protein effector GRA28 selectively acted on chromatin accessibility in the host cell nucleus to selectively boost host gene expression. The joint activities of GRA effectors culminated in pro-migratory signaling within the infected phagocyte. We provide a molecular framework delineating how T. gondii can orchestrate a complex biological phenotype, such as the migratory activation of phagocytes to boost dissemination.
Collapse
Affiliation(s)
- Arne L. ten Hoeve
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Matias E. Rodriguez
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Martin Säflund
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Valentine Michel
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Lucas Magimel
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Albert Ripoll
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Tianxiong Yu
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Mohamed-Ali Hakimi
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Jeroen P. J. Saeij
- Department of Pathology, Microbiology, and Immunology, University of California Davis, Davis, California, USA
| | - Deniz M. Ozata
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Antonio Barragan
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
4
|
Murillo-Léon M, Bastidas-Quintero AM, Steinfeldt T. Decoding Toxoplasma gondii virulence: the mechanisms of IRG protein inactivation. Trends Parasitol 2024; 40:805-819. [PMID: 39168720 DOI: 10.1016/j.pt.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 08/23/2024]
Abstract
Toxoplasmosis is a common parasitic zoonosis that can be life-threatening in immunocompromised patients. About one-third of the human population is infected with Toxoplasma gondii. Primary infection triggers an innate immune response wherein IFN-γ-induced host cell GTPases, namely IRG and GBP proteins, serve as a vital component for host cell resistance. In the past decades, interest in elucidating the function of these GTPase families in controlling various intracellular pathogens has emerged. Numerous T. gondii effectors were identified to inactivate particular IRG proteins. T. gondii is re-optimizing its effectors to combat IRG function and in this way secures transmission. We discuss the IRG-specific effectors employed by the parasite in murine infections, contributing to a better understanding of T. gondii virulence.
Collapse
Affiliation(s)
- Mateo Murillo-Léon
- Institute of Medical Microbiology and Hygiene, Medical Center University of Freiburg, 79104 Freiburg, Germany; CIBSS, Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Aura María Bastidas-Quintero
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Institute of Virology, Medical Center University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Tobias Steinfeldt
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Institute of Virology, Medical Center University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
5
|
Wallbank BA, Pardy RD, Brodsky IE, Hunter CA, Striepen B. Cryptosporidium impacts epithelial turnover and is resistant to induced death of the host cell. mBio 2024; 15:e0172024. [PMID: 38995074 PMCID: PMC11323733 DOI: 10.1128/mbio.01720-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 07/13/2024] Open
Abstract
Infection with the apicomplexan parasite Cryptosporidium is a leading cause of diarrheal disease. Cryptosporidiosis is of particular importance in infants and shows a strong association with malnutrition, both as a risk factor and as a consequence. Cryptosporidium invades and replicates within the small intestine epithelial cells. This is a highly dynamic tissue that is developmentally stratified along the villus axis. New cells emerge from a stem cell niche in the crypt and differentiate into mature epithelial cells while moving toward the villus tip, where they are ultimately shed. Here, we studied the impact of Cryptosporidium infection on this dynamic architecture. Tracing DNA synthesis in pulse-chase experiments in vivo, we quantified the genesis and migration of epithelial cells along the villus. We found proliferation and epithelial migration to be elevated in response to Cryptosporidium infection. Infection also resulted in significant cell loss documented by imaging and molecular assays. Consistent with these observations, single-cell RNA sequencing of infected intestines showed a gain of young and a loss of mature cells. Interestingly, enhanced epithelial cell loss was not a function of enhanced apoptosis of infected cells. To the contrary, Cryptosporidium-infected cells were less likely to be apoptotic than bystanders, and experiments in tissue culture demonstrated that infection provided enhanced resistance to chemically induced apoptosis to the host but not bystander cells. Overall, this study suggests that Cryptosporidium may modulate cell apoptosis and documents pronounced changes in tissue homeostasis due to parasite infection, which may contribute to its long-term impact on the developmental and nutritional state of children. IMPORTANCE The intestine must balance its roles in digestion and nutrient absorption with the maintenance of an effective barrier to colonization and breach by numerous potential pathogens. An important component of this balance is its constant turnover, which is modulated by a gain of cells due to proliferation and loss due to death or extrusion. Here, we report that Cryptosporidium infection changes the dynamics of this process increasing both gain and loss of enterocytes speeding up the villus elevator. This leads to a much more immature epithelium and a reduction of the number of those cells typically found toward the villus apex best equipped to take up key nutrients including carbohydrates and lipids. These changes in the cellular architecture and physiology of the small intestine may be linked to the profound association between cryptosporidiosis and malnutrition.
Collapse
Affiliation(s)
- Bethan A. Wallbank
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ryan D. Pardy
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Igor E. Brodsky
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Christopher A. Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Boris Striepen
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Hasan T, Shimoda N, Nakamura S, Fox BA, Bzik DJ, Ushio-Watanabe N, Nishikawa Y. Protective efficacy of recombinant Toxoplasma gondii dense granule protein 15 against toxoplasmosis in C57BL/6 mice. Vaccine 2024; 42:2299-2309. [PMID: 38429153 DOI: 10.1016/j.vaccine.2024.02.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024]
Abstract
Toxoplasma gondii is a pervasive protozoan parasite that is responsible for significant zoonoses. A wide array of vaccines using different effector molecules of T. gondii have been studied worldwide to control toxoplasmosis. None of the existing vaccines are sufficiently effective to confer protective immunity. Among the different Toxoplasma-derived effector molecules, T. gondii dense granule protein 15 from the type II strain (GRA15 (II)) was recently characterized as an immunomodulatory molecule that induced host immunity via NF-κB. Therefore, we assessed the immunostimulatory and protective efficacy of recombinant GRA15 (II) (rGRA15) against T. gondii infection in a C57BL/6 mouse model. We observed that rGRA15 treatment increased the production of IL-12p40 from mouse peritoneal macrophages in vitro. Immunization of mice with rGRA15 induced the production of anti-TgGRA15-specific IgG, IgG1 and IgG2c antibodies. The rGRA15-sensitized spleen cells from mice inoculated with the same antigen strongly promoted spleen cell proliferation and IFN-γ production. Immunization with rGRA15 significantly enhanced the survival rate of mice and dramatically decreased parasite burden in mice challenged with the Pru (type II) strain. These results suggested that rGRA15 triggered humoral and cellular immune responses to control infection. However, all of the immunized mice died when challenged with the GRA15-deficient Pru strain or the RH (type I) strain. These results suggest that GRA15 (II)-dependent immunity plays a crucial role in protection against challenge infection with the type II strain of T. gondii. This study is the first report to show GRA15 (II) as a recombinant vaccine antigen against Toxoplasma infection.
Collapse
Affiliation(s)
- Tanjila Hasan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan; Department of Medicine and Surgery, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Khulshi 4225, Chattogram, Bangladesh.
| | - Naomi Shimoda
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan.
| | - Shu Nakamura
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Barbara A Fox
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, 1 Medical Center Drive, Lebanon, NH 03756, USA.
| | - David J Bzik
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, 1 Medical Center Drive, Lebanon, NH 03756, USA.
| | - Nanako Ushio-Watanabe
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan.
| |
Collapse
|
7
|
ten Hoeve AL, Rodriguez ME, Säflund M, Michel V, Magimel L, Ripoll A, Yu T, Hakimi MA, Saeij JPJ, Ozata DM, Barragan A. Hypermigration of macrophages through the concerted action of GRA effectors on NF-κB/p38 signaling and host chromatin accessibility potentiates Toxoplasma dissemination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579146. [PMID: 38370679 PMCID: PMC10871220 DOI: 10.1101/2024.02.06.579146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Mononuclear phagocytes facilitate the dissemination of the obligate intracellular parasite Toxoplasma gondii. Here, we report how a set of secreted parasite effector proteins from dense granule organelles (GRA) orchestrates dendritic cell-like chemotactic and pro-inflammatory activation of parasitized macrophages. These effects enabled efficient dissemination of the type II T. gondii lineage, a highly prevalent genotype in humans. We identify novel functions for effectors GRA15 and GRA24 in promoting CCR7-mediated macrophage chemotaxis by acting on NF-κB and p38 MAPK signaling pathways, respectively, with contributions of GRA16/18 and counter-regulation by effector TEEGR. Further, GRA28 boosted chromatin accessibility and GRA15/24/NF-κB-dependent transcription at the Ccr7 gene locus in primary macrophages. In vivo, adoptively transferred macrophages infected with wild-type T. gondii outcompeted macrophages infected with a GRA15/24 double mutant in migrating to secondary organs in mice. The data show that T. gondii, rather than being passively shuttled, actively promotes its dissemination by inducing a finely regulated pro-migratory state in parasitized human and murine phagocytes via co-operating polymorphic GRA effectors.
Collapse
Affiliation(s)
- Arne L. ten Hoeve
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Matias E. Rodriguez
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Martin Säflund
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Valentine Michel
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Lucas Magimel
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Albert Ripoll
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Tianxiong Yu
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Mohamed-Ali Hakimi
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Jeroen P. J. Saeij
- Department of Pathology, Microbiology, and Immunology, University of California Davis, Davis, CA 95616 California, USA
| | - Deniz M. Ozata
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Antonio Barragan
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
8
|
Matta SK, Kohio HP, Chandra P, Brown A, Doench JG, Philips JA, Ding S, Sibley LD. Genome-wide and targeted CRISPR screens identify RNF213 as a mediator of interferon gamma-dependent pathogen restriction in human cells. Proc Natl Acad Sci U S A 2024; 121:e2315865120. [PMID: 38147552 PMCID: PMC10769850 DOI: 10.1073/pnas.2315865120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/15/2023] [Indexed: 12/28/2023] Open
Abstract
To define cellular immunity to the intracellular pathogen Toxoplasma gondii, we performed a genome-wide CRISPR loss-of-function screen to identify genes important for (interferon gamma) IFN-γ-dependent growth restriction. We revealed a role for the tumor suppressor NF2/Merlin for maximum induction of Interferon Stimulated Genes (ISG), which are positively regulated by the transcription factor IRF-1. We then performed an ISG-targeted CRISPR screen that identified the host E3 ubiquitin ligase RNF213 as necessary for IFN-γ-mediated control of T. gondii in multiple human cell types. RNF213 was also important for control of bacterial (Mycobacterium tuberculosis) and viral (Vesicular Stomatitis Virus) pathogens in human cells. RNF213-mediated ubiquitination of the parasitophorous vacuole membrane (PVM) led to growth restriction of T. gondii in response to IFN-γ. Moreover, overexpression of RNF213 in naive cells also impaired growth of T. gondii. Surprisingly, growth inhibition did not require the autophagy protein ATG5, indicating that RNF213 initiates restriction independent of a previously described noncanonical autophagy pathway. Mutational analysis revealed that the ATPase domain of RNF213 was required for its recruitment to the PVM, while loss of a critical histidine in the RZ finger domain resulted in partial reduction of recruitment to the PVM and complete loss of ubiquitination. Both RNF213 mutants lost the ability to restrict growth of T. gondii, indicating that both recruitment and ubiquitination are required. Collectively, our findings establish RNF213 as a critical component of cell-autonomous immunity that is both necessary and sufficient for control of intracellular pathogens in human cells.
