1
|
Olson EG, Dittoe DK, Chatman CC, Majumder ELW, Ricke SC. Campylobacter jejuni and casein hydrolysate addition: Impact on poultry in vitro cecal microbiota and metabolome. PLoS One 2024; 19:e0303856. [PMID: 38787822 PMCID: PMC11125459 DOI: 10.1371/journal.pone.0303856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
This study investigates the impact of casein hydrolysates on the poultry ceca inoculated with Campylobacter focusing on microbial molecular preferences for different protein sources in the presence of Campylobacter jejuni. Three casein sources (intact casein (IN), casein enzyme hydrolysate (EH), and casein acid hydrolysate (AH)) were introduced to cecal contents in combination with inoculated C. jejuni in an in vitro model system incubated for 48 h at 42°C under microaerophilic conditions. Samples were collected at 0, 24, and 48 h. Genomic DNA was extracted and amplified using custom dual-indexed primers, followed by sequencing on an Illumina MiSeq platform. The obtained sequencing data were then analyzed via QIIME2-2021.11. Metabolite extracts were analyzed with ultra-high-performance liquid orbitrap chromatography-mass spectrometry (UHPLC-MS). Statistical analysis of metabolites was conducted using MetaboAnalyst 5.0, while functional analysis was performed using Mummichog 2.0 with a significance threshold set at P < 0.00001. DNA sequencing and metabolomic analyses revealed that C. jejuni was most abundant in the EH group. Microbial diversity and richness improved in casein supplemented groups, with core microbial differences observed, compared to non-supplemented groups. Vitamin B-associated metabolites significantly increased in the supplemented groups, displaying distinct patterns in vitamin B6 and B9 metabolism between EH and AH groups (P < 0.05). Faecalibacterium and Phascolarctobacterium were associated with AH and EH groups, respectively. These findings suggest microbial interactions in the presence of C. jejuni and casein supplementation are influenced by microbial community preferences for casein hydrolysates impacting B vitamin production and shaping competitive dynamics within the cecal microbial community. These findings underscore the potential of nutritional interventions to modulate the poultry GIT microbiota for improved health outcomes.
Collapse
Affiliation(s)
- E. G. Olson
- Department of Animal and Dairy Sciences, Meat Science and Animal Biologics Discovery Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - D. K. Dittoe
- Department of Animal Science, University of Wyoming, Laramie, Wyoming, United States of America
| | - C. C. Chatman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - E. L.-W. Majumder
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - S. C. Ricke
- Department of Animal and Dairy Sciences, Meat Science and Animal Biologics Discovery Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
2
|
Chen Y, Feng S, Li Y, Zhang C, Chao G, Zhang S. Gut microbiota and intestinal immunity-A crosstalk in irritable bowel syndrome. Immunology 2024; 172:1-20. [PMID: 38174581 DOI: 10.1111/imm.13749] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
Irritable bowel syndrome (IBS), one of the most prevalent functional gastrointestinal disorders, is characterized by recurrent abdominal pain and abnormal defecation habits, resulting in a severe healthcare burden worldwide. The pathophysiological mechanisms of IBS are multi-factorially involved, including food antigens, visceral hypersensitivity reactions, and the brain-gut axis. Numerous studies have found that gut microbiota and intestinal mucosal immunity play an important role in the development of IBS in crosstalk with multiple mechanisms. Therefore, based on existing evidence, this paper elaborates that the damage and activation of intestinal mucosal immunity and the disturbance of gut microbiota are closely related to the progression of IBS. Combined with the application prospect, it also provides references for further in-depth exploration and clinical practice.
Collapse
Affiliation(s)
- Yuxuan Chen
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuyan Feng
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ying Li
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chi Zhang
- Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, China
| | - Guanqun Chao
- Department of General Practice, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, China
| | - Shuo Zhang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
3
|
Imbrea AM, Balta I, Dumitrescu G, McCleery D, Pet I, Iancu T, Stef L, Corcionivoschi N, Liliana PC. Exploring the Contribution of Campylobacter jejuni to Post-Infectious Irritable Bowel Syndrome: A Literature Review. APPLIED SCIENCES 2024; 14:3373. [DOI: 10.3390/app14083373] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
This comprehensive review investigates the specific impact of the foodborne pathogen Campylobacter jejuni (C. jejuni) on gastrointestinal health, focusing on its connection to post-infectious irritable bowel syndrome (PI-IBS). This review examines the pathogen’s pathophysiology, clinical implications and epidemiological trends using recent research and data to highlight its prevalence and association with PI-IBS. A detailed literature analysis synthesizes current research to illuminate Campylobacter’s long-lasting effects on gut microbiota and intestinal function. It provides a detailed analysis of the literature to shed light on C. jejuni’s long-term impact on gut microbiota and intestinal function. The findings suggest the need for multifaceted prevention and treatment approaches considering individual, microbial and epidemiological factors, thus contributing to a more nuanced understanding of PI-IBS following C. jejuni infection.
Collapse
Affiliation(s)
- Ana-Maria Imbrea
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Michael I from Timisoara, 300645 Timisoara, Romania
| | - Igori Balta
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Michael I from Timisoara, 300645 Timisoara, Romania
| | - Gabi Dumitrescu
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Michael I from Timisoara, 300645 Timisoara, Romania
| | - David McCleery
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast BT4 3SD, UK
| | - Ioan Pet
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Michael I from Timisoara, 300645 Timisoara, Romania
| | - Tiberiu Iancu
- Faculty of Management and Rural Tourism, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania
| | - Lavinia Stef
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Michael I from Timisoara, 300645 Timisoara, Romania
| | - Nicolae Corcionivoschi
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Michael I from Timisoara, 300645 Timisoara, Romania
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast BT4 3SD, UK
- Academy of Romanian Scientists, Ilfov Street, No. 3, 050044 Bucharest, Romania
| | - Petculescu-Ciochina Liliana
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Michael I from Timisoara, 300645 Timisoara, Romania
| |
Collapse
|
4
|
Kandari A, Odat MA, Alzaid F, Scott KP. Biotics and bacterial function: impact on gut and host health. THE ISME JOURNAL 2024; 18:wrae226. [PMID: 39499657 PMCID: PMC11631128 DOI: 10.1093/ismejo/wrae226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/08/2024] [Accepted: 11/04/2024] [Indexed: 11/07/2024]
Abstract
The human gut microbiota, the vast community of microbes inhabiting the gastrointestinal tract, plays a pivotal role in maintaining health. Bacteria are the most abundant organism, and the composition of bacterial communities is strongly influenced by diet. Gut bacteria can degrade complex dietary carbohydrates to produce bioactive compounds such as short-chain fatty acids. Such products influence health, by acting on systemic metabolism, or by virtue of anti-inflammatory or anti-carcinogenic properties. The composition of gut bacteria can be altered through overgrowth of enteropathogens (e.g. Campylobacter, Salmonella spp.), leading to dysbiosis of the gut ecosystem, with some species thriving under the altered conditions whereas others decline. Various "biotics" strategies, including prebiotics, probiotics, synbiotics, and postbiotics, contribute to re-establishing balance within the gut microbial ecosystem conferring health benefits. Prebiotics enhance growth of beneficial members of the resident microbial community and can thus prevent pathogen growth by competitive exclusion. Specific probiotics can actively inhibit the growth of pathogens, either through the production of bacteriocins or simply by reducing the gastrointestinal pH making conditions less favorable for pathogen growth. This review discusses the importance of a balanced gut ecosystem, and strategies to maintain it that contribute to human health.
Collapse
Affiliation(s)
- Anwar Kandari
- Dasman Diabetes Institute, Al-Soor Street, Dasman, 15462, Kuwait
- Ministry of Health, Sulaibkhat, Jamal Abdel Nasser Street, PO Box 5, 13001, Kuwait
| | - Ma’en Al Odat
- Medical Laboratory Science, Mutah University, Mutah, Karak 61710, Jordan
| | - Fawaz Alzaid
- Dasman Diabetes Institute, Al-Soor Street, Dasman, 15462, Kuwait
- INSERM UMR-S1151, CNRS UMR-S8253, Université Paris Cité, Institut Necker Enfants Malades, Paris, France
| | - Karen P Scott
- Gut Microbiology Group, Rowett Institute, University of Aberdeen, Aberdeen AB25 2ZD, UK
| |
Collapse
|
5
|
Calvigioni M, Mazzantini D, Celandroni F, Ghelardi E. Animal and In Vitro Models as Powerful Tools to Decipher the Effects of Enteric Pathogens on the Human Gut Microbiota. Microorganisms 2023; 12:67. [PMID: 38257894 PMCID: PMC10818369 DOI: 10.3390/microorganisms12010067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Examining the interplay between intestinal pathogens and the gut microbiota is crucial to fully comprehend the pathogenic role of enteropathogens and their broader impact on human health. Valid alternatives to human studies have been introduced in laboratory practice to evaluate the effects of infectious agents on the gut microbiota, thereby exploring their translational implications in intestinal functionality and overall health. Different animal species are currently used as valuable models for intestinal infections. In addition, considering the recent advances in bioengineering, futuristic in vitro models resembling the intestinal environment are also available for this purpose. In this review, the impact of the main human enteropathogens (i.e., Clostridioides difficile, Campylobacter jejuni, diarrheagenic Escherichia coli, non-typhoidal Salmonella enterica, Shigella flexneri and Shigella sonnei, Vibrio cholerae, and Bacillus cereus) on intestinal microbial communities is summarized, with specific emphasis on results derived from investigations employing animal and in vitro models.
Collapse
Affiliation(s)
| | | | | | - Emilia Ghelardi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56127 Pisa, Italy; (M.C.)
| |
Collapse
|
6
|
Xu X, Rothrock MJ, Mishra A, Kumar GD, Mishra A. Relationship of the Poultry Microbiome to Pathogen Colonization, Farm Management, Poultry Production, and Foodborne Illness Risk Assessment. J Food Prot 2023; 86:100169. [PMID: 37774838 DOI: 10.1016/j.jfp.2023.100169] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023]
Abstract
Despite the continuous progress in food science and technology, the global burden of foodborne illnesses remains substantial, with pathogens in food causing millions of infections each year. Traditional microbiological culture methods are inadequate in detecting the full spectrum of these microorganisms, highlighting the need for more comprehensive detection strategies. This review paper aims to elucidate the relationship between foodborne pathogen colonization and the composition of the poultry microbiome, and how this knowledge can be used for improved food safety. Our review highlights that the relationship between pathogen colonization varies across different sections of the poultry microbiome. Further, our review suggests that the microbiome profile of poultry litter, farm soil, and farm dust may serve as potential indicators of the farm environment's food safety issues. We also agree that the microbiome of processed chicken samples may reveal potential pathogen contamination and food quality issues. In addition, utilizing predictive modeling techniques on the collected microbiome data, we suggest establishing correlations between particular taxonomic groups and the colonization of pathogens, thus providing insights into food safety, and offering a comprehensive overview of the microbial community. In conclusion, this review underscores the potential of microbiome analysis as a powerful tool in food safety, pathogen detection, and risk assessment.
Collapse
Affiliation(s)
- Xinran Xu
- Department of Food Science and Technology, University of Georgia, Athens, GA, USA
| | - Michael J Rothrock
- Egg Safety and Quality Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, Athens, GA, USA
| | - Aditya Mishra
- Department of Statistics, University of Georgia, Athens, GA, USA
| | | | - Abhinav Mishra
- Department of Food Science and Technology, University of Georgia, Athens, GA, USA.
| |
Collapse
|
7
|
Lupu VV, Ghiciuc CM, Stefanescu G, Mihai CM, Popp A, Sasaran MO, Bozomitu L, Starcea IM, Adam Raileanu A, Lupu A. Emerging role of the gut microbiome in post-infectious irritable bowel syndrome: A literature review. World J Gastroenterol 2023; 29:3241-3256. [PMID: 37377581 PMCID: PMC10292139 DOI: 10.3748/wjg.v29.i21.3241] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/04/2023] [Accepted: 05/08/2023] [Indexed: 06/01/2023] Open
Abstract
Post-infectious irritable bowel syndrome (PI-IBS) is a particular type of IBS, with symptom onset after an acute episode of infectious gastroenteritis. Despite infectious disease resolution and clearance of the inciting pathogen agent, 10% of patients will develop PI-IBS. In susceptible individuals, the exposure to pathogenic organisms leads to a marked shift in the gut microbiota with prolonged changes in host-microbiota interactions. These changes can affect the gut-brain axis and the visceral sensitivity, disrupting the intestinal barrier, altering neuromuscular function, triggering persistent low inflammation, and sustaining the onset of IBS symptoms. There is no specific treatment strategy for PI-IBS. Different drug classes can be used to treat PI-IBS similar to patients with IBS in general, guided by their clinical symptoms. This review summarizes the current evidence for microbial dysbiosis in PI-IBS and analyzes the available data regarding the role of the microbiome in mediating the central and peripheral dysfunctions that lead to IBS symptoms. It also discusses the current state of evidence on therapies targeting the microbiome in the management of PI-IBS. The results of microbial modulation strategies used in relieving IBS symptomatology are encouraging. Several studies on PI-IBS animal models reported promising results. However, published data that describe the efficacy and safety of microbial targeted therapy in PI-IBS patients are scarce. Future research is required.
