1
|
Melnik BC, Weiskirchen R, John SM, Stremmel W, Leitzmann C, Weiskirchen S, Schmitz G. White Adipocyte Stem Cell Expansion Through Infant Formula Feeding: New Insights into Epigenetic Programming Explaining the Early Protein Hypothesis of Obesity. Int J Mol Sci 2025; 26:4493. [PMID: 40429638 PMCID: PMC12110815 DOI: 10.3390/ijms26104493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 05/03/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
Prolonged breastfeeding (BF), as opposed to artificial infant formula feeding (FF), has been shown to prevent the development of obesity later in life. The aim of our narrative review is to investigate the missing molecular link between postnatal protein overfeeding-often referred to as the "early protein hypothesis"-and the subsequent transcriptional and epigenetic changes that accelerate the expansion of adipocyte stem cells (ASCs) in the adipose vascular niche during postnatal white adipose tissue (WAT) development. To achieve this, we conducted a search on the Web of Science, Google Scholar, and PubMed databases from 2000 to 2025 and reviewed 750 papers. Our findings revealed that the overactivation of mechanistic target of rapamycin complex 1 (mTORC1) and S6 kinase 1 (S6K1), which inhibits wingless (Wnt) signaling due to protein overfeeding, serves as the primary pathway promoting ASC commitment and increasing preadipocyte numbers. Moreover, excessive protein intake, combined with the upregulation of the fat mass and obesity-associated gene (FTO) and a deficiency of breast milk-derived microRNAs from lactation, disrupts the proper regulation of FTO and Wnt pathway components. This disruption enhances ASC expansion in WAT while inhibiting brown adipose tissue development. While BF has been shown to have protective effects against obesity, the postnatal transcriptional and epigenetic changes induced by excessive protein intake from FF may predispose infants to early and excessive ASC commitment in WAT, thereby increasing the risk of obesity later in life.
Collapse
Affiliation(s)
- Bodo C. Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany;
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany;
| | - Swen Malte John
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany;
- Institute for Interdisciplinary Dermatological Prevention and Rehabilitation (iDerm), University of Osnabrück, D-49076 Osnabrück, Germany
| | | | - Claus Leitzmann
- Institut für Ernährungswissenschaft, Universität Gießen, D-35392 Gießen, Germany;
| | - Sabine Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany;
| | - Gerd Schmitz
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, D-93053 Regensburg, Germany;
| |
Collapse
|
2
|
Lee YH, You M, Kim HA. Vaccinium oldhamii Fruit Inhibits Lipid Accumulation in 3T3-L1 Cells and Diet-Induced Obese Animals. Nutrients 2025; 17:1346. [PMID: 40284210 PMCID: PMC12030422 DOI: 10.3390/nu17081346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/07/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES Obesity is a significant global health concern, and the natural bioactive compounds with anti-obesity effects remain challenging. This study aims to examine the anti-obesity effect and the potential mechanism of Vaccinium oldhamii fruit water extract (VOW). METHODS Lipid accumulation, AMP-activated protein kinase (AMPK) activity, and Wnt/β-catenin signaling were evaluated in 3T3-L1 cells. In high-fat and high-sucrose diet (HFHSD)-induced obese mice, body weight, food intake, fat weight, serum lipid profiles, and adipogenic transcription factors were assessed. The most effective VOW fraction was selected by Oil Red O (ORO) staining and its mechanism was studied in 3T3-L1 cells. RESULTS VOW treatment significantly inhibited cellular lipid accumulation and suppressed phosphorylation of AMPK and its downstream protein, acetyl-CoA carboxylase (ACC). VOW also decreased adipogenic-associated protein expressions such as the peroxisome proliferator-activated receptor-γ (PPAR-γ), CCAAT/enhancer-binding proteins α (C/EBP α), sterol regulatory element binding protein-1c (SREBP-1c), and fatty acid synthase (FAS). The enhanced effect of VOW was abolished by the knockdown of AMPK with siRNA. The inhibitory effect of VOW on differentiation depended on the treatment period, even though VOW treatment downregulated the C/EBP β expression at the early phase of differentiation. VOW dramatically reduced activation of AMPK, thereby downregulating adipogenic-associated proteins. Furthermore, the butanol fraction (BtOH) of VOW showed the most powerful effect of VOW dose-dependently reduced lipid accumulation by suppressing the phosphorylation of AMPK. Consistent with inhibited lipid accumulation in vitro, VOW reduced body weight and white adipose tissue weight in the HFHSD-induced obese animal model. CONCLUSIONS Overall, our study suggested that the anti-adipogenesis effect of VOW and its BtOH fraction involved the activation of AMPK.
Collapse
Affiliation(s)
- Young-Hyeon Lee
- Department of Food and Nutrition, Mokpo National University, Muan-gun 58554, Republic of Korea; (Y.-H.L.); (M.Y.)
| | - Mikyoung You
- Department of Food and Nutrition, Mokpo National University, Muan-gun 58554, Republic of Korea; (Y.-H.L.); (M.Y.)
- Convergence Center for Green Anti-Aging Research, Mokpo National University, Muan-gun 58554, Republic of Korea
| | - Hyeon-A Kim
- Department of Food and Nutrition, Mokpo National University, Muan-gun 58554, Republic of Korea; (Y.-H.L.); (M.Y.)