Collapse
Affiliation(s)
- Sumit K. Matta
- Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St Louis, MO63130
| | - Hinissan P. Kohio
- Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St Louis, MO63130
| | - Pallavi Chandra
- Department of Medicine, Division of Infectious Diseases, School of Medicine, Washington University in St. Louis, St Louis, MO63130
| | - Adam Brown
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA02142
| | - John G. Doench
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA02142
| | - Jennifer A. Philips
- Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St Louis, MO63130
- Department of Medicine, Division of Infectious Diseases, School of Medicine, Washington University in St. Louis, St Louis, MO63130
| | - Siyuan Ding
- Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St Louis, MO63130
| | - L. David Sibley
- Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St Louis, MO63130
| |
Collapse
|
9
|
Lian L, Sun Q, Huang X, Li W, Cui Y, Pan Y, Yang X, Wang P. Inhibition of Cell Apoptosis by Apicomplexan Protozoa-Host Interaction in the Early Stage of Infection. Animals (Basel) 2023; 13:3817. [PMID: 38136854 PMCID: PMC10740567 DOI: 10.3390/ani13243817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Apicomplexan protozoa, which are a group of specialized intracellular parasitic protozoa, infect humans and other animals and cause a variety of diseases. The lack of research on the interaction mechanism between Apicomplexan protozoa and their hosts is a key factor restricting the development of new drugs and vaccines. In the early stages of infection, cell apoptosis is inhibited by Apicomplexan protozoa through their interaction with the host cells; thereby, the survival and reproduction of Apicomplexan protozoa in host cells is promoted. In this review, the key virulence proteins and pathways are introduced regarding the inhibition of cell apoptosis by the interaction between the protozoa and their host during the early stage of Apicomplexan protozoa infection. It provides a theoretical basis for the development of drugs or vaccines for protozoal diseases.
Collapse
Affiliation(s)
- Liyin Lian
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A & F University, Hangzhou 311300, China; (L.L.); (Q.S.); (X.H.); (W.L.); (Y.C.); (X.Y.)
| | - Qian Sun
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A & F University, Hangzhou 311300, China; (L.L.); (Q.S.); (X.H.); (W.L.); (Y.C.); (X.Y.)
| | - Xinyi Huang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A & F University, Hangzhou 311300, China; (L.L.); (Q.S.); (X.H.); (W.L.); (Y.C.); (X.Y.)
| | - Wanjing Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A & F University, Hangzhou 311300, China; (L.L.); (Q.S.); (X.H.); (W.L.); (Y.C.); (X.Y.)
| | - Yanjun Cui
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A & F University, Hangzhou 311300, China; (L.L.); (Q.S.); (X.H.); (W.L.); (Y.C.); (X.Y.)
| | - Yuebo Pan
- Gansu Polytechnic College of Animal Husbandry and Engineering, Wuwei 733006, China
| | - Xianyu Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A & F University, Hangzhou 311300, China; (L.L.); (Q.S.); (X.H.); (W.L.); (Y.C.); (X.Y.)
| | - Pu Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A & F University, Hangzhou 311300, China; (L.L.); (Q.S.); (X.H.); (W.L.); (Y.C.); (X.Y.)
| |
Collapse
|
10
|
Thind AC, Mota CM, Gonçalves APN, Sha J, Wohlschlegel JA, Mineo TWP, Bradley PJ. The Toxoplasma gondii effector GRA83 modulates the host's innate immune response to regulate parasite infection. mSphere 2023; 8:e0026323. [PMID: 37768053 PMCID: PMC10597413 DOI: 10.1128/msphere.00263-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/07/2023] [Indexed: 09/29/2023] Open
Abstract
Toxoplasma gondii's propensity to infect its host and cause disease is highly dependent on its ability to modulate host cell functions. One of the strategies the parasite uses to accomplish this is via the export of effector proteins from the secretory dense granules. Dense granule (GRA) proteins are known to play roles in nutrient acquisition, host cell cycle manipulation, and immune regulation. Here, we characterize a novel dense granule protein named GRA83, which localizes to the parasitophorous vacuole (PV) in tachyzoites and bradyzoites. Disruption of GRA83 results in increased virulence, weight loss, and parasitemia during the acute infection, as well as a marked increase in the cyst burden during the chronic infection. This increased parasitemia was associated with an accumulation of inflammatory infiltrates in tissues in both acute and chronic infections. Murine macrophages infected with ∆gra83 tachyzoites produced less interleukin-12 (IL-12) in vitro, which was confirmed with reduced IL-12 and interferon-gamma in vivo. This dysregulation of cytokines correlates with reduced nuclear translocation of the p65 subunit of the nuclear factor-κB (NF-κB) complex. While GRA15 similarly regulates NF-κB, infection with ∆gra83/∆gra15 parasites did not further reduce p65 translocation to the host cell nucleus, suggesting these GRAs function in converging pathways. We also used proximity labeling experiments to reveal candidate GRA83 interacting T. gondii-derived partners. Taken together, this work reveals a novel effector that stimulates the innate immune response, enabling the host to limit the parasite burden. Importance Toxoplasma gondii poses a significant public health concern as it is recognized as one of the leading foodborne pathogens in the United States. Infection with the parasite can cause congenital defects in neonates, life-threatening complications in immunosuppressed patients, and ocular disease. Specialized secretory organelles, including the dense granules, play an important role in the parasite's ability to efficiently invade and regulate components of the host's infection response machinery to limit parasite clearance and establish an acute infection. Toxoplasma's ability to avoid early clearance, while also successfully infecting the host long enough to establish a persistent chronic infection, is crucial in allowing for its transmission to a new host. While multiple GRAs directly modulate host signaling pathways, they do so in various ways highlighting the parasite's diverse arsenal of effectors that govern infection. Understanding how parasite-derived effectors harness host functions to evade defenses yet ensure a robust infection is important for understanding the complexity of the pathogen's tightly regulated infection. In this study, we characterize a novel secreted protein named GRA83 that stimulates the host cell's response to limit infection.
Collapse
Affiliation(s)
- Amara C. Thind
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, USA
| | - Caroline M. Mota
- Laboratory of Immunoparasitology “Dr. Mário Endsfeldz Camargo,” Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Ana Paula N. Gonçalves
- Laboratory of Immunoparasitology “Dr. Mário Endsfeldz Camargo,” Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Jihui Sha
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - James A. Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Tiago W. P. Mineo
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, USA
- Laboratory of Immunoparasitology “Dr. Mário Endsfeldz Camargo,” Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Peter J. Bradley
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
11
|
Liu H, Zhang P, Li F, Xiao X, Zhang Y, Li N, Du L, Yang P. Identification of the immune-related biomarkers in Behcet's disease by plasma proteomic analysis. Arthritis Res Ther 2023; 25:92. [PMID: 37264476 DOI: 10.1186/s13075-023-03074-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/23/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND This study aimed to investigate the expression profile of immune response-related proteins of Behcet's disease (BD) patients and identify potential biomarkers for this disease. METHODS Plasma was collected from BD patients and healthy controls (HC). Immune response-related proteins were measured using the Olink Immune Response Panel. Differentially expressed proteins (DEPs) were used to construct prediction models via five machine learning algorithms: naive Bayes, support vector machine, extreme gradient boosting, random forest, and neural network. The prediction performance of the five models was assessed using the area under the curve (AUC) value, recall (sensitivity), specificity, precision, accuracy, F1 score, and residual distribution. Subtype analysis of BD was performed using the consensus clustering method. RESULTS Proteomics results showed 43 DEPs between BD patients and HC (P < 0.05). These DEPs were mainly involved in the Toll-like receptor 9 and NF-κB signaling pathways. Five models were constructed using DEPs [interleukin 10 (IL10), Fc receptor like 3 (FCRL3), Mannan-binding lectin serine peptidase 1 (MASP1), NF2, moesin-ezrin-radixin like (MERLIN) tumor suppressor (NF2), FAM3 metabolism regulating signaling molecule B (FAM3B), and O-6-methylguanine-DNA methyltransferase (MGMT)]. Among these models, the neural network model showed the best performance (AUC = 0.856, recall: 0.692, specificity: 0.857, precision: 0.900, accuracy: 0.750, F1 score: 0.783). BD patients were divided into two subtypes according to the consensus clustering method: one with high disease activity in association with higher expression of tripartite motif-containing 5 (TRIM5), SH2 domain-containing 1A (SH2D1A), phosphoinositide-3-kinase adaptor protein 1 (PIK3AP1), hematopoietic cell-specific Lyn substrate 1 (HCLS1), and DNA fragmentation factor subunit alpha (DFFA) and the other with low disease activity in association with higher expression of C-C motif chemokine ligand 11 (CCL11). CONCLUSIONS Our study not only revealed a distinctive immune response-related protein profile for BD but also showed that IL10, FCRL3, MASP1, NF2, FAM3B, and MGMT could serve as potential immune biomarkers for this disease. Additionally, a novel molecular disease classification model was constructed to identify subsets of BD.
Collapse
Affiliation(s)
- Huan Liu
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Jianshe East Road 1, Zhengzhou, 450052, Henan Province, People's Republic of China
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan Province, People's Republic of China
| | - Panpan Zhang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, People's Republic of China
| | - Fuzhen Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Jianshe East Road 1, Zhengzhou, 450052, Henan Province, People's Republic of China
| | - Xiao Xiao
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Jianshe East Road 1, Zhengzhou, 450052, Henan Province, People's Republic of China
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan Province, People's Republic of China
| | - Yinan Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Jianshe East Road 1, Zhengzhou, 450052, Henan Province, People's Republic of China
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan Province, People's Republic of China
| | - Na Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Jianshe East Road 1, Zhengzhou, 450052, Henan Province, People's Republic of China
| | - Liping Du
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Jianshe East Road 1, Zhengzhou, 450052, Henan Province, People's Republic of China
| | - Peizeng Yang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Jianshe East Road 1, Zhengzhou, 450052, Henan Province, People's Republic of China.