Collapse
Affiliation(s)
- Vasile Valeriu Lupu
- Faculty of General Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Cristina Mihaela Ghiciuc
- Faculty of General Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Gabriela Stefanescu
- Faculty of General Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | | | - Alina Popp
- Faculty of General Medicine, “Carol Davila” University of Medicine and Pharmacy, Bucharest 020021, Romania
| | - Maria Oana Sasaran
- Faculty of General Medicine, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, Targu Mures 540142, Romania
| | - Laura Bozomitu
- Faculty of General Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Iuliana Magdalena Starcea
- Faculty of General Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Anca Adam Raileanu
- Faculty of General Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Ancuta Lupu
- Faculty of General Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| |
Collapse
|
8
|
Yorki S, Shea T, Cuomo CA, Walker BJ, LaRocque RC, Manson AL, Earl AM, Worby CJ. Comparison of long- and short-read metagenomic assembly for low-abundance species and resistance genes. Brief Bioinform 2023; 24:bbad050. [PMID: 36804804 PMCID: PMC10025444 DOI: 10.1093/bib/bbad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/13/2023] [Accepted: 01/26/2023] [Indexed: 02/23/2023] Open
Abstract
Recent technological and computational advances have made metagenomic assembly a viable approach to achieving high-resolution views of complex microbial communities. In previous benchmarking, short-read (SR) metagenomic assemblers had the highest accuracy, long-read (LR) assemblers generated the most contiguous sequences and hybrid (HY) assemblers balanced length and accuracy. However, no assessments have specifically compared the performance of these assemblers on low-abundance species, which include clinically relevant organisms in the gut. We generated semi-synthetic LR and SR datasets by spiking small and increasing amounts of Escherichia coli isolate reads into fecal metagenomes and, using different assemblers, examined E. coli contigs and the presence of antibiotic resistance genes (ARGs). For ARG assembly, although SR assemblers recovered more ARGs with high accuracy, even at low coverages, LR assemblies allowed for the placement of ARGs within longer, E. coli-specific contigs, thus pinpointing their taxonomic origin. HY assemblies identified resistance genes with high accuracy and had lower contiguity than LR assemblies. Each assembler type's strengths were maintained even when our isolate was spiked in with a competing strain, which fragmented and reduced the accuracy of all assemblies. For strain characterization and determining gene context, LR assembly is optimal, while for base-accurate gene identification, SR assemblers outperform other options. HY assembly offers contiguity and base accuracy, but requires generating data on multiple platforms, and may suffer high misassembly rates when strain diversity exists. Our results highlight the trade-offs associated with each approach for recovering low-abundance taxa, and that the optimal approach is goal-dependent.
Collapse
Affiliation(s)
- Sosie Yorki
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Terrance Shea
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Christina A Cuomo
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bruce J Walker
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Applied Invention, LLC, Cambridge, MA, USA
| | - Regina C LaRocque
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Abigail L Manson
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ashlee M Earl
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Colin J Worby
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
9
|
Jalanka J, Gunn D, Singh G, Krishnasamy S, Lingaya M, Crispie F, Finnegan L, Cotter P, James L, Nowak A, Major G, Spiller RC. Postinfective bowel dysfunction following Campylobacter enteritis is characterised by reduced microbiota diversity and impaired microbiota recovery. Gut 2023; 72:451-459. [PMID: 36171082 PMCID: PMC9933158 DOI: 10.1136/gutjnl-2021-326828] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 07/14/2022] [Indexed: 12/08/2022]
Abstract
OBJECTIVES Persistent bowel dysfunction following gastroenteritis (postinfectious (PI)-BD) is well recognised, but the associated changes in microbiota remain unclear. Our aim was to define these changes after gastroenteritis caused by a single organism, Campylobacter jejuni, examining the dynamic changes in the microbiota and the impact of antibiotics. DESIGN A single-centre cohort study of 155 patients infected with Campylobacter jejuni. Features of the initial illness as well as current bowel symptoms and the intestinal microbiota composition were recorded soon after infection (visit 1, <40 days) as well as 40-60 days and >80 days later (visits 2 and 3). Microbiota were assessed using 16S rRNA sequencing. RESULTS PI-BD was found in 22 of the 99 patients who completed the trial. The cases reported significantly looser stools, with more somatic and gastrointestinal symptoms. Microbiota were assessed in 22 cases who had significantly lower diversity and altered microbiota composition compared with the 44 age-matched and sex-matched controls. Moreover 60 days after infection, cases showed a significantly lower abundance of 23 taxa including phylum Firmicutes, particularly in the order Clostridiales and the family Ruminoccocaceae, increased Proteobacteria abundance and increased levels of Fusobacteria and Gammaproteobacteria. The microbiota changes were linked with diet; higher fibre consumption being associated with lower levels of Gammaproteobacteria. CONCLUSION The microbiota of PI-BD patients appeared more disturbed by the initial infection compared with the microbiota of those who recovered. The prebiotic effect of high fibre diets may inhibit some of the disturbances seen in PI-BD. TRIAL REGISTRATION NUMBER NCT02040922.
Collapse
Affiliation(s)
- Jonna Jalanka
- Nottingham Digestive Diseases Centre and NIHR Nottingham Biomedical Research Centre at Nottingham University Hospitals NHS Trust, the University of Nottingham, Nottingham, UK.,Human Microbiome Research Program, University of Helsinki Faculty of Medicine, Helsinki, Finland
| | - David Gunn
- Nottingham Digestive Diseases Centre and NIHR Nottingham Biomedical Research Centre at Nottingham University Hospitals NHS Trust, the University of Nottingham, Nottingham, UK
| | - Gulzar Singh
- Nottingham Digestive Diseases Centre and NIHR Nottingham Biomedical Research Centre at Nottingham University Hospitals NHS Trust, the University of Nottingham, Nottingham, UK
| | - Shanthi Krishnasamy
- Nottingham Digestive Diseases Centre and NIHR Nottingham Biomedical Research Centre at Nottingham University Hospitals NHS Trust, the University of Nottingham, Nottingham, UK.,Department of Dietetics, Faculty of Health Sciences, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Melanie Lingaya
- Nottingham Digestive Diseases Centre and NIHR Nottingham Biomedical Research Centre at Nottingham University Hospitals NHS Trust, the University of Nottingham, Nottingham, UK
| | - Fiona Crispie
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland.,APC Microbiome Ireland, Cork, Ireland
| | - Laura Finnegan
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland.,APC Microbiome Ireland, Cork, Ireland
| | - Paul Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland.,APC Microbiome Ireland, Cork, Ireland
| | - Louise James
- Nottingham Digestive Diseases Centre and NIHR Nottingham Biomedical Research Centre at Nottingham University Hospitals NHS Trust, the University of Nottingham, Nottingham, UK
| | - Adam Nowak
- Nottingham Digestive Diseases Centre and NIHR Nottingham Biomedical Research Centre at Nottingham University Hospitals NHS Trust, the University of Nottingham, Nottingham, UK
| | - Giles Major
- Nottingham Digestive Diseases Centre and NIHR Nottingham Biomedical Research Centre at Nottingham University Hospitals NHS Trust, the University of Nottingham, Nottingham, UK
| | - Robin C Spiller
- Nottingham Digestive Diseases Centre and NIHR Nottingham Biomedical Research Centre at Nottingham University Hospitals NHS Trust, the University of Nottingham, Nottingham, UK
| |
Collapse
|
10
|
Ma C, Azad MAK, Tang W, Zhu Q, Wang W, Gao Q, Kong X. Maternal probiotics supplementation improves immune and antioxidant function in suckling piglets via modifying gut microbiota. J Appl Microbiol 2022; 133:515-528. [PMID: 35396768 DOI: 10.1111/jam.15572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/02/2022] [Accepted: 04/04/2022] [Indexed: 11/28/2022]
Abstract
AIM Probiotics could improve the health, growth and development of host or their fetuses/offspring via regulating gut microbiota. The present study was conducted to determine the effects of maternal probiotics supplementation on gut microbiota and metabolites of sows and their suckling piglets, as well as plasma biochemical parameters, oxidative/anti-oxidative indexes, and inflammatory cytokine levels of suckling piglets. METHODS AND RESULTS A total of 32 pregnant Bama mini-pigs were selected and randomly divided into two groups. The sows were fed a basal diet (control group) or a basal diet supplemented with probiotics (probiotics group) from mating to day 21 of lactation. Samples from sows were collected on day 105 of pregnancy and day 21 of lactation and from piglets on day 21 of lactation. The results showed that probiotics supplementation increased the fecal abundances of Ruminococcus, Bacteroides, and Anaeroplasma and decreased Tenericutes on day 105 of pregnancy, while increased the abundances of Actinobacteria and Anaerostipes and decreased Proteobacteria and Desulfovibrio on day 21 of lactation. In addition, probiotics supplementation decreased the fecal levels of tryptamine, putrescine, and cadaverine on day 105 of pregnancy and isovalerate and skatole on day 21 of lactation, while increased butyrate level on day 21 of lactation. Further studies showed that maternal probiotics supplementation decreased the plasma levels of AMM, TC, LDL-C, Ala, Tau, MDA, H2 O2 , IL-1β, IL-2, IL-6, and IFN-α of suckling piglets. Moreover, maternal probiotics supplementation increased the abundances of Deferribacteres, Fusobacteria, and Fusobacterium, while decreased Anaerostipes in piglet's colon. The Spearman's correlation analysis revealed a potential link between gut microbiota alterations and their metabolites. CONCLUSIONS Dietary probiotics supplementation during pregnancy and lactation periods could improve sow status, alleviate oxidative stress and inflammation response, and improve nutrient metabolism of piglets by altering the gut microbiota.
Collapse
Affiliation(s)
- Cui Ma
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Md Abul Kalam Azad
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wu Tang
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qian Zhu
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wei Wang
- The Institute of Cell Transplantion and Gene Therapy, Centra-South University, the Engineering Center for Xenotransplantation, Changsha, Hunan, China
| | - Qiankun Gao
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Xiangfeng Kong
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Shang J, Yang S, Meng X. Correlations between oligosaccharides in breast milk and the composition of the gut microbiome in breastfed infants. J Dairy Sci 2022; 105:4818-4828. [DOI: 10.3168/jds.2021-20928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 02/16/2022] [Indexed: 11/19/2022]
|
12
|
Recurrent Campylobacter jejuni Infection in an Immunodeficient Patient Treated with Repeated Faecal Microbiota Transplant (FMT)—A Case Report. Infect Dis Rep 2022; 14:56-62. [PMID: 35076517 PMCID: PMC8788277 DOI: 10.3390/idr14010007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 12/29/2021] [Accepted: 01/10/2022] [Indexed: 02/01/2023] Open
Abstract
There is limited evidence to guide successful treatment of recurrent Campylobacter infection in patients with common variable immunodeficiency (CVID) already managed on regular immunoglobulin therapy. The role of faecal microbiota transplant (FMT) is uncertain. We report a case of recurrent Campylobacter jejuni infection in a patient with CVID treated with repeated FMT with 18 months of symptom resolution prior to relapse.
Collapse
|
13
|
Johansson C, Kampmann C, Nilsson A, Dicksved J, Engstrand L, Rautelin H. Genomic and Phenotypic Characteristics in Geographically Separated Clinical Campylobacter jejuni ST353CC Isolates. Microorganisms 2021; 9:2540. [PMID: 34946141 PMCID: PMC8709058 DOI: 10.3390/microorganisms9122540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/25/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022] Open
Abstract
Campylobacter jejuni fecal isolates of eight international travelers, 5 of which had traveled to Ecuador and 3 to Bangladesh, were characterized, and the possible relationship between bacterial traits and clinical symptoms was further analyzed. All eight isolates belonged to the same Multi-Locus Sequence Type clonal complex (ST353CC). The three isolates from Bangladesh were all of the same sequence type (ST-9438), and when compared to isolates of various other sequence types, they had a larger quantity of unique genetic content, higher expression levels of some putative virulence genes involved in adhesion and invasion (flpA, ciaB and iamA), and showed higher adhesion levels to human HT-29 colon cancer cells in an in vitro infection model. However, in contrast to the seemingly higher pathogenic potential of these bacterial isolates, travelers infected with the ST-9438 isolates had no or only very mild symptoms, whereas the other individuals, whose bacterial isolates seemed to have less pathogenic potential, generally reported severe symptoms. When studying the 16S rRNA gene-based fecal microbiota in samples collected prior to travel, there was an individual variation in the relative abundance of the three major bacterial phyla Actinobacteria, Bacteroidetes and Firmicutes, but there were no associations between composition and diversity of microbiota and development of severe symptoms from the infection. It remains to be confirmed by larger studies whether an individual's characteristics such as gut microbiota, might be related to the severity of symptoms in Campylobacter infections.
Collapse
Affiliation(s)
- Cecilia Johansson
- Clinical Microbiology, Department of Medical Sciences, Uppsala University, SE-75185 Uppsala, Sweden; (C.J.); (C.K.); (A.N.)
| | - Christian Kampmann
- Clinical Microbiology, Department of Medical Sciences, Uppsala University, SE-75185 Uppsala, Sweden; (C.J.); (C.K.); (A.N.)
| | - Anna Nilsson
- Clinical Microbiology, Department of Medical Sciences, Uppsala University, SE-75185 Uppsala, Sweden; (C.J.); (C.K.); (A.N.)
| | - Johan Dicksved
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden;
| | - Lars Engstrand
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, SE-17177 Stockholm, Sweden;
| | - Hilpi Rautelin
- Clinical Microbiology, Department of Medical Sciences, Uppsala University, SE-75185 Uppsala, Sweden; (C.J.); (C.K.); (A.N.)
| |
Collapse
|
14
|
Nothaft H, Perez-Muñoz ME, Yang T, Murugan AVM, Miller M, Kolarich D, Plastow GS, Walter J, Szymanski CM. Improving Chicken Responses to Glycoconjugate Vaccination Against Campylobacter jejuni. Front Microbiol 2021; 12:734526. [PMID: 34867850 PMCID: PMC8637857 DOI: 10.3389/fmicb.2021.734526] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/04/2021] [Indexed: 01/03/2023] Open
Abstract
Campylobacter jejuni is a common cause of diarrheal disease worldwide. Human infection typically occurs through the ingestion of contaminated poultry products. We previously demonstrated that an attenuated Escherichia coli live vaccine strain expressing the C. jejuni N-glycan on its surface reduced the Campylobacter load in more than 50% of vaccinated leghorn and broiler birds to undetectable levels (responder birds), whereas the remainder of the animals was still colonized (non-responders). To understand the underlying mechanism, we conducted three vaccination and challenge studies using 135 broiler birds and found a similar responder/non-responder effect. Subsequent genome-wide association studies (GWAS), analyses of bird sex and levels of vaccine-induced IgY responses did not correlate with the responder versus non-responder phenotype. In contrast, antibodies isolated from responder birds displayed a higher Campylobacter-opsonophagocytic activity when compared to antisera from non-responder birds. No differences in the N-glycome of the sera could be detected, although minor changes in IgY glycosylation warrant further investigation. As reported before, the composition of the microbiota, particularly levels of OTU classified as Clostridium spp., Ruminococcaceae and Lachnospiraceae are associated with the response. Transplantation of the cecal microbiota of responder birds into new birds in combination with vaccination resulted in further increases in vaccine-induced antigen-specific IgY responses when compared to birds that did not receive microbiota transplants. Our work suggests that the IgY effector function and microbiota contribute to the efficacy of the E. coli live vaccine, information that could form the basis for the development of improved vaccines targeted at the elimination of C. jejuni from poultry.
