1
|
Rothman AMK, Florentin A, Zink F, Quigley C, Bonneau O, Hemmig R, Hachey A, Rejtar T, Thaker M, Jain R, Huang SM, Sutton D, Roger J, Zhang JH, Weiler S, Cotesta S, Ottl J, Srivastava S, Kordonsky A, Avishid R, Yariv E, Rathi R, Khvalevsky O, Troxler T, Binmahfooz SK, Kleifeld O, Morrell NW, Humbert M, Thomas MJ, Jarai G, Beckwith REJ, Cobb JS, Smith N, Ostermann N, Tallarico J, Shaw D, Guth-Gundel S, Prag G, Rowlands DJ. Therapeutic potential of allosteric HECT E3 ligase inhibition. Cell 2025; 188:2603-2620.e18. [PMID: 40179885 PMCID: PMC12087876 DOI: 10.1016/j.cell.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 12/03/2024] [Accepted: 03/03/2025] [Indexed: 04/05/2025]
Abstract
Targeting ubiquitin E3 ligases is therapeutically attractive; however, the absence of an active-site pocket impedes computational approaches for identifying inhibitors. In a large, unbiased biochemical screen, we discover inhibitors that bind a cryptic cavity distant from the catalytic cysteine of the homologous to E6-associated protein C terminus domain (HECT) E3 ligase, SMAD ubiquitin regulatory factor 1 (SMURF1). Structural and biochemical analyses and engineered escape mutants revealed that these inhibitors restrict an essential catalytic motion by extending an α helix over a conserved glycine hinge. SMURF1 levels are increased in pulmonary arterial hypertension (PAH), a disease caused by mutation of bone morphogenetic protein receptor-2 (BMPR2). We demonstrated that SMURF1 inhibition prevented BMPR2 ubiquitylation, normalized bone morphogenetic protein (BMP) signaling, restored pulmonary vascular cell homeostasis, and reversed pathology in established experimental PAH. Leveraging this deep mechanistic understanding, we undertook an in silico machine-learning-based screen to identify inhibitors of the prototypic HECT E6AP and confirmed glycine-hinge-dependent allosteric activity in vitro. Inhibiting HECTs and other glycine-hinge proteins opens a new druggable space.
Collapse
Affiliation(s)
- Alexander M K Rothman
- University of Sheffield, Sheffield, UK; Novartis BioMedical Research (NBR), Cambridge, MA, USA.
| | - Amir Florentin
- School of Neurobiology, Biochemistry and Biophysics, The Life Sciences Faculty, Tel Aviv University, Tel Aviv, Israel
| | - Florence Zink
- Novartis BioMedical Research (NBR), Basel, Switzerland
| | | | | | - Rene Hemmig
- Novartis BioMedical Research (NBR), Basel, Switzerland
| | - Amanda Hachey
- Novartis BioMedical Research (NBR), Cambridge, MA, USA
| | - Tomas Rejtar
- Novartis BioMedical Research (NBR), Cambridge, MA, USA
| | - Maulik Thaker
- Novartis BioMedical Research (NBR), Cambridge, MA, USA
| | - Rishi Jain
- Novartis BioMedical Research (NBR), Cambridge, MA, USA
| | | | - Daniel Sutton
- Novartis Institutes for BioMedical Research (NIBR), Horsham, UK
| | - Jan Roger
- Novartis Institutes for BioMedical Research (NIBR), Horsham, UK
| | - Ji-Hu Zhang
- Novartis BioMedical Research (NBR), Cambridge, MA, USA
| | - Sven Weiler
- Novartis BioMedical Research (NBR), Cambridge, MA, USA
| | | | - Johannes Ottl
- Novartis BioMedical Research (NBR), Basel, Switzerland
| | | | - Alina Kordonsky
- School of Neurobiology, Biochemistry and Biophysics, The Life Sciences Faculty, Tel Aviv University, Tel Aviv, Israel
| | - Reut Avishid
- School of Neurobiology, Biochemistry and Biophysics, The Life Sciences Faculty, Tel Aviv University, Tel Aviv, Israel
| | - Elon Yariv
- School of Neurobiology, Biochemistry and Biophysics, The Life Sciences Faculty, Tel Aviv University, Tel Aviv, Israel
| | - Ritu Rathi
- School of Neurobiology, Biochemistry and Biophysics, The Life Sciences Faculty, Tel Aviv University, Tel Aviv, Israel
| | - Oshrit Khvalevsky
- School of Neurobiology, Biochemistry and Biophysics, The Life Sciences Faculty, Tel Aviv University, Tel Aviv, Israel
| | - Thomas Troxler
- School of Neurobiology, Biochemistry and Biophysics, The Life Sciences Faculty, Tel Aviv University, Tel Aviv, Israel; Novartis BioMedical Research (NBR), Basel, Switzerland
| | - Sarah K Binmahfooz
- University of Sheffield, Sheffield, UK; Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Oded Kleifeld
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Nicholas W Morrell
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Marc Humbert
- Université Paris-Saclay, INSERM UMR_S 999 (HPPIT), Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital Bicêtre (Assistance Publique Hôpitaux de Paris), Le Kremlin Bicêtre, France
| | | | - Gabor Jarai
- Novartis Institutes for BioMedical Research (NIBR), Horsham, UK
| | | | | | - Nichola Smith
- Novartis BioMedical Research (NBR), Cambridge, MA, USA
| | | | | | - Duncan Shaw
- Novartis BioMedical Research (NBR), Cambridge, MA, USA
| | | | - Gali Prag
- School of Neurobiology, Biochemistry and Biophysics, The Life Sciences Faculty, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| | | |
Collapse
|
2
|
Wen R, Huang R, Xu K, Yi X. Insights into the role of histone lysine demethylases in bone homeostasis and skeletal diseases: A review. Int J Biol Macromol 2025; 306:141807. [PMID: 40054804 DOI: 10.1016/j.ijbiomac.2025.141807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 05/11/2025]
Abstract
Histone lysine demethylases (KDMs), as important epigenetic regulators, are involved in various biological processes such as energy metabolism, apoptosis, and autophagy. Recent research shows that KDMs activate or silence downstream target genes by removing lysine residues from histone tails, and participate in the regulation of bone marrow mesenchymal stem cells (BM-MSCs), osteoblasts (OB), osteoclasts (OC), chondrocytes and other skeletal cell development, differentiation and formation. Moreover, several members of the KDM family affect the occurrence and development of bone diseases such as osteoporosis (OP), osteoarthritis (OA), osteosarcoma (OS), by regulating target genes. Specific regulation mechanisms of KDMs suggest new strategies for bone disease treatment and prevention. Despite the unique function and importance of KDMs in the skeletal system, previous studies have never systematically summarized their specific role, molecular mechanism, and clinical treatment in bone physiology and pathology. Therefore, this review summarises the expression pattern, intracellular signal transduction, and mechanism of action of the KDM family in several bone physiological and pathological conditions, aiming to highlight the important role of KDMs in bone diseases and provide a reference for the future treatment of bone diseases.
Collapse
Affiliation(s)
- Ruiming Wen
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Ruiqi Huang
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China; School of Physical Education, Liaoning Normal University, Dalian, Liaoning, China
| | - Ke Xu
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Xuejie Yi
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China.
| |
Collapse
|
3
|
Li Y, Ma C, Sheng Y, Huang S, Sun H, Ti Y, Wang Z, Wang F, Chen F, Li C, Guo H, Tang M, Song F, Wang H, Zhong M. TRIB3 mediates vascular calcification by facilitating self-ubiquitination and dissociation of Smurf1 in chronic kidney disease. J Clin Invest 2025; 135:e175972. [PMID: 39932798 PMCID: PMC11957692 DOI: 10.1172/jci175972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/04/2025] [Indexed: 02/13/2025] Open
Abstract
The osteogenic environment promotes vascular calcium phosphate deposition and aggregation of unfolded and misfolded proteins, resulting in ER stress in chronic kidney disease (CKD). Controlling ER stress through genetic intervention is a promising approach for treating vascular calcification. In this study, we demonstrated a positive correlation between ER stress-induced tribble homolog 3 (TRIB3) expression and progression of vascular calcification in human and rodent CKD. Increased TRIB3 expression promoted vascular smooth muscle cell (VSMC) calcification by interacting with the C2 domain of the E3 ubiquitin-protein ligase Smurf1, facilitating its K48-related self-ubiquitination at Lys381 and Lys383 and subsequent dissociation from the plasma membrane and nuclei. This degeneration of Smurf1 accelerated the stabilization of the osteogenic transcription factors RUNX family transcription factor 2 (Runx2) and SMAD family member 1 (Smad1). C/EBP homologous protein and activating transcription factor 4 are upstream transcription factors of TRIB3 in an osteogenic environment. Genetic KO of TRIB3 or rescue of Smurf1 ameliorated VSMC and vascular calcification by stabilizing Smurf1 and enhancing the degradation of Runx2 and Smad1. Our findings shed light on the vital role of TRIB3 as a scaffold in ER stress and vascular calcification and offer a potential therapeutic option for CKD.
Collapse
Affiliation(s)
- Yihui Li
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research of MOE, NHC, CAMS and Shandong Province, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
- Department of Critical Care Medicine, Qilu Hospital, Innovation Research Center for Sepsis and Multiple Organ Injury, Shandong University, Jinan, China
| | - Chang Ma
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research of MOE, NHC, CAMS and Shandong Province, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Yanan Sheng
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research of MOE, NHC, CAMS and Shandong Province, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Shanying Huang
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research of MOE, NHC, CAMS and Shandong Province, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Huaibing Sun
- Department of Organ Transplantation, Qilu Hospital, and
| | - Yun Ti
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research of MOE, NHC, CAMS and Shandong Province, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Zhihao Wang
- Department of Geriatric Medicine, Qilu Hospital, Shandong University, Jinan, China
| | - Feng Wang
- Department of Critical Care Medicine, Shandong Provincial Hospital, Jinan, Shandong, China
| | - Fangfang Chen
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Chen Li
- Department of Critical Care Medicine, Qilu Hospital, Innovation Research Center for Sepsis and Multiple Organ Injury, Shandong University, Jinan, China
| | - Haipeng Guo
- Department of Critical Care Medicine, Qilu Hospital, Innovation Research Center for Sepsis and Multiple Organ Injury, Shandong University, Jinan, China
| | - Mengxiong Tang
- Department of Emergency, Qilu Hospital, Shandong University, Jinan, China
| | - Fangqiang Song
- Department of Critical Care Medicine, Affiliated Tengzhou Hospital of Xuzhou Medical University/Tengzhou Central People’s Hospital, Shandong, China
| | - Hao Wang
- Department of Critical Care Medicine, Qilu Hospital, Innovation Research Center for Sepsis and Multiple Organ Injury, Shandong University, Jinan, China
| | - Ming Zhong
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research of MOE, NHC, CAMS and Shandong Province, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
4
|
Wu H, Zuo J, Dai Y, Li H, Wang S. NEDD4 family E3 ligases in osteoporosis: mechanisms and emerging potential therapeutic targets. J Orthop Surg Res 2025; 20:92. [PMID: 39849530 PMCID: PMC11761774 DOI: 10.1186/s13018-025-05517-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 01/17/2025] [Indexed: 01/25/2025] Open
Abstract
Osteoporosis is a systemic skeletal disorder characterized by reduced bone density and an increased risk of fractures, particularly prevalent in the aging population. Osteoporotic complications, including vertebral compression fractures, hip fractures, and distal forearm fractures, affect over 8.9 million individuals globally, placing a significant economic strain on healthcare systems. Recent advances have expanded our understanding of the mechanisms underlying osteoporosis, particularly the intricate regulatory networks involved in bone metabolism. A central player in these processes is ubiquitin-mediated proteasomal degradation, a crucial post-translational modification system that involves ubiquitin, the ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzyme (E2), ubiquitin ligase (E3), deubiquitinating enzymes, and the proteasome. Among the various E3 ligases, the NEDD4 family has emerged as a key regulator of both bone development and osteoporotic pathology. This review delineates the role of NEDD4 family in osteoporosis and identifies potential drug targets within these pathways, offering insights into novel therapeutic approaches for osteoporosis through targeted intervention.
Collapse
Affiliation(s)
- Heng Wu
- Department of Orthopedics, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Junhui Zuo
- Department of Orthopedics, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Yu Dai
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Hairui Li
- Department of Urology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Song Wang
- Department of Orthopedics, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
5
|
Wang X, Cui T, Yan H, Zhao L, Zang R, Li H, Wang H, Zhang B, Zhou J, Liu Y, Yue W, Xi J, Pei X. Enhancing terminal erythroid differentiation in human embryonic stem cells through TRIB3 overexpression. Heliyon 2024; 10:e37463. [PMID: 39309892 PMCID: PMC11415673 DOI: 10.1016/j.heliyon.2024.e37463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
Tribbles pseudokinase 3 (TRIB3) expression significantly increases during terminal erythropoiesis in vivo. However, we found that TRIB3 expression remained relatively low during human embryonic stem cell (hESC) erythropoiesis, particularly in the late stage, where it is typically active. TRIB3 was expressed in megakaryocyte-erythrocyte progenitor cells and its low expression was necessary for megakaryocyte differentiation. Thus, we proposed that the high expression during late stage of erythropoiesis could be the clue for promotion of maturation of hESC-derived erythroid cells. To our knowledge, the role of TRIB3 in the late stage of erythropoiesis remains ambiguous. To address this, we generated inducible TRIB3 overexpression hESCs, named TRIB3tet-on OE H9, based on a Tet-On system. Then, we analyzed hemoglobin expression, condensed chromosomes, organelle clearance, and enucleation with or without doxycycline treatment. TRIB3tet-on OE H9 cells generated erythrocytes with a high proportion of orthochromatic erythroblast in flow cytometry, enhanced hemoglobin and related protein expression in Western blot, decreased nuclear area size, promoted enucleation rate, decreased lysosome and mitochondria number, more colocalization of LC3 with LAMP1 (lysosome marker) and TOM20 (mitochondria marker) and up-regulated mitophagy-related protein expression after treatment with 2 μg/mL doxycycline. Our results showed that TRIB3 overexpression during terminal erythropoiesis may promote the maturation of erythroid cells. Therefore, our study delineates the role of TRIB3 in terminal erythropoiesis, and reveals TRIB3 as a key regulator of UPS and downstream mitophagy by ensuring appropriate mitochondrial clearance during the compaction of chromatin.
