1
|
Scott TA, Baker KS, Trotter C, Jenkins C, Mostowy S, Hawkey J, Schmidt H, Holt KE, Thomson NR, Baker S. Shigella sonnei: epidemiology, evolution, pathogenesis, resistance and host interactions. Nat Rev Microbiol 2025; 23:303-317. [PMID: 39604656 DOI: 10.1038/s41579-024-01126-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2024] [Indexed: 11/29/2024]
Abstract
Shigella sonnei is a major cause of diarrhoea globally and is increasing in prevalence relative to other Shigella because of multiple demographic and environmental influences. This single-serotype species has traditionally received less attention in comparison to Shigella flexneri and Shigella dysenteriae, which were more common in low-income countries and more tractable in the laboratory. In recent years, we have learned that Shigella are highly complex and highly susceptible to environmental change, as exemplified by epidemiological trends and increasing relevance of S. sonnei. Ultimately, methods, tools and data generated from decades of detailed research into S. flexneri have been used to gain new insights into the epidemiology, microbiology and pathogenesis of S. sonnei. In parallel, widespread adoption of genomic surveillance has yielded insights into antimicrobial resistance, evolution and organism transmission. In this Review, we provide an overview of current knowledge of S. sonnei, highlighting recent insights into this globally disseminated antimicrobial-resistant pathogen and assessing how novel data may impact future vaccine development and implementation.
Collapse
Affiliation(s)
- Timothy A Scott
- Cambridge Institute for Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Department of Medicine, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK.
| | - Kate S Baker
- Department of Clinical Microbiology, Immunology and Infection, University of Liverpool, Liverpool, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Caroline Trotter
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
- Department of Pathology, University of Cambridge, Cambridge, UK
| | | | - Serge Mostowy
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Jane Hawkey
- Department of Infectious Diseases, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Hayden Schmidt
- Neutralizing Antibody Center, International AIDS Vaccine Initiative, San Diego, CA, USA
| | - Kathryn E Holt
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
- Department of Infectious Diseases, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Nicholas R Thomson
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Stephen Baker
- Cambridge Institute for Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Department of Medicine, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK.
- International AIDS Vaccine Initiative, London, UK.
| |
Collapse
|
2
|
Gomes MC, Brokatzky D, Mostowy S. Shigella-trained pro-inflammatory macrophages protect zebrafish from secondary infection. Cell Rep 2025; 44:115601. [PMID: 40266847 DOI: 10.1016/j.celrep.2025.115601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 02/17/2025] [Accepted: 03/31/2025] [Indexed: 04/25/2025] Open
Abstract
Shigella is an important human pathogen that has no licensed vaccine. Despite decades of seminal work suggesting that its pathogenicity relies on inflammatory cell death of macrophages, the in vivo role of macrophages in controlling Shigella infection remains poorly understood. Here, we use a zebrafish model of innate immune training to investigate the antibacterial role of macrophages following a non-lethal Shigella infection. We found that macrophages are crucial for zebrafish larvae survival during secondary Shigella infection. Consistent with signatures of trained immunity, we demonstrate that bacteria are cleared during training and that protection is independent of the secondary infection site. We show that following Shigella training, macrophages have altered mono- and tri-methylation on lysine 4 in histone 3 (H3K4me1/me3) deposition and shift toward a pro-inflammatory state, characterized by increased tumor necrosis factor alpha (TNF-α) expression and antibacterial reactive oxygen species (ROS) production. We conclude that macrophages are epigenetically reprogrammed by Shigella infection to enhance pro-inflammatory and protective responses.
Collapse
Affiliation(s)
- Margarida C Gomes
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK.
| | - Dominik Brokatzky
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Serge Mostowy
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK.
| |
Collapse
|
3
|
Ortiz-Severín J, Tandberg JI, Winther-Larsen HC, Allende ML, Cambiazo V, Chávez FP. In vivo host-pathogen dynamics and immune responses to Piscirickettsia salmonis using the zebrafish model. Microb Pathog 2025; 200:107349. [PMID: 39890084 DOI: 10.1016/j.micpath.2025.107349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/07/2025] [Accepted: 01/27/2025] [Indexed: 02/03/2025]
Abstract
Research on Piscirickettsia salmonis, a critical pathogen affecting salmon aquaculture, has been hampered by inadequate host models to study the infection process in vivo. Here, we highlight zebrafish as a surrogate host model for in-depth analysis of P. salmonis infection by using fluorescent dyes and protein markers to visualize host-pathogen interactions. Using transgenic zebrafish lines with fluorescent immune cells, we observed a strong increase in neutrophil numbers in the infected larvae, resembling an emergency granulopoiesis response. We observed the presence of P. salmonis in the caudal hematopoietic zone accompanied by an increased expression of immune marker genes, such as the neutrophil marker mpx, interleukins and interferons, both in zebrafish larvae and adult zebrafish kidneys, features of emergency granulopoiesis in response to uncontrolled bacterial burden. Our results underscore the importance of zebrafish as a valuable model for studying P. salmonis infections.
Collapse
Affiliation(s)
- Javiera Ortiz-Severín
- Laboratorio de Microbiología de Sistemas, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile; Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile.