Collapse
Affiliation(s)
- Harald Nothaft
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Maria Elisa Perez-Muñoz
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Tianfu Yang
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Abarna V M Murugan
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, QLD, Australia
| | | | - Daniel Kolarich
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, QLD, Australia.,ARC Centre of Excellence for Nanoscale BioPhotonics, Griffith University, Southport, QLD, Australia
| | - Graham S Plastow
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB, Canada.,Livestock Gentec, Edmonton, AB, Canada
| | - Jens Walter
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Christine M Szymanski
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada.,Department of Microbiology and Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| |
Collapse
|
15
|
Changes to human faecal microbiota after international travel. Travel Med Infect Dis 2021; 44:102199. [PMID: 34781018 DOI: 10.1016/j.tmaid.2021.102199] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND The aim was to investigate whether travelling to less-resourced destinations influences the composition of faecal microbiota in generally healthy adults. METHOD In this prospective observational study, 47 adults (median age, 24 years; 73% females) travelled from Sweden to distant destinations for 1-12 weeks. Five faecal samples, two before and three after travel, were analysed by 16S amplicon massive parallel sequencing. Subjects had taken no antibiotics within three months of each sampling. RESULTS The overall composition of faecal microbiota was not affected by travel. However, when looking at the relative abundance of individual bacterial taxa, Enterobacteriaceae demonstrated a 10-fold increase immediately after the trip as compared to the samples taken before travelling. Conversely, the relative abundance of Christensenellaceae had decreased equally much. Both these changes were reversible within nine weeks. CONCLUSIONS International travel, even to less-resourced countries, did not appear to alter the overall diversity of human faecal microbiota as studied here after travelling. However, Enterobacteriaceae bacteria, often associated with infection, inflammation, and antibiotic resistance, showed dramatically elevated levels, and Christensenellaceae, frequently associated with healthy conditions, demonstrated remarkably declined levels in relative abundance as detected immediately after travel. Both these changes returned to original pre-travel levels within nine weeks.
Collapse
|
16
|
Evidence of MHC class I and II influencing viral and helminth infection via the microbiome in a non-human primate. PLoS Pathog 2021; 17:e1009675. [PMID: 34748618 PMCID: PMC8601626 DOI: 10.1371/journal.ppat.1009675] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 11/18/2021] [Accepted: 10/05/2021] [Indexed: 01/04/2023] Open
Abstract
Until recently, the study of major histocompability complex (MHC) mediated immunity has focused on the direct link between MHC diversity and susceptibility to parasite infection. However, MHC genes can also influence host health indirectly through the sculpting of the bacterial community that in turn shape immune responses. We investigated the links between MHC class I and II gene diversity gut microbiome diversity and micro- (adenovirus, AdV) and macro- (helminth) parasite infection probabilities in a wild population of non-human primates, mouse lemurs of Madagascar. This setup encompasses a plethora of underlying interactions between parasites, microbes and adaptive immunity in natural populations. Both MHC classes explained shifts in microbiome composition and the effect was driven by a few select microbial taxa. Among them were three taxa (Odoribacter, Campylobacter and Prevotellaceae-UCG-001) which were in turn linked to AdV and helminth infection status, correlative evidence of the indirect effect of the MHC via the microbiome. Our study provides support for the coupled role of MHC diversity and microbial flora as contributing factors of parasite infection. The selective pressure of the major histocompatibility complex (MHC) on microbial communities, and the potential role of this interaction in driving parasite resistance has been largely neglected. Using a natural population of the primate Microcebus griseorufus, we provide correlative evidence of two outstanding findings: that MHCI and MHCII diversity shapes the composition of the gut microbiota; and that select taxa associated with MHC diversity predicted adenovirus and helminth infection status. Our study highlights the importance of incorporating the microbiome when investigating parasite-mediated MHC selection.
Collapse
|
17
|
Danofloxacin Treatment Alters the Diversity and Resistome Profile of Gut Microbiota in Calves. Microorganisms 2021; 9:microorganisms9102023. [PMID: 34683343 PMCID: PMC8538188 DOI: 10.3390/microorganisms9102023] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/18/2021] [Accepted: 09/23/2021] [Indexed: 12/25/2022] Open
Abstract
Fluoroquinolones, such as danofloxacin, are used to control bovine respiratory disease complex in beef cattle; however, little is known about their effects on gut microbiota and resistome. The objectives were to evaluate the effect of subcutaneously administered danofloxacin on gut microbiota and resistome, and the composition of Campylobacter in calves. Twenty calves were injected with a single dose of danofloxacin, and ten calves were kept as a control. The effects of danofloxacin on microbiota and the resistome were assessed using 16S rRNA sequencing, quantitative real-time PCR, and metagenomic Hi-C ProxiMeta. Alpha and beta diversities were significantly different (p < 0.05) between pre-and post-treatment samples, and the compositions of several bacterial taxa shifted. The patterns of association between the compositions of Campylobacter and other genera were affected by danofloxacin. Antimicrobial resistance genes (ARGs) conferring resistance to five antibiotics were identified with their respective reservoirs. Following the treatment, some ARGs (e.g., ant9, tet40, tetW) increased in frequencies and host ranges, suggesting initiation of horizontal gene transfer, and new ARGs (aac6, ermF, tetL, tetX) were detected in the post-treatment samples. In conclusion, danofloxacin induced alterations of gut microbiota and selection and enrichment of resistance genes even against antibiotics that are unrelated to danofloxacin.
Collapse
|
18
|
Wymore Brand M, Sahin O, Hostetter JM, Trachsel J, Zhang Q, Wannemuehler MJ. Campylobacter jejuni persistently colonizes gnotobiotic altered Schaedler flora C3H/HeN mice and induces mild colitis. FEMS Microbiol Lett 2021; 367:5937419. [PMID: 33098301 DOI: 10.1093/femsle/fnaa163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 10/05/2020] [Indexed: 11/13/2022] Open
Abstract
Campylobacter jejuni is a major cause of food-borne human bacterial gastroenteritis but animal models for C. jejuni mediated disease remain limited because C. jejuni poorly colonizes immunocompetent, conventionally-reared (Conv-R) mice. Thus, a reliable rodent model (i.e. persistent colonization) is desirable in order to evaluate C. jejuni-mediated gastrointestinal disease and mechanisms of pathogenicity. As the nature and complexity of the microbiota likely impacts colonization resistance for C. jejuni, Conv-R and gnotobiotic C3H/HeN mice were used to evaluate the persistence of C. jejuni colonization and development of disease. A total of four C. jejuni isolates readily and persistently colonized ASF mice and induced mild mucosal inflammation in the proximal colon, but C. jejuni did not stably colonize nor induce lesions in Conv-R mice. This suggests that the pathogenesis of C. jejuni is influenced by the microbiota, and that ASF mice offer a reproducible model to study the influence of the microbiota on the ability of C. jejuni to colonize the gut and to mediate gastroenteritis.
Collapse
Affiliation(s)
- Meghan Wymore Brand
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA 50011, USA
| | - Orhan Sahin
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA 50011, USA
| | - Jesse M Hostetter
- Department of Veterinary Pathology, College of Veterinary Medicine, University of Georgia, 501 D. W. Brooks Drive, Athens, GA 30602, USA
| | - Julian Trachsel
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA 50011, USA
| | - Qijing Zhang
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA 50011, USA
| | - Michael J Wannemuehler
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA 50011, USA
| |
Collapse
|
19
|
Abstract
Epidemiologic data support that acute gastrointestinal infection is one of the strongest risk factors for development of irritable bowel syndrome (IBS). Risk of post-infection IBS (PI-IBS) seems to be greater with bacterial and protozoal than viral enterocolitis. Younger individuals, women, and those with severe enterocolitis are more likely to develop PI-IBS. Disease mechanisms in animal models and humans involve chronic perturbation of intestinal microbiome, epithelial and neuronal remodeling, and immune activation. These mechanisms can lead to luminal (increased proteolytic activity, altered bile acid composition) and physiologic (increased permeability, transit changes, and visceral hypersensitivity) alterations that can mediate PI-IBS symptoms.
Collapse
Affiliation(s)
- Antonio Berumen
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Adam L Edwinson
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Madhusudan Grover
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA; Department of Medicine and Physiology, Enteric NeuroScience Program, 200 First Street Southwest, Rochester, MN 55905, USA.
| |
Collapse
|
20
|
Bifidobacterium response to lactulose ingestion in the gut relies on a solute-binding protein-dependent ABC transporter. Commun Biol 2021; 4:541. [PMID: 33972677 PMCID: PMC8110962 DOI: 10.1038/s42003-021-02072-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 03/31/2021] [Indexed: 02/06/2023] Open
Abstract
This study aims to understand the mechanistic basis underlying the response of Bifidobacterium to lactulose ingestion in guts of healthy Japanese subjects, with specific focus on a lactulose transporter. An in vitro assay using mutant strains of Bifidobacterium longum subsp. longum 105-A shows that a solute-binding protein with locus tag number BL105A_0502 (termed LT-SBP) is primarily involved in lactulose uptake. By quantifying faecal abundance of LT-SBP orthologues, which is defined by phylogenetic analysis, we find that subjects with 107 to 109 copies of the genes per gram of faeces before lactulose ingestion show a marked increase in Bifidobacterium after ingestion, suggesting the presence of thresholds between responders and non-responders to lactulose. These results help predict the prebiotics-responder and non-responder status and provide an insight into clinical interventions that test the efficacy of prebiotics.
Collapse
|
21
|
Song H, Kim J, Guk JH, Kim WH, Nam H, Suh JG, Seong JK, Cho S. Metagenomic Analysis of the Gut Microbiota of Wild Mice, a Newly Identified Reservoir of Campylobacter. Front Cell Infect Microbiol 2021; 10:596149. [PMID: 33604305 PMCID: PMC7884769 DOI: 10.3389/fcimb.2020.596149] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022] Open
Abstract
Campylobacter, the most common etiologic agent of zoonotic gastroenteritis in humans, is present in many reservoirs including livestock animals, wildlife, soil, and water. Previously, we reported a novel Campylobacter jejuni strain SCJK02 (MLST ST-8388) from the gut of wild mice (Micromys minutus) using culture-dependent methods. However, due to fastidious growth conditions and the presence of viable but non-culturable Campylobacter spp., it is unclear whether M. minutus is a Campylobacter reservoir. This study aimed to: 1) determine the distribution and proportion of Campylobacter spp. in the gut microbiota of wild mice using culture-independent methods and 2) investigate the gut microbiota of wild mice and the relationship of Campylobacter spp. with other gut microbes. The gut microbiota of 38 wild mice captured from perilla fields in Korea and without any clinical symptoms (18 M. minutus and 20 Mus musculus) were analyzed. Metagenomic analysis showed that 77.8% (14 of 18) of the captured M. minutus harbored Campylobacter spp. (0.24–32.92%) in the gut metagenome, whereas none of the captured M. musculus carried Campylobacter spp. in their guts. Notably, 75% (6 of 8) of M. minutus determined to be Campylobacter-negative using culture-dependent methods showed a high proportion of Campylobacter through metagenome analysis. The results of metagenome analysis and the absence of clinical symptoms suggest that Campylobacter may be a component of the normal gut flora of wild M. minutus. Furthermore, linear discriminant analysis (LDA) showed that Campylobacter was the most enriched genus in the gut microbiota of M. minutus (LDA score, 5.37), whereas Lactobacillus was the most enriched genus in M. musculus (LDA score, −5.96). The differences in the presence of Campylobacter between the two species of wild mice may be attributed to the differential abundance of Campylobacter and Lactobacillus in their respective gut microbiota. In conclusion, the results indicate that wild M. minutus may serve as a potential Campylobacter reservoir. This study presents the first metagenomics analysis of the M. minutus gut microbiota to explore its possible role as an environmental Campylobacter reservoir and provides a basis for future studies using culture-independent methods to determine the role of environmental reservoirs in Campylobacter transmission.