Collapse
Affiliation(s)
| | | | - Hao Yan
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Lingping Zhao
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Ruge Zang
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Hongyu Li
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Haiyang Wang
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Biao Zhang
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Junnian Zhou
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Yiming Liu
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Wen Yue
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Jiafei Xi
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Xuetao Pei
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| |
Collapse
|
6
|
Ruffenach G, Medzikovic L, Sun W, Hong J, Eghbali M. Functions of RNA-Binding Proteins in Cardiovascular Disease. Cells 2023; 12:2794. [PMID: 38132114 PMCID: PMC10742114 DOI: 10.3390/cells12242794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/22/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Gene expression is under tight regulation from the chromatin structure that regulates gene accessibility by the transcription machinery to protein degradation. At the transcript level, this regulation falls on RNA-binding proteins (RBPs). RBPs are a large and diverse class of proteins involved in all aspects of a transcript's lifecycle: splicing and maturation, localization, stability, and translation. In the past few years, our understanding of the role of RBPs in cardiovascular diseases has expanded. Here, we discuss the general structure and function of RBPs and the latest discoveries of their role in pulmonary and systemic cardiovascular diseases.
Collapse
Affiliation(s)
- Grégoire Ruffenach
- Department of Anesthesiology, Division of Molecular Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA (W.S.)
| | - Lejla Medzikovic
- Department of Anesthesiology, Division of Molecular Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA (W.S.)
| | - Wasila Sun
- Department of Anesthesiology, Division of Molecular Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA (W.S.)
| | - Jason Hong
- Department of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Mansoureh Eghbali
- Department of Anesthesiology, Division of Molecular Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA (W.S.)
| |
Collapse
|
7
|
Asano Y, Matsumoto Y, Wada J, Rottapel R. E3-ubiquitin ligases and recent progress in osteoimmunology. Front Immunol 2023; 14:1120710. [PMID: 36911671 PMCID: PMC9996189 DOI: 10.3389/fimmu.2023.1120710] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Ubiquitin-mediated proteasomal degradation is a post-transcriptional protein modification that is comprised of various components including the 76-amino acid protein ubiquitin (Ub), Ub-activating enzyme (E1), Ub-conjugating enzyme (E2), ubiquitin ligase (E3), deubiquitinating enzyme (DUB) and proteasome. We and others have recently provided genetic evidence showing that E3-ubiquitin ligases are associated with bone metabolism, the immune system and inflammation through ubiquitylation and subsequent degradation of their substrates. Dysregulation of the E3-ubiquitin ligase RNF146-mediated degradation of the adaptor protein 3BP2 (SH3 domain-binding protein 2) causes cherubism, an autosomal dominant disorder associated with severe inflammatory craniofacial dysmorphia syndrome in children. In this review, on the basis of our discoveries in cherubism, we summarize new insights into the roles of E3-ubiquitin ligases in the development of human disorders caused by an abnormal osteoimmune system by highlighting recent genetic evidence obtained in both human and animal model studies.
Collapse
Affiliation(s)
- Yosuke Asano
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yoshinori Matsumoto
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Princess Margaret Cancer Center, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Robert Rottapel
- Princess Margaret Cancer Center, University Health Network, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Division of Rheumatology, St. Michael’s Hospital, Toronto, ON, Canada
| |
Collapse
|
8
|
Kim K, Kim MG, Lee GM. Improving bone morphogenetic protein (BMP) production in CHO cells through understanding of BMP synthesis, signaling and endocytosis. Biotechnol Adv 2023; 62:108080. [PMID: 36526238 DOI: 10.1016/j.biotechadv.2022.108080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/01/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Bone morphogenetic proteins (BMPs) are a group of growth factors with the clinical potential to regulate cartilage and bone formation. Functionally active mature recombinant human BMPs (rhBMPs), produced primarily in Chinese hamster ovary (CHO) cells for clinical applications, are considered difficult to express because they undergo maturation processes, signaling pathways, or endocytosis. Although BMPs are a family of proteins with similar mature domain sequence identities, their individual properties are diverse. Thus, understanding the properties of individual rhBMPs is essential to improve rhBMP production in CHO cells. In this review, we discuss various approaches to improve rhBMP production in CHO cells by understanding the overall maturation process, signaling pathways and endocytosis of individual rhBMPs.
Collapse
Affiliation(s)
- Kyungsoo Kim
- Department of Biological Sciences, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Mi Gyeom Kim
- Department of Biological Sciences, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Gyun Min Lee
- Department of Biological Sciences, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| |
Collapse
|
9
|
Devendran A, Kar S, Bailey R, Trivieri MG. The Role of Bone Morphogenetic Protein Receptor Type 2 ( BMPR2) and the Prospects of Utilizing Induced Pluripotent Stem Cells (iPSCs) in Pulmonary Arterial Hypertension Disease Modeling. Cells 2022; 11:3823. [PMID: 36497082 PMCID: PMC9741276 DOI: 10.3390/cells11233823] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease characterized by increased pulmonary vascular resistance (PVR), causing right ventricular hypertrophy and ultimately death from right heart failure. Heterozygous mutations in the bone morphogenetic protein receptor type 2 (BMPR2) are linked to approximately 80% of hereditary, and 20% of idiopathic PAH cases, respectively. While patients carrying a BMPR2 gene mutation are more prone to develop PAH than non-carriers, only 20% will develop the disease, whereas the majority will remain asymptomatic. PAH is characterized by extreme vascular remodeling that causes pulmonary arterial endothelial cell (PAEC) dysfunction, impaired apoptosis, and uncontrolled proliferation of the pulmonary arterial smooth muscle cells (PASMCs). To date, progress in understanding the pathophysiology of PAH has been hampered by limited access to human tissue samples and inadequacy of animal models to accurately mimic the pathogenesis of human disease. Along with the advent of induced pluripotent stem cell (iPSC) technology, there has been an increasing interest in using this tool to develop patient-specific cellular models that precisely replicate the pathogenesis of PAH. In this review, we summarize the currently available approaches in iPSC-based PAH disease modeling and explore how this technology could be harnessed for drug discovery and to widen our understanding of the pathophysiology of PAH.
Collapse
Affiliation(s)
- Anichavezhi Devendran
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sumanta Kar
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rasheed Bailey
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Maria Giovanna Trivieri
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Medicine, Cardiology Unit, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
10
|
Xu K, Chu Y, Liu Q, Fan W, He H, Huang F. NEDD4 E3 Ligases: Functions and Mechanisms in Bone and Tooth. Int J Mol Sci 2022; 23:ijms23179937. [PMID: 36077334 PMCID: PMC9455957 DOI: 10.3390/ijms23179937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/29/2022] Open
Abstract
Protein ubiquitination is a precisely controlled enzymatic cascade reaction belonging to the post-translational modification of proteins. In this process, E3 ligases catalyze the binding of ubiquitin (Ub) to protein substrates and define specificity. The neuronally expressed developmentally down-regulated 4 (NEDD4) subfamily, belonging to the homology to E6APC terminus (HECT) class of E3 ligases, has recently emerged as an essential determinant of multiple cellular processes in different tissues, including bone and tooth. Here, we place special emphasis on the regulatory role of the NEDD4 subfamily in the molecular and cell biology of osteogenesis. We elucidate in detail the specific roles, downstream substrates, and upstream regulatory mechanisms of the NEDD4 subfamily. Further, we provide an overview of the involvement of E3 ligases and deubiquitinases in the development, repair, and regeneration of another mineralized tissue—tooth.
Collapse
Affiliation(s)
- Ke Xu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510008, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510008, China
| | - Yanhao Chu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510008, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510008, China
| | - Qin Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510008, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510008, China
| | - Wenguo Fan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510008, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510008, China
| | - Hongwen He
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510008, China
- Correspondence: (H.H.); (F.H.)
| | - Fang Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510008, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510008, China
- Correspondence: (H.H.); (F.H.)
| |
Collapse
|
11
|
Cao X, Fang X, Guo M, Li X, He Y, Xie M, Xu Y, Liu X. TRB3 mediates vascular remodeling by activating the MAPK signaling pathway in hypoxic pulmonary hypertension. Respir Res 2021; 22:312. [PMID: 34906150 PMCID: PMC8670293 DOI: 10.1186/s12931-021-01908-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/30/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hypoxic pulmonary hypertension (PH) is a refractory pulmonary vascular remodeling disease, and the efficiency of current PH treatment strategies is unsatisfactory. Tribbles homolog 3 (TRB3), a member of the pseudokinase family, is upregulated in diverse types of cellular stresses and functions as either a pro-proliferative or pro-apoptotic factor depending on the specific microenvironment. The regulatory mechanisms of TRB3 in hypoxic PH are poorly understood. METHODS We performed studies using TRB3-specific silencing and overexpressing lentiviral vectors to investigate the potential roles of TRB3 on hypoxic pulmonary artery smooth muscle cells (PASMCs). Adeno-associated virus type 1(AVV1) vectors encoding short-hairpin RNAs against rat TRB3 were used to assess the role of TRB3 on hypoxic PH. TRB3 protein expression in PH patients was explored in clinical samples by western blot analysis. RESULTS The results of whole-rat genome oligo microarrays showed that the expression of TRB3 and endoplasmic reticulum stress (ERS)-related genes was upregulated in hypoxic PASMCs. TRB3 protein expression was significantly upregulated by hypoxia and thapsigargin. In addition, 4-PBA and 4μ8C, both inhibitors of ERS, decreased the expression of TRB3. TRB3 knockdown promoted apoptosis and damaged the proliferative and migratory abilities of hypoxic PASMCs as well as inhibited activation of the MAPK signaling pathway. TRB3 overexpression stimulated the proliferation and migration of PASMCs but decreased the apoptosis of PASMCs, which was partly reversed by specific inhibitors of ERK, JNK and p38 MAPK. The Co-IP results revealed that TRB3 directly interacts with ERK, JNK, and p38 MAPK. Knockdown of TRB3 in rat lung tissue reduced the right ventricular systolic pressure and decreased pulmonary medial wall thickness in hypoxic PH model rats. Further, the expression of TRB3 in lung tissues was higher in patients with PH compared with those who have normal pulmonary artery pressure. CONCLUSIONS TRB3 was upregulated in hypoxic PASMCs and was affected by ERS. TRB3 plays a key role in the pathogenesis of hypoxia-induced PH by binding and activating the ERK, JNK, and p38 MAPK pathways. Thus, TRB3 might be a promising target for the treatment of hypoxic PH.
Collapse
Affiliation(s)
- Xiaopei Cao
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyu Fang
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingzhou Guo
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaochen Li
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanzhou He
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Xie
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongjian Xu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiansheng Liu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. .,Key Laboratory of Respiratory Diseases, National Ministry of Health of the People's Republic of China and National Clinical Research Center for Respiratory Disease, Wuhan, 430030, China.
| |
Collapse
|
12
|
An Overview of miRNAs Involved in PASMC Phenotypic Switching in Pulmonary Hypertension. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5765029. [PMID: 34660794 PMCID: PMC8516547 DOI: 10.1155/2021/5765029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/03/2021] [Indexed: 12/31/2022]
Abstract
Pulmonary hypertension (PH) is occult, with no distinctive clinical manifestations and a poor prognosis. Pulmonary vascular remodelling is an important pathological feature in which pulmonary artery smooth muscle cells (PASMCs) phenotypic switching plays a crucial role. MicroRNAs (miRNAs) are a class of evolutionarily highly conserved single-stranded small noncoding RNAs. An increasing number of studies have shown that miRNAs play an important role in the occurrence and development of PH by regulating PASMCs phenotypic switching, which is expected to be a potential target for the prevention and treatment of PH. miRNAs such as miR-221, miR-15b, miR-96, miR-24, miR-23a, miR-9, miR-214, and miR-20a can promote PASMCs phenotypic switching, while such as miR-21, miR-132, miR-449, miR-206, miR-124, miR-30c, miR-140, and the miR-17~92 cluster can inhibit it. The article reviews the research progress on growth factor-related miRNAs and hypoxia-related miRNAs that mediate PASMCs phenotypic switching in PH.
Collapse
|
13
|
Macías I, Alcorta-Sevillano N, Infante A, Rodríguez CI. Cutting Edge Endogenous Promoting and Exogenous Driven Strategies for Bone Regeneration. Int J Mol Sci 2021; 22:7724. [PMID: 34299344 PMCID: PMC8306037 DOI: 10.3390/ijms22147724] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/11/2022] Open
Abstract
Bone damage leading to bone loss can arise from a wide range of causes, including those intrinsic to individuals such as infections or diseases with metabolic (diabetes), genetic (osteogenesis imperfecta), and/or age-related (osteoporosis) etiology, or extrinsic ones coming from external insults such as trauma or surgery. Although bone tissue has an intrinsic capacity of self-repair, large bone defects often require anabolic treatments targeting bone formation process and/or bone grafts, aiming to restore bone loss. The current bone surrogates used for clinical purposes are autologous, allogeneic, or xenogeneic bone grafts, which although effective imply a number of limitations: the need to remove bone from another location in the case of autologous transplants and the possibility of an immune rejection when using allogeneic or xenogeneic grafts. To overcome these limitations, cutting edge therapies for skeletal regeneration of bone defects are currently under extensive research with promising results; such as those boosting endogenous bone regeneration, by the stimulation of host cells, or the ones driven exogenously with scaffolds, biomolecules, and mesenchymal stem cells as key players of bone healing process.
Collapse
Affiliation(s)
- Iratxe Macías
- Stem Cells and Cell Therapy Laboratory, BioCruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, 48903 Barakaldo, Spain; (I.M.); (N.A.-S.)
| | - Natividad Alcorta-Sevillano
- Stem Cells and Cell Therapy Laboratory, BioCruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, 48903 Barakaldo, Spain; (I.M.); (N.A.-S.)