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Youyi Road 1, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
12
|
Tao Q, Yang D, Qin K, Liu L, Jin M, Zhang F, Zhu J, Wang J, Luo Q, Du J, Yu L, Shen J, Chu D. Studies on the mechanism of Toxoplasma gondii Chinese 1 genotype Wh6 strain causing mice abnormal cognitive behavior. Parasit Vectors 2023; 16:30. [PMID: 36698166 PMCID: PMC9875435 DOI: 10.1186/s13071-022-05618-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/14/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Alzheimer's disease presents an abnormal cognitive behavior. TgCtwh6 is one of the predominant T. gondii strains prevalent in China. Although T. gondii type II strain infection can cause host cognitive behavioral abnormalities, we do not know whether TgCtwh6 could also cause host cognitive behavioral changes. So, in this study, we will focus on the effect of TgCtwh6 on mouse cognitive behavior and try in vivo and in vitro to explore the underlying mechanism by which TgCtwh6 give rise to mice cognitive behavior changes at the cellular and molecular level. METHODS C57BL/6 mice were infected orally with TgCtwh6 cysts. From day 90 post-infection on, all mice were conducted through the open field test and then Morris water maze test to evaluate cognitive behavior. The morphology and number of cells in hippocampus were examined with hematoxylin-eosin (H&E) and Nissl staining; moreover, Aβ protein in hippocampus was determined with immunohistochemistry and thioflavin S plaque staining. Synaptotagmin 1, apoptosis-related proteins, BACE1 and APP proteins and genes from hippocampus were assessed by western blotting or qRT-PCR. Hippocampal neuronal cell line or mouse microglial cell line was challenged with TgCtwh6 tachyzoites and then separately cultured in a well or co-cultured in a transwell device. The target proteins and genes were analyzed by immunofluorescence staining, western blotting and qRT-PCR. In addition, mouse microglial cell line polarization state and hippocampal neuronal cell line apoptosis were estimated using flow cytometry assay. RESULTS The OFT and MWMT indicated that infected mice had cognitive behavioral impairments. The hippocampal tissue assay showed abnormal neuron morphology and a decreased number in infected mice. Moreover, pro-apoptotic proteins, as well as BACE1, APP and Aβ proteins, increased in the infected mouse hippocampus. The experiments in vitro showed that pro-apoptotic proteins and p-NF-κBp65, NF-κBp65, BACE1, APP and Aβ proteins or genes were significantly increased in the infected HT22. In addition, CD80, pro-inflammatory factors, notch, hes1 proteins and genes were enhanced in the infected BV2. Interestingly, not only the APP and pro-apoptotic proteins in HT22, but also the apoptosis rate of HT22 increased after the infected BV2 were co-cultured with the HT22 in a transwell device. CONCLUSIONS Neuron apoptosis, Aβ deposition and neuroinflammatory response involved with microglia polarization are the molecular and cellular mechanisms by which TgCtwh6 causes mouse cognitive behavioral abnormalities.
Collapse
Affiliation(s)
- Qing Tao
- grid.186775.a0000 0000 9490 772XDepartment of Pathogen Biology, Anhui Province Key Laboratory of Microbiology & Parasitology, Anhui Provincial Laboratory of Zoonoses of High Institutions, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Di Yang
- grid.186775.a0000 0000 9490 772XDepartment of Pathogen Biology, Anhui Province Key Laboratory of Microbiology & Parasitology, Anhui Provincial Laboratory of Zoonoses of High Institutions, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Kunpeng Qin
- grid.412679.f0000 0004 1771 3402Department of Orthopaedics, the First Affiliated Hospital of Anhui Medical University, Anhui, China
| | - Lei Liu
- grid.59053.3a0000000121679639Department of Blood Transfusion, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Mengmeng Jin
- grid.186775.a0000 0000 9490 772XMaternity and Child Health Hospital of Anhui Province, The Affiliated Maternity and Child Health Hospital of Anhui Medical University, Hefei, China
| | - Famin Zhang
- grid.186775.a0000 0000 9490 772XDepartment of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jinjin Zhu
- grid.186775.a0000 0000 9490 772XDepartment of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jie Wang
- grid.186775.a0000 0000 9490 772XDepartment of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Provincial Laboratory of Zoonoses of High Institutions, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Qingli Luo
- grid.186775.a0000 0000 9490 772XDepartment of Pathogen Biology, Anhui Province Key Laboratory of Microbiology & Parasitology, Anhui Provincial Laboratory of Zoonoses of High Institutions, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Jian Du
- grid.186775.a0000 0000 9490 772XDepartment of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Provincial Laboratory of Zoonoses of High Institutions, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Li Yu
- grid.186775.a0000 0000 9490 772XDepartment of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jilong Shen
- grid.186775.a0000 0000 9490 772XDepartment of Pathogen Biology, Anhui Province Key Laboratory of Microbiology & Parasitology, Anhui Provincial Laboratory of Zoonoses of High Institutions, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Deyong Chu
- grid.186775.a0000 0000 9490 772XDepartment of Pathogen Biology, Anhui Province Key Laboratory of Microbiology & Parasitology, Anhui Provincial Laboratory of Zoonoses of High Institutions, School of Basic Medicine, Anhui Medical University, Hefei, China
| |
Collapse
|
13
|
Qiu ZE, Chen L, Hou XC, Sheng J, Xu JB, Xu JW, Gao DD, Huang ZX, Lei TL, Huang ZY, Peng L, Yang HL, Lin QH, Zhu YX, Guan WJ, Lun ZR, Zhou WL, Zhang YL. Toxoplasma gondii infection triggers ongoing inflammation mediated by increased intracellular Cl - concentration in airway epithelium. J Infect 2023; 86:47-59. [PMID: 36334726 DOI: 10.1016/j.jinf.2022.10.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 10/03/2022] [Accepted: 10/28/2022] [Indexed: 12/12/2022]
Abstract
Toxoplasma gondii is a widespread parasitic protozoan causing toxoplasmosis including pulmonary toxoplasmosis. As the first line of host defense, airway epithelial cells play critical roles in orchestrating pulmonary innate immunity. However, the mechanism underlying the airway inflammation induced by the T. gondii infection remains largely unclear. This study demonstrated that after infection with T. gondii, the major anion channel located in the apical membranes of airway epithelial cells, cystic fibrosis transmembrane conductance regulator (CFTR), was degraded by the parasite-secreted cysteine proteases. The intracellular Cl- concentration ([Cl-]i) was consequently elevated, leading to activation of nuclear factor-κB (NF-κB) signaling via serum/glucocorticoid regulated kinase 1. Furthermore, the heightened [Cl-]i and activated NF-κB signaling could be sustained in a positive feedback regulatory manner resulting from decreased intracellular cAMP level through NF-κB-mediated up-regulation of phosphodiesterase 4. Conversely, the sulfur-containing compound allicin conferred anti-inflammatory effects on pulmonary toxoplasmosis by decreasing [Cl-]i via activation of CFTR. These results suggest that the intracellular Cl- dynamically modulated by T. gondii mediates sustained airway inflammation, which provides a potential therapeutic target against pulmonary toxoplasmosis.
Collapse
Affiliation(s)
- Zhuo-Er Qiu
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Lei Chen
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Xiao-Chun Hou
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Jie Sheng
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Jian-Bang Xu
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China; State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, P. R. China
| | - Jia-Wen Xu
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Dong-Dong Gao
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China; Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou 510500, P. R. China
| | - Ze-Xin Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Tian-Lun Lei
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Zi-Yang Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Lei Peng
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Hai-Long Yang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Qin-Hua Lin
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Yun-Xin Zhu
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Wei-Jie Guan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, P. R. China
| | - Zhao-Rong Lun
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Wen-Liang Zhou
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China.
| | - Yi-Lin Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China.
| |
Collapse
|
14
|
Li D, Zhang Y, Li S, Zheng B. A novel Toxoplasma gondii TGGT1_316290 mRNA-LNP vaccine elicits protective immune response against toxoplasmosis in mice. Front Microbiol 2023; 14:1145114. [PMID: 37025641 PMCID: PMC10070739 DOI: 10.3389/fmicb.2023.1145114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/03/2023] [Indexed: 04/08/2023] Open
Abstract
Toxoplasma gondii (T. gondii) can infect almost all warm-blooded animals and is a major threat to global public health. Currently, there is no effective drug or vaccine for T. gondii. In this study, bioinformatics analysis on B and T cell epitopes revealed that TGGT1_316290 (TG290) had superior effects compared with the surface antigen 1 (SAG1). TG290 mRNA-LNP was constructed through the Lipid Nanoparticle (LNP) technology and intramuscularly injected into the BALB/c mice, and its immunogenicity and efficacy were explored. Analysis of antibodies, cytokines (IFN-γ, IL-12, IL-4, and IL-10), lymphocytes proliferation, cytotoxic T lymphocyte activity, dendritic cell (DC) maturation, as well as CD4+ and CD8+ T lymphocytes revealed that TG290 mRNA-LNP induced humoral and cellular immune responses in vaccinated mice. Furthermore, T-Box 21 (T-bet), nuclear factor kappa B (NF-kB) p65, and interferon regulatory factor 8 (IRF8) subunit were over-expressed in the TG290 mRNA-LNP-immunized group. The survival time of mice injected with TG290 mRNA-LNP was significantly longer (18.7 ± 3 days) compared with the survival of mice of the control groups (p < 0.0001). In addition, adoptive immunization using 300 μl serum and lymphocytes (5*107) of mice immunized with TG290 mRNA-LNP significantly prolonged the survival time of these mice. This study demonstrates that TG290 mRNA-LNP induces specific immune response against T. gondii and may be a potential toxoplasmosis vaccine candidate for this infection.
Collapse
Affiliation(s)
- Dan Li
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Yizhuo Zhang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Shiyu Li
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Bin Zheng
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Bio-tech Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Bin Zheng,
| |
Collapse
|
15
|
Guo G, Cui J, Song L, Tang L, Fan S, Shen B, Fang R, Hu M, Zhao J, Zhou Y. Activation of NF-κB signaling by the dense granule protein GRA15 of a newly isolated type 1 Toxoplasma gondii strain. Parasit Vectors 2022; 15:347. [PMID: 36175964 PMCID: PMC9523984 DOI: 10.1186/s13071-022-05429-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
Background It has been reported that the NF-κB pathway, an important component of host defense system against pathogens infections, can be differentially modulated by different Toxoplasma gondii strains, depending on the polymorphism of the GRA15 protein. The recently isolated Toxoplasma strain T.gHB1 is a type 1 (ToxoDB#10) strain but shows different virulence determination mechanisms compared to the classic type 1 strains like RH (ToxoDB#10). Therefore, it is worth investigating whether the T.gHB1 strain (ToxoDB#10) affects the host NF-κB signaling pathway. Methods The effects of T.gHB1 (ToxoDB#10) on host NF-κB pathway were investigated in HEK293T cells. The GRA15 gene product was analyzed by bioinformatics, and its effect on NF-κB activation was examined by Western blotting and nuclear translocation of p65. Different truncations of T.gHB1 GRA15 were constructed to map the critical domains for NF-κB activation. Results We demonstrated that the NF-κB pathway signaling pathway could be activated by the newly identified type 1 T.gHB1 strain (ToxoDB#10) of Toxoplasma, while the classic type 1 strain RH (ToxoDB#10) did not. T.gHB1 GRA15 possesses only one transmembrane region with an extended C terminal region, which is distinct from that of classic type 1 (ToxoDB#10) and type 2 (ToxoDB#1) strains. T.gHB1 GRA15 could clearly induce IκBα phosphorylation and p65 nuclear translocation. Dual luciferase assays in HEK293T cells revealed a requirement for 194–518 aa of T.gHB1 GRA15 to effectively activate NF-κB. Conclusions The overall results indicated that the newly isolated type 1 isolate T.gHB1 (ToxoDB#10) had a unique GRA15, which could activate the host NF-κB signaling through inducing IκBα phosphorylation and p65 nuclear translocation. These results provide new insights for our understanding of the interaction between Toxoplasma parasites and its hosts. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Guanghao Guo
- Key Laboratory Preventive Veterinary of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Jianmin Cui
- Key Laboratory Preventive Veterinary of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Lindong Song
- Key Laboratory Preventive Veterinary of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Lvqing Tang
- Key Laboratory Preventive Veterinary of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Sijie Fan
- Key Laboratory Preventive Veterinary of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Bang Shen
- Key Laboratory Preventive Veterinary of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Rui Fang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Min Hu
- Key Laboratory Preventive Veterinary of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Junlong Zhao
- Key Laboratory Preventive Veterinary of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Yanqin Zhou
- Key Laboratory Preventive Veterinary of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China. .,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.