| |
Collapse
|
3
|
Shaikh T, Nguyen D, Dugal JK, DiCaro MV, Yee B, Houshmand N, Lei K, Namazi A. Arrhythmogenic Right Ventricular Cardiomyopathy: A Comprehensive Review. J Cardiovasc Dev Dis 2025; 12:71. [PMID: 39997505 PMCID: PMC11855979 DOI: 10.3390/jcdd12020071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/29/2025] [Accepted: 02/04/2025] [Indexed: 02/26/2025] Open
Abstract
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is characterized by structural abnormalities, arrhythmias, and a spectrum of genetic and clinical manifestations. Clinically, ARVC is structurally distinguished by right ventricular dilation due to increased adiposity and fibrosis in the ventricular walls, and it manifests as cardiac arrhythmias ranging from non-sustained ventricular tachycardia to sudden cardiac death. Its prevalence has been estimated to range from 1 in every 1000 to 5000 people, with its large range being attributed to the variability in genetic penetrance from asymptomatic to significant burden. It is even suggested that the prevalence is underestimated, as the presence of genotypic mutations does not always lead to clinical manifestations that would facilitate diagnosis. Additionally, while set criteria have been in place since the 1990s, newer understanding of this condition and advancements in cardiac technology have prompted multiple revisions in the diagnostic criteria for ARVC. Novel discoveries of gene variants predisposing patients to ARVC have led to established screening techniques while providing insight into genetic counseling and management. This review aims to provide an overview of the genetics, pathophysiology, and clinical approach to ARVC. It will also focus on clinical presentation, ARVC diagnostic criteria, electrophysiological findings, including electrocardiogram characteristics, and imaging findings from cardiac MRI, 2D, and 3D echocardiogram. Current management options-including anti-arrhythmic medications, device indications, and ablation techniques-and the effectiveness of treatment will also be reviewed.
Collapse
Affiliation(s)
- Taha Shaikh
- Department of Internal Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; (T.S.); (D.N.); (J.K.D.); (B.Y.)
| | - Darren Nguyen
- Department of Internal Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; (T.S.); (D.N.); (J.K.D.); (B.Y.)
| | - Jasmine K. Dugal
- Department of Internal Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; (T.S.); (D.N.); (J.K.D.); (B.Y.)
| | - Michael V. DiCaro
- Department of Internal Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; (T.S.); (D.N.); (J.K.D.); (B.Y.)
| | - Brianna Yee
- Department of Internal Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; (T.S.); (D.N.); (J.K.D.); (B.Y.)
| | - Nazanin Houshmand
- Department of Internal Medicine, Division of Cardiology, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; (N.H.); (K.L.); (A.N.)
| | - KaChon Lei
- Department of Internal Medicine, Division of Cardiology, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; (N.H.); (K.L.); (A.N.)
| | - Ali Namazi
- Department of Internal Medicine, Division of Cardiology, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; (N.H.); (K.L.); (A.N.)
| |
Collapse
|
4
|
Bellver-Sanchis A, Ávila-López PA, Tic I, Valle-García D, Ribalta-Vilella M, Labrador L, Banerjee DR, Guerrero A, Casadesus G, Poulard C, Pallàs M, Griñán-Ferré C. Neuroprotective effects of G9a inhibition through modulation of peroxisome-proliferator activator receptor gamma-dependent pathways by miR-128. Neural Regen Res 2024; 19:2532-2542. [PMID: 38526289 PMCID: PMC11090428 DOI: 10.4103/1673-5374.393102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 12/17/2023] [Accepted: 12/28/2023] [Indexed: 03/26/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202419110-00033/figure1/v/2024-03-08T184507Z/r/image-tiff Dysregulation of G9a, a histone-lysine N-methyltransferase, has been observed in Alzheimer's disease and has been correlated with increased levels of chronic inflammation and oxidative stress. Likewise, microRNAs are involved in many biological processes and diseases playing a key role in pathogenesis, especially in multifactorial diseases such as Alzheimer's disease. Therefore, our aim has been to provide partial insights into the interconnection between G9a, microRNAs, oxidative stress, and neuroinflammation. To better understand the biology of G9a, we compared the global microRNA expression between senescence-accelerated mouse-prone 8 (SAMP8) control mice and SAMP8 treated with G9a inhibitor UNC0642. We found a downregulation of miR-128 after a G9a inhibition treatment, which interestingly binds to the 3' untranslated region (3'-UTR) of peroxisome-proliferator activator receptor γ (PPARG) mRNA. Accordingly, Pparg gene expression levels were higher in the SAMP8 group treated with G9a inhibitor than in the SAMP8 control group. We also observed modulation of oxidative stress responses might be mainly driven Pparg after G9a inhibitor. To confirm these antioxidant effects, we treated primary neuron cell cultures with hydrogen peroxide as an oxidative insult. In this setting, treatment with G9a inhibitor increases both cell survival and antioxidant enzymes. Moreover, up-regulation of PPARγ by G9a inhibitor could also increase the expression of genes involved in DNA damage responses and apoptosis. In addition, we also described that the PPARγ/AMPK axis partially explains the regulation of autophagy markers expression. Finally, PPARγ/GADD45α potentially contributes to enhancing synaptic plasticity and neurogenesis after G9a inhibition. Altogether, we propose that pharmacological inhibition of G9a leads to a neuroprotective effect that could be due, at least in part, by the modulation of PPARγ-dependent pathways by miR-128.
Collapse
Affiliation(s)
- Aina Bellver-Sanchis
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Barcelona, Spain
| | - Pedro A. Ávila-López
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Iva Tic
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Barcelona, Spain
| | - David Valle-García
- Institute of Biotechnology, National Autonomous University of Mexico, Cuernavaca, Mexico
| | - Marta Ribalta-Vilella
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Barcelona, Spain
| | - Luis Labrador
- Department of Pharmacology and Therapeutics, Health Science Center-University of Florida, Gainesville, FL, USA
| | - Deb Ranjan Banerjee
- Department of Chemistry, National Institute of Technology Durgapur, M G Avenue, Durgapur, West Bengal, India
| | - Ana Guerrero
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Barcelona, Spain
| | - Gemma Casadesus
- Department of Pharmacology and Therapeutics, Health Science Center-University of Florida, Gainesville, FL, USA
| | - Coralie Poulard
- Cancer Research Cancer Lyon, Université de Lyon, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérlogie de Lyon, Lyon, France
| | - Mercè Pallàs
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Christian Griñán-Ferré
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
5
|
Shiozaki M, Kanno K, Yonezawa S, Otani Y, Shigenobu Y, Haratake D, Murakami E, Oka S, Ito M. Integrator complex subunit 6 promotes hepatocellular steatosis via β-catenin-PPARγ axis. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159532. [PMID: 38981571 DOI: 10.1016/j.bbalip.2024.159532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/21/2024] [Accepted: 07/05/2024] [Indexed: 07/11/2024]
Abstract
Hepatic adipogenesis has common mechanisms with adipocyte differentiation such as PPARγ involvement and the induction of adipose tissue-specific molecules. A previous report demonstrated that integrator complex subunit 6 (INTS6) is required for adipocyte differentiation. This study aimed to investigate INTS6 expression and its role in hepatic steatosis progression. The expression of INTS6 and PPARγ was examined in the liver of a mouse model of steatohepatitis and in paired liver biopsy samples from 11 patients with severe obesity and histologically proven metabolic dysfunction associated steatohepatitis (MASH) before and one year after bariatric surgery. To induce hepatocellular steatosis in vitro, an immortalized human hepatocyte cell line Hc3716 was treated with free fatty acids. In the steatohepatitis mouse model, we observed hepatic induction of INTS6, PPARγ, and adipocyte-specific genes. In contrast, β-catenin which negatively regulates PPARγ was reduced. Biopsied human livers demonstrated a strong positive correlation (r2 = 0.8755) between INTS6 and PPARγ mRNA levels. After bariatric surgery, gene expressions of PPARγ, FABP4, and CD36 were mostly downregulated. In our in vitro experiments, we observed a concentration-dependent increase in Oil Red O staining in Hc3716 cells after treatment with the free fatty acids. Alongside this change, the expression of INTS6, PPARγ, and adipocyte-specific genes was induced. INTS6 knockdown using siRNA significantly suppressed cellular lipid accumulation together with induction of β-catenin and PPARγ downregulation. Collectively, INTS6 expression closely correlates with PPARγ. INTS6 suppression significantly reduced hepatocyte steatosis via β-catenin-PPARγ axis, indicating that INTS6 could be a novel therapeutic target for treating MASH.