- University of Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Arantza Infante
- Stem Cells and Cell Therapy Laboratory, BioCruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, 48903 Barakaldo, Spain; (I.M.); (N.A.-S.)
| | - Clara I. Rodríguez
- Stem Cells and Cell Therapy Laboratory, BioCruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, 48903 Barakaldo, Spain; (I.M.); (N.A.-S.)
| |
Collapse
|
14
|
Zou ML, Chen ZH, Teng YY, Liu SY, Jia Y, Zhang KW, Sun ZL, Wu JJ, Yuan ZD, Feng Y, Li X, Xu RS, Yuan FL. The Smad Dependent TGF-β and BMP Signaling Pathway in Bone Remodeling and Therapies. Front Mol Biosci 2021; 8:593310. [PMID: 34026818 PMCID: PMC8131681 DOI: 10.3389/fmolb.2021.593310] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 04/23/2021] [Indexed: 12/15/2022] Open
Abstract
Bone remodeling is a continuous process that maintains the homeostasis of the skeletal system, and it depends on the homeostasis between bone-forming osteoblasts and bone-absorbing osteoclasts. A large number of studies have confirmed that the Smad signaling pathway is essential for the regulation of osteoblastic and osteoclastic differentiation during skeletal development, bone formation and bone homeostasis, suggesting a close relationship between Smad signaling and bone remodeling. It is known that Smads proteins are pivotal intracellular effectors for the members of the transforming growth factor-β (TGF-β) and bone morphogenetic proteins (BMP), acting as transcription factors. Smad mediates the signal transduction in TGF-β and BMP signaling pathway that affects both osteoblast and osteoclast functions, and therefore plays a critical role in the regulation of bone remodeling. Increasing studies have demonstrated that a number of Smad signaling regulators have potential functions in bone remodeling. Therefore, targeting Smad dependent TGF-β and BMP signaling pathway might be a novel and promising therapeutic strategy against osteoporosis. This article aims to review recent advances in this field, summarizing the influence of Smad on osteoblast and osteoclast function, together with Smad signaling regulators in bone remodeling. This will facilitate the understanding of Smad signaling pathway in bone biology and shed new light on the modulation and potential treatment for osteoporosis.
Collapse
Affiliation(s)
- Ming-Li Zou
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi, China.,Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, China
| | - Zhong-Hua Chen
- Institute of Integrated Chinese and Western Medicine, The Third Hospital Affiliated to Nantong University, Wuxi, China
| | - Ying-Ying Teng
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, China
| | - Si-Yu Liu
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi, China.,Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, China
| | - Yuan Jia
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi, China.,Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, China
| | - Kai-Wen Zhang
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi, China.,Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, China
| | - Zi-Li Sun
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi, China.,Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, China
| | - Jun-Jie Wu
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, China
| | - Zheng-Dong Yuan
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, China
| | - Yi Feng
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, China
| | - Xia Li
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, China
| | - Rui-Sheng Xu
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, China
| | - Feng-Lai Yuan
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, China
| |
Collapse
|
15
|
Rodríguez-Merchán EC. A Review of Recent Developments in the Molecular Mechanisms of Bone Healing. Int J Mol Sci 2021; 22:767. [PMID: 33466612 PMCID: PMC7828700 DOI: 10.3390/ijms22020767] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 02/06/2023] Open
Abstract
Between 5 and 10 percent of fractures do not heal, a condition known as nonunion. In clinical practice, stable fracture fixation associated with autologous iliac crest bone graft placement is the gold standard for treatment. However, some recalcitrant nonunions do not resolve satisfactorily with this technique. For these cases, biological alternatives are sought based on the molecular mechanisms of bone healing, whose most recent findings are reviewed in this article. The pro-osteogenic efficacy of morin (a pale yellow crystalline flavonoid pigment found in old fustic and osage orange trees) has recently been reported, and the combined use of bone morphogenetic protein-9 (BMP9) and leptin might improve fracture healing. Inhibition with methyl-piperidino-pyrazole of estrogen receptor alpha signaling delays bone regeneration. Smoking causes a chondrogenic disorder, aberrant activity of the skeleton's stem and progenitor cells, and an intense initial inflammatory response. Smoking cessation 4 weeks before surgery is therefore highly recommended. The delay in fracture consolidation in diabetic animals is related to BMP6 deficiency (35 kDa). The combination of bioceramics and expanded autologous human mesenchymal stem cells from bone marrow is a new and encouraging alternative for treating recalcitrant nonunions.
Collapse
Affiliation(s)
- Emerito Carlos Rodríguez-Merchán
- Osteoarticular Surgery Research, Hospital La Paz Institute for Health Research-IdiPAZ, La Paz University Hospital-Autonomous University of Madrid, 28046 Madrid, Spain
| |
Collapse
|
16
|
Fan J, Lee CS, Kim S, Zhang X, Pi-Anfruns J, Guo M, Chen C, Rahnama M, Li J, Wu BM, Aghaloo TL, Lee M. Trb3 controls mesenchymal stem cell lineage fate and enhances bone regeneration by scaffold-mediated local gene delivery. Biomaterials 2021; 264:120445. [PMID: 33069136 PMCID: PMC7655726 DOI: 10.1016/j.biomaterials.2020.120445] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/26/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023]
Abstract
Aberrant lineage commitment of mesenchymal stem cells (MSCs) in marrow contributes to abnormal bone formation due to reduced osteogenic and increased adipogenic potency. While several major transcriptional factors associated with lineage differentiation have been found during the last few decades, the molecular switch for MSC fate determination and its role in skeletal regeneration remains largely unknown, limiting creation of effective therapeutic approaches. Tribbles homolog 3 (Trb3), a member of tribbles family pseudokinases, is known to exert diverse roles in cellular differentiation. Here, we investigated the reciprocal role of Trb3 in the regulation of osteogenic and adipogenic differentiation of MSCs in the context of bone formation, and examined the mechanisms by which Trb3 controls the adipo-osteogenic balance. Trb3 promoted osteoblastic commitment of MSCs at the expense of adipocyte differentiation. Mechanistically, Trb3 regulated cell-fate choice of MSCs through BMP/Smad and Wnt/β-catenin signals. Importantly, in vivo local delivery of Trb3 using a novel gelatin-conjugated caffeic acid-coated apatite/PLGA (GelCA-PLGA) scaffold stimulated robust bone regeneration and inhibited fat-filled cyst formation in rodent non-healing mandibular defect models. These findings demonstrate Trb3-based therapeutic strategies that favor osteoblastogenesis over adipogenesis for improved skeletal regeneration and future treatment of bone-loss disease. The distinctive approach implementing a scaffold-mediated local gene transfer may further broaden the translational use of targeting specific therapeutic gene related to lineage commitment for clinical bone treatment.
Collapse
Affiliation(s)
- Jiabing Fan
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, CA, 90095, USA; Weintraub Center for Reconstructive Biotechnology, School of Dentistry, University of California, Los Angeles, CA, 90095, USA
| | - Chung-Sung Lee
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, CA, 90095, USA
| | - Soyon Kim
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, CA, 90095, USA
| | - Xiao Zhang
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, CA, 90095, USA
| | - Joan Pi-Anfruns
- Division of Diagnostic and Surgical Sciences, School of Dentistry, University of California, Los Angeles, CA, 90095, USA
| | - Mian Guo
- Department of Neurosurgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Chen Chen
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, CA, 90095, USA
| | - Matthew Rahnama
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, CA, 90095, USA
| | - Jiong Li
- Department of Medicinal Chemistry, Institute for Structural Biology, Drug Discovery and Development, Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Benjamin M Wu
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, CA, 90095, USA; Weintraub Center for Reconstructive Biotechnology, School of Dentistry, University of California, Los Angeles, CA, 90095, USA; Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA
| | - Tara L Aghaloo
- Division of Diagnostic and Surgical Sciences, School of Dentistry, University of California, Los Angeles, CA, 90095, USA
| | - Min Lee
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, CA, 90095, USA; Weintraub Center for Reconstructive Biotechnology, School of Dentistry, University of California, Los Angeles, CA, 90095, USA; Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
17
|
Xia Q, Li Y, Han D, Dong L. SMURF1, a promoter of tumor cell progression? Cancer Gene Ther 2020; 28:551-565. [PMID: 33204002 DOI: 10.1038/s41417-020-00255-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/14/2020] [Accepted: 10/29/2020] [Indexed: 12/20/2022]
Abstract
Overexpression of HECT-type E3 ubiquitin ligase SMURF1 is correlated with poor prognosis in patients with various cancers, such as glioblastoma, colon cancer, and clear cell renal cell carcinoma. SMURF1 acts as a tumor promoter by ubiquitination modification and/or degradation of tumor-suppressing proteins. Combined treatment of Smurf1 knockdown with rapamycin showed collaborative antitumor effects in mice. This review described the role of HECT, WW, and C2 domains in regulating SMURF1 substrate selection. We summarized up to date SMURF1 substrates regulating different type cell signaling, thus, accelerating tumor progression, invasion, and metastasis. Furthermore, the downregulation of SMURF1 expression, inhibition of its E3 activity and regulation of its specificity to substrates prevent tumor progression. The potential application of SMURF1 regulators, specifically, wisely choose certain drugs by blocking SMURF1 selectivity in tumor suppressors, to develop novel anticancer treatments.
Collapse
Affiliation(s)
- Qin Xia
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yang Li
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Da Han
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Lei Dong
- School of Life Science, Beijing Institute of Technology, Beijing, China.
| |
Collapse
|
18
|
Novel Molecular Mechanisms of Pulmonary Hypertension: A Search for Biomarkers and Novel Drug Targets-From Bench to Bed Site. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7265487. [PMID: 32566097 PMCID: PMC7261339 DOI: 10.1155/2020/7265487] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/11/2020] [Indexed: 12/23/2022]
Abstract
Pulmonary hypertension (PH) is defined as increased mean pulmonary artery pressure (mPAP) above 25 mmHg, measured at rest by right heart catheterization. The exact global prevalence of PH is difficult to estimate, mainly due to the complex aetiology, and its spread may be underestimated. To date, numerous studies on the aetiology and pathophysiology of PH at molecular level were conducted. Simultaneously, some clinical studies have shown potential usefulness of well-known and widely recognized cardiovascular biomarkers, but their potential clinical usefulness in diagnosis and management of PH is poor due to their low specificity accompanied with numerous other cardiovascular comorbidities of PH subjects. On the other hand, a large body of basic research-based studies provides us with novel molecular pathomechanisms, biomarkers, and drug targets, according to the evidence-based medicine principles. Unfortunately, the simple implementation of these results to clinical practice is impossible due to a large heterogeneity of the PH pathophysiology, where the clinical symptoms constitute only a common denominator and a final result of numerous crosstalking metabolic pathways. Therefore, future studies, based mostly on translational medicine, are needed in order to both organize better the pathophysiological classification of various forms of PH and define precisely the optimal diagnostic markers and therapeutic targets in particular forms of PH. This review paper summarizes the current state of the art regarding the molecular background of PH with respect to its current classification. Novel therapeutic strategies and potential biomarkers are discussed with respect to their limitations in use in common clinical practice.
Collapse
|
19
|
Al-Rawi R, Al-Beshri A, Mikhail FM, McCormick K. Fragile Bones Secondary to SMURF1 Gene Duplication. Calcif Tissue Int 2020; 106:567-573. [PMID: 32040594 DOI: 10.1007/s00223-020-00668-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/28/2020] [Indexed: 10/25/2022]
Abstract
Studies on mice have shown that the Smad Ubiquitin Regulatory Factor-1 (SMURF1) gene negatively regulates osteoblast function and the response to bone morphogenetic protein in a dose-dependent fashion (Chan et al. in Mol Cell Biol 27(16):5776-5789, https://doi.org/10.1128/MCB.00218-07, 2007; Yamashita et al. in Cell 121(1):101-113, https://doi.org/10.1016/j.cell.2005.01.035, 2005). In addition, a tumorigenic role for SMURF1 has been implicated due to the interference with apoptosis signals (Nie et al. in J Biol Chem 285(30):22818-22830, https://doi.org/10.1074/jbc.M110.126920, 2010; Wang et al. in Nat Commun 5:4901, https://doi.org/10.1038/ncomms5901, 2014). A 10-year-old girl with a history of severe developmental delay, infantile seizures, and B-cell lymphoma, in remission for approximately 3.5 years, was referred to the metabolic bone clinic for fractures and low bone mineral density. Array comparative genomic hybridization revealed a pathogenic microduplication in chromosome 7 at bands 7q21.3q22.1 that encompasses the SMURF1 gene. The clinical features of this child are congruous with the phenotype as ascribed excess Smurf1 mutations in mice. This is the first case description of osteoporosis in a child secondary to a microduplication involving SMURF1 gene.
Collapse
Affiliation(s)
- Rawan Al-Rawi
- Department of Pediatrics, University of Alabama at Birmingham, 1601 4th Avenue South, 1600 7th AVE S, Birmingham, AL, 35233-1711, USA.
| | - Ali Al-Beshri
- Department of Internal Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Fady M Mikhail
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kenneth McCormick
- Department of Pediatrics, University of Alabama at Birmingham, 1601 4th Avenue South, 1600 7th AVE S, Birmingham, AL, 35233-1711, USA
| |
Collapse
|
20
|
Liu Y, Hu J, Sun H. Mineralized nanofibrous scaffold promotes phenamil-induced osteoblastic differentiation while mitigating adipogenic differentiation. J Tissue Eng Regen Med 2019; 14:464-474. [PMID: 31840422 DOI: 10.1002/term.3007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 10/23/2019] [Accepted: 10/27/2019] [Indexed: 12/20/2022]
Abstract
Large bone defects represent a significant unmet medical challenge. Cost effectiveness and better stability make small molecule organic compounds a more promising alternative compared with biomacromolecules, for example, growth factors/hormones, in regenerative medicine. However, one common challenge for the application of these small compounds is their side-effect issue. Phenamil is emerging as an intriguing small molecule to promote bone repair by strongly activating bone morphogenetic protein signaling pathway. In addition to osteogenesis, phenamil also induces significant adipogenesis based on some in vitro studies, which is a concern that impedes it from potential clinical applications. Besides the soluble chemical signals, cellular differentiation is heavily dependent on the microenvironments provided by the 3D scaffolds. Therefore, we developed a 3D nanofibrous biomimetic scaffold-based strategy to harness the phenamil-induced stem cell lineage differentiation. Based on the gene expression, alkaline phosphatase activity, and mineralization data, we indicated that bone-matrix mimicking mineralized-gelatin nanofibrous scaffold effectively improved phenamil-induced osteoblastic differentiation, while mitigating the adipogenic differentiation in vitro. In addition to normal culture conditions, we also indicated that mineralized matrix can significantly improve phenamil-induced osteoblastic differentiation in simulated inflammatory condition. In viewing of the crucial role of mineralized matrix, we developed an innovative and facile mineral deposition-based strategy to sustain release of phenamil from 3D scaffolds for efficient local bone regeneration. Overall, our study demonstrated that biomaterials played a crucial role in modulating small molecule drug phenamil-induced osteoblastic differentiation by providing a bone-matrix mimicking mineralized gelatin nanofibrous scaffolds.