| |
Collapse
|
16
|
Chen J, Liao W, Peng H. Toxoplasma gondii infection possibly reverses host immunosuppression to restrain tumor growth. Front Cell Infect Microbiol 2022; 12:959300. [PMID: 36118042 PMCID: PMC9470863 DOI: 10.3389/fcimb.2022.959300] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Tumor cells can successfully escape the host immune attack by inducing the production of immunosuppressive cells and molecules, leading to an ineffective tumor treatment and poor prognosis. Although immunotherapies have improved the survival rate of cancer patients in recent years, more effective drugs and therapies still need to be developed. As an intracellular parasite, Toxoplasma gondii can trigger a strong Th1 immune response in host cells, including upregulating the expression of interleukin-12 (IL-12) and interferon-γ (IFN-γ). Non-replicating uracil auxotrophic strains of T. gondii were used to safely reverse the immunosuppression manipulated by the tumor microenvironment. In addition to the whole lysate antigens, T. gondii-secreted effectors, including Toxoplasma profilin, rhoptry proteins (ROPs), and dense granule antigens (GRAs), are involved in arousing the host’s antigen presentation system to suppress tumors. When T. gondii infection relieves immunosuppression, tumor-related myeloid cells, including macrophages and dendritic cells (DCs), are transformed into immunostimulatory phenotypes, showing a powerful Th1 immune response mediated by CD8+ T cells. Afterwards, they target and kill the tumor cells, and ultimately reduce the size and weight of tumor tissues. This article reviews the latest applications of T. gondii in tumor therapy, including the activation of cellular immunity and the related signal pathways, which will help us understand why T. gondii infection can restrain tumor growth.
Collapse
Affiliation(s)
- Jiating Chen
- Department of Pathogen Biology, School of Public Health, Guangdong Provincial Key laboratory of Tropical Medicine, Southern Medical University, Guangzhou, China
| | - Wenzhong Liao
- Department of Pathogen Biology, School of Public Health, Guangdong Provincial Key laboratory of Tropical Medicine, Southern Medical University, Guangzhou, China
| | - HongJuan Peng
- Department of Pathogen Biology, School of Public Health, Guangdong Provincial Key laboratory of Tropical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
17
|
Siegmund D, Wagner J, Wajant H. TNF Receptor Associated Factor 2 (TRAF2) Signaling in Cancer. Cancers (Basel) 2022; 14:cancers14164055. [PMID: 36011046 PMCID: PMC9406534 DOI: 10.3390/cancers14164055] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/05/2022] [Accepted: 08/19/2022] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Tumor necrosis factor (TNF) receptor associated factor-2 (TRAF2) is an intracellular adapter protein with E3 ligase activity, which interacts with a plethora of other signaling proteins, including plasma membrane receptors, kinases, phosphatases, other E3 ligases, and deubiquitinases. TRAF2 is involved in various cancer-relevant cellular processes, such as the activation of transcription factors of the NFκB family, stimulation of mitogen-activated protein (MAP) kinase cascades, endoplasmic reticulum (ER) stress signaling, autophagy, and the control of cell death programs. In a context-dependent manner, TRAF2 promotes tumor development but it can also act as a tumor suppressor. Based on a general description, how TRAF2 in concert with TRAF2-interacting proteins and other TRAF proteins act at the molecular level is discussed for its importance for tumor development and its potential usefulness as a therapeutic target in cancer therapy. Abstract Tumor necrosis factor (TNF) receptor associated factor-2 (TRAF2) has been originally identified as a protein interacting with TNF receptor 2 (TNFR2) but also binds to several other receptors of the TNF receptor superfamily (TNFRSF). TRAF2, often in concert with other members of the TRAF protein family, is involved in the activation of the classical NFκB pathway and the stimulation of various mitogen-activated protein (MAP) kinase cascades by TNFRSF receptors (TNFRs), but is also required to inhibit the alternative NFκB pathway. TRAF2 has also been implicated in endoplasmic reticulum (ER) stress signaling, the regulation of autophagy, and the control of cell death programs. TRAF2 fulfills its functions by acting as a scaffold, bringing together the E3 ligase cellular inhibitor of apoptosis-1 (cIAP1) and cIAP2 with their substrates and various regulatory proteins, e.g., deubiquitinases. Furthermore, TRAF2 can act as an E3 ligase by help of its N-terminal really interesting new gene (RING) domain. The finding that TRAF2 (but also several other members of the TRAF family) interacts with the latent membrane protein 1 (LMP1) oncogene of the Epstein–Barr virus (EBV) indicated early on that TRAF2 could play a role in the oncogenesis of B-cell malignancies and EBV-associated non-keratinizing nasopharyngeal carcinoma (NPC). TRAF2 can also act as an oncogene in solid tumors, e.g., in colon cancer by promoting Wnt/β-catenin signaling. Moreover, tumor cell-expressed TRAF2 has been identified as a major factor-limiting cancer cell killing by cytotoxic T-cells after immune checkpoint blockade. However, TRAF2 can also be context-dependent as a tumor suppressor, presumably by virtue of its inhibitory effect on the alternative NFκB pathway. For example, inactivating mutations of TRAF2 have been associated with tumor development, e.g., in multiple myeloma and mantle cell lymphoma. In this review, we summarize the various TRAF2-related signaling pathways and their relevance for the oncogenic and tumor suppressive activities of TRAF2. Particularly, we discuss currently emerging concepts to target TRAF2 for therapeutic purposes.
Collapse
|
18
|
Host cell proteins modulated upon Toxoplasma infection identified using proteomic approaches: a molecular rationale. Parasitol Res 2022; 121:1853-1865. [PMID: 35552534 DOI: 10.1007/s00436-022-07541-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/12/2022] [Indexed: 10/18/2022]
Abstract
Toxoplasma gondii is a pathogenic protozoan parasite belonging to the apicomplexan phylum that infects the nucleated cells of warm-blooded hosts leading to an infectious disease known as toxoplasmosis. Apicomplexan parasites such as T. gondii can display different mechanisms to control or manipulate host cells signaling at different levels altering the host subcellular genome and proteome. Indeed, Toxoplasma is able to modulate host cell responses (especially immune responses) during infection to its advantage through both structural and functional changes in the proteome of different infected cells. Consequently, parasites can transform the invaded cells into a suitable environment for its own replication and the induction of infection. Proteomics as an applicable tool can identify such critical proteins involved in pathogen (Toxoplasma)-host cell interactions and consequently clarify the cellular mechanisms that facilitate the entry of pathogens into host cells, and their replication and transmission, as well as the central mechanisms of host defense against pathogens. Accordingly, the current paper reviews several proteins (identified using proteomic approaches) differentially expressed in the proteome of Toxoplasma-infected host cells (macrophages and human foreskin fibroblasts) and tissues (brain and liver) and highlights their plausible functions in the cellular biology of the infected cells. The identification of such modulated proteins and their related cell impact (cell responses/signaling) can provide further information regarding parasite pathogenesis and biology that might lead to a better understanding of therapeutic strategies and novel drug targets.
Collapse
|
19
|
Zhu L, Qi W, Yang G, Yang Y, Wang Y, Zheng L, Fu Y, Cheng X. Toxoplasma gondii Rhoptry Protein 7 (ROP7) Interacts with NLRP3 and Promotes Inflammasome Hyperactivation in THP-1-Derived Macrophages. Cells 2022; 11:cells11101630. [PMID: 35626667 PMCID: PMC9139738 DOI: 10.3390/cells11101630] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/07/2022] [Accepted: 05/11/2022] [Indexed: 12/24/2022] Open
Abstract
Toxoplasma gondii is a common opportunistic protozoan pathogen that can parasitize the karyocytes of humans and virtually all other warm-blooded animals. In the host’s innate immune response to T. gondii infection, inflammasomes can mediate the maturation of pro-IL-1β and pro-IL-18, which further enhances the immune response. However, how intercellular parasites specifically provoke inflammasome activation remains unclear. In this study, we found that the T. gondii secretory protein, rhoptry protein 7 (ROP7), could interact with the NACHT domain of NLRP3 through liquid chromatography-mass spectrometry analysis and co-immunoprecipitation assays. When expressing ROP7 in differentiated THP-1 cells, there was significant up-regulation in NF-κB and continuous release of IL-1β. This process is pyroptosis-independent and leads to inflammasome hyperactivation through the IL-1β/NF-κB/NLRP3 feedback loop. The loss of ROP7 in tachyzoites did not affect parasite proliferation in host cells but did attenuate parasite-induced inflammatory activity. In conclusion, these findings unveil that a T. gondii-derived protein is able to promote inflammasome activation, and further study of ROP7 will deepen our understanding of host innate immunity to parasites.
Collapse
Affiliation(s)
- Lijun Zhu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; (L.Z.); (W.Q.); (X.C.)
| | - Wanjun Qi
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; (L.Z.); (W.Q.); (X.C.)
| | - Guang Yang
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou 510632, China;
| | - Yurong Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China;
| | - Yuwen Wang
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.W.); (L.Z.)
| | - Lulu Zheng
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.W.); (L.Z.)
| | - Yongfeng Fu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; (L.Z.); (W.Q.); (X.C.)
