1
|
Degregori S, Wang X, Kommala A, Schulhof N, Moradi S, MacDonald A, Eblen K, Jukovich S, Smith E, Kelleher E, Suzuki K, Hall Z, Knight R, Amato KR. Comparative gut microbiome research through the lens of ecology: theoretical considerations and best practices. Biol Rev Camb Philos Soc 2025; 100:748-763. [PMID: 39530277 PMCID: PMC11885713 DOI: 10.1111/brv.13161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 10/20/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Comparative approaches in animal gut microbiome research have revealed patterns of phylosymbiosis, dietary and physiological convergences, and environment-host interactions. However, most large-scale comparative studies, especially those that are highly cited, have focused on mammals, and efforts to integrate comparative approaches with existing ecological frameworks are lacking. While mammals serve as useful model organisms, developing generalised principles of how animal gut microbiomes are shaped and how these microbiomes interact bidirectionally with host ecology and evolution requires a more complete sampling of the animal kingdom. Here, we provide an overview of what past comparative studies have taught us about the gut microbiome, and how community ecology theory may help resolve certain contradictions in comparative gut microbiome research. We explore whether certain hypotheses are supported across clades, and how the disproportionate focus on mammals has introduced potential bias into gut microbiome theory. We then introduce a methodological solution by which public gut microbiome data of understudied hosts can be compiled and analysed in a comparative context. Our aggregation and analysis of 179 studies shows that generating data sets with rich host diversity is possible with public data and that key gut microbes associated with mammals are widespread across the animal kingdom. We also show the effects that sample size and taxonomic rank have on comparative gut microbiome studies and that results of multivariate analyses can vary significantly with these two parameters. While challenges remain in developing a universal model of the animal gut microbiome, we show that existing ecological frameworks can help bring us one step closer to integrating the gut microbiome into animal ecology and evolution.
Collapse
Affiliation(s)
- Samuel Degregori
- Department of AnthropologyNorthwestern University1810 Hinman AvenueEvanstonIL60208USA
| | - Xiaolin Wang
- Department of AnthropologyNorthwestern University1810 Hinman AvenueEvanstonIL60208USA
| | - Akhil Kommala
- Department of AnthropologyNorthwestern University1810 Hinman AvenueEvanstonIL60208USA
| | - Noah Schulhof
- Department of AnthropologyNorthwestern University1810 Hinman AvenueEvanstonIL60208USA
| | - Sadaf Moradi
- Department of Ecology and Evolutionary BiologyUniversity of California621 Young Drive SouthLos AngelesCA90095USA
| | - Allison MacDonald
- Department of AnthropologyNorthwestern University1810 Hinman AvenueEvanstonIL60208USA
| | - Kaitlin Eblen
- Department of Ecology and Evolutionary BiologyUniversity of California621 Young Drive SouthLos AngelesCA90095USA
| | - Sophia Jukovich
- Department of AnthropologyNorthwestern University1810 Hinman AvenueEvanstonIL60208USA
| | - Emma Smith
- Department of AnthropologyNorthwestern University1810 Hinman AvenueEvanstonIL60208USA
| | - Emily Kelleher
- Department of AnthropologyNorthwestern University1810 Hinman AvenueEvanstonIL60208USA
| | - Kota Suzuki
- Department of AnthropologyNorthwestern University1810 Hinman AvenueEvanstonIL60208USA
| | - Zoey Hall
- Department of AnthropologyNorthwestern University1810 Hinman AvenueEvanstonIL60208USA
| | - Rob Knight
- Department of PediatricsUniversity of CaliforniaSan DiegoLa JollaCA92093USA
| | - Katherine Ryan Amato
- Department of AnthropologyNorthwestern University1810 Hinman AvenueEvanstonIL60208USA
| |
Collapse
|
2
|
An JU, Mun SH, Kim WH, Seong JK, Park K, Cho S. Dynamics of the canine gut microbiota of a military dog birth cohort. Front Microbiol 2025; 16:1481567. [PMID: 40196028 PMCID: PMC11973337 DOI: 10.3389/fmicb.2025.1481567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 03/06/2025] [Indexed: 04/09/2025] Open
Abstract
Introduction We systematically tracked early life stages in a military dog birth cohort to investigate canine gut microbiota dynamics related to environmental exposure during growth. This study utilized 16s rRNA amplicon sequencing-based analysis with molecular epidemiology of Enterococcus faecalis within a controlled environment at a military dog training center. Methods We examined shifts in gut microbiota diversity and taxonomic composition across four growth stages (lactation, weaning, starter, puppy) in three littermate groups. Additionally, E. faecalis dynamics was analyzed to confirm strain sharing among littermate groups. Results Gut microbiota changed rapidly during early growth, stabilizing at the puppy stage. This is supported by increased similarity in taxonomic composition among littermate groups, as they experienced an increased shared external environment and consumed the identical diets. E. faecalis strain sharing among littermate groups increased as dogs aged. Nine E. faecalis cluster types were identified; three specific types (type I, II, and IX) dominated in each littermate group during lactation. With greater exposure to the shared external environment, cluster type I gradually assumed dominance across all groups. Despite the dynamic shifts in microbiota, we found five genera within the core microbiota, Bacteroides, Peptoclostridium, Fusobacterium, Lactobacillus, and Blautia. Discussion This study is the first to explore the dynamic nature of early-life canine gut microbiota, illustrating its transition to stability and its resilience to environmental perturbations within the controlled training environment of a military dog birth cohort.