Collapse
Affiliation(s)
- Yangxi Liu
- Department of Biomedical Engineering, University of South Dakota, BioSNTR, Sioux Falls, South Dakota
| | - Jue Hu
- Department of Oral and Maxillofacial Surgery, College of Dentistry, University of Iowa, Iowa City, Iowa
| | - Hongli Sun
- Department of Oral and Maxillofacial Surgery, College of Dentistry, University of Iowa, Iowa City, Iowa
| |
Collapse
|
21
|
Is NO the Answer? The Nitric Oxide Pathway Can Support Bone Morphogenetic Protein 2 Mediated Signaling. Cells 2019; 8:cells8101273. [PMID: 31635347 PMCID: PMC6830101 DOI: 10.3390/cells8101273] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/14/2019] [Accepted: 10/16/2019] [Indexed: 12/20/2022] Open
Abstract
The growth factor bone morphogenetic protein 2 (BMP2) plays an important role in bone development and repair. Despite the positive effects of BMP2 in fracture healing, its use is associated with negative side effects and poor cost effectiveness, partly due to the large amounts of BMP2 applied. Therefore, reduction of BMP2 amounts while maintaining efficacy is of clinical importance. As nitric oxide (NO) signaling plays a role in bone fracture healing and an association with the BMP2 pathway has been indicated, this study aimed to investigate the relationship of BMP2 and NO pathways and whether NO can enhance BMP2-induced signaling and osteogenic abilities in vitro. To achieve this, the stable BMP reporter cell line C2C12BRELuc was used to quantify BMP signaling, and alkaline phosphatase (ALP) activity and gene expression were used to quantify osteogenic potency. C2C12BRELuc cells were treated with recombinant BMP2 in combination with NO donors and substrate (Deta NONOate, SNAP & L-Arginine), NOS inhibitor (LNAME), soluble guanylyl cyclase (sGC) inhibitor (LY83583) and activator (YC-1), BMP type-I receptor inhibitor (LDN-193189), or protein kinase A (PKA) inhibitor (H89). It was found that the NOS enzyme, direct NO application, and sGC enhanced BMP2 signaling and improved BMP2 induced osteogenic activity. The application of a PKA inhibitor demonstrated that BMP2 signaling is enhanced by the NO pathway via PKA, underlining the capability of BMP2 in activating the NO pathway. Collectively, this study proves the ability of the NO pathway to enhance BMP2 signaling.
Collapse
|
22
|
Choi S, Yu J, Park A, Dubon MJ, Do J, Kim Y, Nam D, Noh J, Park KS. BMP-4 enhances epithelial mesenchymal transition and cancer stem cell properties of breast cancer cells via Notch signaling. Sci Rep 2019; 9:11724. [PMID: 31409851 PMCID: PMC6692307 DOI: 10.1038/s41598-019-48190-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 07/26/2019] [Indexed: 01/07/2023] Open
Abstract
Bone morphogenetic protein (BMP) signaling and Notch signaling play important roles in tumorigenesis in various organs and tissues, including the breast. BMP-4 enhanced epithelial mesenchymal transition (EMT) and stem cell properties in both mammary epithelial cell line and breast carcinoma cell line. BMP-4 increased the expression of EMT biomarkers, such as fibronectin, laminin, N-cadherin, and Slug. BMP-4 also activated Notch signaling in these cells and increased the sphere forming efficiency of the non-transformed mammary epithelial cell line MCF-10A. In addition, BMP-4 upregulated the sphere forming efficiency, colony formation efficiency, and the expression of cancer stem cell markers, such as Nanog and CD44, in the breast carcinoma cell line MDA-MB-231. Inhibition of Notch signaling downregulated EMT and stem cell properties induced by BMP-4. Down-regulation of Smad4 using siRNA impaired the BMP-4-induced activation of Notch signaling, as well as the BMP-4-mediated EMT. These results suggest that EMT and stem cell properties are increased in mammary epithelial cells and breast cancer cells through the activation of Notch signaling in a Smad4-dependent manner in response to BMP-4.
Collapse
Affiliation(s)
- Sanghyuk Choi
- Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104, Korea
| | - Jinyeong Yu
- Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104, Korea
| | - Aran Park
- Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104, Korea
| | - Maria Jose Dubon
- Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104, Korea
| | - Jungbeom Do
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, 02447, Korea
| | - Youngjae Kim
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, 02447, Korea
| | - Donghyun Nam
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, 02447, Korea
| | - Jinok Noh
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, 02447, Korea
| | - Ki-Sook Park
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, 02447, Korea. .,East-West Medical Research Institute, Kyung Hee University, Seoul, 02447, Korea. .,College of Medicine, Kyung Hee University, Seoul, 02447, Korea.
| |
Collapse
|
23
|
Leeper NJ, Maegdefessel L. Non-coding RNAs: key regulators of smooth muscle cell fate in vascular disease. Cardiovasc Res 2019; 114:611-621. [PMID: 29300828 DOI: 10.1093/cvr/cvx249] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/28/2017] [Indexed: 01/02/2023] Open
Abstract
The vascular smooth muscle cell (SMC) is one of the most plastic cells in the body. Understanding how non-coding RNAs (ncRNAs) regulate SMC cell-fate decision making in the vasculature has significantly enhanced our understanding of disease development, and opened up exciting new avenues for potential therapeutic applications. Recent studies on SMC physiology have in addition challenged our traditional view on their role and contribution to vascular disease, mainly in the setting of atherosclerosis as well as aneurysm disease, and restenosis after angioplasties. The impact of SMC behaviour on vascular disease is now recognized to be context dependent; SMC proliferation and migration can be harmful or beneficial, whereas their apoptosis, senescence, and switching into a more macrophage-like phenotype can promote inflammation and disease progression. This is in particular true for atherosclerosis-related diseases, where proliferation of SMCs was believed to promote lesion formation, but may also prevent plaque rupture by stabilizing the fibrous cap. Based on newer findings of genetic lineage tracing studies, it was revealed that SMC phenotypic switching can result in less-differentiated forms that lack classical SMC markers while exhibiting functions more related to macrophage-like cells. This switching can directly promote atherogenesis. The aim of this current review is to summarize and discuss how ncRNAs (mainly microRNAs and long ncRNAs) are involved in SMC plasticity, and how they directly affect vascular disease development and progression. Finally, we want to critically assess where potential future therapies could be useful to influence the burden of vascular diseases.
Collapse
Affiliation(s)
- Nicholas J Leeper
- Division of Vascular Surgery, Stanford University, Stanford, CA, USA
| | - Lars Maegdefessel
- Department of Vascular and Endovascular Surgery, Klinikum Rechts der Isar, Technical University Munich, and German Center for Cardiovascular Research Center (DZHK) Partner Site Munich, 81675 Munich, Germany.,Karolinska Institute, Center for Molecular Medicine, Stockholm, Sweden
| |
Collapse
|
24
|
Zhou J, He F, Sun B, Liu R, Gao Y, Ren H, Shu Y, Chen X, Liu Z, Zhou H, Deng S, Xu H, Li J, Xu L, Zhang W. Polytropic Influence of TRIB3 rs2295490 Genetic Polymorphism on Response to Antihypertensive Agents in Patients With Essential Hypertension. Front Pharmacol 2019; 10:236. [PMID: 30971918 PMCID: PMC6445854 DOI: 10.3389/fphar.2019.00236] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/26/2019] [Indexed: 02/05/2023] Open
Abstract
Tribbles homolog 3 (TRIB3) mediating signaling pathways are closely related to blood pressure regulation. Our previous findings suggested a greater benefit on vascular outcomes in patients carrying TRIB3 (251, A > G, rs2295490) G allele with good glucose and blood pressure control. And TRIB3 (rs2295490) AG/GG genotypes were found to reduce primary vascular events in type 2 diabetic patients who received intensive glucose treatment as compared to those receiving standard glucose treatment. However, the effect of TRIB3 genetic variation on antihypertensives was not clear in essential hypertension patients. A total of 368 patients treated with conventional dosage of antihypertensives (6 groups, grouped by atenolol/bisoprolol, celiprolol, doxazosin, azelnidipine/nitrendipine, imidapril, and candesartan/irbesartan) were enrolled in our study. Genetic variations were successfully identified by sanger sequencing. A linear mixed model analysis was performed to evaluate blood pressures among TRIB3 (251, A > G) genotypes and adjusted for baseline age, gender, body mass index, systolic blood pressure (SBP), diastolic blood pressure (DBP), total cholesterol and other biochemical factors appropriately. Our data suggested that TRIB3 (251, A > G) AA genotype carriers showed better antihypertensive effect than the AG/GG genotype carriers [P = 0.014 for DBP and P = 0.042 for mean arterial pressure (MAP)], with a maximal reduction of DBP by 4.2 mmHg and MAP by 3.56 mmHg after azelnidipine or nitrendipine treatment at the 4th week. Similar tendency of DBP-change and MAP-change was found for imidapril (ACEI) treatment, in which marginally significances were achieved (P = 0.073 and 0.075, respectively). Against that, we found that TRIB3 (251, A > G) AG/GG genotype carriers benefited from antihypertensive therapy of ARBs with a larger DBP-change during the period of observation (P = 0.036). Additionally, stratified analysis revealed an obvious difference of the maximal blood pressure change (13 mmHg for the MAP between male and female patients with AA genotype who took ARBs). Although no significant difference in antihypertensive effect between TRIB3 (251, A > G) genotypes in patients treated with α, β-ADRs was observed, we found significant difference in age-, sex-dependent manner related to α, β-ADRs. In conclusion, our data supported that TRIB3 (251, A > G) genetic polymorphism may serve as a useful biomarker in the treatment of hypertension.
Collapse
Affiliation(s)
- Jiecan Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China.,National Clinical Research Center for Geriatrics, Xiangya Hospital, Central South University, Changsha, China.,Pharmacy Department, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Fazhong He
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China.,National Clinical Research Center for Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Bao Sun
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China.,National Clinical Research Center for Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Rong Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China.,National Clinical Research Center for Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Yongchao Gao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China.,National Clinical Research Center for Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Huan Ren
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China.,National Clinical Research Center for Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Yan Shu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, United States
| | - Xiaoping Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China.,National Clinical Research Center for Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Zhaoqian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China.,National Clinical Research Center for Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China.,National Clinical Research Center for Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Sheng Deng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Heng Xu
- Department of Laboratory Medicine, Precision Medicine Center, and Precision Medicine Key Laboratory of Sichuan Province, Collaborative Innovation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jianmin Li
- Department of Respiratory Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Linyong Xu
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China.,National Clinical Research Center for Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
25
|
Morrell NW, Aldred MA, Chung WK, Elliott CG, Nichols WC, Soubrier F, Trembath RC, Loyd JE. Genetics and genomics of pulmonary arterial hypertension. Eur Respir J 2019; 53:13993003.01899-2018. [PMID: 30545973 PMCID: PMC6351337 DOI: 10.1183/13993003.01899-2018] [Citation(s) in RCA: 317] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 12/17/2022]
Abstract
Since 2000 there have been major advances in our understanding of the genetic and genomics of pulmonary arterial hypertension (PAH), although there remains much to discover. Based on existing knowledge, around 25-30% of patients diagnosed with idiopathic PAH have an underlying Mendelian genetic cause for their condition and should be classified as heritable PAH (HPAH). Here, we summarise the known genetic and genomic drivers of PAH, the insights these provide into pathobiology, and the opportunities afforded for development of novel therapeutic approaches. In addition, factors determining the incomplete penetrance observed in HPAH are discussed. The currently available approaches to genetic testing and counselling, and the impact of a genetic diagnosis on clinical management of the patient with PAH, are presented. Advances in DNA sequencing technology are rapidly expanding our ability to undertake genomic studies at scale in large cohorts. In the future, such studies will provide a more complete picture of the genetic contribution to PAH and, potentially, a molecular classification of this disease.
Collapse
Affiliation(s)
- Nicholas W Morrell
- University of Cambridge School of Clinical Medicine, Addenbrooke's and Papworth Hospitals, Cambridge, UK
| | | | - Wendy K Chung
- Columbia University Medical Center, New York, NY, USA
| | - C Gregory Elliott
- Intermountain Medical Center and University of Utah, Salt Lake City, UT, USA
| | | | | | - Richard C Trembath
- Division of Genetics and Molecular Medicine, School of Basic and Medical Biosciences, King's College London, London, UK
| | - James E Loyd
- Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
26
|
Korkut A, Zaidi S, Kanchi RS, Rao S, Gough NR, Schultz A, Li X, Lorenzi PL, Berger AC, Robertson G, Kwong LN, Datto M, Roszik J, Ling S, Ravikumar V, Manyam G, Rao A, Shelley S, Liu Y, Ju Z, Hansel D, de Velasco G, Pennathur A, Andersen JB, O'Rourke CJ, Ohshiro K, Jogunoori W, Nguyen BN, Li S, Osmanbeyoglu HU, Ajani JA, Mani SA, Houseman A, Wiznerowicz M, Chen J, Gu S, Ma W, Zhang J, Tong P, Cherniack AD, Deng C, Resar L, Weinstein JN, Mishra L, Akbani R. A Pan-Cancer Analysis Reveals High-Frequency Genetic Alterations in Mediators of Signaling by the TGF-β Superfamily. Cell Syst 2018; 7:422-437.e7. [PMID: 30268436 PMCID: PMC6370347 DOI: 10.1016/j.cels.2018.08.010] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/29/2018] [Accepted: 08/21/2018] [Indexed: 02/07/2023]
Abstract
We present an integromic analysis of gene alterations that modulate transforming growth factor β (TGF-β)-Smad-mediated signaling in 9,125 tumor samples across 33 cancer types in The Cancer Genome Atlas (TCGA). Focusing on genes that encode mediators and regulators of TGF-β signaling, we found at least one genomic alteration (mutation, homozygous deletion, or amplification) in 39% of samples, with highest frequencies in gastrointestinal cancers. We identified mutation hotspots in genes that encode TGF-β ligands (BMP5), receptors (TGFBR2, AVCR2A, and BMPR2), and Smads (SMAD2 and SMAD4). Alterations in the TGF-β superfamily correlated positively with expression of metastasis-associated genes and with decreased survival. Correlation analyses showed the contributions of mutation, amplification, deletion, DNA methylation, and miRNA expression to transcriptional activity of TGF-β signaling in each cancer type. This study provides a broad molecular perspective relevant for future functional and therapeutic studies of the diverse cancer pathways mediated by the TGF-β superfamily.