- Correspondence:
| | - Xunjia Cheng
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; (L.Z.); (W.Q.); (X.C.)
| |
Collapse
|
20
|
Witkop EM, Wikfors GH, Proestou DA, Lundgren KM, Sullivan M, Gomez-Chiarri M. Perkinsus marinus suppresses in vitro eastern oyster apoptosis via IAP-dependent and caspase-independent pathways involving TNFR, NF-kB, and oxidative pathway crosstalk. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 129:104339. [PMID: 34998862 DOI: 10.1016/j.dci.2022.104339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/29/2021] [Accepted: 01/01/2022] [Indexed: 06/14/2023]
Abstract
The protozoan parasite Perkinsus marinus causes Dermo disease in eastern oysters, Crassostrea virginica, and can suppress apoptosis of infected hemocytes using incompletely understood mechanisms. This study challenged hemocytes in vitro with P. marinus for 1 h in the presence or absence of caspase inhibitor Z-VAD-FMK or Inhibitor of Apoptosis protein (IAP) inhibitor GDC-0152. Hemocytes exposure to P. marinus significantly reduced granulocyte apoptosis, and pre-incubation with Z-VAD-FMK did not affect P. marinus-induced apoptosis suppression. Hemocyte pre-incubation with GDC-0152 prior to P. marinus challenge further reduced apoptosis of granulocytes with engulfed parasite, but not mitochondrial permeabilization. This suggests P. marinus-induced apoptosis suppression may be caspase-independent, affect an IAP-involved pathway, and occur downstream of mitochondrial permeabilization. P. marinus challenge stimulated hemocyte differential expression of oxidation-reduction, TNFR, and NF-kB pathways. WGCNA analysis of P. marinus expression in response to hemocyte exposure revealed correlated protease, kinase, and hydrolase expression that could contribute to P. marinus-induced apoptosis suppression.
Collapse
Affiliation(s)
- Erin M Witkop
- University of Rhode Island, Department of Fisheries, Animal and Veterinary Science, 120 Flagg Rd, Kingston, RI, USA
| | - Gary H Wikfors
- NOAA Northeast Fisheries Science Center Milford Laboratory, 212 Rogers Ave, Milford, CT, USA
| | - Dina A Proestou
- USDA ARS NEA NCWMAC Shellfish Genetics Program, 120 Flagg Rd, Kingston, RI, USA
| | | | - Mary Sullivan
- USDA ARS NEA NCWMAC Shellfish Genetics Program, 120 Flagg Rd, Kingston, RI, USA
| | - Marta Gomez-Chiarri
- University of Rhode Island, Department of Fisheries, Animal and Veterinary Science, 120 Flagg Rd, Kingston, RI, USA.
| |
Collapse
|
21
|
Bekier A, Brzostek A, Paneth A, Dziadek B, Dziadek J, Gatkowska J, Dzitko K. 4-Arylthiosemicarbazide Derivatives as Toxoplasmic Aromatic Amino Acid Hydroxylase Inhibitors and Anti-inflammatory Agents. Int J Mol Sci 2022; 23:ijms23063213. [PMID: 35328634 PMCID: PMC8955734 DOI: 10.3390/ijms23063213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/12/2022] Open
Abstract
Approximately one-third of the human population is infected with the intracellular cosmopolitan protozoan Toxoplasma gondii (Tg), and a specific treatment for this parasite is still needed. Additionally, the increasing resistance of Tg to drugs has become a challenge for numerous research centers. The high selectivity of a compound toward the protozoan, along with low cytotoxicity toward the host cells, form the basis for further research, which aims at determining the molecular targets of the active compounds. Thiosemicarbazide derivatives are biologically active organic compounds. Previous studies on the initial preselection of 58 new 4-arylthiosemicarbazide derivatives in terms of their anti-Tg activity and selectivity made it possible to select two promising derivatives for further research. One of the important amino acids involved in the proliferation of Tg and the formation of parasitophorous vacuoles is tyrosine, which is converted by two unique aromatic amino acid hydroxylases to levodopa. Enzymatic studies with two derivatives (R: para-nitro and meta-iodo) and recombinant aromatic amino acid hydroxylase (AAHs) obtained in the E. coli expression system were performed, and the results indicated that toxoplasmic AAHs are a molecular target for 4-arylthiosemicarbazide derivatives. Moreover, the drug affinity responsive target stability assay also confirmed that the selected compounds bind to AAHs. Additionally, the anti-inflammatory activity of these derivatives was tested using THP1-Blue™ NF-κB reporter cells due to the similarity of the thiosemicarbazide scaffold to thiosemicarbazone, both of which are known NF-κB pathway inhibitors.
Collapse
Affiliation(s)
- Adrian Bekier
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland; (A.B.); (B.D.); (J.G.)
| | - Anna Brzostek
- Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (A.B.); (J.D.)
| | - Agata Paneth
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Bożena Dziadek
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland; (A.B.); (B.D.); (J.G.)
| | - Jarosław Dziadek
- Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (A.B.); (J.D.)
| | - Justyna Gatkowska
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland; (A.B.); (B.D.); (J.G.)
| | - Katarzyna Dzitko
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland; (A.B.); (B.D.); (J.G.)
- Correspondence:
| |
Collapse
|
22
|
Sugi T, Tomita T, Kidaka T, Kawai N, Hayashida K, Weiss LM, Yamagishi J. Single Cell Transcriptomes of In Vitro Bradyzoite Infected Cells Reveals Toxoplasma gondii Stage Dependent Host Cell Alterations. Front Cell Infect Microbiol 2022; 12:848693. [PMID: 35372115 PMCID: PMC8964302 DOI: 10.3389/fcimb.2022.848693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/15/2022] [Indexed: 11/18/2022] Open
Abstract
Toxoplasma gondii bradyzoites establish chronic infections within their host cells. Recent studies have demonstrated that several parasite effector proteins are translocated to host cells during the bradyzoite stage of chronic infection. To understand the interaction between host cells and bradyzoites at the transcriptomic landscape level, we utilized single-cell RNA-sequencing (scRNA-Seq) to characterize the bradyzoite-induced host cell response. Distinct gene expression profiles were observed in infected host, cells with low parasite mapped reads, and mock (non-exposed) control cells. Gene set enrichment analysis showed that c-Myc and NF-κB signaling and energy metabolic pathways were upregulated by infection. Type I and II interferon response pathways were upregulated in cells with low parasite mapped reads compared to the non-exposed host control cells, and this upregulation effect was reversed in infected cells. Differences were observed in the host cells depending on the differentiation status of the parasites, as determined by BAG1 and SAG1 expression. NF-κB, inflammatory response pathways, and IFN-γ response pathways were downregulated in host cells containing T. gondiiBAG1+/SAG1-, whereas this downregulation effect was reversed in case of T. gondiiBAG1-/SAG1+. We also identified two distinct host cell subsets that contained T. gondiiBAG1+/SAG1-, one of which displayed distinct transcriptomes with upregulated c-Myc expression. Overall, these data clearly demonstrate that host cell transcriptional alteration by bradyzoite infection is different from that of tachyzoite infection, indicating fine-tuning of the host immune response.
Collapse
Affiliation(s)
- Tatsuki Sugi
- Division of Collaboration and Education, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Tadakimi Tomita
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Taishi Kidaka
- Division of Collaboration and Education, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Naoko Kawai
- Division of Collaboration and Education, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Kyoko Hayashida
- Division of Collaboration and Education, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Louis M. Weiss
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Medicine (Infectious Diseases), Albert Einstein College of Medicine, Bronx, NY, United States
| | - Junya Yamagishi
- Division of Collaboration and Education, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| |
Collapse
|
23
|
Efficient Gene Knockout and Knockdown Systems in Neospora caninum Enable Rapid Discovery and Functional Assessment of Novel Proteins. mSphere 2022; 7:e0089621. [PMID: 35019667 PMCID: PMC8754167 DOI: 10.1128/msphere.00896-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The development of molecular genetics has greatly enhanced the study of the biology and pathology associated with parasites of the phylum Apicomplexa. While the molecular tools are highly developed for the apicomplexan Toxoplasma gondii, the closely related parasite Neospora caninum lacks efficient tools for genetic manipulation. To enable efficient homologous recombination in N. caninum, we targeted the Ku heterodimer DNA repair mechanism in the genomic reference strain, Nc-Liverpool (NcLiv), and show that deletion of Ku80 results in a destabilization and loss of its partner Ku70. Disruption of Ku80 generated parasites in which genes are efficiently epitope tagged and only short homology regions are required for gene knockouts. We used this improved strain to target novel nonessential genes encoding dense granule proteins that are unique to N. caninum or conserved in T. gondii. To expand the utility of this strain for essential genes, we developed the auxin-inducible degron system for N. caninum using parasite-specific promoters. As a proof of concept, we knocked down a novel nuclear factor in both N. caninum and T. gondii and showed that it is essential for survival of both parasites. Together, these efficient knockout and knockdown technologies will enable the field to unravel specific gene functions in N. caninum, which is likely to aid in the identification of targets responsible for the phenotypic differences observed between these two closely related apicomplexan parasites. IMPORTANCENeospora caninum is a parasite with veterinary relevance, inducing severe disease in dogs and reproductive disorders in ruminants, especially cattle, leading to major losses. The close phylogenetic relationship to Toxoplasma gondii and the lack of pathogenicity in humans drives an interest of the scientific community toward using N. caninum as a model to study the pathogenicity of T. gondii. To enable this comparison, it is important to develop efficient molecular tools for N. caninum, to gain accuracy and save time in genetic manipulation protocols. Here, we have developed base strains and protocols using the genomic reference strain of N. caninum to enable efficient knockout and knockdown assays in this model. We demonstrate that these tools are effective in targeting known and previously unexplored genes. Thus, these tools will greatly improve the study of this protozoan, as well as enhance its ability to serve as a model to understand other apicomplexan parasites.
Collapse
|
24
|
Abstract
Toxoplasma gondii is a parasitic protist infecting a wide group of warm-blooded animals, ranging from birds to humans. While this infection is usually asymptomatic in healthy individuals, it can also lead to severe ocular or neurological outcomes in immunocompromised individuals or in developing fetuses. This obligate intracellular parasite has the ability to infect a considerable range of nucleated cells and can propagate in the intermediate host. Yet, under the pressure of the immune system it transforms into an encysted persistent form residing primarily in the brain and muscle tissues. Encysted parasites, which are resistant to current medication, may reactivate and give rise to an acute infection. The clinical outcome of toxoplasmosis depends on a complex balance between the host immune response and parasite virulence factors. Susceptibility to the disease is thus determined by both parasite strains and host species. Recent advances on our understanding of host cell-parasite interactions and parasite virulence have brought new insights into the pathophysiology of T. gondii infection and are summarized here.
Collapse
|
25
|
Categorizing sequences of concern by function to better assess mechanisms of microbial pathogenesis. Infect Immun 2021; 90:e0033421. [PMID: 34780277 PMCID: PMC9119117 DOI: 10.1128/iai.00334-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
To identify sequences with a role in microbial pathogenesis, we assessed the adequacy of their annotation by existing controlled vocabularies and sequence databases. Our goal was to regularize descriptions of microbial pathogenesis for improved integration with bioinformatic applications. Here, we review the challenges of annotating sequences for pathogenic activity. We relate the categorization of more than 2,750 sequences of pathogenic microbes through a controlled vocabulary called Functions of Sequences of Concern (FunSoCs). These allow for an ease of description by both humans and machines. We provide a subset of 220 fully annotated sequences in the supplemental material as examples. The use of this compact (∼30 terms), controlled vocabulary has potential benefits for research in microbial genomics, public health, biosecurity, biosurveillance, and the characterization of new and emerging pathogens.