Collapse
Affiliation(s)
- Minami Shiozaki
- Department of General Internal Medicine, Hiroshima University Hospital, Japan
| | - Keishi Kanno
- Department of General Internal Medicine, Hiroshima University Hospital, Japan.
| | - Sayaka Yonezawa
- Department of General Internal Medicine, Hiroshima University Hospital, Japan
| | - Yuichiro Otani
- Department of General Internal Medicine, Hiroshima University Hospital, Japan
| | - Yuya Shigenobu
- Department of General Internal Medicine, Hiroshima University Hospital, Japan
| | - Daisuke Haratake
- Department of General Internal Medicine, Hiroshima University Hospital, Japan
| | - Eisuke Murakami
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Shiro Oka
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Masanori Ito
- Department of General Internal Medicine, Hiroshima University Hospital, Japan
| |
Collapse
|
6
|
Vencato S, Romanato C, Rampazzo A, Calore M. Animal Models and Molecular Pathogenesis of Arrhythmogenic Cardiomyopathy Associated with Pathogenic Variants in Intercalated Disc Genes. Int J Mol Sci 2024; 25:6208. [PMID: 38892395 PMCID: PMC11172742 DOI: 10.3390/ijms25116208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/28/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is a rare genetic cardiac disease characterized by the progressive substitution of myocardium with fibro-fatty tissue. Clinically, ACM shows wide variability among patients; symptoms can include syncope and ventricular tachycardia but also sudden death, with the latter often being its sole manifestation. Approximately half of ACM patients have been found with variations in one or more genes encoding cardiac intercalated discs proteins; the most involved genes are plakophilin 2 (PKP2), desmoglein 2 (DSG2), and desmoplakin (DSP). Cardiac intercalated discs provide mechanical and electro-metabolic coupling among cardiomyocytes. Mechanical communication is guaranteed by the interaction of proteins of desmosomes and adheren junctions in the so-called area composita, whereas electro-metabolic coupling between adjacent cardiac cells depends on gap junctions. Although ACM has been first described almost thirty years ago, the pathogenic mechanism(s) leading to its development are still only partially known. Several studies with different animal models point to the involvement of the Wnt/β-catenin signaling in combination with the Hippo pathway. Here, we present an overview about the existing murine models of ACM harboring variants in intercalated disc components with a particular focus on the underlying pathogenic mechanisms. Prospectively, mechanistic insights into the disease pathogenesis will lead to the development of effective targeted therapies for ACM.
Collapse
Affiliation(s)
- Sara Vencato
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35121 Padova, Italy; (S.V.); (C.R.); (A.R.)
| | - Chiara Romanato
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35121 Padova, Italy; (S.V.); (C.R.); (A.R.)
| | - Alessandra Rampazzo
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35121 Padova, Italy; (S.V.); (C.R.); (A.R.)
| | - Martina Calore
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35121 Padova, Italy; (S.V.); (C.R.); (A.R.)
- Department of Molecular Genetics, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6211 LK Maastricht, The Netherlands
| |
Collapse
|
7
|
Wang XS, Chen Y, Zhao YW, Chen MW, Wang H. Assessing the association between a sedentary lifestyle and prevalence of primary osteoporosis: a community-based cross-sectional study among Chinese population. BMJ Open 2024; 14:e080243. [PMID: 38834324 PMCID: PMC11163664 DOI: 10.1136/bmjopen-2023-080243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 05/21/2024] [Indexed: 06/06/2024] Open
Abstract
OBJECTIVES To reveal the association between a sedentary lifestyle and the prevalence of primary osteoporosis (POP). DESIGN A community-based cross-sectional study was conducted. SETTING This study was conducted in communities in Hefei city, Anhui province, China. PARTICIPANTS A total of 1346 residents aged 40 and above underwent POP screening via calcaneus ultrasound bone mineral density (BMD) testing and completed a questionnaire survey. OUTCOME MEASURES The average daily sitting time was included in the study variable and used to assess sedentary behaviour. The 15 control variables included general information, dietary information and life behaviour information. Logistic regression was used to analyse the association between the POP prevalence and study or control variables in different models. RESULTS 1346 participants were finally included in the study. According to the 15 control variables, the crude model and 4 models were established. The analysis revealed that the average daily sitting time showed a significant correlation with the prevalence of POP in the crude model (OR=2.02, 95% CI=1.74 to 2.36, p<0.001), Model 1 (OR=2.65, 95% CI=2.21 to 3.17, p<0.001), Model 2 (OR=2.63, 95% CI=2.19 to 3.15, p<0.001), Model 3 (OR=2.62, 95% CI=2.18 to 3.15, p<0.001) and Model 4 (OR=2.58, 95% CI=2.14 to 3.11, p<0.001). Besides, gender, age and body mass index showed a significant correlation with the POP prevalence in all models. CONCLUSIONS This study suggests a potential association between a sedentary lifestyle and the prevalence of POP within the Chinese population. Modifying sedentary behaviours could contribute to a reduction in POP risk. However, longitudinal cohort studies are necessary to confirm this hypothesis in the future.