Collapse
Affiliation(s)
- Anil Korkut
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sobia Zaidi
- Center for Translational Medicine, Department of Surgery, George Washington University, Washington, DC 20037, USA
| | - Rupa S Kanchi
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shuyun Rao
- Center for Translational Medicine, Department of Surgery, George Washington University, Washington, DC 20037, USA
| | - Nancy R Gough
- Center for Translational Medicine, Department of Surgery, George Washington University, Washington, DC 20037, USA
| | - Andre Schultz
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xubin Li
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Philip L Lorenzi
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ashton C Berger
- Cancer Program, The Eli and Edythe L. Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| | - Gordon Robertson
- Canada's Michael Smith Genome Sciences Center, BC Cancer Agency, Vancouver, BC V5Z 4S6, Canada
| | - Lawrence N Kwong
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mike Datto
- Department of Pathology, Duke School of Medicine Durham, Durham, NC 27710, USA
| | - Jason Roszik
- Department of Melanoma Medical Oncology and Genomic Medicine, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shiyun Ling
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Visweswaran Ravikumar
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ganiraju Manyam
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Arvind Rao
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Simon Shelley
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
| | - Yuexin Liu
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhenlin Ju
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Donna Hansel
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Guillermo de Velasco
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medical Oncology, University Hospital 12 de Octubre, Madrid 28041, Spain
| | - Arjun Pennathur
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Jesper B Andersen
- Department of Health and Medical Sciences, Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloes Vej 5, Copenhagen 2200, Denmark
| | - Colm J O'Rourke
- Department of Health and Medical Sciences, Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloes Vej 5, Copenhagen 2200, Denmark
| | - Kazufumi Ohshiro
- Center for Translational Medicine, Department of Surgery, George Washington University, Washington, DC 20037, USA
| | - Wilma Jogunoori
- Center for Translational Medicine, Department of Surgery, George Washington University, Washington, DC 20037, USA; Veterans Affairs Medical Center, Institute of Clinical Research, Washington, DC 20422, USA
| | - Bao-Ngoc Nguyen
- Center for Translational Medicine, Department of Surgery, George Washington University, Washington, DC 20037, USA
| | - Shulin Li
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hatice U Osmanbeyoglu
- Memorial Sloan Kettering Cancer Center, Computational & Systems Biology Program, New York, NY 10065, USA
| | - Jaffer A Ajani
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sendurai A Mani
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Andres Houseman
- College of Public Health and Human Sciences, Oregon State University, Corvallis, OR 9733, USA
| | - Maciej Wiznerowicz
- Poznań University of Medical Sciences, Poznań 61701, Poland; Greater Poland Cancer Center, Poznań 61866, Poland; International Institute for Molecular Oncology, Poznań 60203, Poland
| | - Jian Chen
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shoujun Gu
- Center for Translational Medicine, Department of Surgery, George Washington University, Washington, DC 20037, USA
| | - Wencai Ma
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jiexin Zhang
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pan Tong
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Andrew D Cherniack
- Cancer Program, The Eli and Edythe L. Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| | - Chuxia Deng
- Center for Translational Medicine, Department of Surgery, George Washington University, Washington, DC 20037, USA; Faculty of Health Sciences, University of Macau, Macau, Macau SAR, China
| | - Linda Resar
- Departments of Medicine, Division of Hematology, Oncology and Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - John N Weinstein
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Systems Biology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lopa Mishra
- Center for Translational Medicine, Department of Surgery, George Washington University, Washington, DC 20037, USA; Veterans Affairs Medical Center, Institute of Clinical Research, Washington, DC 20422, USA.
| | - Rehan Akbani
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
27
|
The E3 ubiquitin ligase SMURF1 regulates cell-fate specification and outflow tract septation during mammalian heart development. Sci Rep 2018; 8:9542. [PMID: 29934521 PMCID: PMC6015040 DOI: 10.1038/s41598-018-27854-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 06/07/2018] [Indexed: 12/11/2022] Open
Abstract
Smad ubiquitin regulatory factor 1 (SMURF1) is a HECT-type E3 ubiquitin ligase that plays a critical role in vertebrate development by regulating planar cell polarity (PCP) signaling and convergent extension (CE). Here we show that SMURF1 is involved in mammalian heart development. We find that SMURF1 is highly expressed in outflow tract cushion mesenchyme and Smurf1−/− mouse embryos show delayed outflow tract septation. SMURF1 is expressed in smooth muscle cells of the coronary arteries and great vessels. Thickness of the aortic smooth muscle cell layer is reduced in Smurf1−/− mouse embryos. We show that SMURF1 is a negative regulator of cardiomyogenesis and a positive regulator of smooth muscle cell and cardiac fibroblast differentiation, indicating that SMURF1 is important for cell-type specification during heart development. Finally, we provide evidence that SMURF1 localizes at the primary cilium where it may regulate bone morphogenetic protein (BMP) signaling, which controls the initial phase of cardiomyocyte differentiation. In summary, our results demonstrate that SMURF1 is a critical regulator of outflow tract septation and cell-type specification during heart development, and that these effects may in part be mediated via control of cilium-associated BMP signaling.
Collapse
|
28
|
Goumans MJ, Zwijsen A, Ten Dijke P, Bailly S. Bone Morphogenetic Proteins in Vascular Homeostasis and Disease. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a031989. [PMID: 28348038 DOI: 10.1101/cshperspect.a031989] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It is well established that control of vascular morphogenesis and homeostasis is regulated by vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), Delta-like 4 (Dll4), angiopoietin, and ephrin signaling. It has become clear that signaling by bone morphogenetic proteins (BMPs), which have a long history of studies in bone and early heart development, are also essential for regulating vascular function. Indeed, mutations that cause deregulated BMP signaling are linked to two human vascular diseases, hereditary hemorrhagic telangiectasia and pulmonary arterial hypertension. These observations are corroborated by data obtained with vascular cells in cell culture and in mouse models. BMPs are required for normal endothelial cell differentiation and for venous/arterial and lymphatic specification. In adult life, BMP signaling orchestrates neo-angiogenesis as well as vascular inflammation, remodeling, and calcification responses to shear and oxidative stress. This review emphasizes the pivotal role of BMPs in the vascular system, based on studies of mouse models and human vascular disorders.
Collapse
Affiliation(s)
- Marie-José Goumans
- Department of Molecular Cell Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - An Zwijsen
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium.,KU Leuven Department of Human Genetics, 3000 Leuven, Belgium
| | - Peter Ten Dijke
- Department of Molecular Cell Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands.,Cancer Genomics Centre Netherlands, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Sabine Bailly
- Institut National de la Santé et de la Recherche Mécale (INSERM), U1036, 38000 Grenoble, France.,Laboratoire Biologie du Cancer et de l'Infection, Commissariat à l'Énergie Atomique et aux Energies Alternatives, Biosciences and Biotechnology Institute of Grenoble, 38000 Grenoble, France.,University of Grenoble Alpes, 38000 Grenoble, France
| |
Collapse
|
29
|
Zhang C, Hong FF, Wang CC, Li L, Chen JL, Liu F, Quan RF, Wang JF. TRIB3 inhibits proliferation and promotes osteogenesis in hBMSCs by regulating the ERK1/2 signaling pathway. Sci Rep 2017; 7:10342. [PMID: 28871113 PMCID: PMC5583332 DOI: 10.1038/s41598-017-10601-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/10/2017] [Indexed: 12/20/2022] Open
Abstract
Osteogenic differentiation in human bone marrow-derived mesenchymal stem cells (hBMSCs) is regulated by various factors, including bone morphogenetic proteins (BMPs), Notch, growth hormones and mitogen-activated protein kinases (MAPKs). Tribbles homolog 3 (TRIB3), a pseudokinase, plays an important role in cancer cells and adipocytes. However, TRIB3 function in osteogenic differentiation is unknown, although it is involved in regulating signaling pathways associated with osteogenic differentiation. Here, we found that TRIB3 was highly expressed during osteogenic differentiation in hBMSCs. Inhibition of focal adhesion kinase (FAK) or phosphatidylinositol 3-kinase (PI3K) resulted in a significant decrease in TRIB3 expression, and expression of TRIB3 was restored by increasing insulin-like growth factor-1 (IGF-1) via activating phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signaling. TRIB3 knock-down enhanced proliferation and decreased osteogenic differentiation at the middle stage of differentiation, and these effects were reversed by inhibiting the activation of extracellular signal-regulated kinase (ERK)-1/2. In conclusion, TRIB3 plays an important role in proliferation and osteogenic differentiation by regulating ERK1/2 activity at the middle stage of differentiation, and expression of TRIB3 is regulated by FAK in a PI3K/AKT-dependent manner.
Collapse
Affiliation(s)
- Cui Zhang
- Institute of Cell and Development Biology, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
| | - Fan-Fan Hong
- Institute of Cell and Development Biology, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
| | - Cui-Cui Wang
- Institute of Cell and Development Biology, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
| | - Liang Li
- Institute of Cell and Development Biology, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
| | - Jian-Ling Chen
- Institute of Cell and Development Biology, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
| | - Fei Liu
- Institute of Orthopedics, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, Zhejiang, 311200, P. R. China
| | - Ren-Fu Quan
- Institute of Orthopedics, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, Zhejiang, 311200, P. R. China.
| | - Jin-Fu Wang
- Institute of Cell and Development Biology, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China.
| |
Collapse
|
30
|
IRS4, a novel modulator of BMP/Smad and Akt signalling during early muscle differentiation. Sci Rep 2017; 7:8778. [PMID: 28821740 PMCID: PMC5562708 DOI: 10.1038/s41598-017-08676-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 07/12/2017] [Indexed: 12/27/2022] Open
Abstract
Elaborate regulatory networks of the Bone Morphogenetic Protein (BMP) pathways ensure precise signalling outcome during cell differentiation and tissue homeostasis. Here, we identified IRS4 as a novel regulator of BMP signal transduction and provide molecular insights how it integrates into the signalling pathway. We found that IRS4 interacts with the BMP receptor BMPRII and specifically targets Smad1 for proteasomal degradation consequently leading to repressed BMP/Smad signalling in C2C12 myoblasts while concomitantly activating the PI3K/Akt axis. IRS4 is present in human and primary mouse myoblasts, the expression increases during myogenic differentiation but is downregulated upon final commitment coinciding with Myogenin expression. Functionally, IRS4 promotes myogenesis in C2C12 cells, while IRS4 knockdown inhibits differentiation of myoblasts. We propose that IRS4 is particularly critical in the myoblast stage to serve as a molecular switch between BMP/Smad and Akt signalling and to thereby control cell commitment. These findings provide profound understanding of the role of BMP signalling in early myogenic differentiation and open new ways for targeting the BMP pathway in muscle regeneration.
Collapse
|
31
|
Fan J, Pi-Anfruns J, Guo M, Im DCS, Cui ZK, Kim S, Wu BM, Aghaloo TL, Lee M. Small molecule-mediated tribbles homolog 3 promotes bone formation induced by bone morphogenetic protein-2. Sci Rep 2017; 7:7518. [PMID: 28790361 PMCID: PMC5548928 DOI: 10.1038/s41598-017-07932-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/05/2017] [Indexed: 11/16/2022] Open
Abstract
Although bone morphogenetic protein-2 (BMP2) has demonstrated extraordinary potential in bone formation, its clinical applications require supraphysiological milligram-level doses that increase postoperative inflammation and inappropriate adipogenesis, resulting in well-documented life-threatening cervical swelling and cyst-like bone formation. Recent promising alternative biomolecular strategies are toward promoting pro-osteogenic activity of BMP2 while simultaneously suppressing its adverse effects. Here, we demonstrated that small molecular phenamil synergized osteogenesis and bone formation with BMP2 in a rat critical size mandibular defect model. Moreover, we successfully elicited the BMP2 adverse outcomes (i.e. adipogenesis and inflammation) in the mandibular defect by applying high dose BMP2. Phenamil treatment significantly improves the quality of newly formed bone by inhibiting BMP2 induced fatty cyst-like structure and inflammatory soft-tissue swelling. The observed positive phenamil effects were associated with upregulation of tribbles homolog 3 (Trib3) that suppressed adipogenic differentiation and inflammatory responses by negatively regulating PPARγ and NF-κB transcriptional activities. Thus, use of BMP2 along with phenamil stimulation or Trib3 augmentation may be a promising strategy to improve clinical efficacy and safety of current BMP therapeutics.
Collapse
Affiliation(s)
- Jiabing Fan
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, California, 90095, USA
| | - Joan Pi-Anfruns
- Division of Diagnostic and Surgical Sciences, School of Dentistry, University of California, Los Angeles, California, 90095, USA
| | - Mian Guo
- Department of Neurosurgery, the 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilonjiang, 150001, China
| | - Dan C S Im
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, California, 90095, USA
| | - Zhong-Kai Cui
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, California, 90095, USA
| | - Soyon Kim
- Department of Bioengineering, University of California, Los Angeles, California, 90095, USA
| | - Benjamin M Wu
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, California, 90095, USA
- Department of Bioengineering, University of California, Los Angeles, California, 90095, USA
| | - Tara L Aghaloo
- Division of Diagnostic and Surgical Sciences, School of Dentistry, University of California, Los Angeles, California, 90095, USA.
| | - Min Lee
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, California, 90095, USA.
- Department of Bioengineering, University of California, Los Angeles, California, 90095, USA.
| |
Collapse
|
32
|
van der Bruggen CE, Tedford RJ, Handoko ML, van der Velden J, de Man FS. RV pressure overload: from hypertrophy to failure. Cardiovasc Res 2017; 113:1423-1432. [DOI: 10.1093/cvr/cvx145] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/31/2017] [Indexed: 01/31/2023] Open
Affiliation(s)
- Cathelijne E.E. van der Bruggen
- Department of Pulmonology, Amsterdam Cardiovascular Sciences, VU University Medical Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Ryan J. Tedford
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | | | - Jolanda van der Velden
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Frances S. de Man
- Department of Pulmonology, Amsterdam Cardiovascular Sciences, VU University Medical Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
33
|
Butcher L, Ahluwalia M, Örd T, Johnston J, Morris RH, Kiss-Toth E, Örd T, Erusalimsky JD. Evidence for a role of TRIB3 in the regulation of megakaryocytopoiesis. Sci Rep 2017; 7:6684. [PMID: 28751721 PMCID: PMC5532315 DOI: 10.1038/s41598-017-07096-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/27/2017] [Indexed: 12/23/2022] Open
Abstract
Megakaryocytopoiesis is a complex differentiation process driven by the hormone thrombopoietin by which haematopoietic progenitor cells give rise to megakaryocytes, the giant bone marrow cells that in turn break down to form blood platelets. The Tribbles Pseudokinase 3 gene (TRIB3) encodes a pleiotropic protein increasingly implicated in the regulation of cellular differentiation programmes. Previous studies have hinted that TRIB3 could be also involved in megakaryocytopoiesis but its role in this process has so far not been investigated. Using cellular model systems of haematopoietic lineage differentiation here we demonstrate that TRIB3 is a negative modulator of megakaryocytopoiesis. We found that in primary cultures derived from human haematopoietic progenitor cells, thrombopoietin-induced megakaryocytic differentiation led to a time and dose-dependent decrease in TRIB3 mRNA levels. In the haematopoietic cell line UT7/mpl, silencing of TRIB3 increased basal and thrombopoietin-stimulated megakaryocyte antigen expression, as well as basal levels of ERK1/2 phosphorylation. In primary haematopoietic cell cultures, silencing of TRIB3 facilitated megakaryocyte differentiation. In contrast, over-expression of TRIB3 in these cells inhibited the differentiation process. The in-vitro identification of TRIB3 as a negative regulator of megakaryocytopoiesis suggests that in-vivo this gene could be important for the regulation of platelet production.