Collapse
Affiliation(s)
- Hyokeun Song
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Junhyung Kim
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Jae-Ho Guk
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Woo-Hyun Kim
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Hajin Nam
- Department of Medical Genetics, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Jun Gyo Suh
- Department of Medical Genetics, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Je Kyung Seong
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Seongbeom Cho
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| |
Collapse
|
22
|
Patuzzi I, Orsini M, Cibin V, Petrin S, Mastrorilli E, Tiengo A, Gobbo F, Catania S, Barco L, Ricci A, Losasso C. The Interplay between Campylobacter and the Caecal Microbial Community of Commercial Broiler Chickens over Time. Microorganisms 2021; 9:221. [PMID: 33499060 PMCID: PMC7911313 DOI: 10.3390/microorganisms9020221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/27/2022] Open
Abstract
Campylobacter is the most frequent foodborne zoonotic bacteria worldwide, with chicken meat being overwhelmingly the most important reservoir for human infections. Control measures implemented at the farm level (i.e., biosecurity or vaccination), which have been successfully applied to limit other pathogens, such as Salmonella, have not been effective in reducing Campylobacter occurrence. Thus, new approaches are needed to fully understand the ecological interactions of Campylobacter with host animals to effectively comprehend its epidemiology. The objective of this study was to analyse longitudinally the gut microbiota composition of Campylobacter-infected and non-infected farms to identify any difference that could potentially be indicative of gut colonization by Campylobacter spp. Differences in the colonization rate and timing were observed at the farms that became positive for Campylobacter jejuni over the investigated time points, even though in positive tests, the occurrence of Campylobacter jejuni gut colonization was not observed before the second week of the life of the birds. Significant differences were observed in the abundances of specific bacterial taxa between the microbiota of individuals belonging to farms that became Campylobacter positive during the study and those who remained negative with particular reference to Bacteroidales and Clostridiales, respectively. Moreover, Campylobacter colonization dramatically influenced the microbiota richness, although to a different extent depending on the infection timing. Finally, a key role of Faecalibacterium and Lactobacillus genera on the Campylobacter microbial network was observed. Understanding the ecology of the Campylobacter interaction with host microbiota during infection could support novel approaches for broiler microbial barrier restoration. Therefore, evidence obtained through this study can be used to identify options to reduce the incidence of infection at a primary production level based on the targeted influence of the intestinal microbiota, thus helping develop new control strategies in order to mitigate the risk of human exposure to Campylobacter by chicken meat consumption.
Collapse
Affiliation(s)
- Ilaria Patuzzi
- Microbial Ecology and Genomics Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35120 Legnaro, Italy; (I.P.); (M.O.); (S.P.); (E.M.)
| | - Massimiliano Orsini
- Microbial Ecology and Genomics Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35120 Legnaro, Italy; (I.P.); (M.O.); (S.P.); (E.M.)
| | - Veronica Cibin
- National Reference Laboratory for Salmonella, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35120 Legnaro, Italy; (V.C.); (A.T.); (A.R.)
| | - Sara Petrin
- Microbial Ecology and Genomics Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35120 Legnaro, Italy; (I.P.); (M.O.); (S.P.); (E.M.)
| | - Eleonora Mastrorilli
- Microbial Ecology and Genomics Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35120 Legnaro, Italy; (I.P.); (M.O.); (S.P.); (E.M.)
| | - Alessia Tiengo
- National Reference Laboratory for Salmonella, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35120 Legnaro, Italy; (V.C.); (A.T.); (A.R.)
| | - Federica Gobbo
- Avian Pathology Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35120 Legnaro, Italy; (F.G.); (S.C.)
| | - Salvatore Catania
- Avian Pathology Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35120 Legnaro, Italy; (F.G.); (S.C.)
| | - Lisa Barco
- Experimental Microbiology Department, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35120 Legnaro, Italy;
| | - Antonia Ricci
- National Reference Laboratory for Salmonella, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35120 Legnaro, Italy; (V.C.); (A.T.); (A.R.)
| | - Carmen Losasso
- Microbial Ecology and Genomics Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35120 Legnaro, Italy; (I.P.); (M.O.); (S.P.); (E.M.)
| |
Collapse
|
23
|
Takeshita N, Watanabe T, Ishida-Kuroki K, Sekizaki T. Transition of microbiota in chicken cecal droppings from commercial broiler farms. BMC Vet Res 2021; 17:10. [PMID: 33407476 PMCID: PMC7789685 DOI: 10.1186/s12917-020-02688-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 11/23/2020] [Indexed: 11/11/2022] Open
Abstract
Background Chickens are major sources of human nutrition worldwide, but the chicken intestinal microbiota can be a source of bacterial infection. The microbiota has potential to regulate the colonization of pathogens by competitive exclusion, production of antimicrobial compounds, and stimulation of the mucosal immune system. But information on the microbiota in commercial broiler chickens is limited because of the difficulty of conducting studies at commercial farms. To obtain fundamental information that can be used to control pathogens in chickens, we determined the 6-week dynamics of microbiota in chicken cecal droppings from commercial broiler farms. Results Cecal droppings from four chickens were collected once a week from 1 to 6 weeks of age at three commercial broiler farms. A total of 168 samples were collected from 7 flocks and subjected to 16S rRNA amplicon sequencing. Despite the farms have distinctly different climate conditions, the microbiota in the same growth stages were similar among farms. Moreover, as the chickens grew and the feed types were switched, the richness and diversity of the microbiota gradually increased and convergence of the composition of the microbiota was apparent. Notably, minor bacterial taxa (i.e. OTUs with relative abundance < 0.05%) within the microbiota were changed by the chicken age, switching of feed types, and presence of Campylobacter. In particular, the effects of switching of feed types on the microbiota were larger than the effects of age and Campylobacter. Conclusions Irrespective of the locations of the farms, the microbiota of chicken cecum, especially minor bacteria, was successively changed more affected by feed types than by ages. Switching of feed types inducing the alteration of the microbiota may be associated with the colonization of pathogens in the chicken gut. These results will also help with extrapolation of studies in experimental animals to those in the commercial farms. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-020-02688-7.
Collapse
Affiliation(s)
- Nachiko Takeshita
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Takayasu Watanabe
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan.,Present Address: Department of Chemistry, Nihon University School of Dentistry, Kanda-Surugadai 1-8-13, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Kasumi Ishida-Kuroki
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Tsutomu Sekizaki
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
24
|
Mousavi S, Bereswill S, Heimesaat MM. Murine Models for the Investigation of Colonization Resistance and Innate Immune Responses in Campylobacter Jejuni Infections. Curr Top Microbiol Immunol 2021; 431:233-263. [PMID: 33620654 DOI: 10.1007/978-3-030-65481-8_9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Human infections with the food-borne pathogen Campylobacter jejuni are progressively increasing worldwide and constitute a significant socioeconomic burden to mankind. Intestinal campylobacteriosis in humans is characterized by bloody diarrhea, fever, abdominal pain, and severe malaise. Some individuals develop chronic post-infectious sequelae including neurological and autoimmune diseases such as reactive arthritis and Guillain-Barré syndrome. Studies unraveling the molecular mechanisms underlying campylobacteriosis and post-infectious sequelae have been hampered by the scarcity of appropriate experimental in vivo models. Particularly, conventional laboratory mice are protected from C. jejuni infection due to the physiological colonization resistance exerted by the murine gut microbiota composition. Additionally, as compared to humans, mice are up to 10,000 times more resistant to C. jejuni lipooligosaccharide (LOS) constituting a major pathogenicity factor responsible for the immunopathological host responses during campylobacteriosis. In this chapter, we summarize the recent progress that has been made in overcoming these fundamental obstacles in Campylobacter research in mice. Modification of the murine host-specific gut microbiota composition and sensitization of the mice to C. jejuni LOS by deletion of genes encoding interleukin-10 or a single IL-1 receptor-related molecule as well as by dietary zinc depletion have yielded reliable murine infection models resembling key features of human campylobacteriosis. These substantial improvements pave the way for a better understanding of the molecular mechanisms underlying pathogen-host interactions. The ongoing validation and standardization of these novel murine infection models will provide the basis for the development of innovative treatment and prevention strategies to combat human campylobacteriosis and collateral damages of C. jejuni infections.
Collapse
Affiliation(s)
- Soraya Mousavi
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité-University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt-University of Berlin, Berlin Institute of Health, Berlin, Germany
| | - Stefan Bereswill
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité-University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt-University of Berlin, Berlin Institute of Health, Berlin, Germany
| | - Markus M Heimesaat
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité-University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt-University of Berlin, Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
25
|
Yang Z, Zhang C, Wang J, Celi P, Ding X, Bai S, Zeng Q, Mao X, Zhuo Y, Xu S, Yan H, Zhang K, Shan Z. Characterization of the Intestinal Microbiota of Broiler Breeders With Different Egg Laying Rate. Front Vet Sci 2020; 7:599337. [PMID: 33330722 PMCID: PMC7732610 DOI: 10.3389/fvets.2020.599337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/03/2020] [Indexed: 11/24/2022] Open
Abstract
The gastrointestinal microbiota plays a pivotal role in maintaining animal health, immunity and reproductive performances. However, literature about the relationship between microbiota and reproductive performance is limited. The aim of the present study was to determine differences in the intestinal microbiota of broiler breeders with different egg laying rate. A total of 200 AA+ parent broiler breeders (41-week-old) were separated into two groups according to their different egg laying rate [average egg laying rate group (AR: 78.57 ± 0.20%) and high egg laying rate group (HR: 90.79 ± 0.43%). Feed conversion ratio (FCR), ovary cell apoptosis rate (ApoCR) and relative abdominal fat weight were lower (p = 0.01), while the hatchability rate of qualified egg was higher (p = 0.04) in HR group than that in AR group. Phascolarctobacterium abundance were lower (p = 0.012) in ileum of HR birds. Romboutsia (genus) in ileum was negatively related to the feed efficiency (r = -0.58, p < 0.05), Firmicutes (phylum) and Lactobacillus (genus) abundances in cecum were positively related to the egg laying rate (ELR) (r = 0.35 and 0.48, p < 0.05), feed efficiency (r = 0.42 and 0.43, p < 0.05), while Spirochaetes (phylum) and Sphaerochaeta (genus) abundances in cecum were negatively related to the ELR (r = -0.43 and -0.70, p < 0.05), feed efficiency (r = 0.54 and 0.48, p < 0.05), and positively related to ApoCR (r = 0.46 and 0.47, p < 0.05). Our results suggested that microbiota, such as Firmicutes (phylum) and Lactobacillus (genus) have positive relationship, while Spirochaetes (phylum) and Romboutsia (genus) abundances exert negative relationship with broiler breeders' reproductive performances.
Collapse
Affiliation(s)
- Zengqiao Yang
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Chunhua Zhang
- College of Agriculture and Forestry, Pu'er University, Pu'er City, China
| | - Jianping Wang
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Pietro Celi
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Xuemei Ding
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Shiping Bai
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Qiufeng Zeng
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiangbing Mao
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yong Zhuo
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Shengyu Xu
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Hui Yan
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Keying Zhang
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhiguo Shan
- College of Agriculture and Forestry, Pu'er University, Pu'er City, China
| |
Collapse
|
26
|
Luijkx YMCA, Bleumink NMC, Jiang J, Overkleeft HS, Wösten MMSM, Strijbis K, Wennekes T. Bacteroides fragilis fucosidases facilitate growth and invasion of Campylobacter jejuni in the presence of mucins. Cell Microbiol 2020; 22:e13252. [PMID: 32827216 PMCID: PMC7685106 DOI: 10.1111/cmi.13252] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/11/2022]
Abstract
The enteropathogenic bacterium, Campylobacter jejuni, was considered to be non‐saccharolytic, but recently it emerged that l‐fucose plays a central role in C. jejuni virulence. Half of C. jejuni clinical isolates possess an operon for l‐fucose utilisation. In the intestinal tract, l‐fucose is abundantly available in mucin O‐linked glycan structures, but C. jejuni lacks a fucosidase enzyme essential to release the l‐fucose. We set out to determine how C. jejuni can gain access to these intestinal l‐fucosides. Growth of the fuc + C. jejuni strains, 129,108 and NCTC 11168, increased in the presence of l‐fucose while fucose permease knockout strains did not benefit from additional l‐fucose. With fucosidase assays and an activity‐based probe, we confirmed that Bacteriodes fragilis, an abundant member of the intestinal microbiota, secretes active fucosidases. In the presence of mucins, C. jejuni was dependent on B. fragilis fucosidase activity for increased growth. Campylobacter jejuni invaded Caco‐2 intestinal cells that express complex O‐linked glycan structures that contain l‐fucose. In infection experiments, C. jejuni was more invasive in the presence of B. fragilis and this increase is due to fucosidase activity. We conclude that C. jejuni fuc + strains are dependent on exogenous fucosidases for increased growth and invasion.
Collapse
Affiliation(s)
- Yvette M C A Luijkx
- Department Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands.,Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Nancy M C Bleumink
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jianbing Jiang
- Leiden institute of Chemistry, Leiden University, Leiden, The Netherlands.,Health Science Center, School of Pharmacy, Shenzhen University, Shenzhen, China
| | | | - Marc M S M Wösten
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Karin Strijbis
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Tom Wennekes
- Department Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
27
|
Walters WA, Reyes F, Soto GM, Reynolds ND, Fraser JA, Aviles R, Tribble DR, Irvin AP, Kelley-Loughnane N, Gutierrez RL, Riddle MS, Ley RE, Goodson MS, Simons MP. Epidemiology and associated microbiota changes in deployed military personnel at high risk of traveler's diarrhea. PLoS One 2020; 15:e0236703. [PMID: 32785284 PMCID: PMC7423091 DOI: 10.1371/journal.pone.0236703] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Travelers’ diarrhea (TD) is the most prevalent illness encountered by deployed military personnel and has a major impact on military operations, from reduced job performance to lost duty days. Frequently, the etiology of TD is unknown and, with underreporting of cases, it is difficult to accurately assess its impact. An increasing number of ailments include an altered or aberrant gut microbiome. To better understand the relationships between long-term deployments and TD, we studied military personnel during two nine-month deployment cycles in 2015–2016 to Honduras. To collect data on the prevalence of diarrhea and impact on duty, a total of 1173 personnel completed questionnaires at the end of their deployment. 56.7% reported reduced performance and 21.1% reported lost duty days. We conducted a passive surveillance study of all cases of diarrhea reporting to the medical unit with 152 total cases and a similar pattern of etiology. Enteroaggregative E. coli (EAEC, 52/152), enterotoxigenic E. coli (ETEC, 50/152), and enteropathogenic E. coli (EPEC, 35/152) were the most prevalent pathogens detected. An active longitudinal surveillance of 67 subjects also identified diarrheagenic E. coli as the primary etiology (7/16 EPEC, 7/16 EAEC, and 6/16 ETEC). Eleven subjects were recruited into a nested longitudinal substudy to examine gut microbiome changes associated with deployment. A 16S rRNA amplicon survey of fecal samples showed differentially abundant baseline taxa for subjects who contracted TD versus those who did not, as well as detection of taxa positively associated with self-reported gastrointestinal distress. Disrupted microbiota was also qualitatively observable for weeks preceding and following the incidents of TD. These findings illustrate the complex etiology of diarrhea amongst military personnel in deployed settings and its impacts on job performance. Potential factors of resistance or susceptibility can provide a foundation for future clinical trials to evaluate prevention and treatment strategies.