Collapse
Affiliation(s)
- Xiao-Song Wang
- Center for Big Data and Population Health of IHM, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Epidemiology and Biostatistics, Anhui Medical University, Hefei, Anhui, China
| | - Yong Chen
- Department of Social Medicine and Health Management, Anhui Medical University, Hefei, Anhui, China
| | - Yun-Wu Zhao
- Center for Big Data and Population Health of IHM, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ming-Wei Chen
- Center for Big Data and Population Health of IHM, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Heng Wang
- Center for Big Data and Population Health of IHM, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Epidemiology and Biostatistics, Anhui Medical University, Hefei, Anhui, China
- Department of Social Medicine and Health Management, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
8
|
Li P, Han X, Li J, Wang Y, Cao Y, Wu W, Liu X. Aerobic exercise training engages the canonical wnt pathway to improve pulmonary function and inflammation in COPD. BMC Pulm Med 2024; 24:236. [PMID: 38745304 PMCID: PMC11095004 DOI: 10.1186/s12890-024-03048-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND We studied whether the exercise improves cigarette smoke (CS) induced chronic obstructive pulmonary disease (COPD) in mice through inhibition of inflammation mediated by Wnt/β-catenin-peroxisome proliferator-activated receptor (PPAR) γ signaling. METHODS Firstly, we observed the effect of exercise on pulmonary inflammation, lung function, and Wnt/β-catenin-PPARγ. A total of 30 male C57BL/6J mice were divided into the control group (CG), smoke group (SG), low-intensity exercise group (LEG), moderate-intensity exercise group (MEG), and high-intensity exercise group (HEG). All the groups, except for CG, underwent whole-body progressive exposure to CS for 25 weeks. Then, we assessed the maximal exercise capacity of mice from the LEG, MEG, and HEG, and performed an 8-week treadmill exercise intervention. Then, we used LiCl (Wnt/β-catenin agonist) and XAV939 (Wnt/β-catenin antagonist) to investigate whether Wnt/β-catenin-PPARγ pathway played a role in the improvement of COPD via exercise. Male C57BL/6J mice were randomly divided into six groups (n = 6 per group): CG, SG, LiCl group, LiCl and exercise group, XAV939 group, and XAV939 and exercise group. Mice except those in the CG were exposed to CS, and those in the exercise groups were subjected to moderate-intensity exercise training. All the mice were subjected to lung function test, lung histological assessment, and analysis of inflammatory markers in the bronchoalveolar lavage fluid, as well as detection of Wnt1, β-catenin and PPARγ proteins in the lung tissue. RESULTS Exercise of various intensities alleviated lung structural changes, pulmonary function and inflammation in COPD, with moderate-intensity exercise exhibiting significant and comprehensive effects on the alleviation of pulmonary inflammation and improvement of lung function. Low-, moderate-, and high-intensity exercise decreased β-catenin levels and increased those of PPARγ significantly, and only moderate-intensity exercise reduced the level of Wnt1 protein. Moderate-intensity exercise relieved the inflammation aggravated by Wnt agonist. Wnt antagonist combined with moderate-intensity exercise increased the levels of PPARγ, which may explain the highest improvement of pulmonary function observed in this group. CONCLUSIONS Exercise effectively decreases COPD pulmonary inflammation and improves pulmonary function. The beneficial role of exercise may be exerted through Wnt/β-catenin-PPARγ pathway.
Collapse
Affiliation(s)
- Peijun Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P.R. China
| | - Xiaoyu Han
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai, 200438, P.R. China
| | - Jian Li
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai, 200438, P.R. China
- Faculty of Traditional Chinese Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433, P.R. China
| | - Yingqi Wang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P.R. China
| | - Yuanyuan Cao
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai, 200438, P.R. China
| | - Weibing Wu
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai, 200438, P.R. China.
| | - Xiaodan Liu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P.R. China.
- Institute of Rehabilitation Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, P.R. China.
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, 201203, P.R. China.
| |
Collapse
|
9
|
Abou Azar F, Mugabo Y, Yuen S, Del Veliz S, Paré F, Rial SA, Lavoie G, Roux PP, Lim GE. Plakoglobin regulates adipocyte differentiation independently of the Wnt/β-catenin signaling pathway. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119690. [PMID: 38367915 DOI: 10.1016/j.bbamcr.2024.119690] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/06/2024] [Accepted: 02/11/2024] [Indexed: 02/19/2024]
Abstract
The scaffold protein 14-3-3ζ is an established regulator of adipogenesis and postnatal adiposity. We and others have demonstrated the 14-3-3ζ interactome to be diverse and dynamic, and it can be examined to identify novel regulators of physiological processes, including adipogenesis. In the present study, we sought to determine if factors that influence adipogenesis during the development of obesity could be identified in the 14-3-3ζ interactome found in white adipose tissue of lean or obese TAP-tagged-14-3-3ζ overexpressing mice. Using mass spectrometry, differences in the abundance of novel, as well as established, adipogenic factors within the 14-3-3ζ interactome could be detected in adipose tissues. One novel candidate was revealed to be plakoglobin, the homolog of the known adipogenic inhibitor, β-catenin, and herein, we report that plakoglobin is involved in adipocyte differentiation. Plakoglobin is expressed in murine 3T3-L1 cells and is primarily localized to the nucleus, where its abundance decreases during adipogenesis. Depletion of plakoglobin by siRNA inhibited adipogenesis and reduced PPARγ2 expression, and similarly, plakoglobin depletion in human adipose-derived stem cells also impaired adipogenesis and reduced lipid accumulation post-differentiation. Transcriptional assays indicated that plakoglobin does not participate in Wnt/β-catenin signaling, as its depletion did not affect Wnt3a-mediated transcriptional activity. Taken together, our results establish plakoglobin as a novel regulator of adipogenesis in vitro and highlights the ability of using the 14-3-3ζ interactome to identify potential pro-obesogenic factors.