Collapse
Affiliation(s)
- Lee Butcher
- School of Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | | | - Tiit Örd
- Estonian Biocentre, Tartu, Estonia
| | - Jessica Johnston
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Roger H Morris
- School of Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Endre Kiss-Toth
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | | | | |
Collapse
|
34
|
Kurkewich JL, Hansen J, Klopfenstein N, Zhang H, Wood C, Boucher A, Hickman J, Muench DE, Grimes HL, Dahl R. The miR-23a~27a~24-2 microRNA cluster buffers transcription and signaling pathways during hematopoiesis. PLoS Genet 2017; 13:e1006887. [PMID: 28704388 PMCID: PMC5531666 DOI: 10.1371/journal.pgen.1006887] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 07/27/2017] [Accepted: 06/21/2017] [Indexed: 02/07/2023] Open
Abstract
MicroRNA cluster mirn23a has previously been shown to promote myeloid development at the expense of lymphoid development in overexpression and knockout mouse models. This polarization is observed early in hematopoietic development, with an increase in common lymphoid progenitors (CLPs) and a decrease in all myeloid progenitor subsets in adult bone marrow. The pool size of multipotential progenitors (MPPs) is unchanged; however, in this report we observe by flow cytometry that polarized subsets of MPPs are changed in the absence of mirn23a. Additionally, in vitro culture of MPPs and sorted MPP transplants showed that these cells have decreased myeloid and increased lymphoid potential in vitro and in vivo. We investigated the mechanism by which mirn23a regulates hematopoietic differentiation and observed that mirn23a promotes myeloid development of hematopoietic progenitors through regulation of hematopoietic transcription factors and signaling pathways. Early transcription factors that direct the commitment of MPPs to CLPs (Ikzf1, Runx1, Satb1, Bach1 and Bach2) are increased in the absence of mirn23a miRNAs as well as factors that commit the CLP to the B cell lineage (FoxO1, Ebf1, and Pax5). Mirn23a appears to buffer transcription factor levels so that they do not stochastically reach a threshold level to direct differentiation. Intriguingly, mirn23a also inversely regulates the PI3 kinase (PI3K)/Akt and BMP/Smad signaling pathways. Pharmacological inhibitor studies, coupled with dominant active/dominant negative biochemical experiments, show that both signaling pathways are critical to mirn23a’s regulation of hematopoietic differentiation. Lastly, consistent with mirn23a being a physiological inhibitor of B cell development, we observed that the essential B cell transcription factor EBF1 represses expression of mirn23a. In summary, our data demonstrates that mirn23a regulates a complex array of transcription and signaling pathways to modulate adult hematopoiesis. MicroRNAs (miRNAs) are small ~22 nucleotide long RNA molecules that are involved in regulating multiple cellular processes through inhibiting the expression of target proteins. We previously identified a gene (mirn23a) that codes for 3 miRNAs that control the development of immune cells in the bone marrow. The miRNAs promote the development of innate immune cells, macrophages and granulocytes, while repressing the development of B cells. Here we show that mirn23a miRNAs negatively affect the expression of multiple proteins that are involved in directing blood progenitor cells to become B cells. Additionally, we observed that modulation of FoxO1 and Smad proteins, downstream effectors of two signaling pathways (PI3 kinase/ Akt and BMP/ Smad), is critical to direct immune cell development. This is the first observation that these pathways are potentially coregulated during the commitment of blood progenitors to mature cells of the immune system. Consistent with mirn23a being a critical gene for committing progenitors to innate immune cells at the expense of B cells, we observed that a critical B cell protein represses the expression of mirn23a. In conclusion, we demonstrate the mirn23a regulation of blood development is due to a complex regulation of both transcription factors and signaling pathways.
Collapse
Affiliation(s)
- Jeffrey L. Kurkewich
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States of America
- Harper Cancer Research Institute, South Bend, IN, United States of America
| | - Justin Hansen
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States of America
- Harper Cancer Research Institute, South Bend, IN, United States of America
| | - Nathan Klopfenstein
- Harper Cancer Research Institute, South Bend, IN, United States of America
- Department of Microbiology and Immunology, Indiana University School of Medicine, South Bend, IN, United States of America
| | - Helen Zhang
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States of America
- Harper Cancer Research Institute, South Bend, IN, United States of America
| | - Christian Wood
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States of America
- Harper Cancer Research Institute, South Bend, IN, United States of America
| | - Austin Boucher
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States of America
- Harper Cancer Research Institute, South Bend, IN, United States of America
| | - Joseph Hickman
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States of America
- Harper Cancer Research Institute, South Bend, IN, United States of America
| | - David E. Muench
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
| | - H. Leighton Grimes
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
| | - Richard Dahl
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States of America
- Harper Cancer Research Institute, South Bend, IN, United States of America
- Department of Microbiology and Immunology, Indiana University School of Medicine, South Bend, IN, United States of America
- * E-mail:
| |
Collapse
|
35
|
He F, Liu M, Chen Z, Liu G, Wang Z, Liu R, Luo J, Tang J, Wang X, Liu X, Zhou H, Chen X, Liu Z, Zhang W. Assessment of Human Tribbles Homolog 3 Genetic Variation (rs2295490) Effects on Type 2 Diabetes Patients with Glucose Control and Blood Pressure Lowering Treatment. EBioMedicine 2016; 13:181-189. [PMID: 27793583 PMCID: PMC5264271 DOI: 10.1016/j.ebiom.2016.10.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/08/2016] [Accepted: 10/18/2016] [Indexed: 01/19/2023] Open
Abstract
Effects of human tribbles homolog 3 (TRIB3) genetic variation (c.251 A>G, Gln84Arg, rs2295490) on the clinical outcomes of vascular events has not been evaluated in patients with type 2 diabetes after blood pressure lowering and glucose controlling treatment. We did an analysis of a 2×2 factorial (glucose control axis and blood pressure lowering axis) randomized controlled clinical trial at 61 centers in China, with a follow-up period of 5years. The major vascular endpoints were the composites of death from cardio-cerebral vascular diseases, non-fatal stroke and myocardial infraction, new or worsening renal and diabetic eye disease. A total of 1884 participants were included in our research with a 4.8years median follow-up. For glucose lowering axis, patients with TRIB3 (rs2295490) AA (n=609) genotype exhibited significantly reduced risk of major vascular events compared with AG+GG (n=335) genotype carriers (Hazard ratio 0.72, 95% CI 0.55-0.94, p=0.016), Paradoxically, the risk of vascular events were significantly increased in patients with AA (n=621) compared to AG+GG (n=319) genotype for intensive glucose control (Hazard ratio 1.46, 95% CI, 1.06–2.17, p = 0.018) [corrected]. . For blood pressure lowering axis, marginally significant difference was found between TRIB3 variant and coronary events. Our findings suggest that good glucose and blood pressure control exhibited greater benefits on vascular outcomes in patients with TRIB3 (rs2295490) G allele.
Collapse
Affiliation(s)
- Fazhong He
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha 410078, China
| | - Mouze Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha 410078, China
| | - Zhangren Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha 410078, China
| | - Guojing Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha 410078, China
| | - Zhenmin Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha 410078, China
| | - Rong Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha 410078, China
| | - Jianquan Luo
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha 410078, China
| | - Jie Tang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha 410078, China
| | - Xingyu Wang
- Beijing Hypertension League Institute, 24 Shijingshan Road, Beijing 100043, China
| | - Xin Liu
- Beijing Hypertension League Institute, 24 Shijingshan Road, Beijing 100043, China
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha 410078, China
| | - Xiaoping Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha 410078, China
| | - Zhaoqian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha 410078, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha 410078, China.
| |
Collapse
|
36
|
Complex inheritance in Pulmonary Arterial Hypertension patients with several mutations. Sci Rep 2016; 6:33570. [PMID: 27630060 PMCID: PMC5024326 DOI: 10.1038/srep33570] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 08/25/2016] [Indexed: 12/21/2022] Open
Abstract
Pulmonary Arterial Hypertension (PAH) is a rare and progressive disease with low incidence and prevalence, and elevated mortality. PAH is characterized by increased mean pulmonary artery pressure. The aim of this study was to analyse patients with combined mutations in BMPR2, ACVRL1, ENG and KCNA5 genes and to establish a genotype-phenotype correlation. Major genes were analysed by polymerase chain reaction (PCR) and direct sequencing. Genotype-phenotype correlation was performed. Fifty-seven (28 idiopathic PAH, 29 associated PAH group I) were included. Several mutations in different genes, classified as pathogenic by in silico analysis, were present in 26% of PAH patients. The most commonly involved gene was BMPR2 (12 patients) followed by ENG gene (9 patients). ACVRL1 and KCNA5 genes showed very low incidence of mutations (5 and 1 patients, respectively). Genotype-phenotype correlation showed statistically significant differences for gender (p = 0.045), age at diagnosis (p = 0.035), pulmonary vascular resistance (p = 0.030), cardiac index (p = 0.035) and absence of response to treatment (p = 0.011). PAH is consequence of a heterogeneous constellation of genetic arrangements. Patients with several pathogenic mutations seem to display a more severe phenotype.
Collapse
|
37
|
Liang L, Ma G, Chen K, Liu Y, Wu X, Ying K, Zhang R. EIF2AK4 mutation in pulmonary veno-occlusive disease: A case report and review of the literature. Medicine (Baltimore) 2016; 95:e5030. [PMID: 27684876 PMCID: PMC5265969 DOI: 10.1097/md.0000000000005030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Pulmonary veno-occlusive disease (PVOD) is a rare and devastating cause of pulmonary arterial hypertension with a non-specific clinical presentation and a relatively specific presentation in high-resolution thoracic CT scan images. Definitive diagnosis is made by histological examination in previous. According to the 2015 ESC/ERS Guidelines, detection of a mutation in the eukaryotic translation initiation factor 2 alpha kinase 4 (EIF2AK4) without histological confirmation is recommended to validate the diagnosis of PVOD. METHODS We report the case of a 27-year-old man who was admitted for persistent cough and dyspnea that had lasted for 5 months and had developed and experienced progressive dyspnea for the last 2 months. The echocardiogram and right heart catheterization without vasodilator challenge confirmed the diagnosis of pulmonary arterial hypertension. Other tests, such as high-resolution thoracic CT scan, V/Q scan, pulmonary function test with diffusion capacity, and blood tests, excluded other associated diseases which could have caused pulmonary hypertension. RESULTS The initial diagnosis at admission was idiopathic pulmonary arterial hypertension and an oral vasodilator (sildenafil) was given. However, the dyspnea subsequently worsened, and the patient was transferred to a regional lung transplant center, where he died of heart failure 1 week later. Using exome sequencing, we found an EIF2AK4 mutation, which was sufficient to confirm the diagnosis of PVOD. CONCLUSION This is the first reported case of EIF2AK4 mutation in PVOD in a Chinese patient population. We found the frameshift EIF2AK4 mutation c.1392delT (p.Arg465fs) in this case. Up to now, there has been a paucity of data on this rare disease, and the exact role of EIF2AK4 loss-of-function mutations in the pathogenesis of PVOD is still unknown. More investigations should be conducted in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ruifeng Zhang
- Department of Respiratory medicine, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
- Correspondence: Ruifeng Zhang, Department of Respiratory Medicine, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China (e-mail: )
| |
Collapse
|
38
|
Abstract
Transforming growth factor β (TGF-β) family members signal via heterotetrameric complexes of type I and type II dual specificity kinase receptors. The activation and stability of the receptors are controlled by posttranslational modifications, such as phosphorylation, ubiquitylation, sumoylation, and neddylation, as well as by interaction with other proteins at the cell surface and in the cytoplasm. Activation of TGF-β receptors induces signaling via formation of Smad complexes that are translocated to the nucleus where they act as transcription factors, as well as via non-Smad pathways, including the Erk1/2, JNK and p38 MAP kinase pathways, and the Src tyrosine kinase, phosphatidylinositol 3'-kinase, and Rho GTPases.
Collapse
Affiliation(s)
- Carl-Henrik Heldin
- Ludwig Institute for Cancer Research Ltd., Science for Life Laboratory, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Aristidis Moustakas
- Ludwig Institute for Cancer Research Ltd., Science for Life Laboratory, Uppsala University, SE-751 24 Uppsala, Sweden Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE-751 23 Uppsala, Sweden
| |
Collapse
|
39
|
Kashima R, Roy S, Ascano M, Martinez-Cerdeno V, Ariza-Torres J, Kim S, Louie J, Lu Y, Leyton P, Bloch KD, Kornberg TB, Hagerman PJ, Hagerman R, Lagna G, Hata A. Augmented noncanonical BMP type II receptor signaling mediates the synaptic abnormality of fragile X syndrome. Sci Signal 2016; 9:ra58. [PMID: 27273096 DOI: 10.1126/scisignal.aaf6060] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Epigenetic silencing of fragile X mental retardation 1 (FMR1) causes fragile X syndrome (FXS), a common inherited form of intellectual disability and autism. FXS correlates with abnormal synapse and dendritic spine development, but the molecular link between the absence of the FMR1 product FMRP, an RNA binding protein, and the neuropathology is unclear. We found that the messenger RNA encoding bone morphogenetic protein type II receptor (BMPR2) is a target of FMRP. Depletion of FMRP increased BMPR2 abundance, especially that of the full-length isoform that bound and activated LIM domain kinase 1 (LIMK1), a component of the noncanonical BMP signal transduction pathway that stimulates actin reorganization to promote neurite outgrowth and synapse formation. Heterozygosity for BMPR2 rescued the morphological abnormalities in neurons both in Drosophila and in mouse models of FXS, as did the postnatal pharmacological inhibition of LIMK1 activity. Compared with postmortem prefrontal cortex tissue from healthy subjects, the amount of full-length BMPR2 and of a marker of LIMK1 activity was increased in this brain region from FXS patients. These findings suggest that increased BMPR2 signal transduction is linked to FXS and that the BMPR2-LIMK1 pathway is a putative therapeutic target in patients with FXS and possibly other forms of autism.