Collapse
Affiliation(s)
| | | | - Giselle M. Soto
- U.S. Naval Medical Research Unit No. 6 (NAMRU-6),Callao, Lima, Peru
| | - Nathanael D. Reynolds
- Infectious Diseases Directorate, U.S. Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Jamie A. Fraser
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
| | | | - David R. Tribble
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Adam P. Irvin
- 711 Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, OH, United States of America
| | - Nancy Kelley-Loughnane
- 711 Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, OH, United States of America
| | - Ramiro L. Gutierrez
- Infectious Diseases Directorate, U.S. Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Mark S. Riddle
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Ruth E. Ley
- Max Planck Institute for Developmental Biology, Tuebingen, Germany
| | - Michael S. Goodson
- 711 Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, OH, United States of America
- * E-mail:
| | - Mark P. Simons
- Infectious Diseases Directorate, U.S. Naval Medical Research Center, Silver Spring, MD, United States of America
| |
Collapse
|
28
|
Liu CZ, Chen W, Wang MX, Wang Y, Chen LQ, Zhao F, Shi Y, Liu HJ, Dou XB, Liu C, Chen H. Dendrobium officinale Kimura et Migo and American ginseng mixture: A Chinese herbal formulation for gut microbiota modulation. Chin J Nat Med 2020; 18:446-459. [PMID: 32503736 DOI: 10.1016/s1875-5364(20)30052-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Indexed: 02/07/2023]
Abstract
Dendrobium officinale Kimura et Migo (D. officinale) is a famous traditional Chinese medicine (TCM). A mixture of D. officinale and American ginseng has been shown to enhance cell-mediated immunity, humoral immunity, and monocyte/macrophage functions in mice. Here, the effects of a D. officinale and American ginseng mixture on the structure of gut microbial community in dogs were examined using high-throughput 16S rRNA gene amplicon sequencing. The data revealed that while the mixture did not change the diversity of gut microbial community significantly, differences among individuals were significantly reduced. Furthermore, the mixture-responsive operational taxonomic units (OTUs) exhibited a phase-dependent expression pattern. Fifty-five OTUs were found to exhibit a mixture-induced expression pattern, among which one third were short-chain fatty acid (SCFA)-producing genera and the others were probiotic genera included Lactobacillus spp., Sutterella, Alistipes, Anaerovorax, Bilophila, Coprococcus, Gordonibacter, Oscillibacter, among others. By contrast, 36% of the OTUs exhibiting a mixture-repressed expression pattern were disease-associated microorganisms, and six genera, namely Actinomyces, Escherichia/Shigella, Fusobacterium, Slackia, Streptococcus and Solobacterium, were associated with cancer. In addition, five genera were closely associated with diabetes, namely Collinsella, Rothia, Howardella, Slackia and Intestinibacter. Our results indicate that this D. officinale and American ginseng mixture may be used as a prebiotic agent to enhance SCFA-producing genera and prevent gut dysbiosis.
Collapse
Affiliation(s)
- Cheng-Zhi Liu
- Key laboratory of Microbial technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou 310012, China; NMPA Key laboratory for Testing and Risk Warning of Pharmaceutical Microbiology, Zhejiang Institute of Microbiology, Hangzhou 310012, China
| | - Wei Chen
- Hangzhou Huqing yu tang Traditional Chinese Medicine Mordernize Institute, Hangzhou 311100, China
| | - Mei-Xia Wang
- Key laboratory of Microbial technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou 310012, China; NMPA Key laboratory for Testing and Risk Warning of Pharmaceutical Microbiology, Zhejiang Institute of Microbiology, Hangzhou 310012, China
| | - Ying Wang
- Key laboratory of Microbial technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou 310012, China; NMPA Key laboratory for Testing and Risk Warning of Pharmaceutical Microbiology, Zhejiang Institute of Microbiology, Hangzhou 310012, China
| | - Li-Qing Chen
- Hangzhou Huqing yu tang Traditional Chinese Medicine Mordernize Institute, Hangzhou 311100, China
| | - Feng Zhao
- Key laboratory of Microbial technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou 310012, China; NMPA Key laboratory for Testing and Risk Warning of Pharmaceutical Microbiology, Zhejiang Institute of Microbiology, Hangzhou 310012, China; College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ya Shi
- Key laboratory of Microbial technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou 310012, China; NMPA Key laboratory for Testing and Risk Warning of Pharmaceutical Microbiology, Zhejiang Institute of Microbiology, Hangzhou 310012, China
| | - Hui-Jun Liu
- Key laboratory of Microbial technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou 310012, China; NMPA Key laboratory for Testing and Risk Warning of Pharmaceutical Microbiology, Zhejiang Institute of Microbiology, Hangzhou 310012, China
| | - Xiao-Bing Dou
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Chao Liu
- Department of Orthopaedics, Sir Sun Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China.
| | - Huan Chen
- Key laboratory of Microbial technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou 310012, China; NMPA Key laboratory for Testing and Risk Warning of Pharmaceutical Microbiology, Zhejiang Institute of Microbiology, Hangzhou 310012, China.
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW Recent evidence suggests that environmental exposures change the adult human microbiome. Here, we review recent evidence on the impact of the work microbiome and work-related chemical, metal and particulate exposures on the human microbiome. RECENT FINDINGS Prior literature on occupational microbial exposures has focused mainly on the respiratory effects of endotoxin, but a recent study suggests that not all endotoxin is the same; endotoxin from some species is proinflammatory, whereas endotoxin from other species is anti-inflammatory. Work with animals can change the adult human microbiome, likely through colonization. Early studies in military personnel and animal models of gulf war illness show that military exposures change the gut microbiome and increase gut permeability. Heavy metal and particulate matter exposure, which are often elevated in occupational settings, also change the gut microbiome. SUMMARY An emerging body of literature shows that work-related exposures can change the human microbiome. The health effects of these changes are currently not well studied. If work exposures lead to disease through alterations in the human microbiome, exposure cessation without addressing changes to the human microbiome may be ineffective for disease prevention and treatment.
Collapse
|
30
|
Chey WD, Shah ED, DuPont HL. Mechanism of action and therapeutic benefit of rifaximin in patients with irritable bowel syndrome: a narrative review. Therap Adv Gastroenterol 2020; 13:1756284819897531. [PMID: 32047534 PMCID: PMC6984424 DOI: 10.1177/1756284819897531] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/02/2019] [Indexed: 02/04/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a common functional gastrointestinal disorder with a multifactorial pathophysiology. The gut microbiota differs between patients with IBS and healthy individuals. After a bout of acute gastroenteritis, postinfection IBS may result in up to approximately 10% of those affected. Small intestinal bacterial overgrowth (SIBO) is more common in patients with IBS than in healthy individuals, and eradication of SIBO with systemic antibiotics has decreased symptoms of IBS in some patients with IBS and SIBO. The nonsystemic (i.e. low oral bioavailability) antibiotic rifaximin is indicated in the United States and Canada for the treatment of adults with IBS with diarrhea (IBS-D). The efficacy and safety of 2-week single and repeat courses of rifaximin have been demonstrated in randomized, placebo-controlled studies of adults with IBS. Rifaximin is widely thought to exert its beneficial clinical effects in IBS-D through manipulation of the gut microbiota. However, current studies indicate that rifaximin induces only modest effects on the gut microbiota of patients with IBS-D, suggesting that the efficacy of rifaximin may involve other mechanisms. Indeed, preclinical data reveal a potential role for rifaximin in the modulation of inflammatory cytokines and intestinal permeability, but these two findings have not yet been examined in the context of clinical studies. The mechanism of action of rifaximin in IBS is likely multifactorial, and further study is needed.
Collapse
Affiliation(s)
- William D. Chey
- Department of Nutrition Sciences, Division of Gastroenterology, Michigan Medicine, 3912 Taubman Center, SPC 5362, Ann Arbor, MI 48109-5362, USA
| | - Eric D. Shah
- Section of Gastroenterology and Hepatology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Herbert L. DuPont
- Division of Epidemiology, Human Genetics and Environmental Sciences and Center for Infectious Diseases, University of Texas School of Public Health, Houston, TX, USA
- Mary W. Kelsey Chair in Medical Sciences, Division of Internal Medicine, University of Texas McGovern Medical School Houston, TX, USA
- Kelsey Research Foundation, Houston, TX, USA
| |
Collapse
|
31
|
Feye KM, Rubinelli PM, Chaney WE, Pavlidis HO, Kogut MH, Ricke SC. The Preliminary Development of an in vitro Poultry Cecal Culture Model to Evaluate the Effects of Original XPC TM for the Reduction of Campylobacter jejuni and Its Potential Effects on the Microbiota. Front Microbiol 2020; 10:3062. [PMID: 32038534 PMCID: PMC6990144 DOI: 10.3389/fmicb.2019.03062] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/18/2019] [Indexed: 12/05/2022] Open
Abstract
Poultry is a major reservoir for the pathogen Campylobacter jejuni. C. jejuni inhabits the poultry gastrointestinal tract as a part of the gut microbiota. The objective of this study was to evaluate both the survival of C. jejuni and the changes in the population dynamics of the cecal microbiome during an in vitro C. jejuni inoculation in the presence or absence of the functional metabolites of Diamond V Original XPCTM (XPC). Two independent trials were conducted. Broiler chickens (n = 6 per Trial 1 and n = 3 per Trial 2) were raised according to standard industry guidelines and euthanized on Day 41. The ceca were collected aseptically, their contents removed independently and then used in an in vitro microaerobic model with 0.1% cecal contents + Campylobacter with or without 1% XPC (w/v). Before the inoculation with a chloramphenicol resistant marker strain of C. jejuni, the cecal contents were pre-incubated with XPC at 42°C for 24 h, in a shaking incubator (200 rpm) under microaerobic conditions, then experimentally inoculated with 108/ml of C. jejuni into the appropriate treatment groups. At 0 and 24 h for Trial 1, and 48 h for Trial 2, sub-samples of the culture (n = 3 ceca, two technical replicates per ceca, XPC alone or ceca culture alone) were enumerated using a Petroff–Hausser counter, and the DNA was extracted for microbiome analysis. DNA was isolated using the Qiagen QIAamp Fast Stool DNA Mini Kit and sequenced using the Illumina MiSeq platform. The reads were filtered, normalized, and assigned taxonomical identities using the QIIME2 pipeline. The relative microbiota populations were identified via ANCOM. Altogether, evidence suggests that XPC alters the microbiome, and in turn reduces Campylobacter survival.
Collapse
Affiliation(s)
- Kristina M Feye
- Southern Plains Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, College Station, TX, United States
| | - Peter M Rubinelli
- Department of Food Science, Center for Food Safety, University of Arkansas, Fayetteville, AR, United States
| | | | | | - Michael H Kogut
- Southern Plains Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, College Station, TX, United States
| | - Steven C Ricke
- Department of Food Science, Center for Food Safety, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
32
|
Yan J, Zhou B, Xi Y, Huan H, Li M, Yu J, Zhu H, Dai Z, Ying S, Zhou W, Shi Z. Fermented feed regulates growth performance and the cecal microbiota community in geese. Poult Sci 2019; 98:4673-4684. [PMID: 30993344 DOI: 10.3382/ps/pez169] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 03/15/2019] [Indexed: 12/20/2022] Open
Abstract
This study was designed to investigate the effects of fermented feed diets on the growth performance and cecal microbial community in geese, and to examine associations between the gut microbiota and growth performance. A total of 720 healthy, 1-day-old male SanHua geese were used for the 55-D experiment. Geese were randomly divided into 4 groups, each with 6 replicates of 30 geese. Groups were fed a basal diet supplemented with 0.0, 2.5, 5.0, or 7.5% fermented feed. The results showed that 7.5% fermented feed had an increasing trend in the body weight and average daily gain of the geese; however, there was no significant response to increasing dietary fermented feed level with regards to ADFI and FCR. In addition, compared with the control group, there was a higher abundance of bacteria in the phylum Bacteroidetes in the cecal samples of geese in the 7.5% fermented feed group (53.18% vs. 41.77%, P < 0.05), whereas the abundance of Firmicutes was lower in the 7.5% fermented feed group (36.30% vs. 44.13%, P > 0.05). At the genus level, the abundance of Bacteroides was increased by adding fermented feed to geese diets, whereas the abundances of Desulfovibrio, Phascolarctobacterium, Lachnospiraceae_uncultured, Ruminiclostridium, and Oscillospira were decreased. These results indicate that fermented feeds have an important effect on the cecal microflora composition of geese, and may affect host growth, nutritional status, and intestinal health.
Collapse
Affiliation(s)
- Junshu Yan
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Bo Zhou
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yumeng Xi
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Hailin Huan
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Mingyang Li
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jianning Yu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Huanxi Zhu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zichun Dai
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Shijia Ying
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Weiren Zhou
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhendan Shi
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
33
|
Heimesaat MM, Mrazek K, Bereswill S. Murine fecal microbiota transplantation lowers gastrointestinal pathogen loads and dampens pro-inflammatory immune responses in Campylobacter jejuni infected secondary abiotic mice. Sci Rep 2019; 9:19797. [PMID: 31875037 PMCID: PMC6930309 DOI: 10.1038/s41598-019-56442-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 12/07/2019] [Indexed: 12/29/2022] Open
Abstract
Conventional mice are protected from Campylobacter jejuni infection by the murine host-specific gut microbiota composition. We here addressed whether peroral fecal microbiota transplantation (FMT) might be an antibiotics-independent option to lower even high gastrointestinal C. jejuni loads in the infected vertebrate host. To address this, secondary abiotic mice were generated by broad-spectrum antibiotic treatment and perorally infected with C. jejuni by gavage. One week later, mice were stably colonized with more than 109 C. jejuni and subjected to peroral FMT from murine donors on three consecutive days. Two weeks post-intervention, gastrointestinal C. jejuni loads were up to 7.5 orders of magnitude lower following murine FMT versus mock challenge. Remarkably, FMT reversed C. jejuni induced colonic epithelial apoptosis, but enhanced proliferative and regenerative responses in the colon thereby counteracting pathogenic cell damage. Furthermore, FMT dampened both, innate and adaptive immune cell responses in the large intestines upon C. jejuni infection that were accompanied by less C. jejuni-induced colonic nitric oxide secretion. Our study provides strong evidence that novel probiotic formulations developed as alternative option to FMT in severe intestinal inflammatory morbidities including Clostridoides difficile infection might be effective to treat campylobacteriosis and lower pathogen loads in colonized vertebrates including farm animals.