| | - Julia I Tandberg
- Laboratory of Pharmaceutical microbiology and immunity, Department of Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
| | - Hanne C Winther-Larsen
- Laboratory of Pharmaceutical microbiology and immunity, Department of Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
| | - Miguel L Allende
- Millennium Institute Center for Genome Regulation, Santiago, Chile; Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Verónica Cambiazo
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile; Millennium Institute Center for Genome Regulation, Santiago, Chile
| | - Francisco P Chávez
- Laboratorio de Microbiología de Sistemas, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile; Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
4
|
Song X, Lei T, Cui N, Jin X, Huang Y, Shi Y, Zhao Z. A preliminary investigation on the protective effects of β-glucan and mannan induced trained immunity in pufferfish Takifugu obscurus. FISH & SHELLFISH IMMUNOLOGY 2025; 156:110035. [PMID: 39577788 DOI: 10.1016/j.fsi.2024.110035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024]
Abstract
Immune stimuli are able to trigger long-term protective effects through mechanisms of trained immunity, which has attracted increasing attention. Although the existence of trained immunity has evidenced in teleost fish, while there were no such reports in pufferfish (Takifugu obscurus) so far. Therefore, the present study aimed to evaluate the induction of β-glucan and mannan on the trained immunity and their protective efficacy against Vibrio harveyi re-stimulation in pufferfish. β-glucan and mannan induction of trained immunity in head-kidney primary leukocytes is accompanied by a strong increase in immediate ROS burst, cumulative NO production and lactate concentrations after V. harveyi re-stimulation. In addition, β-glucan and mannan-treated pufferfish exhibited reduced bacterial loads in multiple tissues, a rapid and long-term elevated inflammatory response in head kidney during secondary V. harveyi infection. Notably, immune receptors dectin-1 and dectin-2, and cytokines tnfsf14 and il-1β exhibited comparatively upregulation to the β-glucan training, while NK-lysin and faslg showed stronger response to the mannan training post V. harveyi stimulation, implying the different signaling pathway activated post β-glucan and mannan training. Subsequent markers for immune training including abundance of genes encoding glycolytic enzymes (hk1, pfkla, and ldha) and transcription factors (mtor and hif-1α), as well as increased acetylation levels were elevated in the β-glucan and mannan trained pufferfish, depicting heightened glycolysis following β-glucan and mannan training. These results collectively demonstrated that β-glucan and mannan both induced protective responses against V. harveyi infection probably through mediating distinct signaling pathway in pufferfish, and studies are underway to harness its potential applicability for prime and boost vaccination strategies.
Collapse
Affiliation(s)
- Xiaorui Song
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210024, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210024, China
| | - Tianying Lei
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210024, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210024, China
| | - Nan Cui
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210024, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210024, China
| | - Xingkun Jin
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210024, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210024, China
| | - Ying Huang
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210024, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210024, China
| | - Yan Shi
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210024, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210024, China
| | - Zhe Zhao
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210024, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210024, China.
| |
Collapse
|
5
|
Ruffinatto L, Groult Y, Iacono J, Sarrazin S, de Laval B. Hematopoietic stem cell a reservoir of innate immune memory. Front Immunol 2024; 15:1491729. [PMID: 39720722 PMCID: PMC11666435 DOI: 10.3389/fimmu.2024.1491729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/30/2024] [Indexed: 12/26/2024] Open
Abstract
Hematopoietic stem cells (HSCs) are a rare, long-lived and multipotent population that give rise to majority of blood cells and some tissue-resident immune cells. There is growing evidence that inflammatory stimuli can trigger persistent reprogramming in HSCs that enhances or inhibits the cellular functions of these HSCs and their progeny in response to subsequent infections. This newly discovered property makes HSCs a reservoir for innate immune memory. The molecular mechanisms underlying innate immune memory in HSCs are similar to those observed in innate immune cells, although their full elucidation is still pending. In this review, we examine the current state of knowledge on how an inflammatory response leads to reprogramming of HSCs. Understanding the full spectrum of consequences of reshaping early hematopoiesis is critical for assessing the potential benefits and risks under physiological and pathological conditions.
Collapse
Affiliation(s)
| | | | | | | | - Bérengère de Laval
- Aix Marseille University, Centre National de la Recherche Scientifique (CNRS), Institut
National de la Santé et de la Recherche Médicale (INSERM), Centre d’Immunologie de Marseille-Luminy (CIML), Marseille, France
| |
Collapse
|
6
|
Miles SL, Holt KE, Mostowy S. Recent advances in modelling Shigella infection. Trends Microbiol 2024; 32:917-924. [PMID: 38423917 DOI: 10.1016/j.tim.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 03/02/2024]
Abstract
Shigella is an important human-adapted pathogen which contributes to a large global burden of diarrhoeal disease. Together with the increasing threat of antimicrobial resistance and lack of an effective vaccine, there is great urgency to identify novel therapeutics and preventatives to combat Shigella infection. In this review, we discuss the development of innovative technologies and animal models to study mechanisms underlying Shigella infection of humans. We examine recent literature introducing (i) the organ-on-chip model, and its substantial contribution towards understanding the biomechanics of Shigella infection, (ii) the zebrafish infection model, which has delivered transformative insights into the epidemiological success of clinical isolates and the innate immune response to Shigella, (iii) a pioneering oral mouse model of shigellosis, which has helped to discover new inflammasome biology and protective mechanisms against shigellosis, and (iv) the controlled human infection model, which has been effective in translating basic research into human health impact and assessing suitability of novel vaccine candidates. We consider the recent contributions of each model and discuss where the future of modelling Shigella infection lies.
Collapse
Affiliation(s)
- Sydney L Miles
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Kathryn E Holt
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK; Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| | - Serge Mostowy
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK.
| |
Collapse
|
7
|
Torraca V, White RJ, Sealy IM, Mazon-Moya M, Duggan G, Willis AR, Busch-Nentwich EM, Mostowy S. Transcriptional profiling of zebrafish identifies host factors controlling susceptibility to Shigella flexneri. Dis Model Mech 2024; 17:dmm050431. [PMID: 38131137 PMCID: PMC10846535 DOI: 10.1242/dmm.050431] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Shigella flexneri is a human-adapted pathovar of Escherichia coli that can invade the intestinal epithelium, causing inflammation and bacillary dysentery. Although an important human pathogen, the host response to S. flexneri has not been fully described. Zebrafish larvae represent a valuable model for studying human infections in vivo. Here, we use a Shigella-zebrafish infection model to generate mRNA expression profiles of host response to Shigella infection at the whole-animal level. Immune response-related processes dominate the signature of early Shigella infection (6 h post-infection). Consistent with its clearance from the host, the signature of late Shigella infection (24 h post-infection) is significantly changed, and only a small set of immune-related genes remain differentially expressed, including acod1 and gpr84. Using mutant lines generated by ENU, CRISPR mutagenesis and F0 crispants, we show that acod1- and gpr84-deficient larvae are more susceptible to Shigella infection. Together, these results highlight the power of zebrafish to model infection by bacterial pathogens and reveal the mRNA expression of the early (acutely infected) and late (clearing) host response to Shigella infection.