Collapse
Affiliation(s)
- Jae-Uk An
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Seung-Hyun Mun
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Woo-Hyun Kim
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
- Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul, Republic of Korea
| | - Je Kyung Seong
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
- Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul, Republic of Korea
| | - Kyoungwan Park
- Military Working Dogs Training Center, Gangwon, Republic of Korea
| | - Seongbeom Cho
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
- Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul, Republic of Korea
- Comparative Medicine Disease Research Center (CDRC), Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Gillingham MAF, Prüter H, Montero BK, Kempenaers B. The costs and benefits of a dynamic host microbiome. Trends Ecol Evol 2025; 40:255-272. [PMID: 39690056 DOI: 10.1016/j.tree.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/31/2024] [Accepted: 11/11/2024] [Indexed: 12/19/2024]
Abstract
All species host a rich community of microbes. This microbiome is dynamic, and displays seasonal, daily, and even hourly changes, but also needs to be resilient to fulfill important roles for the host. In evolutionary ecology, the focus of microbiome dynamism has been on how it can facilitate host adaptation to novel environments. However, an hitherto largely overlooked issue is that the host needs to keep its microbiome in check, which is costly and leads to trade-offs with investing in other fitness-related traits. Investigating these trade-offs in natural vertebrate systems by collecting longitudinal data will lead to deeper insight into the evolutionary mechanisms that shape host-microbiome interactions.
Collapse
Affiliation(s)
- Mark A F Gillingham
- Department of Ornithology, Max Planck Institute for Biological Intelligence, Eberhard Gwinner Straße, 82319 Seewiesen, Germany.
| | - Hanna Prüter
- Department of Ornithology, Max Planck Institute for Biological Intelligence, Eberhard Gwinner Straße, 82319 Seewiesen, Germany
| | - B Karina Montero
- Biodiversity Research Institute, Consejo Superior de Investigaciones Científicas (CSIC) and Oviedo University-Principality of Asturias, University of Oviedo, Campus of Mieres, Mieres E-33600, Spain
| | - Bart Kempenaers
- Department of Ornithology, Max Planck Institute for Biological Intelligence, Eberhard Gwinner Straße, 82319 Seewiesen, Germany
| |
Collapse
|
4
|
Debray R, Dickson CC, Webb SE, Archie EA, Tung J. Shared environments complicate the use of strain-resolved metagenomics to infer microbiome transmission. MICROBIOME 2025; 13:59. [PMID: 40022204 PMCID: PMC11869744 DOI: 10.1186/s40168-025-02051-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/30/2025] [Indexed: 03/03/2025]
Abstract
BACKGROUND In humans and other social animals, social partners have more similar microbiomes than expected by chance, suggesting that social contact transfers microorganisms. Yet, social microbiome transmission can be difficult to identify based on compositional data alone. To overcome this challenge, recent studies have used information about microbial strain sharing (i.e., the shared presence of highly similar microbial sequences) to infer transmission. However, the degree to which strain sharing is influenced by shared traits and environments among social partners, rather than transmission per se, is not well understood. RESULTS Here, we first use a fecal microbiota transplant dataset to show that strain sharing can recapitulate true transmission networks under ideal settings when donor-recipient pairs are unambiguous and recipients are sampled shortly after transmission. In contrast, in gut metagenomes from a wild baboon population, we find that demographic and environmental factors can override signals of strain sharing among social partners. CONCLUSIONS We conclude that strain-level analyses provide useful information about microbiome similarity, but other facets of study design, especially longitudinal sampling and careful consideration of host characteristics, are essential for inferring the underlying mechanisms of strain sharing and resolving true social transmission network. Video Abstract.