Collapse
Affiliation(s)
- F Abou Azar
- Department of Medicine, Université de Montréal, Montréal, QC, Canada; Cardiometabolic axis, Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Y Mugabo
- Department of Medicine, Université de Montréal, Montréal, QC, Canada; Cardiometabolic axis, Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - S Yuen
- Department of Medicine, Université de Montréal, Montréal, QC, Canada; Cardiometabolic axis, Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - S Del Veliz
- Department of Medicine, Université de Montréal, Montréal, QC, Canada; Cardiometabolic axis, Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - F Paré
- Cardiometabolic axis, Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - S A Rial
- Department of Medicine, Université de Montréal, Montréal, QC, Canada; Cardiometabolic axis, Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - G Lavoie
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, Québec, Canada; Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - P P Roux
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, Québec, Canada; Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - G E Lim
- Department of Medicine, Université de Montréal, Montréal, QC, Canada; Cardiometabolic axis, Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada.
| |
Collapse
|
10
|
Kelson CO, Zaytseva YY. Altered lipid metabolism in APC-driven colorectal cancer: the potential for therapeutic intervention. Front Oncol 2024; 14:1343061. [PMID: 38590663 PMCID: PMC10999677 DOI: 10.3389/fonc.2024.1343061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/12/2024] [Indexed: 04/10/2024] Open
Abstract
Altered lipid metabolism is a well-recognized feature of solid cancers, including colorectal cancer. In colorectal cancer, upregulation of lipid metabolism contributes to initiation, progression, and metastasis; thus, aberrant lipid metabolism contributes to a poor patient outcome. The inactivating mutation of APC, a vital tumor suppressor in the Wnt signaling pathway, is a key event that occurs early in the majority of colorectal cancer cases. The potential crosstalk between lipid metabolism and APC-driven colorectal cancer is poorly understood. This review collectively highlights and summarizes the limited understanding between mutations in APC and the upregulation of Wnt/beta-catenin signaling and lipid metabolism. The interconnection between APC inactivation and aberrant lipid metabolism activates Wnt/beta-catenin signaling which causes transcriptome, epigenetic, and microbiome changes to promote colorectal cancer initiation and progression. Furthermore, the downstream effects of this collaborative effort between aberrant Wnt/beta-catenin signaling and lipid metabolism are enhanced stemness, cellular proliferation, prooncogenic signaling, and survival. Understanding the mechanistic link between APC inactivation and alterations in lipid metabolism may foster identification of new therapeutic targets to enable development of more efficacious strategies for prevention and/or treatment of colorectal cancer.
Collapse
Affiliation(s)
- Courtney O Kelson
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, United States
| | - Yekaterina Y Zaytseva
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, United States
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
11
|
Schöckel L, Woischke C, Surendran SA, Michl M, Schiergens T, Hölscher A, Glass F, Kreissl P, Klauschen F, Günther M, Ormanns S, Neumann J. PPARG activation promotes the proliferation of colorectal cancer cell lines and enhances the antiproliferative effect of 5-fluorouracil. BMC Cancer 2024; 24:234. [PMID: 38378472 PMCID: PMC10877928 DOI: 10.1186/s12885-024-11985-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/08/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Peroxisome proliferator-activated receptor gamma (PPARG) is a member of the nuclear receptor family. It is involved in the regulation of adipogenesis, lipid metabolism, insulin sensitivity, vascular homeostasis and inflammation. In addition, PPARG agonists, known as thiazolidinediones, are well established in the treatment of type 2 diabetes mellitus. PPARGs role in cancer is a matter of debate, as pro- and anti-tumour properties have been described in various tumour entities. Currently, the specific role of PPARG in patients with colorectal cancer (CRC) is not fully understood. MATERIAL AND METHODS The prognostic impact of PPARG expression was investigated by immunohistochemistry in a case-control study using a matched pair selection of CRC tumours (n = 246) with either distant metastases to the liver (n = 82), lung (n = 82) or without distant metastases (n = 82). Its effect on proliferation as well as the sensitivity to the chemotherapeutic drug 5-fluorouracil (5-FU) was examined after activation, inhibition, and transient gene knockdown of PPARG in the CRC cell lines SW403 and HT29. RESULTS High PPARG expression was significantly associated with pulmonary metastasis (p = 0.019). Patients without distant metastases had a significantly longer overall survival with low PPARG expression in their tumours compared to patients with high PPARG expression (p = 0.045). In the pulmonary metastasis cohort instead, a trend towards longer survival was observed for patients with high PPARG expression in their tumour (p = 0.059). Activation of PPARG by pioglitazone and rosiglitazone resulted in a significant dose-dependent increase in proliferation of CRC cell lines. Inhibition of PPARG by its specific inhibitor GW9662 and siRNA-mediated knockdown of PPARG significantly decreased proliferation. Activating PPARG significantly increased the CRC cell lines sensitivity to 5-FU while its inhibition decreased it. CONCLUSION The prognostic effect of PPARG expression depends on the metastasis localization in advanced CRC patients. Activation of PPARG increased malignancy associated traits such as proliferation in CRC cell lines but also increases sensitivity towards the chemotherapeutic agent 5-FU. Based on this finding, a combination therapy of PPARG agonists and 5-FU-based chemotherapy constitutes a promising strategy which should be further investigated.
Collapse
Affiliation(s)
- Leah Schöckel
- Institute of Pathology, Ludwig-Maximilians-University (LMU) München, Munich, Germany
| | - Christine Woischke
- Institute of Pathology, Ludwig-Maximilians-University (LMU) München, Munich, Germany
| | - Sai Agash Surendran
- Institute of Pathology, Ludwig-Maximilians-University (LMU) München, Munich, Germany
| | - Marlies Michl
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Tobias Schiergens
- Department of General, Visceral and Transplantation Surgery, University Hospital, LMU Munich, Munich, Germany
| | | | | | | | - Frederick Klauschen
- Institute of Pathology, Ludwig-Maximilians-University (LMU) München, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, a partnership between DKFZ and LMU Munich Germany, Munich, Germany
| | - Michael Günther
- Institute of Pathology, Ludwig-Maximilians-University (LMU) München, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, a partnership between DKFZ and LMU Munich Germany, Munich, Germany
- Innpath Institute for Pathology GmbH, Tirol Kliniken, Innsbruck, Austria
| | - Steffen Ormanns
- Institute of Pathology, Ludwig-Maximilians-University (LMU) München, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, a partnership between DKFZ and LMU Munich Germany, Munich, Germany
- Innpath Institute for Pathology GmbH, Tirol Kliniken, Innsbruck, Austria
| | - Jens Neumann
- Institute of Pathology, Ludwig-Maximilians-University (LMU) München, Munich, Germany.