Collapse
Affiliation(s)
- Vincenzo Torraca
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
- Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London SE1 9RT, UK
- School of Life Sciences, University of Westminster, London W1W 6UW, UK
| | - Richard J. White
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge CB2 0AW, UK
- School of Biological and Behavioural Sciences, Faculty of Science and Engineering, Queen Mary University of London, London E1 4NS, UK
| | - Ian M. Sealy
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge CB2 0AW, UK
- School of Biological and Behavioural Sciences, Faculty of Science and Engineering, Queen Mary University of London, London E1 4NS, UK
| | - Maria Mazon-Moya
- Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| | - Gina Duggan
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
- Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| | - Alexandra R. Willis
- Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| | - Elisabeth M. Busch-Nentwich
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge CB2 0AW, UK
- School of Biological and Behavioural Sciences, Faculty of Science and Engineering, Queen Mary University of London, London E1 4NS, UK
| | - Serge Mostowy
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
- Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
8
|
Torraca V, Brokatzky D, Miles SL, Chong CE, De Silva PM, Baker S, Jenkins C, Holt KE, Baker KS, Mostowy S. Shigella Serotypes Associated With Carriage in Humans Establish Persistent Infection in Zebrafish. J Infect Dis 2023; 228:1108-1118. [PMID: 37556724 PMCID: PMC10582909 DOI: 10.1093/infdis/jiad326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/11/2023] Open
Abstract
Shigella represents a paraphyletic group of enteroinvasive Escherichia coli. More than 40 Shigella serotypes have been reported. However, most cases within the men who have sex with men (MSM) community are attributed to 3 serotypes: Shigella sonnei unique serotype and Shigella flexneri 2a and 3a serotypes. Using the zebrafish model, we demonstrate that Shigella can establish persistent infection in vivo. Bacteria are not cleared by the immune system and become antibiotic tolerant. Establishment of persistent infection depends on the O-antigen, a key constituent of the bacterial surface and a serotype determinant. Representative isolates associated with MSM transmission persist in zebrafish, while representative isolates of a serotype not associated with MSM transmission do not. Isolates of a Shigella serotype establishing persistent infections elicited significantly less macrophage death in vivo than isolates of a serotype unable to persist. We conclude that zebrafish are a valuable platform to illuminate factors underlying establishment of Shigella persistent infection in humans.
Collapse
Affiliation(s)
- Vincenzo Torraca
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
- School of Life Sciences, University of Westminster, London, United Kingdom
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Dominik Brokatzky
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Sydney L Miles
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Charlotte E Chong
- Clinical Infection, Microbiology, and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - P Malaka De Silva
- Clinical Infection, Microbiology, and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Stephen Baker
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Claire Jenkins
- Gastrointestinal Bacterial Reference Unit, UK Health Security Agency, London, United Kingdom
| | - Kathryn E Holt
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Australia
| | - Kate S Baker
- Clinical Infection, Microbiology, and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Serge Mostowy
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
9
|
Gomes MC, Brokatzky D, Bielecka MK, Wardle FC, Mostowy S. Shigella induces epigenetic reprogramming of zebrafish neutrophils. SCIENCE ADVANCES 2023; 9:eadf9706. [PMID: 37672585 PMCID: PMC10482349 DOI: 10.1126/sciadv.adf9706] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 08/03/2023] [Indexed: 09/08/2023]
Abstract
Trained immunity is a long-term memory of innate immune cells, generating an improved response upon reinfection. Shigella is an important human pathogen and inflammatory paradigm for which there is no effective vaccine. Using zebrafish larvae, we demonstrate that after Shigella training, neutrophils are more efficient at bacterial clearance. We observe that Shigella-induced protection is nonspecific and has differences with training by BCG and β-glucan. Analysis of histone ChIP-seq on trained neutrophils revealed that Shigella training deposits the active H3K4me3 mark on promoter regions of 1612 genes, dramatically changing the epigenetic landscape of neutrophils toward enhanced microbial recognition and mitochondrial ROS production. Last, we demonstrate that mitochondrial ROS plays a key role in enhanced antimicrobial activity of trained neutrophils. It is envisioned that signals and mechanisms we discover here can be used in other vertebrates, including humans, to suggest new therapeutic strategies involving neutrophils to control bacterial infection.
Collapse
Affiliation(s)
- Margarida C. Gomes
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Dominik Brokatzky
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Magdalena K. Bielecka
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Fiona C. Wardle
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, UK
| | - Serge Mostowy
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
10
|
Darroch H, Keerthisinghe P, Sung YJ, Rolland L, Prankerd-Gough A, Crosier PS, Astin JW, Hall CJ. Infection-experienced HSPCs protect against infections by generating neutrophils with enhanced mitochondrial bactericidal activity. SCIENCE ADVANCES 2023; 9:eadf9904. [PMID: 37672586 PMCID: PMC10482338 DOI: 10.1126/sciadv.adf9904] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 08/03/2023] [Indexed: 09/08/2023]
Abstract
Hematopoietic stem and progenitor cells (HSPCs) respond to infection by proliferating and generating in-demand neutrophils through a process called emergency granulopoiesis (EG). Recently, infection-induced changes in HSPCs have also been shown to underpin the longevity of trained immunity, where they generate innate immune cells with enhanced responses to subsequent microbial threats. Using larval zebrafish to live image neutrophils and HSPCs, we show that infection-experienced HSPCs generate neutrophils with enhanced bactericidal functions. Transcriptomic analysis of EG neutrophils uncovered a previously unknown function for mitochondrial reactive oxygen species in elevating neutrophil bactericidal activity. We also reveal that driving expression of zebrafish C/EBPβ within infection-naïve HSPCs is sufficient to generate neutrophils with similarly enhanced bactericidal capacity. Our work suggests that this demand-adapted source of neutrophils contributes to trained immunity by providing enhanced protection toward subsequent infections. Manipulating demand-driven granulopoiesis may provide a therapeutic strategy to boost neutrophil function and treat infectious disease.