Collapse
Affiliation(s)
- Reena Debray
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Saxony, Germany.
| | - Carly C Dickson
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Shasta E Webb
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Elizabeth A Archie
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Jenny Tung
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Saxony, Germany
- Department of Biology, Duke University, Durham, NC, USA
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
- Duke Population Research Institute, Duke University, Durham, NC, USA
- Canadian Institute for Advanced Research, Toronto, ON, Canada
| |
Collapse
|
5
|
Wasney M, Briscoe L, Wolff R, Ghezzi H, Tropini C, Garud N. Uniform bacterial genetic diversity along the guts of mice inoculated with human stool. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.28.635365. [PMID: 39974986 PMCID: PMC11838389 DOI: 10.1101/2025.01.28.635365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Environmental gradients exist throughout the digestive tract, driving spatial variation in the membership and abundance of bacterial species along the gut. However, less is known about the distribution of genetic diversity within bacterial species along the gut. Understanding this distribution is important because bacterial genetic variants confer traits important for the functioning of the microbiome and are also known to impart phenotypes to the hosts, including local inflammation along the gut and the ability to digest food. Thus, to be able to understand how the microbiome functions at a mechanistic level, it is essential to understand how genetic diversity is organized along the gut and the ecological and evolutionary processes that give rise to this organization. In this study, we analyzed bacterial genetic diversity of approximately 30 common gut commensals in five regions along the gut lumen in germ-free mice colonized with the same healthy human stool sample. While species membership and abundances varied considerably along the gut, genetic diversity within species was substantially more uniform. Driving this uniformity were similar strain frequencies along the gut, implying that multiple, genetically divergent strains of the same species can coexist within a host without spatially segregating. Additionally, the approximately 60 unique evolutionary adaptations arising within mice tended to sweep throughout the gut, showing little specificity for particular gut regions. Together, our findings show that genetic diversity may be more uniform along the gut than species diversity, which implies that species presence-absence may play a larger role than genetic variation in responding to varied environments along the gut.
Collapse
Affiliation(s)
- Michael Wasney
- University of California, Los Angeles, Human Genetics, Los Angeles, CA
| | - Leah Briscoe
- University of California, Los Angeles, Interdepartmental Program in Bioinformatics, Los Angeles, CA
| | - Richard Wolff
- University of California, Los Angeles, Ecology and Evolutionary Biology, Los Angeles, CA
| | - Hans Ghezzi
- University of British Columbia, Department of Bioinformatics, Vancouver, Canada
| | - Carolina Tropini
- University of British Columbia, Department of Microbiology and Immunology, Vancouver, Canada
- University of British Columbia, School of Biomedical Engineering, Vancouver, Canada
- Canadian Institute for Advanced Research, Humans and the Microbiome Program, Toronto, Canada
| | - Nandita Garud
- University of California, Los Angeles, Human Genetics, Los Angeles, CA
- University of California, Los Angeles, Interdepartmental Program in Bioinformatics, Los Angeles, CA
- University of California, Los Angeles, Ecology and Evolutionary Biology, Los Angeles, CA
| |
Collapse
|
6
|
Rohwer RR, Kirkpatrick M, Garcia SL, Kellom M, McMahon KD, Baker BJ. Two decades of bacterial ecology and evolution in a freshwater lake. Nat Microbiol 2025; 10:246-257. [PMID: 39753668 DOI: 10.1038/s41564-024-01888-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 11/14/2024] [Indexed: 01/12/2025]
Abstract
Ecology and evolution are considered distinct processes that interact on contemporary time scales in microbiomes. Here, to observe these processes in a natural system, we collected a two-decade, 471-metagenome time series from Lake Mendota (Wisconsin, USA). We assembled 2,855 species-representative genomes and found that genomic change was common and frequent. By tracking strain composition via single nucleotide variants, we identified cyclical seasonal patterns in 80% and decadal shifts in 20% of species. In the dominant freshwater family Nanopelagicaceae, environmental extremes coincided with shifts in strain composition and positive selection of amino acid and nucleic acid metabolism genes. These genes identify organic nitrogen compounds as potential drivers of freshwater responses to global change. Seasonal and long-term strain dynamics could be regarded as ecological processes or, equivalently, as evolutionary change. Rather than as distinct interacting processes, we propose a conceptualization of ecology and evolution as a continuum to better describe change in microbial communities.