Collapse
Affiliation(s)
- Risa Kashima
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Sougata Roy
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Manuel Ascano
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Veronica Martinez-Cerdeno
- Institute for Pediatric Regenerative Medicine, Department of Pathology, University of California, Davis, Davis, CA 95817, USA. MIND (Medical Investigation of Neurodevelopmental Disorders) Institute, University of California, Davis, Davis, CA 95817, USA
| | - Jeanelle Ariza-Torres
- Institute for Pediatric Regenerative Medicine, Department of Pathology, University of California, Davis, Davis, CA 95817, USA
| | - Sunghwan Kim
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Justin Louie
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Yao Lu
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Patricio Leyton
- Anesthesia and Critical Care, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Kenneth D Bloch
- Anesthesia and Critical Care, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Thomas B Kornberg
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Paul J Hagerman
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA 95817, USA
| | - Randi Hagerman
- MIND (Medical Investigation of Neurodevelopmental Disorders) Institute, University of California, Davis, Davis, CA 95817, USA
| | - Giorgio Lagna
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Akiko Hata
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
40
|
Coll-Bonfill N, de la Cruz-Thea B, Pisano MV, Musri MM. Noncoding RNAs in smooth muscle cell homeostasis: implications in phenotypic switch and vascular disorders. Pflugers Arch 2016; 468:1071-87. [PMID: 27109570 DOI: 10.1007/s00424-016-1821-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/04/2016] [Indexed: 12/16/2022]
Abstract
Vascular smooth muscle cells (SMC) are a highly specialized cell type that exhibit extraordinary plasticity in adult animals in response to a number of environmental cues. Upon vascular injury, SMC undergo phenotypic switch from a contractile-differentiated to a proliferative/migratory-dedifferentiated phenotype. This process plays a major role in vascular lesion formation and during the development of vascular remodeling. Vascular remodeling comprises the accumulation of dedifferentiated SMC in the intima of arteries and is central to a number of vascular diseases such as arteriosclerosis, chronic obstructive pulmonary disease or pulmonary hypertension. Therefore, it is critical to understand the molecular mechanisms that govern SMC phenotype. In the last decade, a number of new classes of noncoding RNAs have been described. These molecules have emerged as key factors controlling tissue homeostasis during physiological and pathological conditions. In this review, we will discuss the role of noncoding RNAs, including microRNAs and long noncoding RNAs, in the regulation of SMC plasticity.
Collapse
Affiliation(s)
- N Coll-Bonfill
- Department of Pulmonary Medicine Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - B de la Cruz-Thea
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Friuli 2434, 5016, Córdoba, Argentina
| | - M V Pisano
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Friuli 2434, 5016, Córdoba, Argentina
| | - M M Musri
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Friuli 2434, 5016, Córdoba, Argentina.
| |
Collapse
|
41
|
Sakurai K, Fujiwara T, Hasegawa S, Okitsu Y, Fukuhara N, Onishi Y, Yamada-Fujiwara M, Ichinohasama R, Harigae H. Inhibition of human primary megakaryocyte differentiation by anagrelide: a gene expression profiling analysis. Int J Hematol 2016; 104:190-9. [DOI: 10.1007/s12185-016-2006-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 04/05/2016] [Accepted: 04/05/2016] [Indexed: 11/29/2022]
|
42
|
Kurkewich JL, Bikorimana E, Nguyen T, Klopfenstein N, Zhang H, Hallas WM, Stayback G, McDowell MA, Dahl R. The mirn23a microRNA cluster antagonizes B cell development. J Leukoc Biol 2016; 100:665-677. [PMID: 27084569 DOI: 10.1189/jlb.1hi0915-398rr] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 03/21/2016] [Indexed: 12/20/2022] Open
Abstract
Ablation of microRNA synthesis by deletion of the microRNA-processing enzyme Dicer has demonstrated that microRNAs are necessary for normal hematopoietic differentiation and function. However, it is still unclear which specific microRNAs are required for hematopoiesis and at what developmental stages they are necessary. This is especially true for immune cell development. We previously observed that overexpression of the products of the mirn23a gene (microRNA-23a, -24-2, and 27a) in hematopoietic progenitors increased myelopoiesis with a reciprocal decrease in B lymphopoiesis, both in vivo and in vitro. In this study, we generated a microRNA-23a, -24-2, and 27a germline knockout mouse to determine whether microRNA-23a, -24-2, and 27a expression was essential for immune cell development. Characterization of hematopoiesis in microRNA-23a, -24-2, and 27a-/- mice revealed a significant increase in B lymphocytes in both the bone marrow and the spleen, with a concomitant decrease in myeloid cells (monocytes/granulocytes). Analysis of the bone marrow progenitor populations revealed a significant increase in common lymphoid progenitors and a significant decrease in both bone marrow common myeloid progenitors and granulocyte monocyte progenitors. Gene-expression analysis of primary hematopoietic progenitors and multipotent erythroid myeloid lymphoid cells showed that microRNA-23a, -24-2, and 27a regulates essential B cell gene-expression networks. Overexpression of microRNA-24-2 target Tribbles homolog 3 can recapitulate the microRNA-23a, -24-2, and 27a-/- phenotype in vitro, suggesting that increased B cell development in microRNA-23a, -24-2, and 27a null mice can be partially explained by a Tribbles homolog 3-dependent mechanism. Data from microRNA-23a, -24-2, and 27a-/- mice support a critical role for this microRNA cluster in regulating immune cell populations through repression of B lymphopoiesis.
Collapse
Affiliation(s)
- Jeffrey L Kurkewich
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA
| | - Emmanuel Bikorimana
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA; Department of Microbiology and Immunology, Indiana University School of Medicine, South Bend, Indiana, USA
| | - Tan Nguyen
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA; Department of Microbiology and Immunology, Indiana University School of Medicine, South Bend, Indiana, USA
| | - Nathan Klopfenstein
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA; Department of Microbiology and Immunology, Indiana University School of Medicine, South Bend, Indiana, USA
| | - Helen Zhang
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA
| | - William M Hallas
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA; Department of Microbiology and Immunology, Indiana University School of Medicine, South Bend, Indiana, USA
| | - Gwen Stayback
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA; Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA; and
| | - Mary Ann McDowell
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA; Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA; and
| | - Richard Dahl
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA; Department of Microbiology and Immunology, Indiana University School of Medicine, South Bend, Indiana, USA
| |
Collapse
|
43
|
Fan J, Im CS, Guo M, Cui ZK, Fartash A, Kim S, Patel N, Bezouglaia O, Wu BM, Wang CY, Aghaloo TL, Lee M. Enhanced Osteogenesis of Adipose-Derived Stem Cells by Regulating Bone Morphogenetic Protein Signaling Antagonists and Agonists. Stem Cells Transl Med 2016; 5:539-51. [PMID: 26956209 PMCID: PMC4798741 DOI: 10.5966/sctm.2015-0249] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/09/2015] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Although adipose-derived stem cells (ASCs) are an attractive cell source for bone tissue engineering, direct use of ASCs alone has had limited success in the treatment of large bone defects. Although bone morphogenetic proteins (BMPs) are believed to be the most potent osteoinductive factors to promote osteogenic differentiation of ASCs, their clinical applications require supraphysiological dosage, leading to high medical burden and adverse side effects. In the present study, we demonstrated an alternative approach that can effectively complement the BMP activity to maximize the osteogenesis of ASCs without exogenous application of BMPs by regulating levels of antagonists and agonists to BMP signaling. Treatment of ASCs with the amiloride derivative phenamil, a positive regulator of BMP signaling, combined with gene manipulation to suppress the BMP antagonist noggin, significantly enhanced osteogenic differentiation of ASCs through increased BMP-Smad signaling in vitro. Furthermore, the combination approach of noggin suppression and phenamil stimulation enhanced the BMP signaling and bone repair in a mouse calvarial defect model by adding noggin knockdown ASCs to apatite-coated poly(lactic-coglycolic acid) scaffolds loaded with phenamil. These results suggest novel complementary osteoinductive strategies that could maximize activity of the BMP pathway in ASC bone repair while reducing potential adverse effects of current BMP-based therapeutics. SIGNIFICANCE Although stem cell-based tissue engineering strategy offers a promising alternative to repair damaged bone, direct use of stem cells alone is not adequate for challenging healing environments such as in large bone defects. This study demonstrates a novel strategy to maximize bone formation pathways in osteogenic differentiation of mesenchymal stem cells and functional bone formation by combining gene manipulation with a small molecule activator toward osteogenesis. The findings indicate promising stem cell-based therapy for treating bone defects that can effectively complement or replace current osteoinductive therapeutics.
Collapse
Affiliation(s)
- Jiabing Fan
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, California, USA
| | - Choong Sung Im
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, California, USA
| | - Mian Guo
- Department of Neurosurgery, 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilonjiang, People's Republic of China
| | - Zhong-Kai Cui
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, California, USA
| | - Armita Fartash
- Division of Diagnostic and Surgical Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, California, USA
| | - Soyon Kim
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
| | - Nikhil Patel
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, California, USA
| | - Olga Bezouglaia
- Division of Diagnostic and Surgical Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, California, USA
| | - Benjamin M Wu
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, California, USA Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
| | - Cun-Yu Wang
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, California, USA
| | - Tara L Aghaloo
- Division of Diagnostic and Surgical Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, California, USA
| | - Min Lee
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, California, USA Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
44
|
Morrell NW, Bloch DB, ten Dijke P, Goumans MJTH, Hata A, Smith J, Yu PB, Bloch KD. Targeting BMP signalling in cardiovascular disease and anaemia. Nat Rev Cardiol 2016; 13:106-20. [PMID: 26461965 PMCID: PMC4886232 DOI: 10.1038/nrcardio.2015.156] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bone morphogenetic proteins (BMPs) and their receptors, known to be essential regulators of embryonic patterning and organogenesis, are also critical for the regulation of cardiovascular structure and function. In addition to their contributions to syndromic disorders including heart and vascular development, BMP signalling is increasingly recognized for its influence on endocrine-like functions in postnatal cardiovascular and metabolic homeostasis. In this Review, we discuss several critical and novel aspects of BMP signalling in cardiovascular health and disease, which highlight the cell-specific and context-specific nature of BMP signalling. Based on advancing knowledge of the physiological roles and regulation of BMP signalling, we indicate opportunities for therapeutic intervention in a range of cardiovascular conditions including atherosclerosis and pulmonary arterial hypertension, as well as for anaemia of inflammation. Depending on the context and the repertoire of ligands and receptors involved in specific disease processes, the selective inhibition or enhancement of signalling via particular BMP ligands (such as in atherosclerosis and pulmonary arterial hypertension, respectively) might be beneficial. The development of selective small molecule antagonists of BMP receptors, and the identification of ligands selective for BMP receptor complexes expressed in the vasculature provide the most immediate opportunities for new therapies.
Collapse
Affiliation(s)
- Nicholas W Morrell
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Donald B Bloch
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Charlestown, MA 02129, USA
| | - Peter ten Dijke
- Department of Molecular Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medicine Centre, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - Marie-Jose T H Goumans
- Department of Molecular Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medicine Centre, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - Akiko Hata
- Cardiovascular Research Institute, University of California, 500 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Jim Smith
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Paul B Yu
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Kenneth D Bloch
- Anaesthesia Centre for Critical Care Research, Department of Anaesthesia, Critical Care and Pain Medicine, 55 Fruit Street, Boston, MA 02114, USA
| |
Collapse
|
45
|
Amsalem AR, Marom B, Shapira KE, Hirschhorn T, Preisler L, Paarmann P, Knaus P, Henis YI, Ehrlich M. Differential regulation of translation and endocytosis of alternatively spliced forms of the type II bone morphogenetic protein (BMP) receptor. Mol Biol Cell 2016; 27:716-30. [PMID: 26739752 PMCID: PMC4750929 DOI: 10.1091/mbc.e15-08-0547] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 12/24/2015] [Indexed: 12/22/2022] Open
Abstract
The cytoplasmic extension of the long-form isoform of BMPRII, unique among TGF-β superfamily receptors, is found to regulate the translation of BMPRII and its clathrin-mediated endocytosis. Both processes reduce its cell surface levels. The higher expression of BMPRII-SF at the plasma membrane results in enhanced activation of Smad signaling. The expression and function of transforming growth factor-β superfamily receptors are regulated by multiple molecular mechanisms. The type II BMP receptor (BMPRII) is expressed as two alternatively spliced forms, a long and a short form (BMPRII-LF and –SF, respectively), which differ by an ∼500 amino acid C-terminal extension, unique among TGF-β superfamily receptors. Whereas this extension was proposed to modulate BMPRII signaling output, its contribution to the regulation of receptor expression was not addressed. To map regulatory determinants of BMPRII expression, we compared synthesis, degradation, distribution, and endocytic trafficking of BMPRII isoforms and mutants. We identified translational regulation of BMPRII expression and the contribution of a 3’ terminal coding sequence to this process. BMPRII-LF and -SF differed also in their steady-state levels, kinetics of degradation, intracellular distribution, and internalization rates. A single dileucine signal in the C-terminal extension of BMPRII-LF accounted for its faster clathrin-mediated endocytosis relative to BMPRII-SF, accompanied by mildly faster degradation. Higher expression of BMPRII-SF at the plasma membrane resulted in enhanced activation of Smad signaling, stressing the potential importance of the multilayered regulation of BMPRII expression at the plasma membrane.