Collapse
Affiliation(s)
- Hannah Darroch
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Pramuk Keerthisinghe
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Yih Jian Sung
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Leah Rolland
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Anneke Prankerd-Gough
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | | | - Jonathan W. Astin
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
11
|
Miles SL, Torraca V, Dyson ZA, López-Jiménez AT, Foster-Nyarko E, Lobato-Márquez D, Jenkins C, Holt KE, Mostowy S. Acquisition of a large virulence plasmid (pINV) promoted temperature-dependent virulence and global dispersal of O96:H19 enteroinvasive Escherichia coli. mBio 2023; 14:e0088223. [PMID: 37255304 PMCID: PMC10470518 DOI: 10.1128/mbio.00882-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 04/17/2023] [Indexed: 06/01/2023] Open
Abstract
Enteroinvasive Escherichia coli (EIEC) and Shigella are closely related agents of bacillary dysentery. It is widely viewed that EIEC and Shigella species evolved from E. coli via independent acquisitions of a large virulence plasmid (pINV) encoding a type 3 secretion system (T3SS). Sequence Type (ST)99 O96:H19 E. coli is a novel clone of EIEC responsible for recent outbreaks in Europe and South America. Here, we use 92 whole genome sequences to reconstruct a dated phylogeny of ST99 E. coli, revealing distinct phylogenomic clusters of pINV-positive and -negative isolates. To study the impact of pINV acquisition on the virulence of this clone, we developed an EIEC-zebrafish infection model showing that virulence of ST99 EIEC is thermoregulated. Strikingly, zebrafish infection using a T3SS-deficient ST99 EIEC strain and the oldest available pINV-negative isolate reveals a separate, temperature-independent mechanism of virulence, indicating that ST99 non-EIEC strains were virulent before pINV acquisition. Taken together, these results suggest that an already pathogenic E. coli acquired pINV and that virulence of ST99 isolates became thermoregulated once pINV was acquired. IMPORTANCE Enteroinvasive Escherichia coli (EIEC) and Shigella are etiological agents of bacillary dysentery. Sequence Type (ST)99 is a clone of EIEC hypothesized to cause human disease by the recent acquisition of pINV, a large plasmid encoding a type 3 secretion system (T3SS) that confers the ability to invade human cells. Using Bayesian analysis and zebrafish larvae infection, we show that the virulence of ST99 EIEC isolates is highly dependent on temperature, while T3SS-deficient isolates encode a separate temperature-independent mechanism of virulence. These results indicate that ST99 non-EIEC isolates may have been virulent before pINV acquisition and highlight an important role of pINV acquisition in the dispersal of ST99 EIEC in humans, allowing wider dissemination across Europe and South America.
Collapse
Affiliation(s)
- Sydney L. Miles
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Vincenzo Torraca
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Zoe A. Dyson
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Ana Teresa López-Jiménez
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Ebenezer Foster-Nyarko
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Damián Lobato-Márquez
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Claire Jenkins
- Gastrointestinal Pathogens and Food Safety (One Health), UK Health Security Agency, London, United Kingdom
| | - Kathryn E. Holt
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Serge Mostowy
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
12
|
Syahirah R, Beckman J, Malik H, Hsu AY, Deng Q. Method for Visualization of Emergency Granulopoiesis in the Zebrafish Embryo. Zebrafish 2023; 20:175-179. [PMID: 37306974 PMCID: PMC10495196 DOI: 10.1089/zeb.2023.0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023] Open
Abstract
Emergency granulopoiesis (EG) is a response to severe inflammation in which increased neutrophils are generated in the hematopoietic tissue. Photolabeling is utilized to distinguish newly developed neutrophils from existing neutrophils. However, this technique requires a strong laser line and labels subsets of the existing neutrophils. Here we create a transgenic zebrafish line that expresses a time-dependent switch from green fluorescent protein (GFP) to red fluorescent protein (RFP) in neutrophils, which allows quantification of EG using simple GFP/RFP ratiometric imaging.
Collapse
Affiliation(s)
- Ramizah Syahirah
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Jennifer Beckman
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Hanna Malik
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Alan Y. Hsu
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Qing Deng
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana, USA
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
13
|
Lensen A, Gomes MC, López-Jiménez AT, Mostowy S. An automated microscopy workflow to study Shigella-neutrophil interactions and antibiotic efficacy in vivo. Dis Model Mech 2023; 16:dmm049908. [PMID: 37161932 PMCID: PMC10184671 DOI: 10.1242/dmm.049908] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 04/04/2023] [Indexed: 05/11/2023] Open
Abstract
Shigella are Gram-negative bacterial pathogens responsible for bacillary dysentery (also called shigellosis). The absence of a licensed vaccine and widespread emergence of antibiotic resistance has led the World Health Organisation (WHO) to highlight Shigella as a priority pathogen requiring urgent attention. Several infection models have been useful to explore the Shigella infection process; yet, we still lack information regarding events taking place in vivo. Here, using a Shigella-zebrafish infection model and high-content microscopy, we developed an automated microscopy workflow to non-invasively study fluorescently labelled bacteria and neutrophils in vivo. We applied our workflow to antibiotic-treated zebrafish, and demonstrate that antibiotics reduce bacterial burden and not neutrophil recruitment to the hindbrain ventricle. We discovered that nalidixic acid (a bactericidal antibiotic) can work with leukocytes in an additive manner to control Shigella flexneri infection and can also restrict dissemination of Shigella sonnei from the hindbrain ventricle. We envision that our automated microscopy workflow, applied here to study the interactions between Shigella and neutrophils as well as antibiotic efficacy in zebrafish, can be useful to innovate treatments for infection control in humans.