- German Cancer Consortium (DKTK), partner site Munich, a partnership between DKFZ and LMU Munich Germany, Munich, Germany.
| |
Collapse
|
12
|
Nielsen MS, van Opbergen CJM, van Veen TAB, Delmar M. The intercalated disc: a unique organelle for electromechanical synchrony in cardiomyocytes. Physiol Rev 2023; 103:2271-2319. [PMID: 36731030 PMCID: PMC10191137 DOI: 10.1152/physrev.00021.2022] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
The intercalated disc (ID) is a highly specialized structure that connects cardiomyocytes via mechanical and electrical junctions. Although described in some detail by light microscopy in the 19th century, it was in 1966 that electron microscopy images showed that the ID represented apposing cell borders and provided detailed insight into the complex ID nanostructure. Since then, much has been learned about the ID and its molecular composition, and it has become evident that a large number of proteins, not all of them involved in direct cell-to-cell coupling via mechanical or gap junctions, reside at the ID. Furthermore, an increasing number of functional interactions between ID components are emerging, leading to the concept that the ID is not the sum of isolated molecular silos but an interacting molecular complex, an "organelle" where components work in concert to bring about electrical and mechanical synchrony. The aim of the present review is to give a short historical account of the ID's discovery and an updated overview of its composition and organization, followed by a discussion of the physiological implications of the ID architecture and the local intermolecular interactions. The latter will focus on both the importance of normal conduction of cardiac action potentials as well as the impact on the pathophysiology of arrhythmias.
Collapse
Affiliation(s)
- Morten S Nielsen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Chantal J M van Opbergen
- The Leon Charney Division of Cardiology, New York University Grossmann School of Medicine, New York, New York, United States
| | - Toon A B van Veen
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mario Delmar
- The Leon Charney Division of Cardiology, New York University Grossmann School of Medicine, New York, New York, United States
| |
Collapse
|
13
|
Słoka J, Madej M, Strzalka-Mrozik B. Molecular Mechanisms of the Antitumor Effects of Mesalazine and Its Preventive Potential in Colorectal Cancer. Molecules 2023; 28:5081. [PMID: 37446747 DOI: 10.3390/molecules28135081] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/18/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Chemoprevention is one of the ways to fight colorectal cancer, which is a huge challenge in oncology. Numerous pieces of evidence indicate that chronic inflammation in the course of Crohn's disease or ulcerative colitis (UC) is a significant cancer risk factor. Epidemiologic studies suggest that long-term use of non-steroidal anti-inflammatory drugs (NSAIDs), including mesalazine, has beneficial effects on colitis-associated colorectal cancer. Mesalazine is a first-line therapy for UC and is also widely used for maintaining remission in UC. Data showed that mesalazine has antiproliferative properties associated with cyclooxygenase (COX) inhibition but can also act through COX-independent pathways. This review summarizes knowledge about mesalazine's molecular mechanisms of action and chemopreventive effect by which it could interfere with colorectal cancer cell proliferation and survival.
Collapse
Affiliation(s)
- Joanna Słoka
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Marcel Madej
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Barbara Strzalka-Mrozik
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| |
Collapse
|
14
|
Reisqs JB, Moreau A, Sleiman Y, Boutjdir M, Richard S, Chevalier P. Arrhythmogenic cardiomyopathy as a myogenic disease: highlights from cardiomyocytes derived from human induced pluripotent stem cells. Front Physiol 2023; 14:1191965. [PMID: 37250123 PMCID: PMC10210147 DOI: 10.3389/fphys.2023.1191965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is an inherited cardiomyopathy characterized by the replacement of myocardium by fibro-fatty infiltration and cardiomyocyte loss. ACM predisposes to a high risk for ventricular arrhythmias. ACM has initially been defined as a desmosomal disease because most of the known variants causing the disease concern genes encoding desmosomal proteins. Studying this pathology is complex, in particular because human samples are rare and, when available, reflect the most advanced stages of the disease. Usual cellular and animal models cannot reproduce all the hallmarks of human pathology. In the last decade, human-induced pluripotent stem cells (hiPSC) have been proposed as an innovative human cellular model. The differentiation of hiPSCs into cardiomyocytes (hiPSC-CM) is now well-controlled and widely used in many laboratories. This hiPSC-CM model recapitulates critical features of the pathology and enables a cardiomyocyte-centered comprehensive approach to the disease and the screening of anti-arrhythmic drugs (AAD) prescribed sometimes empirically to the patient. In this regard, this model provides unique opportunities to explore and develop new therapeutic approaches. The use of hiPSC-CMs will undoubtedly help the development of precision medicine to better cure patients suffering from ACM. This review aims to summarize the recent advances allowing the use of hiPSCs in the ACM context.