Collapse
Affiliation(s)
- Robin R Rohwer
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA.
| | - Mark Kirkpatrick
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - Sarahi L Garcia
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
- Science for Life Laboratory, Department of Ecology, Environment, and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Matthew Kellom
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Katherine D McMahon
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| | - Brett J Baker
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA.
- Department of Marine Science, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
7
|
Debray R, Dickson CC, Webb SE, Archie EA, Tung J. Shared environments complicate the use of strain-resolved metagenomics to infer microbiome transmission. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.18.604082. [PMID: 39071345 PMCID: PMC11275843 DOI: 10.1101/2024.07.18.604082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
In humans and other social animals, social partners have more similar microbiomes than expected by chance, suggesting that social contact transfers microorganisms. Yet, social microbiome transmission can be difficult to identify based on compositional data alone. To overcome this challenge, recent studies have used information about microbial strain sharing (i.e., the shared presence of highly similar microbial sequences) to infer transmission. However, the degree to which strain sharing is influenced by shared traits and environments among social partners, rather than transmission per se, is not well understood. Here, we first use a fecal microbiota transplant dataset to show that strain sharing can recapitulate true transmission networks under ideal settings when donor-recipient pairs are unambiguous and recipients are sampled shortly after transmission. In contrast, in gut metagenomes from a wild baboon population, we find that demographic and environmental factors can override signals of strain sharing among social partners. We conclude that strain-level analyses provide useful information about microbiome similarity, but other facets of study design, especially longitudinal sampling and careful consideration of host characteristics, are essential for inferring the underlying mechanisms.
Collapse
Affiliation(s)
- Reena Debray
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Saxony, Germany
| | - Carly C Dickson
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Shasta E Webb
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Elizabeth A Archie
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Jenny Tung
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Saxony, Germany
- Department of Biology, Duke University, Durham, North Carolina, USA
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, USA
- Duke Population Research Institute, Duke University, Durham, North Carolina, USA
- Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Rappaport HB, Senewiratne NPJ, Lucas SK, Wolfe BE, Oliverio AM. Genomics and synthetic community experiments uncover the key metabolic roles of acetic acid bacteria in sourdough starter microbiomes. mSystems 2024; 9:e0053724. [PMID: 39287380 PMCID: PMC11498085 DOI: 10.1128/msystems.00537-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024] Open
Abstract
While research on the sourdough microbiome has primarily focused on lactic acid bacteria (LAB) and yeast, recent studies have found that acetic acid bacteria (AAB) are also common members. However, the ecology, genomic diversity, and functional contributions of AAB in sourdough remain unknown. To address this gap, we sequenced 29 AAB genomes, including three that represent putatively novel species, from a collection of over 500 sourdough starters surveyed globally from community scientists. We found variations in metabolic traits related to carbohydrate utilization, nitrogen metabolism, and alcohol production, as well as in genes related to mobile elements and defense mechanisms. Sourdough AAB genomes did not cluster when compared to AAB isolated from other environments, although a subset of gene functions was enriched in sourdough isolates. The lack of a sourdough-specific genomic cluster may reflect the nomadic lifestyle of AAB. To assess the consequences of AAB on the emergent function of sourdough starter microbiomes, we constructed synthetic starter microbiomes, varying only the AAB strain included. All AAB strains increased the acidification of synthetic sourdough starters relative to yeast and LAB by 18.5% on average. Different strains of AAB had distinct effects on the profile of synthetic starter volatiles. Taken together, our results begin to define the ways in which AAB shape emergent properties of sourdough and suggest that differences in gene content resulting from intraspecies diversification can have community-wide consequences on emergent function. IMPORTANCE This study is a comprehensive genomic and ecological survey of acetic acid bacteria (AAB) isolated from sourdough starters. By combining comparative genomics with manipulative experiments using synthetic microbiomes, we demonstrate that even strains with >97% average nucleotide identity can shift important microbiome functions, underscoring the importance of species and strain diversity in microbial systems. We also demonstrate the utility of sourdough starters as a model system to understand the consequences of genomic diversity at the strain and species level on multispecies communities. These results are also relevant to industrial and home-bakers as we uncover the importance of AAB in shaping properties of sourdough starters that have direct impacts on sensory notes and the quality of sourdough bread.