Collapse
Affiliation(s)
- Arthur Lensen
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom
- Département de Biologie, École Normale Supérieure, PSL Université Paris, F-75005, Paris, France
| | - Margarida C. Gomes
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom
| | - Ana Teresa López-Jiménez
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom
| | - Serge Mostowy
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom
| |
Collapse
|
14
|
Patel P, Nandi A, Verma SK, Kaushik N, Suar M, Choi EH, Kaushik NK. Zebrafish-based platform for emerging bio-contaminants and virus inactivation research. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162197. [PMID: 36781138 PMCID: PMC9922160 DOI: 10.1016/j.scitotenv.2023.162197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/23/2023] [Accepted: 02/08/2023] [Indexed: 05/27/2023]
Abstract
Emerging bio-contaminants such as viruses have affected health and environment settings of every country. Viruses are the minuscule entities resulting in severe contagious diseases like SARS, MERS, Ebola, and avian influenza. Recent epidemic like the SARS-CoV-2, the virus has undergone mutations strengthen them and allowing to escape from the remedies. Comprehensive knowledge of viruses is essential for the development of targeted therapeutic and vaccination treatments. Animal models mimicking human biology like non-human primates, rats, mice, and rabbits offer competitive advantage to assess risk of viral infections, chemical toxins, nanoparticles, and microbes. However, their economic maintenance has always been an issue. Furthermore, the redundancy of experimental results due to aforementioned aspects is also in examine. Hence, exploration for the alternative animal models is crucial for risk assessments. The current review examines zebrafish traits and explores the possibilities to monitor emerging bio-contaminants. Additionally, a comprehensive picture of the bio contaminant and virus particle invasion and abatement mechanisms in zebrafish and human cells is presented. Moreover, a zebrafish model to investigate the emerging viruses such as coronaviridae and poxviridae has been suggested.
Collapse
Affiliation(s)
- Paritosh Patel
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea
| | - Aditya Nandi
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Suresh K Verma
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India; Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, 18323 Hwaseong, Republic of Korea
| | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea.
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea.
| |
Collapse
|
15
|
Darroch H, Astin JW, Hall CJ. Towards a new model of trained immunity: Exposure to bacteria and β-glucan protects larval zebrafish against subsequent infections. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 132:104400. [PMID: 35367515 DOI: 10.1016/j.dci.2022.104400] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Once thought to be a feature exclusive to lymphocyte-driven adaptive immunity, immune memory has also been shown to operate as part of the innate immune system following infection to provide an elevated host response to subsequent pathogenic challenge. This evolutionarily conserved process, termed 'trained immunity', enables cells of the innate immune system to 'remember' previous pathogen encounters and mount stronger responses to the same, or different, pathogens after returning to a non-activated state. Here we show that challenging larval zebrafish, that exclusively rely on innate immunity, with live or heat-killed Salmonella typhimurium provides protection to subsequent infection with either Salmonella typhimurium or Streptococcus iniae, that lasts for at least 12 days. We also show that larvae injected with β-glucan, the well-known trigger of trained immunity, demonstrate enhanced survival to similar live bacterial infections, a phenotype supported by increased cxcl8 expression and neutrophil recruitment to the infection site. These results support the conservation of a trained immunity-like phenotype in larval zebrafish and provide a foundation to exploit the experimental attributes of larval zebrafish to further understand this form of immunological memory.
Collapse
Affiliation(s)
- Hannah Darroch
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Jonathan W Astin
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Christopher J Hall
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
16
|
Juste RA, Ferreras-Colino E, de la Fuente J, Domínguez M, Risalde MA, Domínguez L, Cabezas-Cruz A, Gortázar C. Heat inactivated mycobacteria, alpha-gal and zebra fish: insights gained from experiences with two promising trained immunity inductors and a validated animal model. Immunol Suppl 2022; 167:139-153. [PMID: 35752944 DOI: 10.1111/imm.13529] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/22/2022] [Indexed: 11/30/2022]
Abstract
Trained immunity (TRAIM) may be defined as a form of memory where innate immune cells such as monocytes, macrophages, dendritic and natural killer (NK) cells undergo an epigenetic reprogramming that enhances their primary defensive capabilities. Cross-pathogen protective TRAIM can be triggered in different hosts by exposure to live microbes or microbe-derived products such as heat-inactivated Mycobacterium bovis or with the glycan α-Gal to elicit protective responses against several pathogens. We review the TRAIM paradigm using two models representing distinct scales of immune sensitization: the whole bacterial cell and one of its building blocks, the polysaccharides or glycans. Observations point out to macrophage lytic capabilities and cytokine regulation as two key components in nonspecific innate immune responses against infections. The study of the TRAIM response deserves attention to better characterize the evolution of host-pathogen cooperation both for identifying the etiology of some diseases and for finding new therapeutic strategies. In this field, the zebrafish provides a convenient and complete biological system that could help to deepen in the knowledge of TRAIM-mediated mechanisms in pathogen-host interactions. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ramón A Juste
- Animal Health Department, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Derio, Bizkaia, Spain.,NySA. Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Villaviciosa, Asturias, Spain
| | - Elisa Ferreras-Colino
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, Ciudad Real, Spain
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, Ciudad Real, Spain.,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Mercedes Domínguez
- Unidad de Inmunología Microbiana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Carretera Pozuelo-Majadahonda km 2, 28220 Majadahonda, Madrid, Spain
| | - María A Risalde
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, Facultad de Veterinaria, Universidad de Córdoba (UCO), Córdoba, Spain.,CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Lucas Domínguez
- VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040, Madrid, Spain.,Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Christian Gortázar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, Ciudad Real, Spain
| |
Collapse
|
17
|
Zhong X, Li J, Lu F, Zhang J, Guo L. Application of zebrafish in the study of the gut microbiome. Animal Model Exp Med 2022; 5:323-336. [PMID: 35415967 PMCID: PMC9434591 DOI: 10.1002/ame2.12227] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/15/2022] [Accepted: 03/24/2022] [Indexed: 12/18/2022] Open
Abstract
Zebrafish (Danio rerio) have attracted much attention over the past decade as a reliable model for gut microbiome research. Owing to their low cost, strong genetic and development coherence, efficient preparation of germ-free (GF) larvae, availability in high-throughput chemical screening, and fitness for intravital imaging in vivo, zebrafish have been extensively used to investigate microbiome-host interactions and evaluate the toxicity of environmental pollutants. In this review, the advantages and disadvantages of zebrafish for studying the role of the gut microbiome compared with warm-blooded animal models are first summarized. Then, the roles of zebrafish gut microbiome on host development, metabolic pathways, gut-brain axis, and immune disorders and responses are addressed. Furthermore, their applications for the toxicological assessment of aquatic environmental pollutants and exploration of the molecular mechanism of pathogen infections are reviewed. We highlight the great potential of the zebrafish model for developing probiotics for xenobiotic detoxification, resistance against bacterial infection, and disease prevention and cure. Overall, the zebrafish model promises a brighter future for gut microbiome research.