Collapse
|
26
|
Tomita T, Guevara RB, Shah LM, Afrifa AY, Weiss LM. Secreted Effectors Modulating Immune Responses to Toxoplasma gondii. Life (Basel) 2021; 11:988. [PMID: 34575137 PMCID: PMC8467511 DOI: 10.3390/life11090988] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 12/18/2022] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite that chronically infects a third of humans. It can cause life-threatening encephalitis in immune-compromised individuals. Congenital infection also results in blindness and intellectual disabilities. In the intracellular milieu, parasites encounter various immunological effectors that have been shaped to limit parasite infection. Parasites not only have to suppress these anti-parasitic inflammatory responses but also ensure the host organism's survival until their subsequent transmission. Recent advancements in T. gondii research have revealed a plethora of parasite-secreted proteins that suppress as well as activate immune responses. This mini-review will comprehensively examine each secreted immunomodulatory effector based on the location of their actions. The first section is focused on secreted effectors that localize to the parasitophorous vacuole membrane, the interface between the parasites and the host cytoplasm. Murine hosts are equipped with potent IFNγ-induced immune-related GTPases, and various parasite effectors subvert these to prevent parasite elimination. The second section examines several cytoplasmic and ER effectors, including a recently described function for matrix antigen 1 (MAG1) as a secreted effector. The third section covers the repertoire of nuclear effectors that hijack transcription factors and epigenetic repressors that alter gene expression. The last section focuses on the translocation of dense-granule effectors and effectors in the setting of T. gondii tissue cysts (the bradyzoite parasitophorous vacuole).
Collapse
Affiliation(s)
- Tadakimi Tomita
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (T.T.); (R.B.G.)
| | - Rebekah B. Guevara
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (T.T.); (R.B.G.)
| | - Lamisha M. Shah
- Department of Biological Science, Lehman College of the City University of New York, Bronx, NY 10468, USA; (L.M.S.); (A.Y.A.)
| | - Andrews Y. Afrifa
- Department of Biological Science, Lehman College of the City University of New York, Bronx, NY 10468, USA; (L.M.S.); (A.Y.A.)
| | - Louis M. Weiss
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (T.T.); (R.B.G.)
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
27
|
The Toxoplasma Polymorphic Effector GRA15 Mediates Seizure Induction by Modulating Interleukin-1 Signaling in the Brain. mBio 2021; 12:e0133121. [PMID: 34154412 PMCID: PMC8262954 DOI: 10.1128/mbio.01331-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Toxoplasmic encephalitis can develop in individuals infected with the protozoan parasite Toxoplasma gondii and is typified by parasite replication and inflammation within the brain. Patients often present with seizures, but the parasite genes and host pathways involved in seizure development and/or propagation are unknown. We previously reported that seizure induction in Toxoplasma-infected mice is parasite strain dependent. Using quantitative trait locus mapping, we identify four loci in the Toxoplasma genome that potentially correlate with seizure development. In one locus, we identify the polymorphic virulence factor, GRA15, as a Toxoplasma gene associated with onset of seizures. GRA15 was previously shown to regulate host NF-κB-dependent gene expression during acute infections, and we demonstrate a similar role for GRA15 in brains of toxoplasmic encephalitic mice. GRA15 is important for increased expression of interleukin 1 beta (IL-1β) and other IL-1 pathway host genes, which is significant since IL-1 signaling is involved in onset of seizures. Inhibiting IL-1 receptor signaling reduced seizure severity in Toxoplasma-infected mice. These data reveal one mechanism by which seizures are induced during toxoplasmic encephalitis.
Collapse
|
28
|
Ihara F, Nishikawa Y. Toxoplasma gondii manipulates host cell signaling pathways via its secreted effector molecules. Parasitol Int 2021; 83:102368. [PMID: 33905814 DOI: 10.1016/j.parint.2021.102368] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/13/2021] [Accepted: 04/07/2021] [Indexed: 01/07/2023]
Abstract
The obligate intracellular parasite Toxoplasma gondii secretes a vast variety of effector molecules from organelles known as rhoptries (ROPs) and dense granules (GRAs). ROP proteins are released into the cytosol of the host cell where they are directed to the cell nucleus or to the parasitophorous vacuole (PV) membrane. ROPs secrete proteins that enable host cell penetration and vacuole formation by the parasites, as well as hijacking host-immune responses. After invading host cells, T. gondii multiplies within a PV that is maintained by the parasite proteins secreted from GRAs. Most GRA proteins remain within the PV, but some are known to access the host cytosol across the PV membrane, and a few are able to traffic into the host-cell nucleus. These effectors bind to host cell proteins and affect host cell signaling pathways to favor the parasite. Studies on host-pathogen interactions have identified many infection-altered host signal transductions. Notably, the relationship between individual parasite effector molecules and the specific targeting of host-signaling pathways is being elucidated through the advent of forward and reverse genetic strategies. Understanding the complex nature of the host-pathogen interactions underlying how the host-signaling pathway is manipulated by parasite effectors may lead to new molecular biological knowledge and novel therapeutic methods for toxoplasmosis. In this review, we discuss how T. gondii modulates cell signaling pathways in the host to favor its survival.
Collapse
Affiliation(s)
- Fumiaki Ihara
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States.
| | - Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan.
| |
Collapse
|
29
|
Woods K, Perry C, Brühlmann F, Olias P. Theileria's Strategies and Effector Mechanisms for Host Cell Transformation: From Invasion to Immortalization. Front Cell Dev Biol 2021; 9:662805. [PMID: 33959614 PMCID: PMC8096294 DOI: 10.3389/fcell.2021.662805] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/30/2021] [Indexed: 12/11/2022] Open
Abstract
One of the first events that follows invasion of leukocytes by Theileria sporozoites is the destruction of the surrounding host cell membrane and the rapid association of the intracellular parasite with host microtubules. This is essential for the parasite to establish its niche within the cytoplasm of the invaded leukocyte and sets Theileria spp. apart from other members of the apicomplexan phylum such as Toxoplasma gondii and Plasmodium spp., which reside within the confines of a host-derived parasitophorous vacuole. After establishing infection, transforming Theileria species (T. annulata, T. parva) significantly rewire the signaling pathways of their bovine host cell, causing continual proliferation and resistance to ligand-induced apoptosis, and conferring invasive properties on the parasitized cell. Having transformed its target cell, Theileria hijacks the mitotic machinery to ensure its persistence in the cytoplasm of the dividing cell. Some of the parasite and bovine proteins involved in parasite-microtubule interactions have been fairly well characterized, and the schizont expresses at least two proteins on its membrane that contain conserved microtubule binding motifs. Theileria-encoded proteins have been shown to be translocated to the host cell cytoplasm and nucleus where they have the potential to directly modify signaling pathways and host gene expression. However, little is known about their mode of action, and even less about how these proteins are secreted by the parasite and trafficked to their target location. In this review we explore the strategies employed by Theileria to transform leukocytes, from sporozoite invasion until immortalization of the host cell has been established. We discuss the recent description of nuclear pore-like complexes that accumulate on membranes close to the schizont surface. Finally, we consider putative mechanisms of protein and nutrient exchange that might occur between the parasite and the host. We focus in particular on differences and similarities with recent discoveries in T. gondii and Plasmodium species.
Collapse
Affiliation(s)
- Kerry Woods
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | | | - Philipp Olias
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
30
|
Kochanowsky JA, Thomas KK, Koshy AA. ROP16-Mediated Activation of STAT6 Suppresses Host Cell Reactive Oxygen Species Production, Facilitating Type III Toxoplasma gondii Growth and Survival. mBio 2021; 12:e03305-20. [PMID: 33653884 PMCID: PMC8092286 DOI: 10.1128/mbio.03305-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/22/2021] [Indexed: 12/21/2022] Open
Abstract
Polymorphic effector proteins determine the susceptibility of Toxoplasma gondii strains to IFN-γ-mediated clearance mechanisms deployed by murine host cells. However, less is known about the influence of these polymorphic effector proteins on IFN-γ-independent clearance mechanisms. Here, we show that deletion of one such polymorphic effector protein, ROP16, from a type III background leads to a defect in parasite growth and survival in unstimulated human fibroblasts and murine macrophages. Rescue of these defects requires a ROP16 with a functional kinase domain and the ability to activate a specific family of host cell transcription factors (STAT3, 5a, and 6). The growth and survival defects correlate with an accumulation of host cell reactive oxygen species (ROS) and are prevented by treatment with an ROS inhibitor. Exogenous activation of STAT3 and 6 suppresses host cell ROS production during infection with ROP16-deficient parasites and depletion of STAT6, but not STAT3 or 5a, causes an accumulation of ROS in cells infected with wild-type parasites. Pharmacological inhibition of NOX2 and mitochondrially derived ROS also rescues growth and survival of ROP16-deficient parasites. Collectively, these findings reveal an IFN-γ-independent mechanism of parasite restriction in human cells that is subverted by injection of ROP16 by type III parasites.IMPORTANCEToxoplasma gondii is an obligate intracellular parasite that infects up to one-third of the world's population. Control of the parasite is largely accomplished by IFN-γ-dependent mechanisms that stimulate innate and adaptive immune responses. Parasite suppression of IFN-γ-stimulated responses has been linked to proteins that the parasite secretes into its host cell. These secreted proteins vary by T. gondii strain and determine strain-specific lethality in mice. How these strain-specific polymorphic effector proteins affect IFN-γ-independent parasite control mechanisms in human and murine cells is not well known. This study shows that one such secreted protein, ROP16, enables efficient parasite growth and survival by suppressing IFN-γ-independent production of ROS by human and mouse cells.
Collapse
Affiliation(s)
| | | | - Anita A Koshy
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
- Department of Neurology, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
31
|
Panas MW, Boothroyd JC. Seizing control: How dense granule effector proteins enable Toxoplasma to take charge. Mol Microbiol 2021; 115:466-477. [PMID: 33400323 PMCID: PMC8344355 DOI: 10.1111/mmi.14679] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/02/2021] [Accepted: 01/03/2021] [Indexed: 12/24/2022]
Abstract
Control of the host cell is crucial to the Apicomplexan parasite, Toxoplasma gondii, while it grows intracellularly. To achieve this goal, these single-celled eukaryotes export a series of effector proteins from organelles known as "dense granules" that interfere with normal cellular processes and responses to invasion. While some effectors are found attached to the outer surface of the parasitophorous vacuole (PV) in which Toxoplasma tachyzoites reside, others are found in the host cell's cytoplasm and yet others make their way into the host nucleus, where they alter host transcription. Among the processes that are severely altered are innate immune responses, host cell cycle, and association with host organelles. The ways in which these crucial processes are altered through the coordinated action of a large collection of effectors is as elegant as it is complex, and is the central focus of the following review; we also discuss the recent advances in our understanding of how dense granule effector proteins are trafficked out of the PV.