Collapse
Affiliation(s)
- H. B. Rappaport
- Department of Biology,
Syracuse University,
Syracuse, New York, USA
| | | | - Sarah K. Lucas
- Department of Biology,
Syracuse University,
Syracuse, New York, USA
| | - Benjamin E. Wolfe
- Department of Biology,
Tufts University, Medford,
Massachusetts, USA
| | | |
Collapse
|
9
|
Babajanyan SG, Garushyants SK, Wolf YI, Koonin EV. Microbial diversity and ecological complexity emerging from environmental variation and horizontal gene transfer in a simple mathematical model. BMC Biol 2024; 22:148. [PMID: 38965531 PMCID: PMC11225191 DOI: 10.1186/s12915-024-01937-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/13/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Microbiomes are generally characterized by high diversity of coexisting microbial species and strains, and microbiome composition typically remains stable across a broad range of conditions. However, under fixed conditions, microbial ecology conforms with the exclusion principle under which two populations competing for the same resource within the same niche cannot coexist because the less fit population inevitably goes extinct. Therefore, the long-term persistence of microbiome diversity calls for an explanation. RESULTS To explore the conditions for stabilization of microbial diversity, we developed a simple mathematical model consisting of two competing populations that could exchange a single gene allele via horizontal gene transfer (HGT). We found that, although in a fixed environment, with unbiased HGT, the system obeyed the exclusion principle, in an oscillating environment, within large regions of the phase space bounded by the rates of reproduction and HGT, the two populations coexist. Moreover, depending on the parameter combination, all three major types of symbiosis were obtained, namely, pure competition, host-parasite relationship, and mutualism. In each of these regimes, certain parameter combinations provided for synergy, that is, a greater total abundance of both populations compared to the abundance of the winning population in the fixed environment. CONCLUSIONS The results of this modeling study show that basic phenomena that are universal in microbial communities, namely, environmental variation and HGT, provide for stabilization and persistence of microbial diversity, and emergence of ecological complexity.
Collapse
Affiliation(s)
- Sanasar G Babajanyan
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, 20894, MD, USA.
| | - Sofya K Garushyants
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, 20894, MD, USA
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, 20894, MD, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, 20894, MD, USA.
| |
Collapse
|
10
|
Camacho-Mateu J, Lampo A, Sireci M, Muñoz MA, Cuesta JA. Sparse species interactions reproduce abundance correlation patterns in microbial communities. Proc Natl Acad Sci U S A 2024; 121:e2309575121. [PMID: 38266051 PMCID: PMC10853627 DOI: 10.1073/pnas.2309575121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/14/2023] [Indexed: 01/26/2024] Open
Abstract
During the last decades, macroecology has identified broad-scale patterns of abundances and diversity of microbial communities and put forward some potential explanations for them. However, these advances are not paralleled by a full understanding of the dynamical processes behind them. In particular, abundance fluctuations of different species are found to be correlated, both across time and across communities in metagenomic samples. Reproducing such correlations through appropriate population models remains an open challenge. The present paper tackles this problem and points to sparse species interactions as a necessary mechanism to account for them. Specifically, we discuss several possibilities to include interactions in population models and recognize Lotka-Volterra constants as a successful ansatz. For this, we design a Bayesian inference algorithm to extract sets of interaction constants able to reproduce empirical probability distributions of pairwise correlations for diverse biomes. Importantly, the inferred models still reproduce well-known single-species macroecological patterns concerning abundance fluctuations across both species and communities. Endorsed by the agreement with the empirically observed phenomenology, our analyses provide insights into the properties of the networks of microbial interactions, revealing that sparsity is a crucial feature.