Collapse
Affiliation(s)
- Xiaoting Zhong
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China.,Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease, Guangdong Medical University, Zhanjiang, China
| | - Jinglin Li
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Furong Lu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Jingjing Zhang
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease, Guangdong Medical University, Zhanjiang, China.,The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China
| | - Lianxian Guo
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China.,Dongguan Innovation Institute, Guangdong Medical University, Dongguan, China
| |
Collapse
|
18
|
Dhanagovind PT, Kujur PK, Swain RK, Banerjee S. IL-6 Signaling Protects Zebrafish Larvae during Staphylococcus epidermidis Infection in a Bath Immersion Model. THE JOURNAL OF IMMUNOLOGY 2021; 207:2129-2142. [PMID: 34544800 DOI: 10.4049/jimmunol.2000714] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/10/2021] [Indexed: 01/21/2023]
Abstract
The host immune responses to Staphylococcus epidermidis, a frequent cause of nosocomial infections, are not well understood. We have established a bath immersion model of this infection in zebrafish (Danio rerio) larvae. Macrophages play a primary role in the host immune response and are involved in clearance of infection in the larvae. S. epidermidis infection results in upregulation of tlr-2 There is marked inflammation characterized by heightened NF-κB signaling and elevation of several proinflammatory cytokines. There is rapid upregulation of il-1b and tnf-a transcripts, whereas an increase in il-6 levels is relatively more delayed. The IL-6 signaling pathway is further amplified by elevation of IL-6 signal transducer (il-6st) levels, which negatively correlates with miRNA dre-miR-142a-5p. Enhanced IL-6 signaling is protective to the host in this model as inhibition of the signaling pathway resulted in increased mortality upon S. epidermidis infection. Our study describes the host immune responses to S. epidermidis infection, establishes the importance of IL-6 signaling, and identifies a potential role of miR-142-5p-il-6st interaction in this infection model.
Collapse
Affiliation(s)
- P Thamarasseri Dhanagovind
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India; and
| | - Prabeer K Kujur
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India; and
| | | | - Sanjita Banerjee
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India; and
| |
Collapse
|
19
|
Infection of zebrafish larvae with human norovirus and evaluation of the in vivo efficacy of small-molecule inhibitors. Nat Protoc 2021; 16:1830-1849. [PMID: 33837302 DOI: 10.1038/s41596-021-00499-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 01/13/2021] [Indexed: 02/07/2023]
Abstract
We have recently established that human norovirus (HuNoV) replicates efficiently in zebrafish larvae after inoculation of a clinical sample into the yolk, providing a simple and robust in vivo system in which to study HuNoV. In this Protocol Extension, we present a detailed description of virus inoculation by microinjection, subsequent daily monitoring and harvesting of larvae, followed by viral RNA quantification. This protocol can be used to study viral replication of genogroup (G)I and GII HuNoVs in vivo within 3-4 d. Additionally, we describe how to evaluate the in vivo antiviral effect and toxicity of small molecules using HuNoV-infected zebrafish larvae, in multi-well plates and without the need for specific formulations. This constitutes a great advantage for drug discovery efforts, as no specific antivirals or vaccines currently exist to treat or prevent norovirus gastroenteritis.
Collapse
|
20
|
Pak B, Schmitt CE, Oh S, Kim JD, Choi W, Han O, Kim M, Kim MJ, Ham HJ, Kim S, Huh TL, Kim JI, Jin SW. Pax9 is essential for granulopoiesis but dispensable for erythropoiesis in zebrafish. Biochem Biophys Res Commun 2020; 534:359-366. [PMID: 33256983 DOI: 10.1016/j.bbrc.2020.11.077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/17/2020] [Indexed: 11/26/2022]
Abstract
Paired Box (Pax) gene family, a group of transcription regulators have been implicated in diverse physiological processes. However, their role during hematopoiesis which generate a plethora of blood cells remains largely unknown. Using a previously reported single cell transcriptomics data, we analyzed the expression of individual Pax family members in hematopoietic cells in zebrafish. We have identified that Pax9, which is an essential regulator for odontogenesis and palatogenesis, is selectively localized within a single cluster of the hematopoietic lineage. To further analyze the function of Pax9 in hematopoiesis, we generated two independent pax9 knock-out mutants using the CRISPR-Cas9 technique. We found that Pax9 appears to be an essential regulator for granulopoiesis but dispensable for erythropoiesis during development, as lack of pax9 selectively decreased the number of neutrophils with a concomitant decrease in the expression level of neutrophil markers. In addition, embryos, where pax9 was functionally disrupted by injecting morpholinos, failed to increase the number of neutrophils in response to pathogenic bacteria, suggesting that Pax9 is not only essential for developmental granulopoiesis but also emergency granulopoiesis. Due to the inability to initiate emergency granulopoiesis, innate immune responses were severely compromised in pax9 morpholino-mediated embryos, increasing their susceptibility and mortality. Taken together, our data indicate that Pax9 is essential for granulopoiesis and promotes innate immunity in zebrafish larvae.