Collapse
Affiliation(s)
- Michael W. Panas
- Dept. Microbiology and Immunology, Stanford University School of Medicine, Stanford CA 94305
| | - John C. Boothroyd
- Dept. Microbiology and Immunology, Stanford University School of Medicine, Stanford CA 94305
| |
Collapse
|
32
|
Ren B, Schmid M, Scheiner M, Mollenkopf HJ, Lucius R, Heitlinger E, Gupta N. Toxoplasma and Eimeria co-opt the host cFos expression for intracellular development in mammalian cells. Comput Struct Biotechnol J 2021; 19:719-731. [PMID: 33510872 PMCID: PMC7817532 DOI: 10.1016/j.csbj.2020.12.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/05/2022] Open
Abstract
Gene expression profiles differ significantly between Toxoplasma and Eimeria-infected host cells. Several distinct and shared host-signaling cascades are regulated by coccidian parasites. cFos is one of the few host transcripts mutually regulated during infection by both pathogens. Host cFos is required for optimal in vitro development of E. falciformis and T. gondii. Transcriptomics of parasitized wild-type and cFos-/- host cells reveals a perturbation of cFos network.
Successful asexual reproduction of intracellular pathogens depends on their potential to exploit host resources and subvert antimicrobial defense. In this work, we deployed two prevalent apicomplexan parasites of mammalian cells, namely Toxoplasma gondii and Eimeria falciformis, to identify potential host determinants of infection. Expression analyses of the young adult mouse colonic (YAMC) epithelial cells upon infection by either parasite showed regulation of several distinct transcripts, indicating that these two pathogens program their intracellular niches in a tailored manner. Conversely, parasitized mouse embryonic fibroblasts (MEFs) displayed a divergent transcriptome compared to corresponding YAMC epithelial cells, suggesting that individual host cells mount a fairly discrete response when encountering a particular pathogen. Among several host transcripts similarly altered by T. gondii and E. falciformis, we identified cFos, a master transcription factor, that was consistently induced throughout the infection. Indeed, asexual growth of both parasites was strongly impaired in MEF host cells lacking cFos expression. Last but not the least, our differential transcriptomics of the infected MEFs (parental and cFos-/- mutant) and YAMC epithelial cells disclosed a cFos-centered network, underlying signal cascades, as well as a repertoire of nucleotides- and ion-binding proteins, which presumably act in consort to acclimatize the mammalian cell and thereby facilitate the parasite development.
Collapse
Affiliation(s)
- Bingjian Ren
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, Berlin, Germany
| | - Manuela Schmid
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, Berlin, Germany
| | - Mattea Scheiner
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, Berlin, Germany
| | - Hans-Joachim Mollenkopf
- Microarray and Genomics Core Facility, Max-Planck Institute for Infection Biology, Berlin, Germany
| | - Richard Lucius
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, Berlin, Germany
| | - Emanuel Heitlinger
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, Berlin, Germany.,Research Group Ecology and Evolution of Parasite Host Interactions, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Nishith Gupta
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, Berlin, Germany.,Department of Biological Sciences, Birla Institute of Technology and Science Pilani (BITS-P), Hyderabad, India
| |
Collapse
|
33
|
Li JX, He JJ, Elsheikha HM, Ma J, Xu XP, Zhu XQ. ROP18-Mediated Transcriptional Reprogramming of HEK293T Cell Reveals New Roles of ROP18 in the Interplay Between Toxoplasma gondii and the Host Cell. Front Cell Infect Microbiol 2020; 10:586946. [PMID: 33330132 PMCID: PMC7734210 DOI: 10.3389/fcimb.2020.586946] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/30/2020] [Indexed: 12/02/2022] Open
Abstract
Toxoplasma gondii secretes a number of virulence-related effector proteins, such as the rhoptry protein 18 (ROP18). To further broaden our understanding of the molecular functions of ROP18, we examined the transcriptional response of human embryonic kidney cells (HEK293T) to ROP18 of type I T. gondii RH strain. Using RNA-sequencing, we compared the transcriptome of ROP18-expressing HEK293T cells to control HEK293T cells. Our analysis revealed that ROP18 altered the expression of 750 genes (467 upregulated genes and 283 downregulated genes) in HEK293T cells. Gene ontology (GO) and pathway enrichment analyses showed that differentially expressed genes (DEGs) were significantly enriched in extracellular matrix– and immune–related GO terms and pathways. KEGG pathway enrichment analysis revealed that DEGs were involved in several disease-related pathways, such as nervous system diseases and eye disease. ROP18 significantly increased the alternative splicing pattern “retained intron” and altered the expression of 144 transcription factors (TFs). These results provide new insight into how ROP18 may influence biological processes in the host cells via altering the expression of genes, TFs, and pathways. More in vitro and in vivo studies are required to substantiate these findings.
Collapse
Affiliation(s)
- Jie-Xi Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jun-Jun He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Loughborough, United Kingdom
| | - Jun Ma
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiao-Pei Xu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Heilongjiang Key Laboratory for Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
34
|
Mévélec MN, Lakhrif Z, Dimier-Poisson I. Key Limitations and New Insights Into the Toxoplasma gondii Parasite Stage Switching for Future Vaccine Development in Human, Livestock, and Cats. Front Cell Infect Microbiol 2020; 10:607198. [PMID: 33324583 PMCID: PMC7724089 DOI: 10.3389/fcimb.2020.607198] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/19/2020] [Indexed: 12/19/2022] Open
Abstract
Toxoplasmosis is a parasitic disease affecting human, livestock and cat. Prophylactic strategies would be ideal to prevent infection. In a One Health vaccination approach, the objectives would be the prevention of congenital disease in both women and livestock, prevention/reduction of T. gondii tissue cysts in food-producing animals; and oocyst shedding in cats. Over the last few years, an explosion of strategies for vaccine development, especially due to the development of genetic-engineering technologies has emerged. The field of vaccinology has been exploring safer vaccines by the generation of recombinant immunogenic proteins, naked DNA vaccines, and viral/bacterial recombinants vectors. These strategies based on single- or few antigens, are less efficacious than recombinant live-attenuated, mostly tachyzoite T. gondii vaccine candidates. Reflections on the development of an anti-Toxoplasma vaccine must focus not only on the appropriate route of administration, capable of inducing efficient immune response, but also on the choice of the antigen (s) of interest and the associated delivery systems. To answer these questions, the choice of the animal model is essential. If mice helped in understanding the protection mechanisms, the data obtained cannot be directly transposed to humans, livestock and cats. Moreover, effectiveness vaccines should elicit strong and protective humoral and cellular immune responses at both local and systemic levels against the different stages of the parasite. Finally, challenge protocols should use the oral route, major natural route of infection, either by feeding tissue cysts or oocysts from different T. gondii strains. Effective Toxoplasma vaccines depend on our understanding of the (1) protective host immune response during T. gondii invasion and infection in the different hosts, (2) manipulation and modulation of host immune response to ensure survival of the parasites able to evade and subvert host immunity, (3) molecular mechanisms that define specific stage development. This review presents an overview of the key limitations for the development of an effective vaccine and highlights the contributions made by recent studies on the mechanisms behind stage switching to offer interesting perspectives for vaccine development.
Collapse
Affiliation(s)
| | - Zineb Lakhrif
- Team BioMAP, Université de Tours, INRAE, ISP, Tours, France
| | | |
Collapse
|
35
|
Zhou W, Lin D, Zhong Z, Ye Q. Roles of TRAFs in Ischemia-Reperfusion Injury. Front Cell Dev Biol 2020; 8:586487. [PMID: 33224951 PMCID: PMC7674171 DOI: 10.3389/fcell.2020.586487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
Tumor necrosis factor receptor-associated factor (TRAF) proteins are a family of signaling molecules that function downstream of multiple receptor signaling pathways, and they play a pivotal role in the regulation of intracellular biological progresses. These TRAF-dependent signaling pathways and physiological functions have been involved in the occurrence and progression of ischemia-reperfusion injury (IRI), which is a common pathophysiological process that occurs in a wide variety of clinical events, including ischemic shock, organ transplantation, and thrombolytic therapy, resulting in a poor prognosis and high mortality. IRI occurs in multiple organs, including liver, kidney, heart, lung, brain, intestine, and retina. In recent years, mounting compelling evidence has confirmed that the genetic alterations of TRAFs can cause subversive phenotype changes during IRI of those organs. In this review, based on current knowledge, we summarized and analyzed the regulatory effect of TRAFs on the IRI of various organs, providing clear direction and a firm theoretical basis for the development of treatment strategies to manipulate TRAF proteins or TRAF-dependent signaling pathways in IRI-related diseases.
Collapse
Affiliation(s)
- Wei Zhou
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan, China
| | - Danni Lin
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan, China.,The First Affiliated Hospital, Zhejiang University School of Medicine, Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial Key Laboratory of Pancreatic Disease, Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
| | - Zibiao Zhong
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan, China
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan, China.,The Third Xiangya Hospital of Central South University, Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Changsha, China
| |
Collapse
|
36
|
Mukhopadhyay D, Arranz-Solís D, Saeij JPJ. Influence of the Host and Parasite Strain on the Immune Response During Toxoplasma Infection. Front Cell Infect Microbiol 2020; 10:580425. [PMID: 33178630 PMCID: PMC7593385 DOI: 10.3389/fcimb.2020.580425] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/11/2020] [Indexed: 01/02/2023] Open
Abstract
Toxoplasma gondii is an exceptionally successful parasite that infects a very broad host range, including humans, across the globe. The outcome of infection differs remarkably between hosts, ranging from acute death to sterile infection. These differential disease patterns are strongly influenced by both host- and parasite-specific genetic factors. In this review, we discuss how the clinical outcome of toxoplasmosis varies between hosts and the role of different immune genes and parasite virulence factors, with a special emphasis on Toxoplasma-induced ileitis and encephalitis.