Collapse
Affiliation(s)
- Markus M Heimesaat
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité - University Medicine Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| | - Katharina Mrazek
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité - University Medicine Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Stefan Bereswill
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité - University Medicine Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
34
|
Piperata BA, Lee S, Mayta Apaza AC, Cary A, Vilchez S, Oruganti P, Garabed R, Wilson W, Lee J. Characterization of the gut microbiota of Nicaraguan children in a water insecure context. Am J Hum Biol 2019; 32:e23371. [PMID: 31859435 DOI: 10.1002/ajhb.23371] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES The gut microbiota varies across human populations. The first years of life are a critical period in its development. While delivery mode and diet contribute to observed variation, the additional contribution of specific environmental factors remains poorly understood. One factor is waterborne enteric pathogen exposure. In this pilot study, we explore the relationship between household water security and the gut microbiota of children. METHODS From Nicaraguan households (n = 39), we collected drinking water samples, as well as fecal samples from children aged one month to 5.99 years (n = 53). We tested water samples for total coliforms (CFU/mL) and the presence of common enteric pathogens. Composition and diversity of the gut microbiota were characterized by 16S rRNA sequencing. Households were classified as having drinking water that was "low" (<29 CFU/mL) or "high" (≥29 CFU/mL) in coliforms. We used permutational analyses of variance and Mann-Whitney U-tests to identify differences in the composition and diversity of the gut microbiota of children living in these two home types. RESULTS Insecure access led households to store drinking water and 85% tested positive for coliforms. High concentrations of Salmonella and Campylobacter were found in water and fecal samples. Controlling for age, the gut microbiota of children from high coliform homes were compositionally different and less diverse than those from low coliform homes. CONCLUSIONS Results indicate that research exploring the ways water insecurity affects human biology should consider the gut microbiome and that investigations of inter-population variation in the gut microbial community of children should consider pathogen exposure and infection.
Collapse
Affiliation(s)
| | - Seungjun Lee
- College of Public Health, Division of Environmental Health Sciences, The Ohio State University, Columbus, Ohio
| | - Alba C Mayta Apaza
- Department of Food Science and Technology, The Ohio State University, Columbus, Ohio
| | - Adelaide Cary
- Department of Anthropology, The Ohio State University, Columbus, Ohio
| | - Samuel Vilchez
- Department of Microbiology, National Autonomous University of Nicaragua, León, Nicaragua
| | - Pallavi Oruganti
- College of Veterinary Medicine, Department of Preventative Veterinary Medicine, The Ohio State University, Columbus, Ohio
| | - Rebecca Garabed
- College of Veterinary Medicine, Department of Preventative Veterinary Medicine, The Ohio State University, Columbus, Ohio
| | - Warren Wilson
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Canada
| | - Jiyoung Lee
- College of Public Health, Division of Environmental Health Sciences, The Ohio State University, Columbus, Ohio.,Department of Food Science and Technology, The Ohio State University, Columbus, Ohio
| |
Collapse
|
35
|
Impacts of environmental complexity on respiratory and gut microbiome community structure and diversity in growing pigs. Sci Rep 2019; 9:13773. [PMID: 31551432 PMCID: PMC6760116 DOI: 10.1038/s41598-019-50187-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/04/2019] [Indexed: 12/14/2022] Open
Abstract
The limited understanding of the interaction between rearing environment of the growing pig and the pig’s microbial community impedes efforts to identify the optimal housing system to maximize animal health and production. Accordingly, we characterized the impact of housing complexity on shaping the respiratory and gut microbiota of growing pig. A total of 175 weaned pigs from 25 litters were randomly assigned within liter to either simple slatted-floor (S) or complex straw-based rearing ecosystem (C). Beside the floor swabs samples, fecal swabs and mucosal scraping samples from bronchus, ileum, and colon were collected approximately 164 days post-weaning at the time of slaughter. The S ecosystem seems to increase the α-diversity of respiratory and gut microbiota. Moreover, the C-raised pigs showed 35.4, 89.2, and 60.0% reduction in the Firmicutes/Bacteroidetes ratio than the S-raised pigs at bronchus, ileum, and colon, respectively. The unfavorable taxa Psychrobacter, Corynebacterium, Actinobacteria, and Neisseria were the signature taxa of C environment-associated microbial community. Therefore, the microbiota of S-raised pigs seems to show higher density of the most essential and beneficial taxa than the C-raised pigs. We preliminarily conclude that increasing the physical complexity of rearing environment seems to provide suboptimal conditions for establishing a healthy microbial community in the growing pigs.
Collapse
|
36
|
Wu Y, Wang Y, Yin D, Shahid MS, Yuan J. Flaxseed diet caused inflammation by altering the gut microbiota of Peking ducks. Anim Biotechnol 2019; 31:520-531. [PMID: 31253055 DOI: 10.1080/10495398.2019.1634579] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To study why flaxseed supplementation causes adverse effects on the performance of poultry, we investigated the gut microbiota of Peking ducks after consumption of a flaxseed diet. A total of 792, 12-day-old white Peking ducks were divided into four groups. In the control group, birds were provided with a basal diet. In the three experimental groups, the birds were fed flaxseed containing diet (10% flaxseed and 90% basal diet) for 30, 20 and 10 d, respectively. On day 42, ceca were collected to evaluate the bacterial diversity of the gut microbiota using microbial 16S rDNA gene profiling; serums were obtained to determine the levels of inflammatory mediators. The flaxseed diet decreased the alpha diversity and shifted the predominant genera of the gut microbiota. Flaxseed-fed groups had higher abundances of Escherichia/Shigella (p < 0.1) and Campylobacter (p < 0.05) than the control group. The abundance of pro-inflammatory bacteria such as Veillonellaceae increased (p < 0.05) at first and then decreased (p < 0.05) with prolonged flaxseed supplementation. The levels of prostaglandin E2 and Leukotriene B4 in serum showed the same pattern as that of the pro-inflammatory bacteria. In conclusion, flaxseed diets are associated with inflammation by altering the cecal microbiota dynamics.
Collapse
Affiliation(s)
- Yuqin Wu
- State key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Youli Wang
- State key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dafei Yin
- State key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Muhammad Suhaib Shahid
- State key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jianmin Yuan
- State key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
37
|
Zeineldin M, Megahed A, Burton B, Blair B, Aldridge B, Lowe JF. Effect of Single Dose of Antimicrobial Administration at Birth on Fecal Microbiota Development and Prevalence of Antimicrobial Resistance Genes in Piglets. Front Microbiol 2019; 10:1414. [PMID: 31275295 PMCID: PMC6593251 DOI: 10.3389/fmicb.2019.01414] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/05/2019] [Indexed: 12/21/2022] Open
Abstract
Optimization of antimicrobial use in swine management systems requires full understanding of antimicrobial-induced changes on the developmental dynamics of gut microbiota and the prevalence of antimicrobial resistance genes (ARGs). The purpose of this study was to evaluate the impacts of early life antimicrobial intervention on fecal microbiota development, and prevalence of selected ARGs (ermB, tetO, tetW, tetC, sulI, sulII, and blaCTX–M) in neonatal piglets. A total of 48 litters were randomly allocated into one of six treatment groups soon after birth. Treatments were as follows: control (CONT), ceftiofur crystalline free acid (CCFA), ceftiofur hydrochloride (CHC), oxytetracycline (OTC), procaine penicillin G (PPG), and tulathromycin (TUL). Fecal swabs were collected from piglets at days 0 (prior to treatment), 5, 10, 15, and 20 post treatment. Sequencing analysis of the V3-V4 hypervariable region of the 16S rRNA gene and selected ARGs were performed using the Illumina Miseq platform. Our results showed that, while early life antimicrobial prophylaxis had no effect on individual weight gain, or mortality, it was associated with minor shifts in the composition of fecal microbiota and noticeable changes in the abundance of selected ARGs. Unifrac distance metrics revealed that the microbial communities of the piglets that received different treatments (CCFA, CHC, OTC, PPG, and TUL) did not cluster distinctly from CONT piglets. Compared to CONT group, PPG-treated piglets exhibited a significant increase in the relative abundance of ermB and tetW at day 20 of life. Tulathromycin treatment also resulted in a significant increase in the abundance of tetW at days 10 and 20, and ermB at day 20. Collectively, these results demonstrate that the shifts in fecal microbiota structure caused by perinatal antimicrobial intervention are modest and limited to particular groups of microbial taxa. However, early life PPG and TUL intervention could promote the selection of ARGs in herds. While additional investigations are required to explore the consistency of these findings across larger populations, these results could open the door to new perspectives on the utility of early life antimicrobial administration to healthy neonates in swine management systems.
Collapse
Affiliation(s)
- Mohamed Zeineldin
- Integrated Food Animal Management Systems, Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, United States.,Department of Animal Medicine, College of Veterinary Medicine, Benha University, Benha, Egypt.,Infectious Genomic of One Health, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Ameer Megahed
- Integrated Food Animal Management Systems, Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, United States.,Department of Animal Medicine, College of Veterinary Medicine, Benha University, Benha, Egypt
| | - Brandi Burton
- Integrated Food Animal Management Systems, Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Benjamin Blair
- Integrated Food Animal Management Systems, Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Brian Aldridge
- Integrated Food Animal Management Systems, Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - James F Lowe
- Integrated Food Animal Management Systems, Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| |
Collapse
|
38
|
Ghoshal UC, Rahman MM. Post-infection irritable bowel syndrome in the tropical and subtropical regions: Vibrio cholerae is a new cause of this well-known condition. Indian J Gastroenterol 2019; 38:87-94. [PMID: 31073702 DOI: 10.1007/s12664-019-00959-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Uday C Ghoshal
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226 014, India.
| | - M Masudur Rahman
- Department of Gastroenterology, Sheikh Russel Gastroliver Institute and Hospital, Dhaka, Bangladesh
| |
Collapse
|
39
|
Barbara G, Grover M, Bercik P, Corsetti M, Ghoshal UC, Ohman L, Rajilić-Stojanović M. Rome Foundation Working Team Report on Post-Infection Irritable Bowel Syndrome. Gastroenterology 2019; 156:46-58.e7. [PMID: 30009817 PMCID: PMC6309514 DOI: 10.1053/j.gastro.2018.07.011] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 07/03/2018] [Accepted: 07/05/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS The existence of postinfection irritable bowel syndrome (PI-IBS) has been substantiated by epidemiology studies conducted in diverse geographic and clinical settings. However, the available evidence has not been well summarized, and there is little guidance for diagnosis and treatment of PI-IBS. The ROME Foundation has produced a working team report to summarize the available evidence on the pathophysiology of PI-IBS and provide guidance for diagnosis and treatment, based on findings reported in the literature and clinical experience. METHODS The working team conducted an evidence-based review of publication databases for articles describing the clinical features (diagnosis), pathophysiology (intestinal sensorimotor function, microbiota, immune dysregulation, barrier dysfunction, enteroendocrine pathways, and genetics), and animal models of PI-IBS. We used a Delphi-based consensus system to create guidelines for management of PI-IBS and a developed treatment algorithm based on published findings and experiences of team members. RESULTS PI-IBS develops in about 10% of patients with infectious enteritis. Risk factors include female sex, younger age, psychological distress during or before acute gastroenteritis, and severity of the acute episode. The pathogenesis of PI-PBS appears to involve changes in the intestinal microbiome as well as epithelial, serotonergic, and immune system factors. However, these mechanisms are incompletely understood. There are no evidence-based, effective pharmacologic strategies for treatment of PI-IBS. We provide a consensus-based treatment algorithm, based on clinical presentation and potential disease mechanisms. CONCLUSIONS Based on a systematic review of the literature and team experience, we summarize the clinical features, pathophysiology (from animal models and human studies), and progression of PI-IBS. Based on these findings, we present an algorithm for diagnosis and treatment of PI-IBS based on team consensus. We also propose areas for future investigation.
Collapse
Affiliation(s)
- Giovanni Barbara
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy.
| | - Madhusudan Grover
- Enteric NeuroScience Program, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Premysl Bercik
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Maura Corsetti
- Nottingham Digestive Diseases Biomedical Research Centre, National Institute for Health Research, Nottingham University Hospitals NHS Trust, University of Nottingham, UK
| | - Uday C Ghoshal
- Department of Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Lena Ohman
- Department of Microbiology and Immunology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mirjana Rajilić-Stojanović
- Department of Biochemical Engineering and Biotechnology, Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
40
|
Pickard JM, Zeng MY, Caruso R, Núñez G. Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease. Immunol Rev 2018; 279:70-89. [PMID: 28856738 DOI: 10.1111/imr.12567] [Citation(s) in RCA: 1069] [Impact Index Per Article: 152.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The intestinal tract of mammals is colonized by a large number of microorganisms including trillions of bacteria that are referred to collectively as the gut microbiota. These indigenous microorganisms have co-evolved with the host in a symbiotic relationship. In addition to metabolic benefits, symbiotic bacteria provide the host with several functions that promote immune homeostasis, immune responses, and protection against pathogen colonization. The ability of symbiotic bacteria to inhibit pathogen colonization is mediated via several mechanisms including direct killing, competition for limited nutrients, and enhancement of immune responses. Pathogens have evolved strategies to promote their replication in the presence of the gut microbiota. Perturbation of the gut microbiota structure by environmental and genetic factors increases the risk of pathogen infection, promotes the overgrowth of harmful pathobionts, and the development of inflammatory disease. Understanding the interaction of the microbiota with pathogens and the immune system will provide critical insight into the pathogenesis of disease and the development of strategies to prevent and treat inflammatory disease.