Collapse
Affiliation(s)
- Boryeong Pak
- Cell Logistics Research Center and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Chris E Schmitt
- Yale Cardiovascular Research Center and Section of Cardiovascular Medicine, Dept. of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Sera Oh
- Cell Logistics Research Center and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Jun-Dae Kim
- Yale Cardiovascular Research Center and Section of Cardiovascular Medicine, Dept. of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA; Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, TX, USA
| | - Woosoung Choi
- Cell Logistics Research Center and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Orjin Han
- Cell Logistics Research Center and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Minjung Kim
- Cell Logistics Research Center and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Myoung-Jin Kim
- School of Life Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| | - Hyung-Jin Ham
- School of Life Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| | - Shanghyeon Kim
- Cell Logistics Research Center and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Tae-Lin Huh
- School of Life Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| | - Jae-Il Kim
- Cell Logistics Research Center and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Suk-Won Jin
- Cell Logistics Research Center and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea; Yale Cardiovascular Research Center and Section of Cardiovascular Medicine, Dept. of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA.
| |
Collapse
|
21
|
Koyama LAJ, Aranda-Díaz A, Su YH, Balachandra S, Martin JL, Ludington WB, Huang KC, O'Brien LE. Bellymount enables longitudinal, intravital imaging of abdominal organs and the gut microbiota in adult Drosophila. PLoS Biol 2020; 18:e3000567. [PMID: 31986129 PMCID: PMC7004386 DOI: 10.1371/journal.pbio.3000567] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 02/06/2020] [Accepted: 01/13/2020] [Indexed: 12/30/2022] Open
Abstract
Cell- and tissue-level processes often occur across days or weeks, but few imaging methods can capture such long timescales. Here, we describe Bellymount, a simple, noninvasive method for longitudinal imaging of the Drosophila abdomen at subcellular resolution. Bellymounted animals remain live and intact, so the same individual can be imaged serially to yield vivid time series of multiday processes. This feature opens the door to longitudinal studies of Drosophila internal organs in their native context. Exploiting Bellymount's capabilities, we track intestinal stem cell lineages and gut microbial colonization in single animals, revealing spatiotemporal dynamics undetectable by previously available methods.
Collapse
Affiliation(s)
- Leslie Ann Jaramillo Koyama
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California, United States of America.,Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Andrés Aranda-Díaz
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
| | - Yu-Han Su
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Shruthi Balachandra
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Judy Lisette Martin
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California, United States of America
| | - William B Ludington
- Department of Embryology, Carnegie Institution of Washington, Baltimore, Maryland, United States of America
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, California, United States of America.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America.,Chan Zuckerberg Biohub, San Francisco, California, United States of America
| | - Lucy Erin O'Brien
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
22
|
Rosowski EE. Determining macrophage versus neutrophil contributions to innate immunity using larval zebrafish. Dis Model Mech 2020; 13:13/1/dmm041889. [PMID: 31932292 PMCID: PMC6994940 DOI: 10.1242/dmm.041889] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The specific roles of the two major innate immune cell types – neutrophils and macrophages – in response to infection and sterile inflammation are areas of great interest. The larval zebrafish model of innate immunity, and the imaging capabilities it provides, is a source of new research and discoveries in this field. Multiple methods have been developed in larval zebrafish to specifically deplete functional macrophages or neutrophils. Each of these has pros and cons, as well as caveats, that often make it difficult to directly compare results from different studies. The purpose of this Review is to (1) explore the pros, cons and caveats of each of these immune cell-depleted models; (2) highlight and place into a broader context recent key findings on the specific functions of innate immune cells using these models; and (3) explore future directions in which immune cell depletion methods are being expanded. Summary: Macrophages and neutrophils are distinct innate immune cells with diverse roles in diverse inflammatory contexts. Recent research in larval zebrafish using cell-specific depletion methods has revealed new insights into these cells' functions.
Collapse
Affiliation(s)
- Emily E Rosowski
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
23
|
Torraca V, Kaforou M, Watson J, Duggan GM, Guerrero-Gutierrez H, Krokowski S, Hollinshead M, Clarke TB, Mostowy RJ, Tomlinson GS, Sancho-Shimizu V, Clements A, Mostowy S. Shigella sonnei infection of zebrafish reveals that O-antigen mediates neutrophil tolerance and dysentery incidence. PLoS Pathog 2019; 15:e1008006. [PMID: 31830135 PMCID: PMC6980646 DOI: 10.1371/journal.ppat.1008006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 01/24/2020] [Accepted: 11/01/2019] [Indexed: 01/03/2023] Open
Abstract
Shigella flexneri is historically regarded as the primary agent of bacillary dysentery, yet the closely-related Shigella sonnei is replacing S. flexneri, especially in developing countries. The underlying reasons for this dramatic shift are mostly unknown. Using a zebrafish (Danio rerio) model of Shigella infection, we discover that S. sonnei is more virulent than S. flexneri in vivo. Whole animal dual-RNAseq and testing of bacterial mutants suggest that S. sonnei virulence depends on its O-antigen oligosaccharide (which is unique among Shigella species). We show in vivo using zebrafish and ex vivo using human neutrophils that S. sonnei O-antigen can mediate neutrophil tolerance. Consistent with this, we demonstrate that O-antigen enables S. sonnei to resist phagolysosome acidification and promotes neutrophil cell death. Chemical inhibition or promotion of phagolysosome maturation respectively decreases and increases neutrophil control of S. sonnei and zebrafish survival. Strikingly, larvae primed with a sublethal dose of S. sonnei are protected against a secondary lethal dose of S. sonnei in an O-antigen-dependent manner, indicating that exposure to O-antigen can train the innate immune system against S. sonnei. Collectively, these findings reveal O-antigen as an important therapeutic target against bacillary dysentery, and may explain the rapidly increasing S. sonnei burden in developing countries. Shigella sonnei is predominantly responsible for dysentery in developed countries, and is replacing Shigella flexneri in areas undergoing economic development and improvements in water quality. Using Shigella infection of zebrafish (in vivo) and human neutrophils (in vitro), we discover that S. sonnei is more virulent than S. flexneri because of neutrophil tolerance mediated by its O-antigen oligosaccharide acquired from the environmental bacteria Plesiomonas shigelloides. To inspire new approaches for S. sonnei control, we show that increased phagolysosomal acidification or innate immune training can promote S. sonnei clearance by neutrophils in vivo. These findings have major implications for our evolutionary understanding of Shigella, and may explain why exposure to P. shigelloides in low and middle-income countries (LMICs) can protect against dysentery incidence.