Collapse
Affiliation(s)
- José Camacho-Mateu
- Grupo Interdisciplinar de Sistemas Complejos, Departamento de Matemáticas, Universidad Carlos III de Madrid, Leganés28911, Spain
| | - Aniello Lampo
- Grupo Interdisciplinar de Sistemas Complejos, Departamento de Matemáticas, Universidad Carlos III de Madrid, Leganés28911, Spain
| | - Matteo Sireci
- Departamento de Electromagnetismo y Física de la Materia, Universidad de Granada, Granada18071, Spain
- Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Granada, Spain
| | - Miguel A. Muñoz
- Departamento de Electromagnetismo y Física de la Materia, Universidad de Granada, Granada18071, Spain
- Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Granada, Spain
| | - José A. Cuesta
- Grupo Interdisciplinar de Sistemas Complejos, Departamento de Matemáticas, Universidad Carlos III de Madrid, Leganés28911, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos, Universidad de Zaragoza, Zaragoza50001, Spain
| |
Collapse
|
11
|
Shoemaker WR, Grilli J. Investigating macroecological patterns in coarse-grained microbial communities using the stochastic logistic model of growth. eLife 2024; 12:RP89650. [PMID: 38251984 PMCID: PMC10945690 DOI: 10.7554/elife.89650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024] Open
Abstract
The structure and diversity of microbial communities are intrinsically hierarchical due to the shared evolutionary history of their constituents. This history is typically captured through taxonomic assignment and phylogenetic reconstruction, sources of information that are frequently used to group microbes into higher levels of organization in experimental and natural communities. Connecting community diversity to the joint ecological dynamics of the abundances of these groups is a central problem of community ecology. However, how microbial diversity depends on the scale of observation at which groups are defined has never been systematically examined. Here, we used a macroecological approach to quantitatively characterize the structure and diversity of microbial communities among disparate environments across taxonomic and phylogenetic scales. We found that measures of biodiversity at a given scale can be consistently predicted using a minimal model of ecology, the Stochastic Logistic Model of growth (SLM). This result suggests that the SLM is a more appropriate null-model for microbial biodiversity than alternatives such as the Unified Neutral Theory of Biodiversity. Extending these within-scale results, we examined the relationship between measures of biodiversity calculated at different scales (e.g. genus vs. family), an empirical pattern previously evaluated in the context of the Diversity Begets Diversity (DBD) hypothesis (Madi et al., 2020). We found that the relationship between richness estimates at different scales can be quantitatively predicted assuming independence among community members, demonstrating that the DBD can be sufficiently explained using the SLM as a null model of ecology. Contrastingly, only by including correlations between the abundances of community members (e.g. as the consequence of interactions) can we predict the relationship between estimates of diversity at different scales. The results of this study characterize novel microbial patterns across scales of organization and establish a sharp demarcation between recently proposed macroecological patterns that are not and are affected by ecological interactions.
Collapse
Affiliation(s)
- William R Shoemaker
- Quantitative Life Sciences, The Abdus Salam International Centre for Theoretical Physics (ICTP)TriesteItaly
| | - Jacopo Grilli
- Quantitative Life Sciences, The Abdus Salam International Centre for Theoretical Physics (ICTP)TriesteItaly
| |
Collapse
|
12
|
Lou YC, Chen L, Borges AL, West-Roberts J, Firek BA, Morowitz MJ, Banfield JF. Infant gut DNA bacteriophage strain persistence during the first 3 years of life. Cell Host Microbe 2024; 32:35-47.e6. [PMID: 38096814 PMCID: PMC11156429 DOI: 10.1016/j.chom.2023.11.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/27/2023] [Accepted: 11/16/2023] [Indexed: 01/13/2024]
Abstract
Bacteriophages are key components of gut microbiomes, yet the phage colonization process in the infant gut remains uncertain. Here, we establish a large phage sequence database and use strain-resolved analyses to investigate DNA phage succession in infants throughout the first 3 years of life. Analysis of 819 fecal metagenomes collected from 28 full-term and 24 preterm infants and their mothers revealed that early-life phageome richness increases over time and reaches adult-like complexity by age 3. Approximately 9% of early phage colonizers, which are mostly maternally transmitted and infect Bacteroides, persist for 3 years and are more prevalent in full-term than in preterm infants. Although rare, phages with stop codon reassignment are more likely to persist than non-recoded phages and generally display an increase in in-frame reassigned stop codons over 3 years. Overall, maternal seeding, stop codon reassignment, host CRISPR-Cas locus prevalence, and diverse phage populations contribute to stable viral colonization.
Collapse
Affiliation(s)
- Yue Clare Lou
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - LinXing Chen
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA 94709, USA
| | - Adair L Borges
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jacob West-Roberts
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Brian A Firek
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Michael J Morowitz
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jillian F Banfield
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
13
|
Baud GLC, Prasad A, Ellegaard KM, Engel P. Turnover of strain-level diversity modulates functional traits in the honeybee gut microbiome between nurses and foragers. Genome Biol 2023; 24:283. [PMID: 38066630 PMCID: PMC10704631 DOI: 10.1186/s13059-023-03131-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Strain-level diversity is widespread among bacterial species and can expand the functional potential of natural microbial communities. However, to what extent communities undergo consistent shifts in strain composition in response to environmental/host changes is less well understood. RESULTS Here, we used shotgun metagenomics to compare the gut microbiota of two behavioral states of the Western honeybee (Apis mellifera), namely nurse and forager bees. While their gut microbiota is composed of the same bacterial species, we detect consistent changes in strain-level composition between nurses and foragers. Single nucleotide variant profiles of predominant bacterial species cluster by behavioral state. Moreover, we identify strain-specific gene content related to nutrient utilization, vitamin biosynthesis, and cell-cell interactions specifically associated with the two behavioral states. CONCLUSIONS Our findings show that strain-level diversity in host-associated communities can undergo consistent changes in response to host behavioral changes modulating the functional potential of the community.