Collapse
Affiliation(s)
- Ayelet R Amsalem
- Department of Neurobiology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Barak Marom
- Department of Neurobiology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Keren E Shapira
- Department of Neurobiology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tal Hirschhorn
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Livia Preisler
- Department of Neurobiology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Pia Paarmann
- Institute for Chemistry and Biochemistry, Freie Univesitaet Berlin, 1495 Berlin, Germany
| | - Petra Knaus
- Institute for Chemistry and Biochemistry, Freie Univesitaet Berlin, 1495 Berlin, Germany
| | - Yoav I Henis
- Department of Neurobiology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Marcelo Ehrlich
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
46
|
Ehrlich M. Endocytosis and trafficking of BMP receptors: Regulatory mechanisms for fine-tuning the signaling response in different cellular contexts. Cytokine Growth Factor Rev 2015; 27:35-42. [PMID: 26776724 DOI: 10.1016/j.cytogfr.2015.12.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Signaling by bone morphogenetic protein (BMP) receptors is regulated at multiple levels in order to ensure proper interpretation of BMP stimuli in different cellular settings. As with other signaling receptors, regulation of the amount of exposed and signaling-competent BMP receptors at the plasma-membrane is predicted to be a key mechanism in governing their signaling output. Currently, the endocytosis of BMP receptors is thought to resemble that of the structurally related transforming growth factor-β (TGF-β) receptors, as BMP receptors are constitutively internalized (independently of ligand binding), with moderate kinetics, and mostly via clathrin-mediated endocytosis. Also similar to TGF-β receptors, BMP receptors are able to signal from the plasma membrane, while internalization to endosomes may have a signal modulating effect. When at the plasma membrane, BMP receptors localize to different membrane domains including cholesterol rich domains and caveolae, suggesting a complex interplay between membrane distribution and internalization. An additional layer of complexity stems from the putative regulatory influence on the signaling and trafficking of BMP receptors exerted by ligand traps and/or co-receptors. Furthermore, the trafficking and signaling of BMP receptors are subject to alterations in cellular context. For example, genetic diseases involving changes in the expression of auxiliary factors of endocytic pathways hamper retrograde BMP signals in neurons, and perturb the regulation of synapse formation. This review summarizes current understanding of the trafficking of BMP receptors and discusses the role of trafficking in regulation of BMP signals.
Collapse
Affiliation(s)
- Marcelo Ehrlich
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
47
|
Abstract
UNLABELLED Parkinson's disease (PD) is characterized by the progressive loss of select neuronal populations, but the prodeath genes mediating the neurodegenerative processes remain to be fully elucidated. Trib3 (tribbles pseudokinase 3) is a stress-induced gene with proapoptotic activity that was previously described as highly activated at the transcriptional level in a 6-hydroxydopamine (6-OHDA) cellular model of PD. Here, we report that Trib3 immunostaining is elevated in dopaminergic neurons of the substantia nigra pars compacta (SNpc) of human PD patients. Trib3 protein is also upregulated in cellular models of PD, including neuronal PC12 cells and rat dopaminergic ventral midbrain neurons treated with 6-OHDA, 1-methyl-4-phenylpyridinium (MPP+), or α-synuclein fibrils (αSYN). In the toxin models, Trib3 induction is substantially mediated by the transcription factors CHOP and ATF4. Trib3 overexpression is sufficient to promote neuronal death; conversely, Trib3 knockdown protects neuronal PC12 cells as well as ventral midbrain dopaminergic neurons from 6-OHDA, MPP+, or αSYN. Mechanism studies revealed that Trib3 physically interacts with Parkin, a prosurvival protein whose loss of function is associated with PD. Elevated Trib3 reduces Parkin expression in cultured cells; and in the SNpc of PD patients, Parkin levels are reduced in a subset of dopaminergic neurons expressing high levels of Trib3. Loss of Parkin at least partially mediates the prodeath actions of Trib3 in that Parkin knockdown in cellular PD models abolishes the protective effect of Trib3 downregulation. Together, these findings identify Trib3 and its regulatory pathways as potential targets to suppress the progression of neuron death and degeneration in PD. SIGNIFICANCE STATEMENT Parkinson's disease (PD) is the most common neurodegenerative movement disorder. Current treatments ameliorate symptoms, but not the underlying neuronal death. Understanding the core neurodegenerative processes in PD is a prerequisite for identifying new therapeutic targets and, ultimately, curing this disease. Here, we describe a novel pathway involving the proapoptotic protein Trib3 in neuronal death associated with PD. These findings are supported by data from multiple cellular models of PD and by immunostaining of postmortem PD brains. Upstream, Trib3 is induced by the transcription factors ATF4 and CHOP; and downstream, Trib3 interferes with the PD-associated prosurvival protein Parkin to mediate death. These findings establish this new pathway as a potential and promising therapeutic target for treatment of PD.
Collapse
|
48
|
Ma L, Bao R. Pulmonary capillary hemangiomatosis: a focus on the EIF2AK4 mutation in onset and pathogenesis. APPLICATION OF CLINICAL GENETICS 2015; 8:181-8. [PMID: 26300654 PMCID: PMC4536836 DOI: 10.2147/tacg.s68635] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pulmonary capillary hemangiomatosis (PCH) is a pulmonary vascular disease that mainly affects small capillaries in the lung, and is often misdiagnosed as pulmonary arterial hypertension or pulmonary veno-occlusive disease due to similarities in their clinical presentations, prognosis, and management. In patients who are symptomatic, there is a high mortality rate with median survival of 3 years after diagnosis. Both idiopathic and familial PCH cases are being reported, indicating there is genetic component in disease etiology. Mutations in the eukaryotic translation initiation factor 2α kinase 4 (EIF2AK4) gene were identified in familial and idiopathic PCH cases, suggesting EIF2AK4 is a genetic risk factor for PCH. EIF2AK4 mutations were identified in 100% (6/6) of autosomal recessively inherited familial PCH and 20% (2/10) of sporadic PCH cases. EIF2AK4 is a member of serine/threonine kinases. It downregulates protein synthesis in response to a variety of cellular stress such as hypoxia, viral infection, and amino acid deprivation. Bone morphogenetic protein receptor 2 (BMPR2) is a major genetic risk factor in pulmonary arterial hypertension and EIF2AK4 potentially connects with BMPR2 to cause PCH. L-Arginine is substrate of nitric oxide synthase, and L-arginine is depleted during the production of nitric oxide, which may activate EIF2AK4 to inhibit protein synthesis and negatively regulate vasculogenesis. Mammalian target of rapamycin and EIF2α kinase are two major pathways for translational regulation. Mutant EIF2AK4 could promote proliferation of small pulmonary arteries by crosstalk with mammalian targets of the rapamycin signaling pathway. EIF2AK4 may regulate angiogenesis by modulating the immune system in PCH pathogenesis. The mechanisms of abnormal capillary angiogenesis are suggested to be similar to that of tumor vascularization. Specific therapies were developed according to pathogenesis and are proved to be effective in reported cases. Targeting the EIF2AK4 pathway may provide a novel therapy for PCH.
Collapse
Affiliation(s)
- Lijiang Ma
- Department of Pediatrics and Medicine, Division of Molecular Genetics, Columbia University Medical Center, New York, NY, USA
| | - Ruijun Bao
- The Children's IBD Center, Mount Sinai Hospital, New York, NY, USA
| |
Collapse
|
49
|
Girerd B, Coulet F, Jaïs X, Eyries M, Van Der Bruggen C, De Man F, Houweling A, Dorfmüller P, Savale L, Sitbon O, Vonk-Noordegraaf A, Soubrier F, Simonneau G, Humbert M, Montani D. Characteristics of pulmonary arterial hypertension in affected carriers of a mutation located in the cytoplasmic tail of bone morphogenetic protein receptor type 2. Chest 2015; 147:1385-1394. [PMID: 25429696 DOI: 10.1378/chest.14-0880] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Mutations in BMPR2 encoding bone morphogenetic protein receptor type 2 (BMPRII) is the main genetic risk factor for heritable pulmonary arterial hypertension (PAH). The suspected mechanism is considered to be a defect of BMP signaling. The BMPRII receptor exists in a short isoform without a cytoplasmic tail, which has preserved BMP signaling. METHODS This cohort study compared age at PAH diagnosis and severity between patients carrying a BMPR2 mutation affecting the cytoplasmic tail of BMPRII and affected carriers of a mutation upstream of this domain. RESULTS We identified 171 carriers affected with PAH with a mutated BMPR2. Twenty-three were carriers of a point mutation located on the cytoplasmic tail of BMPRII. This population was characterized by having an older age at diagnosis compared with other BMPR2 mutation carriers (43.2 ± 12.1 years and 35.7 ± 14.6 years, P = .040), a lower pulmonary vascular resistance (13.3 ± 3.5 and 17.4 ± 6.7, P = .023), and a higher proportion of acute vasodilator responders with a long-term response to calcium channel blockers (8.7% and 0%, P = .02). No statistically significant differences were observed in survival. An in vitro assay showed that mutations located in the cytoplasmic tail led to normal activation of the Smad pathway, whereas activation was abolished in the presence of mutations located in the kinase domain. CONCLUSIONS Patients carrying a mutation affecting the cytoplasmic tail of BMPRII were characterized by an older age at diagnosis compared with other BMPR2 mutation carriers, less severe hemodynamic characteristics, and a greater chance of being a long-term responder to calcium channel blockers. Further investigations are needed to better understand the consequences of these BMPR2 mutations in BMPRII signaling pathways and their possible role in pulmonary arterial remodeling.
Collapse
Affiliation(s)
- Barbara Girerd
- University Paris-Sud, Le Kremlin-Bicêtre, France; Assistance Publique-Hôpitaux de Paris (AP-HP), Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire Sévère, DHU Thorax Innovation, Hôpital Bicêtre, Le Kremlin-Bicêtre, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U999, LabEx LERMIT, Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France
| | - Florence Coulet
- Genetics Department, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - Xavier Jaïs
- University Paris-Sud, Le Kremlin-Bicêtre, France; Assistance Publique-Hôpitaux de Paris (AP-HP), Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire Sévère, DHU Thorax Innovation, Hôpital Bicêtre, Le Kremlin-Bicêtre, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U999, LabEx LERMIT, Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France
| | - Mélanie Eyries
- Genetics Department, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France; ICAN Institute for Cardiometabolism and Nutrition, Paris, France; Unité Mixte de Recherche en Santé (UMR_S 1166), UPMC - Université Paris-Sorbonne, and INSERM, Paris, France
| | - Cathelijne Van Der Bruggen
- Departments of Pulmonary Medicine, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Frances De Man
- Departments of Pulmonary Medicine, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Arjan Houweling
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Peter Dorfmüller
- University Paris-Sud, Le Kremlin-Bicêtre, France; Assistance Publique-Hôpitaux de Paris (AP-HP), Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire Sévère, DHU Thorax Innovation, Hôpital Bicêtre, Le Kremlin-Bicêtre, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U999, LabEx LERMIT, Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France
| | - Laurent Savale
- University Paris-Sud, Le Kremlin-Bicêtre, France; Assistance Publique-Hôpitaux de Paris (AP-HP), Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire Sévère, DHU Thorax Innovation, Hôpital Bicêtre, Le Kremlin-Bicêtre, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U999, LabEx LERMIT, Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France
| | - Olivier Sitbon
- University Paris-Sud, Le Kremlin-Bicêtre, France; Assistance Publique-Hôpitaux de Paris (AP-HP), Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire Sévère, DHU Thorax Innovation, Hôpital Bicêtre, Le Kremlin-Bicêtre, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U999, LabEx LERMIT, Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France
| | - Anton Vonk-Noordegraaf
- Departments of Pulmonary Medicine, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Florent Soubrier
- Genetics Department, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France; ICAN Institute for Cardiometabolism and Nutrition, Paris, France; Unité Mixte de Recherche en Santé (UMR_S 1166), UPMC - Université Paris-Sorbonne, and INSERM, Paris, France
| | - Gérald Simonneau
- University Paris-Sud, Le Kremlin-Bicêtre, France; Assistance Publique-Hôpitaux de Paris (AP-HP), Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire Sévère, DHU Thorax Innovation, Hôpital Bicêtre, Le Kremlin-Bicêtre, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U999, LabEx LERMIT, Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France
| | - Marc Humbert
- University Paris-Sud, Le Kremlin-Bicêtre, France; Assistance Publique-Hôpitaux de Paris (AP-HP), Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire Sévère, DHU Thorax Innovation, Hôpital Bicêtre, Le Kremlin-Bicêtre, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U999, LabEx LERMIT, Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France
| | - David Montani
- University Paris-Sud, Le Kremlin-Bicêtre, France; Assistance Publique-Hôpitaux de Paris (AP-HP), Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire Sévère, DHU Thorax Innovation, Hôpital Bicêtre, Le Kremlin-Bicêtre, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U999, LabEx LERMIT, Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France.
| |
Collapse
|
50
|
Ahluwalia M, Butcher L, Donovan H, Killick-Cole C, Jones PM, Erusalimsky JD. The gene expression signature of anagrelide provides an insight into its mechanism of action and uncovers new regulators of megakaryopoiesis. J Thromb Haemost 2015; 13:1103-12. [PMID: 25851510 DOI: 10.1111/jth.12959] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 04/02/2015] [Indexed: 11/29/2022]
Abstract
BACKGROUND Anagrelide is a cytoreductive agent used to lower platelet counts in essential thrombocythemia. Although the drug has been known to selectively inhibit megakaryopoiesis for many years, the molecular mechanism accounting for this activity is still unclear. OBJECTIVES AND METHODS To address this issue we have compared the global gene expression profiles of human hematopoietic cells treated ex-vivo with and without anagrelide while growing under megakaryocyte differentiation conditions, using high-density oligonucleotide microarrays. Gene expression data were validated by the quantitative polymerase chain reaction and mined to identify functional subsets and regulatory pathways. RESULTS We identified 328 annotated genes differentially regulated by anagrelide, including many genes associated with platelet functions and with the control of gene transcription. Prominent among the latter was TRIB3, whose expression increased in the presence of anagrelide. Pathway analysis revealed that anagrelide up-regulated genes that are under the control of the transcription factor ATF4, a known TRIB3 inducer. Notably, immunoblot analysis demonstrated that anagrelide induced the phosphorylation of eIF2α, which is an upstream regulator of ATF4, and increased ATF4 protein levels. Furthermore, salubrinal, an inhibitor of eIF2α dephosphorylation, increased the expression of ATF4-regulated genes and blocked megakaryocyte growth. CONCLUSIONS These findings link signaling through eIF2α/ATF4 to the anti-megakaryopoietic activity of anagrelide and identify new potential modulators of megakaryopoiesis.
Collapse
Affiliation(s)
- M Ahluwalia
- School of Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - L Butcher
- School of Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - H Donovan
- School of Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - C Killick-Cole
- School of Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - P M Jones
- School of Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - J D Erusalimsky
- School of Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| |
Collapse
|