Collapse
Affiliation(s)
- Vincenzo Torraca
- Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Myrsini Kaforou
- Department of Paediatrics, Division of Medicine, Imperial College London, London, United Kingdom
| | - Jayne Watson
- Faculty of Natural Sciences, Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Gina M. Duggan
- Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Hazel Guerrero-Gutierrez
- Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Sina Krokowski
- Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Michael Hollinshead
- Division of Virology, Department of Pathology, Cambridge University, Cambridge, United Kingdom
| | - Thomas B. Clarke
- Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Rafal J. Mostowy
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
- Faculty of Medicine, School of Public Health, Imperial College London, London, United Kingdom
| | - Gillian S. Tomlinson
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Vanessa Sancho-Shimizu
- Department of Paediatrics, Division of Medicine, Imperial College London, London, United Kingdom
- Department of Virology, Division of Medicine, Imperial College London, London, United Kingdom
| | - Abigail Clements
- Faculty of Natural Sciences, Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Serge Mostowy
- Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
- * E-mail:
| |
Collapse
|
24
|
The Case for Modeling Human Infection in Zebrafish. Trends Microbiol 2019; 28:10-18. [PMID: 31604611 DOI: 10.1016/j.tim.2019.08.005] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/19/2019] [Accepted: 08/16/2019] [Indexed: 12/25/2022]
Abstract
Zebrafish (Danio rerio) larvae are widely recognized for studying host-pathogen interactions in vivo because of their optical transparency, genetic manipulability, and translational potential. The development of the zebrafish immune system is well understood, thereby use of larvae enables investigation solely in the context of innate immunity. As a result, infection of zebrafish with natural fish pathogens including Mycobacterium marinum has significantly advanced our understanding of bacterial pathogenesis and vertebrate host defense. However, new work using a variety of human pathogens (bacterial, viral, and fungal) has illuminated the versatility of the zebrafish infection model, revealing unexpected and important concepts underlying infectious disease. We propose that this knowledge can inform studies in higher animal models and help to develop treatments to combat human infection.
Collapse
|
25
|
Torraca V, Gomes MC, Sarris M, Mostowy S. Meeting report: Zebrafish Infection and Immunity 2019. Lab Anim (NY) 2019; 48:284-287. [PMID: 31537936 DOI: 10.1038/s41684-019-0400-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Vincenzo Torraca
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Margarida C Gomes
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Milka Sarris
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Serge Mostowy
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK.
| |
Collapse
|
26
|
Langevin C, Boudinot P, Collet B. IFN Signaling in Inflammation and Viral Infections: New Insights from Fish Models. Viruses 2019; 11:v11030302. [PMID: 30917538 PMCID: PMC6466407 DOI: 10.3390/v11030302] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/22/2019] [Accepted: 03/23/2019] [Indexed: 12/20/2022] Open
Abstract
The overarching structure of the type I interferon (IFN) system is conserved across vertebrates. However, the variable numbers of whole genome duplication events during fish evolution offer opportunities for the expansion, diversification, and new functionalization of the genes that are involved in antiviral immunity. In this review, we examine how fish models provide new insights about the implication of virus-driven inflammation in immunity and hematopoiesis. Mechanisms that have been discovered in fish, such as the strong adjuvant effect of type I IFN that is used with DNA vaccination, constitute good models to understand how virus-induced inflammatory mechanisms can interfere with adaptive responses. We also comment on new discoveries regarding the role of pathogen-induced inflammation in the development and guidance of hematopoietic stem cells in zebrafish. These findings raise issues about the potential interferences of viral infections with the establishment of the immune system. Finally, the recent development of genome editing provides new opportunities to dissect the roles of the key players involved in the antiviral response in fish, hence enhancing the power of comparative approaches.
Collapse
Affiliation(s)
- Christelle Langevin
- INRA, Virologie et Immunologie Moléculaires, Université Paris-Saclay, 78352 Jouy-en-Josas, France.
| | - Pierre Boudinot
- INRA, Virologie et Immunologie Moléculaires, Université Paris-Saclay, 78352 Jouy-en-Josas, France.
| | - Bertrand Collet
- INRA, Virologie et Immunologie Moléculaires, Université Paris-Saclay, 78352 Jouy-en-Josas, France.
| |
Collapse
|
27
|
Abstract
Humoral regulation by ligand/receptor interactions is a fundamental feature of vertebrate hematopoiesis. Zebrafish are an established vertebrate animal model of hematopoiesis, sharing with mammals conserved genetic, molecular and cell biological regulatory mechanisms. This comprehensive review considers zebrafish hematopoiesis from the perspective of the hematopoietic growth factors (HGFs), their receptors and their actions. Zebrafish possess multiple HGFs: CSF1 (M-CSF) and CSF3 (G-CSF), kit ligand (KL, SCF), erythropoietin (EPO), thrombopoietin (THPO/TPO), and the interleukins IL6, IL11, and IL34. Some ligands and/or receptor components have been duplicated by various mechanisms including the teleost whole genome duplication, adding complexity to the ligand/receptor interactions possible, but also providing examples of several different outcomes of ligand and receptor subfunctionalization or neofunctionalization. CSF2 (GM-CSF), IL3 and IL5 and their receptors are absent from zebrafish. Overall the humoral regulation of hematopoiesis in zebrafish displays considerable similarity with mammals, which can be applied in biological and disease modelling research.
Collapse
Affiliation(s)
- Vahid Pazhakh
- a Australian Regenerative Medicine Institute, Monash University , Clayton , Australia
| | - Graham J Lieschke
- a Australian Regenerative Medicine Institute, Monash University , Clayton , Australia
| |
Collapse
|