Collapse
Affiliation(s)
- Gilles L C Baud
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Aiswarya Prasad
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Kirsten M Ellegaard
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Philipp Engel
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
14
|
Lim JJ, Diener C, Wilson J, Valenzuela JJ, Baliga NS, Gibbons SM. Growth phase estimation for abundant bacterial populations sampled longitudinally from human stool metagenomes. Nat Commun 2023; 14:5682. [PMID: 37709733 PMCID: PMC10502120 DOI: 10.1038/s41467-023-41424-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/04/2023] [Indexed: 09/16/2023] Open
Abstract
Longitudinal sampling of the stool has yielded important insights into the ecological dynamics of the human gut microbiome. However, human stool samples are available approximately once per day, while commensal population doubling times are likely on the order of minutes-to-hours. Despite this mismatch in timescales, much of the prior work on human gut microbiome time series modeling has assumed that day-to-day fluctuations in taxon abundances are related to population growth or death rates, which is likely not the case. Here, we propose an alternative model of the human gut as a stationary system, where population dynamics occur internally and the bacterial population sizes measured in a bolus of stool represent a steady-state endpoint of these dynamics. We formalize this idea as stochastic logistic growth. We show how this model provides a path toward estimating the growth phases of gut bacterial populations in situ. We validate our model predictions using an in vitro Escherichia coli growth experiment. Finally, we show how this method can be applied to densely-sampled human stool metagenomic time series data. We discuss how these growth phase estimates may be used to better inform metabolic modeling in flow-through ecosystems, like animal guts or industrial bioreactors.
Collapse
Affiliation(s)
- Joe J Lim
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA, 98105, USA
| | | | - James Wilson
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | | | - Nitin S Baliga
- Institute for Systems Biology, Seattle, WA, 98109, USA
- Departments of Biology and Microbiology, University of Washington, Seattle, WA, 98105, USA
- Lawrence Berkeley National Laboratory, CA, 94720, Berkeley, USA
- Molecular and Cellular Biology Program, University of Washington, WA, 98105, Seattle, USA
- Molecular Engineering Graduate Program, University of Washington, WA, 98105, Seattle, USA
| | - Sean M Gibbons
- Institute for Systems Biology, Seattle, WA, 98109, USA.
- Molecular Engineering Graduate Program, University of Washington, WA, 98105, Seattle, USA.
- Department of Bioengineering, University of Washington, Seattle, WA, 98105, USA.
- Department of Genome Sciences, University of Washington, Seattle, WA, 98105, USA.
- eScience Institute, University of Washington, Seattle, WA, 98105, USA.
| |
Collapse
|
15
|
Sireci M, Muñoz MA, Grilli J. Environmental fluctuations explain the universal decay of species-abundance correlations with phylogenetic distance. Proc Natl Acad Sci U S A 2023; 120:e2217144120. [PMID: 37669363 PMCID: PMC10500273 DOI: 10.1073/pnas.2217144120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 07/19/2023] [Indexed: 09/07/2023] Open
Abstract
Multiple ecological forces act together to shape the composition of microbial communities. Phyloecology approaches-which combine phylogenetic relationships between species with community ecology-have the potential to disentangle such forces but are often hard to connect with quantitative predictions from theoretical models. On the other hand, macroecology, which focuses on statistical patterns of abundance and diversity, provides natural connections with theoretical models but often neglects interspecific correlations and interactions. Here, we propose a unified framework combining both such approaches to analyze microbial communities. In particular, by using both cross-sectional and longitudinal metagenomic data for species abundances, we reveal the existence of an empirical macroecological law establishing that correlations in species-abundance fluctuations across communities decay from positive to null values as a function of phylogenetic dissimilarity in a consistent manner across ecologically distinct microbiomes. We formulate three variants of a mechanistic model-each relying on alternative ecological forces-that lead to radically different predictions. From these analyses, we conclude that the empirically observed macroecological pattern can be quantitatively explained as a result of shared population-independent fluctuating resources, i.e., environmental filtering and not as a consequence of, e.g., species competition. Finally, we show that the macroecological law is also valid for temporal data of a single community and that the properties of delayed temporal correlations can be reproduced as well by the model with environmental filtering.