Collapse
Affiliation(s)
- Joseph M Pickard
- Department of Pathology and Comprehensive Cancer Center, The University of Michigan Medical School, Ann Arbor, MI, USA
| | - Melody Y Zeng
- Department of Pathology and Comprehensive Cancer Center, The University of Michigan Medical School, Ann Arbor, MI, USA
| | - Roberta Caruso
- Department of Pathology and Comprehensive Cancer Center, The University of Michigan Medical School, Ann Arbor, MI, USA
| | - Gabriel Núñez
- Department of Pathology and Comprehensive Cancer Center, The University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
41
|
Bacteriophages Synergize with the Gut Microbial Community To Combat Salmonella. mSystems 2018; 3:mSystems00119-18. [PMID: 30320220 PMCID: PMC6172775 DOI: 10.1128/msystems.00119-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 08/31/2018] [Indexed: 12/14/2022] Open
Abstract
Antibiotic-resistant bacteria are a global threat. Therefore, alternative approaches for combatting bacteria, especially antibiotic-resistant bacteria, are urgently needed. Using a human gut microbiota model, we demonstrate that bacteriophages (phages) are able to substantially decrease pathogenic Salmonella without perturbing the microbiota. Conversely, antibiotic treatment leads to the eradication of close to all commensal bacteria, leaving only antibiotic-resistant bacteria. An unbalanced microbiota has been linked to many diseases both in the gastrointestinal tract or “nonintestinal” diseases. In our study, we show that the microbiota provides a protective effect against Salmonella. Since phage treatment preserves the healthy gut microbiota, it is a feasible superior alternative to antibiotic treatment. Furthermore, when combating infections caused by pathogenic bacteria, gut microbiota should be considered. Salmonella infection is one of the main causes of food-borne diarrheal diseases worldwide. Although most Salmonella infections can be cleared without treatment, some cause serious illnesses that require antibiotic treatment. In view of the growing emergence of antibiotic-resistant Salmonella strains, novel treatments are increasingly required. Furthermore, there is a striking paucity of data on how a balanced human gut microbiota responds to Salmonella infection. This study aimed to evaluate whether a balanced gut microbiota protects against Salmonella growth and to compare two antimicrobial approaches for managing Salmonella infection: bacteriophage (phage) treatment and antibiotic treatment. Anaerobically cultivated human intestinal microflora (ACHIM) is a feasible model for the human gut microbiota and naturally inhibits Salmonella infection. By mimicking Salmonella infection in vitro using ACHIM, we observed a large reduction of Salmonella growth by the ACHIM itself. Treatments with phage and antibiotic further inhibited Salmonella growth. However, phage treatment had less impact on the nontargeted bacteria in ACHIM than the antibiotic treatment did. Phage treatment has high specificity when combating Salmonella infection and offers a noninvasive alternative to antibiotic treatment. IMPORTANCE Antibiotic-resistant bacteria are a global threat. Therefore, alternative approaches for combatting bacteria, especially antibiotic-resistant bacteria, are urgently needed. Using a human gut microbiota model, we demonstrate that bacteriophages (phages) are able to substantially decrease pathogenic Salmonella without perturbing the microbiota. Conversely, antibiotic treatment leads to the eradication of close to all commensal bacteria, leaving only antibiotic-resistant bacteria. An unbalanced microbiota has been linked to many diseases both in the gastrointestinal tract or “nonintestinal” diseases. In our study, we show that the microbiota provides a protective effect against Salmonella. Since phage treatment preserves the healthy gut microbiota, it is a feasible superior alternative to antibiotic treatment. Furthermore, when combating infections caused by pathogenic bacteria, gut microbiota should be considered. Author Video: An author video summary of this article is available.
Collapse
|
42
|
Wang H, Ji Y, Yin C, Deng M, Tang T, Deng B, Ren W, Deng J, Yin Y, Tan C. Differential Analysis of Gut Microbiota Correlated With Oxidative Stress in Sows With High or Low Litter Performance During Lactation. Front Microbiol 2018; 9:1665. [PMID: 30154758 PMCID: PMC6103269 DOI: 10.3389/fmicb.2018.01665] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 07/04/2018] [Indexed: 01/01/2023] Open
Abstract
It has been suggested that gut microbiota play a critical role in maternal metabolic oxidative stress responses and offspring growth. However, whether the gut microbiota and oxidative stress status of the sows affect the litter performance during lactation is unclear. A total of 66 Yorkshire sows were identified as high (H) or low (L) litter performance sows based on litter weight at day 21 of lactation. Ten sows per group with similar parity, backfat thickness, and litter weight after cross-foster from the H or L group were collected randomly to analyze the oxidative stress and gut microbiota during lactation. The result showed that the serum total antioxidant capacity was higher in the H group, while 8-hydroxy-deoxyguanosine and thiobarbituric acid reactive substances were lower in the H group at farrowing. Four distinct clusters of bacteria were related to litter performance and reproductive periods of sows. Twelve differentially abundant taxa during gestation and 13 taxa during lactation were identified as potential biomarkers between the H group and the L group. Moreover, the litter performance and the antioxidant capacity of sows were positively correlated with Bacteroides_f__Bacteroidaceae but negatively with Phascolarctobacterium and Streptococcus. In conclusion, this study found that gut microbiota and oxidative stress were significantly correlated with the litter performance of sows during lactation.
Collapse
Affiliation(s)
- Hao Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yongcheng Ji
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Cong Yin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Ming Deng
- The Herbivore Research Laboratory, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Tianyue Tang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Baichuan Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Wenkai Ren
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jinping Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yulong Yin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China.,National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Chengquan Tan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
43
|
Dion J, Malphettes M, Bénéjat L, Mégraud F, Wargnier A, Boutboul D, Galicier L, Le Moing V, Giraud P, Jaccard A, Nove-Josserand R, Fieschi C, Oksenhendler E, Gérard L. Campylobacter infection in adult patients with primary antibody deficiency. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2018; 7:1038-1041.e4. [PMID: 29981862 DOI: 10.1016/j.jaip.2018.06.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/11/2018] [Accepted: 06/13/2018] [Indexed: 10/28/2022]
Affiliation(s)
- Jérémie Dion
- Département d'Immunologie Clinique, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Marion Malphettes
- Département d'Immunologie Clinique, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France; EA3518, Université Paris VII Denis Diderot, Paris, France
| | - Lucie Bénéjat
- Centre National de Référence des Campylobacters et Hélicobacters, Laboratoire de Bactériologie, Université de Bordeaux, Bordeaux, France
| | - Francis Mégraud
- Centre National de Référence des Campylobacters et Hélicobacters, Laboratoire de Bactériologie, Université de Bordeaux, Bordeaux, France
| | - Alain Wargnier
- Département de Microbiologie, Hôpital Saint-Louis, Assistance publique-Hôpitaux de Paris, Paris, France
| | - David Boutboul
- Département d'Immunologie Clinique, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Lionel Galicier
- Département d'Immunologie Clinique, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Vincent Le Moing
- Département des Maladies Infectieuses et Tropicales, Centre Hospitalier Régional de Montpellier, Montpellier, France
| | - Patrick Giraud
- Département de Néphrologie et Médecine Interne, Clinique du Pont de Chaume, Montauban, France
| | - Arnaud Jaccard
- Département d'Hématologie Clinique, CHU de Limoges, Limoges, France
| | | | - Claire Fieschi
- Département d'Immunologie Clinique, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Eric Oksenhendler
- Département d'Immunologie Clinique, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France; EA3518, Université Paris VII Denis Diderot, Paris, France
| | - Laurence Gérard
- Département d'Immunologie Clinique, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France; EA3518, Université Paris VII Denis Diderot, Paris, France.
| | | |
Collapse
|
44
|
Sakaridis I, Ellis RJ, Cawthraw SA, van Vliet AHM, Stekel DJ, Penell J, Chambers M, La Ragione RM, Cook AJ. Investigating the Association Between the Caecal Microbiomes of Broilers and Campylobacter Burden. Front Microbiol 2018; 9:927. [PMID: 29872425 PMCID: PMC5972209 DOI: 10.3389/fmicb.2018.00927] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/20/2018] [Indexed: 12/28/2022] Open
Abstract
One of the major transmission routes for the foodborne bacterial pathogen Campylobacter is undercooked poultry meat, contaminated from intestinal contents during processing. In broilers, Campylobacter can grow to very high densities in the caeca, and is often considered to be a commensal or an opportunistic pathogen in poultry. Reduction of caecal loads of Campylobacter may assist in lowering incidence rates of Campylobacter food poisoning. To achieve this, there needs to be a better understanding of the dynamics of Campylobacter colonization in its natural niche, and the effect of the local microbiome on colonization. Previous studies have shown that the microbiome differed between Campylobacter colonized and non-colonized chicken intestinal samples. To characterize the microbiome of Campylobacter-colonized broilers, caecal samples of 100 randomly selected birds from four farms were analyzed using amplified 16S rRNA gene sequences. Bacterial taxonomic analysis indicated that inter-farm variation was greater than intra-farm variation. The two most common bacterial groups were Bacteroidetes and Firmicutes which were present in all samples and constituted 29.7-63.5 and 30.2-59.8% of the bacteria present, respectively. Campylobacter was cultured from all samples, ranging from 2 to 9 log10 CFU g-1. There was no clear link between Campylobacter counts and Firmicutes, Bacteroidetes, or Tenericutes levels in the 16S rRNA operational taxonomic unit (OTU)-based analysis of the caecal microbiome, but samples with high Campylobacter counts (>9 log CFU g-1) contained increased levels of Enterobacteriaceae. A decrease in Lactobacillus abundance in chicken caeca was also associated with high Campylobacter loads. The reported associations with Lactobacillus and Enterobacteriaceae match changes in the intestinal microbiome of chickens and mice previously reported for Campylobacter infection, and raises the question about temporality and causation; as to whether increases in Campylobacter loads create conditions adverse to Lactobacilli and/or beneficial to Enterobacteriaceae, or that changes in Lactobacilli and Enterobacteriaceae levels created conditions beneficial for Campylobacter colonization. If these changes can be controlled, this may open opportunities for modulation of chicken microbiota to reduce Campylobacter levels for improved food safety.
Collapse
Affiliation(s)
- Ioannis Sakaridis
- School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
| | | | | | | | - Dov J Stekel
- School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| | - Johanna Penell
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Mark Chambers
- School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom.,Animal & Plant Health Agency, Weybridge, United Kingdom
| | | | - Alasdair J Cook
- School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
45
|
Atterby C, Mourkas E, Méric G, Pascoe B, Wang H, Waldenström J, Sheppard SK, Olsen B, Järhult JD, Ellström P. The Potential of Isolation Source to Predict Colonization in Avian Hosts: A Case Study in Campylobacter jejuni Strains From Three Bird Species. Front Microbiol 2018; 9:591. [PMID: 29651281 PMCID: PMC5884941 DOI: 10.3389/fmicb.2018.00591] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 03/14/2018] [Indexed: 12/28/2022] Open
Abstract
Campylobacter jejuni is the primary cause of bacterial gastroenteritis worldwide, infecting humans mostly through consumption of contaminated poultry. C. jejuni is common in the gut of wild birds, and shows distinct strain-specific association to particular bird species. This contrasts with farm animals, in which several genotypes co-exist. It is unclear if the barriers restricting transmission between host species of such specialist strains are related to environmental factors such as contact between host species, bacterial survival in the environment, etc., or rather to strain specific adaptation to the intestinal environment of specific hosts. We compared colonization dynamics in vivo between two host-specific C. jejuni from a song thrush (ST-1304 complex) and a mallard (ST-995), and a generalist strain from chicken (ST-21 complex) in a wild host, the mallard (Anas platyrhynchos). In 18-days infection experiments, the song thrush strain showed only weak colonization and was cleared from all birds after 10 days, whereas both mallard and chicken strains remained stable. When the chicken strain was given 4 days prior to co-infection of the same birds with a mallard strain, it was rapidly outcompeted by the latter. In contrast, when the mallard strain was given 4 days prior to co-infection with the chicken strain, the mallard strain remained and expansion of the chicken strain was delayed. Our results suggest strain-specific differences in the ability of C. jejuni to colonize mallards, likely associated with host origin. This difference might explain observed host association patterns in C. jejuni from wild birds.