Collapse
Affiliation(s)
| | | | - Jeroen P. J. Saeij
- Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
37
|
Kongsomboonvech AK, Rodriguez F, Diep AL, Justice BM, Castallanos BE, Camejo A, Mukhopadhyay D, Taylor GA, Yamamoto M, Saeij JPJ, Reese ML, Jensen KDC. Naïve CD8 T cell IFNγ responses to a vacuolar antigen are regulated by an inflammasome-independent NLRP3 pathway and Toxoplasma gondii ROP5. PLoS Pathog 2020; 16:e1008327. [PMID: 32853276 PMCID: PMC7480859 DOI: 10.1371/journal.ppat.1008327] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 09/09/2020] [Accepted: 07/05/2020] [Indexed: 12/31/2022] Open
Abstract
Host resistance to Toxoplasma gondii relies on CD8 T cell IFNγ responses, which if modulated by the host or parasite could influence chronic infection and parasite transmission between hosts. Since host-parasite interactions that govern this response are not fully elucidated, we investigated requirements for eliciting naïve CD8 T cell IFNγ responses to a vacuolar resident antigen of T. gondii, TGD057. Naïve TGD057 antigen-specific CD8 T cells (T57) were isolated from transnuclear mice and responded to parasite-infected bone marrow-derived macrophages (BMDMs) in an antigen-dependent manner, first by producing IL-2 and then IFNγ. T57 IFNγ responses to TGD057 were independent of the parasite’s protein export machinery ASP5 and MYR1. Instead, host immunity pathways downstream of the regulatory Immunity-Related GTPases (IRG), including partial dependence on Guanylate-Binding Proteins, are required. Multiple T. gondii ROP5 isoforms and allele types, including ‘avirulent’ ROP5A from clade A and D parasite strains, were able to suppress CD8 T cell IFNγ responses to parasite-infected BMDMs. Phenotypic variance between clades B, C, D, F, and A strains suggest T57 IFNγ differentiation occurs independently of parasite virulence or any known IRG-ROP5 interaction. Consistent with this, removal of ROP5 is not enough to elicit maximal CD8 T cell IFNγ production to parasite-infected cells. Instead, macrophage expression of the pathogen sensors, NLRP3 and to a large extent NLRP1, were absolute requirements. Other members of the conventional inflammasome cascade are only partially required, as revealed by decreased but not abrogated T57 IFNγ responses to parasite-infected ASC, caspase-1/11, and gasdermin D deficient cells. Moreover, IFNγ production was only partially reduced in the absence of IL-12, IL-18 or IL-1R signaling. In summary, T. gondii effectors and host machinery that modulate parasitophorous vacuolar membranes, as well as NLR-dependent but inflammasome-independent pathways, determine the full commitment of CD8 T cells IFNγ responses to a vacuolar antigen. Parasites are excellent “students” of our immune system as they can deflect, antagonize and confuse the immune response making it difficult to vaccinate against these pathogens. In this report, we analyzed how a widespread parasite of mammals, Toxoplasma gondii, manipulates an immune cell needed for immunity to many intracellular pathogens, the CD8 T cell. Host pathways that govern CD8 T cell production of the immune protective cytokine, IFNγ, were also explored. We hypothesized the secreted T. gondii virulence factor, ROP5, work to inhibit the MHC 1 antigen presentation pathway therefore making it difficult for CD8 T cells to see T. gondii antigens sequestered inside a parasitophorous vacuole. However, manipulation through T. gondii ROP5 does not fully explain how CD8 T cells commit to making IFNγ in response to infection. Importantly, CD8 T cell IFNγ responses to T. gondii require the pathogen sensor NLRP3 to be expressed in the infected cell. Other proteins associated with NLRP3 activation, including members of the conventional inflammasome activation cascade pathway, are only partially involved. Our results identify a novel pathway by which NLRP3 regulates T cell function and underscore the need for NLRP3-activating adjuvants in vaccines aimed at inducing CD8 T cell IFNγ responses to parasites.
Collapse
Affiliation(s)
- Angel K. Kongsomboonvech
- Department of Molecular and Cell Biology, University of California, Merced, Merced, California, United States of America
| | - Felipe Rodriguez
- Department of Molecular and Cell Biology, University of California, Merced, Merced, California, United States of America
| | - Anh L. Diep
- Department of Molecular and Cell Biology, University of California, Merced, Merced, California, United States of America
| | - Brandon M. Justice
- Department of Molecular and Cell Biology, University of California, Merced, Merced, California, United States of America
| | - Brayan E. Castallanos
- Department of Molecular and Cell Biology, University of California, Merced, Merced, California, United States of America
| | - Ana Camejo
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Debanjan Mukhopadhyay
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, United States of America
| | - Gregory A. Taylor
- Departments of Medicine; Molecular Genetics and Microbiology; and Immunology; and Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, North Carolina, United States of America
- Geriatric Research, Education, and Clinical Center, Durham VA Health Care System, Durham, North Carolina, United States of America
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Jeroen P. J. Saeij
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, United States of America
| | - Michael L. Reese
- Department of Pharmacology, University of Texas, Southwestern Medical Center, Dallas, Texas, United States of America
| | - Kirk D. C. Jensen
- Department of Molecular and Cell Biology, University of California, Merced, Merced, California, United States of America
- Health Sciences Research Institute, University of California, Merced, Merced, California, United States of America
- * E-mail:
| |
Collapse
|
38
|
Ihara F, Fereig RM, Himori Y, Kameyama K, Umeda K, Tanaka S, Ikeda R, Yamamoto M, Nishikawa Y. Toxoplasma gondii Dense Granule Proteins 7, 14, and 15 Are Involved in Modification and Control of the Immune Response Mediated via NF-κB Pathway. Front Immunol 2020; 11:1709. [PMID: 32849602 PMCID: PMC7412995 DOI: 10.3389/fimmu.2020.01709] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/26/2020] [Indexed: 11/13/2022] Open
Abstract
Toxoplasma gondii infects almost all warm-blooded animals, including humans, leading to both cellular and humoral immune responses in the host. The virulence of T. gondii is strain specific and is defined by secreted effector proteins that disturb host immunity. Here, we focus on nuclear factor-kappa B (NFκB) signaling, which regulates the induction of T-helper type 1 immunity. A luciferase assay for screening effector proteins, including ROPs and GRAs that have biological activity against an NFκB-dependent reporter plasmid, found that overexpression of GRA7, 14, and 15 of a type II strain resulted in a strong activity. Thus, our study was aimed at understanding the involvement of NFκB in the pathogenesis of toxoplasmosis through a comparative analysis of these three molecules. We found that GRA7 and GRA14 were partially involved in the activation of NFκB, whereas GRA15 was essential for NFκB activation. The deletion of GRA7, GRA14, and GRA15 in the type II Prugniaud (Pru) strain resulted in a defect in the nuclear translocation of RelA. Cells infected with the PruΔgra15 parasite showed reduced phosphorylation of inhibitor-κBα. GRA7, GRA14, and GRA15 deficiency decreased the levels of interleukin-6 in RAW246.7 cells, and RNA-seq analysis revealed that GRA7, GRA14, and GRA15 deficiency predominantly resulted in downregulation of gene expression mediated by NFκB. The virulence of all mutant strains increased, but PruΔgra14 only showed a slight increase in virulence. However, the intra-footpad injection of the highly-virulent type I RHΔgra14 parasites in mice resulted in increased virulence. This study shows that GRA7, 14, and 15-induced host immunity via NFκB limits parasite expansion.
Collapse
Affiliation(s)
- Fumiaki Ihara
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Ragab M Fereig
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan.,Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena City, Egypt
| | - Yuu Himori
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Kyohko Kameyama
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Kosuke Umeda
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Sachi Tanaka
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan.,Division of Animal Science, Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Nagano, Japan
| | - Rina Ikeda
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.,Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| |
Collapse
|
39
|
El Saftawy EA, Amin NM, Sabry RM, El-Anwar N, Shash RY, Elsebaie EH, Wassef RM. Can Toxoplasma gondii Pave the Road for Dementia? J Parasitol Res 2020; 2020:8859857. [PMID: 32802484 PMCID: PMC7414348 DOI: 10.1155/2020/8859857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/25/2020] [Accepted: 07/03/2020] [Indexed: 01/04/2023] Open
Abstract
Dementia is an ominous neurological disease. Scientists proposed a link between its occurrence and the presence of Toxoplasma gondii (T. gondii). The long-term sequels of anti-Toxoplasma premunition, chiefly dominated by TNF-α, on the neurons and their receptors as the insulin-like growth factor-1 receptor (IGF-1R), which is tangled in cognition and synaptic plasticity, are still not clear. IGF-1R mediates its action via IGF-1, and its depletion is incorporated in the pathogenesis of dementia. The activated TNF-α signaling pathway induces NF-κβ that may induce or inhibit neurogenesis. This study speculates the potential impact of anti-Toxoplasma immune response on the expression of IGF-1R in chronic cerebral toxoplasmosis. The distributive pattern of T. gondii cysts was studied in association with TNF-α serum levels, the in situ expression of NF-κβ, and IGF-1R in mice using the low virulent ME-49 T. gondii strain. There was an elevation of the TNF-α serum level (p value ≤ 0.004) and significant upsurge in NF-κβ whereas IGF-1R was of low abundance (p value < 0.05) compared to the controls. TNF-α had a strong positive correlation with the intracerebral expression of NF-κβ (r value ≈ 0.943, p value ≈ 0.005) and a strong negative correlation to IGF-1R (r value -0.584 and -0.725 for area% and O.D., respectively). This activated TNF-α/NF-κβ keeps T. gondii under control at the expense of IGF-1R expression, depriving neurons of the effect of IGF-1, the receptor's ligand. We therefore deduce that T. gondii immunopathological reaction may be a road paver for developing dementia.
Collapse
Affiliation(s)
- Enas A. El Saftawy
- Medical Parasitology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
- Armed Forces College of Medicine, Cairo, Egypt
| | - Noha M. Amin
- Medical Parasitology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Rania M. Sabry
- Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Noha El-Anwar
- Armed Forces College of Medicine, Cairo, Egypt
- Pathology Department, Faculty of Medicine, Tanta University, Egypt
| | - Rania Y. Shash
- Medical Microbiology and Immunology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Eman H. Elsebaie
- Public Health and Community Medicine, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Rita M. Wassef
- Medical Parasitology Department, Faculty of Medicine, Helwan University, Cairo, Egypt
| |
Collapse
|
40
|
Mukhopadhyay D, Sangaré LO, Braun L, Hakimi MA, Saeij JP. Toxoplasma GRA15 limits parasite growth in IFNγ-activated fibroblasts through TRAF ubiquitin ligases. EMBO J 2020; 39:e103758. [PMID: 32293748 DOI: 10.15252/embj.2019103758] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 01/01/2023] Open
Abstract
The protozoan parasite Toxoplasma gondii lives inside a vacuole in the host cytosol where it is protected from host cytoplasmic innate immune responses. However, IFNγ-dependent cell-autonomous immunity can destroy the vacuole and the parasite inside. Toxoplasma strain differences in susceptibility to human IFNγ exist, but the Toxoplasma effector(s) that determine these differences are unknown. We show that in human primary fibroblasts, the polymorphic Toxoplasma-secreted effector GRA15 mediates the recruitment of ubiquitin ligases, including TRAF2 and TRAF6, to the vacuole membrane, which enhances recruitment of ubiquitin receptors (p62/NDP52) and ubiquitin-like molecules (LC3B, GABARAP). This ultimately leads to lysosomal degradation of the vacuole. In murine fibroblasts, GRA15-mediated TRAF6 recruitment mediates the recruitment of immunity-related GTPases and destruction of the vacuole. Thus, we have identified how the Toxoplasma effector GRA15 affects cell-autonomous immunity in human and murine cells.
Collapse
Affiliation(s)
- Debanjan Mukhopadhyay
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Lamba Omar Sangaré
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Laurence Braun
- Institute for Advanced Biosciences, Team Host-Pathogen Interactions and Immunity to Infection, INSERM U1209, CNRS, UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Mohamed-Ali Hakimi
- Institute for Advanced Biosciences, Team Host-Pathogen Interactions and Immunity to Infection, INSERM U1209, CNRS, UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Jeroen Pj Saeij
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| |
Collapse
|