Collapse
Affiliation(s)
- J. B. Reisqs
- Cardiovascular Research Program, VA New York Harbor Healthcare System, Brooklyn, NY, United States
| | - A. Moreau
- Université de Montpellier, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, PhyMedExp, Montpellier, France
| | - Y. Sleiman
- Cardiovascular Research Program, VA New York Harbor Healthcare System, Brooklyn, NY, United States
| | - M. Boutjdir
- Cardiovascular Research Program, VA New York Harbor Healthcare System, Brooklyn, NY, United States
- Department of Medicine, Cell Biology and Pharmacology, State University of New York Downstate Health Sciences University, NY, United States
- Department of Medicine, New York University School of Medicine, NY, United States
| | - S. Richard
- Université de Montpellier, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, PhyMedExp, Montpellier, France
| | - P. Chevalier
- Neuromyogene Institute, Claude Bernard University, Lyon 1, Villeurbanne, France
- Service de Rythmologie, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
15
|
Samim Khan S, Janrao S, Srivastava S, Bala Singh S, Vora L, Kumar Khatri D. GSK-3β: An exuberating neuroinflammatory mediator in Parkinson's disease. Biochem Pharmacol 2023; 210:115496. [PMID: 36907495 DOI: 10.1016/j.bcp.2023.115496] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023]
Abstract
Neuroinflammation is a critical degradative condition affecting neurons in the brain. Progressive neurodegenerative conditions such as Alzheimer's disease and Parkinson's disease (PD) have been strongly linked to neuroinflammation. The trigger point for inflammatory conditions in the cells and body is the physiological immune system. The immune response mediated by glial cells and astrocytes can rectify the physiological alterations occurring in the cell for the time being but prolonged activation leads to pathological progression. The proteins mediating such an inflammatory response, as per the available literature, are undoubtedly GSK-3β, NLRP3, TNF, PPARγ, and NF-κB, along with a few other mediatory proteins. NLRP3 inflammasome is undeniably a principal instigator of the neuroinflammatory response, but the regulatory pathways controlling its activation are still unclear, besides less clarity for the interplay between different inflammatory proteins. Recent reports have suggested the involvement of GSK-3β in regulating NLRP3 activation, but the exact mechanistic pathway remains vague. In the current review, we attempt to provide an elaborate description of crosstalk between inflammatory markers and GSK-3β mediated neuroinflammation progression, linking it to regulatory transcription factors and posttranslational modification of proteins. The recent clinical therapeutic advances targeting these proteins are also discussed in parallel to provide a comprehensive view of the progress made in PD management and lacunas still existing in the field.
Collapse
Affiliation(s)
- Sabiya Samim Khan
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana 500037, India
| | - Sushmita Janrao
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana 500037, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana 500037, India.
| | - Shashi Bala Singh
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana 500037, India.
| | - Lalitkumar Vora
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK.
| | - Dharmendra Kumar Khatri
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana 500037, India.
| |
Collapse
|
16
|
Balatskyi VV, Sowka A, Dobrzyn P, Piven OO. WNT/β-catenin pathway is a key regulator of cardiac function and energetic metabolism. Acta Physiol (Oxf) 2023; 237:e13912. [PMID: 36599355 DOI: 10.1111/apha.13912] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/24/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
The WNT/β-catenin pathway is a master regulator of cardiac development and growth, and its activity is low in healthy adult hearts. However, even this low activity is essential for maintaining normal heart function. Acute activation of the WNT/β-catenin signaling cascade is considered to be cardioprotective after infarction through the upregulation of prosurvival genes and reprogramming of metabolism. Chronically high WNT/β-catenin pathway activity causes profibrotic and hypertrophic effects in the adult heart. New data suggest more complex functions of β-catenin in metabolic maturation of the perinatal heart, establishing an adult pattern of glucose and fatty acid utilization. Additionally, low basal activity of the WNT/β-catenin cascade maintains oxidative metabolism in the adult heart, and this pathway is reactivated by physiological or pathological stimuli to meet the higher energy needs of the heart. This review summarizes the current state of knowledge of the organization of canonical WNT signaling and its function in cardiogenesis, heart maturation, adult heart function, and remodeling. We also discuss the role of the WNT/β-catenin pathway in cardiac glucose, lipid metabolism, and mitochondrial physiology.
Collapse
Affiliation(s)
- Volodymyr V Balatskyi
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Adrian Sowka
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Pawel Dobrzyn
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Oksana O Piven
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- Department of Human Genetics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
17
|
Wadey KS, Somos A, Leyden G, Blythe H, Chan J, Hutchinson L, Poole A, Frankow A, Johnson JL, George SJ. Pro-inflammatory role of Wnt/β-catenin signaling in endothelial dysfunction. Front Cardiovasc Med 2023; 9:1059124. [PMID: 36794234 PMCID: PMC9923234 DOI: 10.3389/fcvm.2022.1059124] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/14/2022] [Indexed: 01/18/2023] Open
Abstract
Background Endothelial dysfunction is a critical component of both atherosclerotic plaque formation and saphenous vein graft failure. Crosstalk between the pro-inflammatory TNF-α-NFκB signaling axis and the canonical Wnt/β-catenin signaling pathway potentially plays an important role in regulating endothelial dysfunction, though the exact nature of this is not defined. Results In this study, cultured endothelial cells were challenged with TNF-α and the potential of a Wnt/β-catenin signaling inhibitor, iCRT-14, in reversing the adverse effects of TNF-α on endothelial physiology was evaluated. Treatment with iCRT-14 lowered nuclear and total NFκB protein levels, as well as expression of NFκB target genes, IL-8 and MCP-1. Inhibition of β-catenin activity with iCRT-14 suppressed TNF-α-induced monocyte adhesion and decreased VCAM-1 protein levels. Treatment with iCRT-14 also restored endothelial barrier function and increased levels of ZO-1 and focal adhesion-associated phospho-paxillin (Tyr118). Interestingly, inhibition of β-catenin with iCRT-14 enhanced platelet adhesion in cultured TNF-α-stimulated endothelial cells and in an ex vivo human saphenous vein model, most likely via elevating levels of membrane-tethered vWF. Wound healing was moderately retarded by iCRT-14; hence, inhibition of Wnt/β-catenin signaling may interfere with re-endothelialisation in grafted saphenous vein conduits. Conclusion Inhibition of the Wnt/β-catenin signaling pathway with iCRT-14 significantly recovered normal endothelial function by decreasing inflammatory cytokine production, monocyte adhesion and endothelial permeability. However, treatment of cultured endothelial cells with iCRT-14 also exerted a pro-coagulatory and moderate anti-wound healing effect: these factors may affect the suitability of Wnt/β-catenin inhibition as a therapy for atherosclerosis and vein graft failure.