Collapse
Affiliation(s)
- Clara Atterby
- Department of Medical Sciences, Zoonosis Science Center, Uppsala University, Uppsala, Sweden
| | - Evangelos Mourkas
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center, Uppsala University, Uppsala, Sweden.,Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| | - Guillaume Méric
- Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| | - Ben Pascoe
- Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, Bath, United Kingdom.,MRC CLIMB Consortium, Bath, United Kingdom
| | - Helen Wang
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center, Uppsala University, Uppsala, Sweden
| | - Jonas Waldenström
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Samuel K Sheppard
- Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, Bath, United Kingdom.,MRC CLIMB Consortium, Bath, United Kingdom
| | - Björn Olsen
- Department of Medical Sciences, Zoonosis Science Center, Uppsala University, Uppsala, Sweden
| | - Josef D Järhult
- Department of Medical Sciences, Zoonosis Science Center, Uppsala University, Uppsala, Sweden
| | - Patrik Ellström
- Department of Medical Sciences, Zoonosis Science Center, Uppsala University, Uppsala, Sweden
| |
Collapse
|
46
|
Berding K, Holscher HD, Arthur AE, Donovan SM. Fecal microbiome composition and stability in 4- to 8-year old children is associated with dietary patterns and nutrient intake. J Nutr Biochem 2018; 56:165-174. [PMID: 29571010 DOI: 10.1016/j.jnutbio.2018.01.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 01/04/2018] [Accepted: 01/10/2018] [Indexed: 12/13/2022]
Abstract
How long-term dietary intake shapes microbiota composition and stability in young children is poorly understood. Herein, the temporal variability in stool microbiota composition in relation to habitual dietary patterns of 4- to 8-year-old children (n=22) was investigated. Fecal samples were collected at baseline, 6 weeks and 6 months. Bacterial composition and volatile fatty acids were assessed by 16S rRNA sequencing and gas-chromatography, respectively. Nutrient intake was assessed using 3-day food diaries and dietary patterns were empirically derived from a food frequency questionnaire. Using a factor loading of >0.45 for a food group to be a major contributor to the overall dietary pattern, two dietary patterns were found to be associated with distinct microbiome composition. Dietary Pattern 1 (DP1), characterized by intake of fish, protein foods, refined carbohydrates, vegetables, fruit, juice and sweetened beverages, kid's meals and snacks and sweets, was associated with higher relative abundance of Bacteroidetes, Bacteroides and Ruminococcus and lower abundance of Bifidobacterium, Prevotella, Blautia and Roseburia. Dietary Pattern 2 (DP2), characterized by intake of grains, dairy and legumes, nuts and seeds, was associated with higher relative abundance of Cyanobacteria and Phascolarctobacterium and lower abundance of Dorea and Eubacterium. Fruit and starchy foods were present in both patterns, but were more associated with DP1 and DP2, respectively. Temporal stability of microbiota over a 6-month period was associated with baseline dietary patterns. Understanding how dietary intake contributes to microbiota composition and stability in early life in important for dietary recommendations and designing clinical interventions for microbiota-associated diseases.
Collapse
Affiliation(s)
- Kirsten Berding
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 61801
| | - Hannah D Holscher
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 61801; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, 61801
| | - Anna E Arthur
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 61801; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, 61801; Carle Cancer Center, Carle Foundation Hospital, Urbana, IL 61801
| | - Sharon M Donovan
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 61801; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, 61801.
| |
Collapse
|
47
|
Le Bastard Q, Al-Ghalith GA, Grégoire M, Chapelet G, Javaudin F, Dailly E, Batard E, Knights D, Montassier E. Systematic review: human gut dysbiosis induced by non-antibiotic prescription medications. Aliment Pharmacol Ther 2018; 47:332-345. [PMID: 29205415 DOI: 10.1111/apt.14451] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/04/2017] [Accepted: 11/14/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Global prescription drug use has been increasing continuously for decades. The gut microbiome, a key contributor to health status, can be altered by prescription drug use, as antibiotics have been repeatedly described to have both short-term and long-standing effects on the intestinal microbiome. AIM To summarise current findings on non-antibiotic prescription-induced gut microbiome changes, focusing on the most frequently prescribed therapeutic drug categories. METHODS We conducted a systematic review by first searching in online databases for indexed articles and abstracts in accordance with PRISMA guidelines. Studies assessing the intestinal microbiome alterations associated with proton pump inhibitors (PPIs), metformin, nonsteroidal anti-inflammatory drugs (NSAIDs), opioids, statins and antipsychotics were included. We only included studies using culture-independent molecular techniques. RESULTS Proton pump inhibitors and antipsychotic medications are associated with a decrease in α diversity in the gut microbiome, whereas opioids were associated with an increase in α diversity. Metformin and NSAIDs were not associated with significant changes in α diversity. β diversity was found to be significantly altered with all drugs, except for NSAIDs. PPI use was linked to a decrease in Clotridiales and increase in Actinomycetales, Micrococcaceae and Streptococcaceae, which are changes previously implicated in dysbiosis and increased susceptibility to Clostridium difficile infection. Consistent results showed that PPIs, metformin, NSAIDs, opioids and antipsychotics were either associated with increases in members of class Gammaproteobacteria (including Enterobacter, Escherichia, Klebsiella and Citrobacter), or members of family Enterococcaceae, which are often pathogens isolated from bloodstream infections in critically ill patients. We also found that antipsychotic treatment, usually associated with an increase in body mass index, was marked by a decreased ratio of Bacteroidetes:Firmicutes in the gut microbiome, resembling trends seen in obese patients. CONCLUSIONS Non-antibiotic prescription drugs have a notable impact on the overall architecture of the intestinal microbiome. Further explorations should seek to define biomarkers of dysbiosis induced by specific drugs, and potentially tailor live biotherapeutics to counter this drug-induced dysbiosis. Many other frequently prescribed drugs should also be investigated to better understand the link between these drugs, the microbiome and health status.
Collapse
Affiliation(s)
- Q Le Bastard
- MiHAR Lab, Institut de Recherche en Santé 2, Université de Nantes, Nantes, France
| | - G A Al-Ghalith
- Biotechnology Institute, University of Minnesota, Saint Paul, MN, USA.,Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, USA
| | - M Grégoire
- MiHAR Lab, Institut de Recherche en Santé 2, Université de Nantes, Nantes, France
| | - G Chapelet
- MiHAR Lab, Institut de Recherche en Santé 2, Université de Nantes, Nantes, France
| | - F Javaudin
- MiHAR Lab, Institut de Recherche en Santé 2, Université de Nantes, Nantes, France
| | - E Dailly
- MiHAR Lab, Institut de Recherche en Santé 2, Université de Nantes, Nantes, France
| | - E Batard
- MiHAR Lab, Institut de Recherche en Santé 2, Université de Nantes, Nantes, France
| | - D Knights
- Biotechnology Institute, University of Minnesota, Saint Paul, MN, USA.,Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, USA
| | - E Montassier
- MiHAR Lab, Institut de Recherche en Santé 2, Université de Nantes, Nantes, France
| |
Collapse
|
48
|
Abstract
In every epidemic some individuals become sick and some may die, whereas others recover from illness and still others show no signs or symptoms of disease. These differences highlight a fundamental question of microbial pathogenesis: why are some individuals susceptible to infectious diseases while others who acquire the same microbe remain well? For most of human history, the answer assumed the hand of providence. With the advent of the germ theory of disease, the focus on disease causality became the microbe, but this did not explain how there can be different outcomes of infection in different individuals with the same microbe. Here we examine the attributes of susceptibility in the context of the "damage-response framework" of microbial pathogenesis. We identify 11 attributes that, although not independent, are sufficiently distinct to be considered separately: microbiome, inoculum, sex, temperature, environment, age, chance, history, immunity, nutrition, and genetics. We use the first letter of each to create the mnemonic MISTEACHING, underscoring the need for caution in accepting dogma and attributing disease causality to any single factor. For both populations and individuals, variations in the attributes that assemble into MISTEACHING can create an enormity of combinations that can in turn translate into different outcomes of host-microbe encounters. Combinatorial diversity among the 11 attributes makes identifying "signatures" of susceptibility possible. However, with their inevitable uncertainties and propensity to change, there may still be a low likelihood for prediction with regard to individual host-microbe interactions, although probabilistic prediction may be possible.
Collapse
|
49
|
Lai PS, Allen JG, Hutchinson DS, Ajami NJ, Petrosino JF, Winters T, Hug C, Wartenberg GR, Vallarino J, Christiani DC. Impact of environmental microbiota on human microbiota of workers in academic mouse research facilities: An observational study. PLoS One 2017; 12:e0180969. [PMID: 28704437 PMCID: PMC5509249 DOI: 10.1371/journal.pone.0180969] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 06/23/2017] [Indexed: 12/19/2022] Open
Abstract
Objectives To characterize the microbial environment of workers in academic mouse research facilities using endotoxin, 16S qPCR, and 16S amplicon sequencing. To determine whether the work microbiome contributes to the human microbiome of workers. Methods We performed area air sampling from the animal rooms, dirty, middle, and setup cage wash locations in four academic mouse research facilities. 10 workers in the dirty cage wash area underwent personal air sampling as well as repeated collection of nasal, oral, and skin samples before and after the work shift. Environmental samples underwent measurement of endotoxin, mouse allergen, bacteria copy number via 16S qPCR, and microbial identification via 16S rDNA sequencing. 16S rDNA sequencing was also performed on human samples before and after the work shift. SourceTracker was used to identify the contribution of the work microbiome to the human microbiome. Results Median endotoxin levels ranged from undetectable to 1.0 EU/m3. Significant differences in mouse allergen levels, bacterial copy number, microbial richness, and microbial community structure were identified between animal, dirty, middle, and setup cage wash locations. Endotoxin levels had only a moderate correlation with microbial composition. Location within a facility was a stronger predictor of microbial community composition (R2 = 0.41, p = 0.002) than facility. The contribution of the work microbiome to the pre-shift human microbiome of workers was estimated to be 0.1 ± 0.1% for the oral microbiome; 3.1 ± 1.9% for the nasal microbiome; and 3.0 ± 1.5% for the skin microbiome. Conclusions The microbial environment of academic animal care facilities varies significantly by location rather than facility. Endotoxin is not a proxy for assessment of environmental microbial exposures using 16S qPCR or 16S rDNA sequencing. The work microbiome contributes to the composition of the nasal and skin microbiome of workers; the clinical implications of this observation should be further studied.
Collapse
Affiliation(s)
- Peggy S. Lai
- Division of Pulmonary and Critical Care, Massachusetts General Hospital, Boston, MA, United States of America
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
- * E-mail:
| | - Joseph G. Allen
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America
| | - Diane S. Hutchinson
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Nadim J. Ajami
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Joseph F. Petrosino
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Thomas Winters
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America
| | - Christopher Hug
- Division of Pulmonary and Respiratory Diseases, Boston Children’s Hospital, Boston, MA, United States of America
| | | | - Jose Vallarino
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America
| | - David C. Christiani
- Division of Pulmonary and Critical Care, Massachusetts General Hospital, Boston, MA, United States of America
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
50
|
Fujio-Vejar S, Vasquez Y, Morales P, Magne F, Vera-Wolf P, Ugalde JA, Navarrete P, Gotteland M. The Gut Microbiota of Healthy Chilean Subjects Reveals a High Abundance of the Phylum Verrucomicrobia. Front Microbiol 2017; 8:1221. [PMID: 28713349 PMCID: PMC5491548 DOI: 10.3389/fmicb.2017.01221] [Citation(s) in RCA: 203] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 06/16/2017] [Indexed: 12/31/2022] Open
Abstract
The gut microbiota is currently recognized as an important factor regulating the homeostasis of the gastrointestinal tract and influencing the energetic metabolism of the host as well as its immune and central nervous systems. Determining the gut microbiota composition of healthy subjects is therefore necessary to establish a baseline allowing the detection of microbiota alterations in pathologic conditions. Accordingly, the aim of this study was to characterize the gut microbiota of healthy Chilean subjects using 16S rRNA gene sequencing. Fecal samples were collected from 41 young, asymptomatic, normal weight volunteers (age: 25 ± 4 years; ♀:48.8%; BMI: 22.5 ± 1.6 kg/m2) with low levels of plasma (IL6 and hsCRP) and colonic (fecal calprotectin) inflammatory markers. The V3-V4 region of the 16S rRNA gene of bacterial DNA was amplified and sequenced using MiSeq Illumina system. 109,180 ± 13,148 sequences/sample were obtained, with an α-diversity of 3.86 ± 0.37. The dominant phyla were Firmicutes (43.6 ± 9.2%) and Bacteroidetes (41.6 ± 13.1%), followed by Verrucomicrobia (8.5 ± 10.4%), Proteobacteria (2.8 ± 4.8%), Actinobacteria (1.8 ± 3.9%) and Euryarchaeota (1.4 ± 2.7%). The core microbiota representing the genera present in all the subjects included Bacteroides, Prevotella, Parabacteroides (phylum Bacteroidetes), Phascolarctobacterium, Faecalibacterium, Ruminococcus, Lachnospira, Oscillospira, Blautia, Dorea, Roseburia, Coprococcus, Clostridium, Streptococcus (phylum Firmicutes), Akkermansia (phylum Verrucomicrobia), and Collinsella (phylum Actinobacteria). Butyrate-producing genera including Faecalibacterium, Roseburia, Coprococcus, and Oscillospira were detected. The family Methanobacteriaceae was reported in 83% of the subjects and Desulfovibrio, the most representative sulfate-reducing genus, in 76%. The microbiota of the Chilean individuals significantly differed from those of Papua New Guinea and the Matses ethnic group and was closer to that of the Argentinians and sub-populations from the United States. Interestingly, the microbiota of the Chilean subjects stands out for its richness in Verrucomicrobia; the mucus-degrading bacterium Akkermansia muciniphila is the only identified member of this phylum. This is an important finding considering that this microorganism has been recently proposed as a hallmark of healthy gut due to its anti-inflammatory and immunostimulant properties and its ability to improve gut barrier function, insulin sensitivity and endotoxinemia. These results constitute an important baseline that will facilitate the characterization of dysbiosis in the main diseases affecting the Chilean population.
Collapse
Affiliation(s)
- Sayaka Fujio-Vejar
- Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology, University of ChileSantiago, Chile.,Department of Nutrition, Faculty of Medicine, University of ChileSantiago, Chile
| | - Yessenia Vasquez
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del DesarrolloSantiago, Chile
| | - Pamela Morales
- Department of Nutrition, Faculty of Medicine, University of ChileSantiago, Chile
| | - Fabien Magne
- Microbiology and Mycology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of ChileSantiago, Chile
| | - Patricia Vera-Wolf
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del DesarrolloSantiago, Chile
| | - Juan A Ugalde
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del DesarrolloSantiago, Chile
| | - Paola Navarrete
- Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology, University of ChileSantiago, Chile
| | - Martin Gotteland
- Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology, University of ChileSantiago, Chile.,Department of Nutrition, Faculty of Medicine, University of ChileSantiago, Chile
| |
Collapse
|