Collapse
Affiliation(s)
- Matteo Sireci
- Departamento de Electromagnetismo y Física de la Materia e Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, GranadaE-18071, Spain
| | - Miguel A. Muñoz
- Departamento de Electromagnetismo y Física de la Materia e Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, GranadaE-18071, Spain
| | - Jacopo Grilli
- Quantitative Life Sciences section, The Abdus Salam International Centre for Theoretical Physics, Trieste34151, Italy
| |
Collapse
|
16
|
Dedon LR, Hilliard MA, Rani A, Daza-Merchan ZT, Story G, Briere CE, Sela DA. Fucosylated Human Milk Oligosaccharides Drive Structure-Specific Syntrophy between Bifidobacterium infantis and Eubacterium hallii within a Modeled Infant Gut Microbiome. Mol Nutr Food Res 2023; 67:e2200851. [PMID: 36938958 PMCID: PMC11010582 DOI: 10.1002/mnfr.202200851] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/23/2023] [Indexed: 03/21/2023]
Abstract
SCOPE Fucosylated human milk oligosaccharides (fHMOs) are metabolized by Bifidobacterium infantis and promote syntrophic interactions between microbiota that colonize the infant gut. The role of fHMO structure on syntrophic interactions and net microbiome function is not yet fully understood. METHODS AND RESULTS Metabolite production and microbial populations are tracked during mono- and co-culture fermentations of 2'fucosyllactose (2'FL) and difucosyllactose (DFL) by two B. infantis strains and Eubacterium hallii. This is also conducted in an in vitro modeled microbiome supplemented by B. infantis and/or E. hallii. Metabolites are quantified by high performance liquid chromatography. Total B. infantis and E. hallii populations are quantified through qRT-PCR and community composition through 16S amplicon sequencing. Differential metabolism of 2'FL and DFL by B. infantis strains gives rise to strain- and fHMO structure-specific syntrophy with E. hallii. Within the modeled microbial community, fHMO structure does not strongly alter metabolite production in aggregate, potentially due to functional redundancy within the modeled community. In contrast, community composition is dependent on fHMO structure. CONCLUSION Whereas short chain fatty acid production is not significantly altered by the specific fHMO structure introduced to the modeled community, specific fHMO structure influences the composition of the gut microbiome.
Collapse
Affiliation(s)
- Liv R. Dedon
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA United States
| | - Margaret A. Hilliard
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA United States
- Organismic and Evolutionary Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA United States
| | - Asha Rani
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA United States
| | | | - Galaxie Story
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA United States
| | - Carrie-Ellen Briere
- Elaine Marieb College of Nursing, University of Massachusetts Amherst, Amherst, MA, United States
| | - David A. Sela
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA United States
- Department of Nutrition, University of Massachusetts Amherst, Amherst, MA, United States
- Department of Microbiology and Physiological Systems and Center for Microbiome Research, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
17
|
Barkan CO, Wang S. Multiple phase transitions shape biodiversity of a migrating population. Phys Rev E 2023; 107:034405. [PMID: 37072956 DOI: 10.1103/physreve.107.034405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/28/2023] [Indexed: 04/20/2023]
Abstract
In a wide variety of natural systems, closely related microbial strains coexist stably, resulting in high levels of fine-scale biodiversity. However, the mechanisms that stabilize this coexistence are not fully understood. Spatial heterogeneity is one common stabilizing mechanism, but the rate at which organisms disperse throughout the heterogeneous environment may strongly impact the stabilizing effect that heterogeneity can provide. An intriguing example is the gut microbiome, where active mechanisms affect the movement of microbes and potentially maintain diversity. We investigate how biodiversity is affected by migration rate using a simple evolutionary model with heterogeneous selection pressure. We find that the biodiversity-migration rate relationship is shaped by multiple phase transitions, including a reentrant phase transition to coexistence. At each transition, an ecotype goes extinct and dynamics exhibit critical slowing down (CSD). CSD is encoded in the statistics of fluctuations due to demographic noise-this may provide an experimental means for detecting and altering impending extinction.
Collapse
Affiliation(s)
- Casey O Barkan
- Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Shenshen Wang
- Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|