Collapse
Affiliation(s)
- Kerry S. Wadey
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom,*Correspondence: Kerry S. Wadey,
| | - Alexandros Somos
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Genevieve Leyden
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Hazel Blythe
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Jeremy Chan
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Lawrence Hutchinson
- School of Physiology, Pharmacology and Neuroscience, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Alastair Poole
- School of Physiology, Pharmacology and Neuroscience, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Aleksandra Frankow
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Jason L. Johnson
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Sarah J. George
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
18
|
Nalli M, Masci D, Urbani A, La Regina G, Silvestri R. Emerging Direct Targeting β-Catenin Agents. Molecules 2022; 27:molecules27227735. [PMID: 36431838 PMCID: PMC9698307 DOI: 10.3390/molecules27227735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Aberrant accumulation of β-catenin in the cell nucleus as a result of deregulation of the Wnt/β-catenin pathway is found in various types of cancer. Direct β-catenin targeting agents are being researched despite obstacles; however, specific β-catenin drugs for clinical treatments have not been approved so far. We focused on direct β-catenin targeting of potential therapeutic value as anticancer agents. This review provides recent advances on small molecule β-catenin agents. Structure-activity relationships and biological activities of reported inhibitors are discussed. This work provides useful knowledge in the discovery of β-catenin agents.
Collapse
Affiliation(s)
- Marianna Nalli
- Laboratory Affiliated with the Institute Pasteur Italy—Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Domiziana Masci
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Andrea Urbani
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Giuseppe La Regina
- Laboratory Affiliated with the Institute Pasteur Italy—Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Romano Silvestri
- Laboratory Affiliated with the Institute Pasteur Italy—Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Correspondence:
| |
Collapse
|
19
|
Lycopene protects against Bisphenol A induced toxicity on the submandibular salivary glands via the upregulation of PPAR-γ and modulation of Wnt/β-catenin signaling. Int Immunopharmacol 2022; 112:109293. [DOI: 10.1016/j.intimp.2022.109293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/20/2022] [Accepted: 09/25/2022] [Indexed: 11/13/2022]
|
20
|
Critical review on anti-obesity effects of phytochemicals through Wnt/β-catenin signaling pathway. Pharmacol Res 2022; 184:106461. [PMID: 36152739 DOI: 10.1016/j.phrs.2022.106461] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/06/2022] [Accepted: 09/19/2022] [Indexed: 11/23/2022]
Abstract
Phytochemicals have been used as one of the sources for the development of anti-obesity drugs. Plants are rich in a variety of bioactive compounds including polyphenols, saponins and terpenes. Phytochemicals inhibit adipocyte differentiation by inhibiting the transcription and translation of adipogenesis transcription factors such as C/EBPα and PPARγ. It has been proved that phytochemicals inhibit the genes and proteins associated with adipogenesis and lipid accumulation by activating Wnt/β-catenin signaling pathway. The activation of Wnt/β-catenin signaling pathway by phytochemicals is multi-target regulation, including the regulation of pathway critical factor β-catenin and its target gene, the downregulation of destruction complex, and the up-regulation of Wnt ligands, its cell surface receptor and Wnt antagonist. In this review, the literature on the anti-obesity effect of phytochemicals through Wnt/β-catenin signaling pathway is collected from Google Scholar, Scopus, PubMed, and Web of Science, and summarizes the regulation mechanism of phytochemicals in this pathway. As one of the alternative methods of weight loss drugs, Phytochemicals inhibit adipogenesis through Wnt/β-catenin signaling pathway. More progress in relevant fields may pose phytochemicals as the main source of anti-obesity treatment.
Collapse
|
21
|
Wang J, Cui Y, Liu H, Li S, Sun S, Xu H, Peng C, Wang Y, Wu D. MicroRNA-loaded biomaterials for osteogenesis. Front Bioeng Biotechnol 2022; 10:952670. [PMID: 36199361 PMCID: PMC9527286 DOI: 10.3389/fbioe.2022.952670] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
The large incidence of bone defects in clinical practice increases not only the demand for advanced bone transplantation techniques but also the development of bone substitute materials. A variety of emerging bone tissue engineering materials with osteogenic induction ability are promising strategies for the design of bone substitutes. MicroRNAs (miRNAs) are a class of non-coding RNAs that regulate intracellular protein expression by targeting the non-coding region of mRNA3′-UTR to play an important role in osteogenic differentiation. Several miRNA preparations have been used to promote the osteogenic differentiation of stem cells. Therefore, multiple functional bone tissue engineering materials using miRNA as an osteogenic factor have been developed and confirmed to have critical efficacy in promoting bone repair. In this review, osteogenic intracellular signaling pathways mediated by miRNAs are introduced in detail to provide a clear understanding for future clinical treatment. We summarized the biomaterials loaded with exogenous cells engineered by miRNAs and biomaterials directly carrying miRNAs acting on endogenous stem cells and discussed their advantages and disadvantages, providing a feasible method for promoting bone regeneration. Finally, we summarized the current research deficiencies and future research directions of the miRNA-functionalized scaffold. This review provides a summary of a variety of advanced miRNA delivery system design strategies that enhance bone regeneration.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Dankai Wu
- *Correspondence: Yanbing Wang, ; Dankai Wu,
| |
Collapse
|
22
|
Lu W, Li Y, Dai Y, Chen K. Dominant Myocardial Fibrosis and Complex Immune Microenvironment Jointly Shape the Pathogenesis of Arrhythmogenic Right Ventricular Cardiomyopathy. Front Cardiovasc Med 2022; 9:900810. [PMID: 35845067 PMCID: PMC9278650 DOI: 10.3389/fcvm.2022.900810] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/13/2022] [Indexed: 12/23/2022] Open
Abstract
Background Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a heritable life-threatening myocardial disease characterized by ventricular arrhythmias and sudden cardiac death. Few studies used RNA-sequencing (RNA-seq) technology to analyze gene expression profiles, hub genes, dominant pathogenic processes, immune microenvironment in ARVC. This study aimed to explore these questions via integrated bioinformatics analysis. Methods RNA-sequencing datasets of GSE107475, GSE107311, GSE107156, and GSE107125 were obtained from the Gene Expression Omnibus database, including right and left ventricular myocardium from ARVC patients and normal controls. Weighted gene co-expression network analysis identified the ARVC hub modules and genes. Functional enrichment and protein-protein interaction analysis were performed by Metascape and STRING. Single-sample gene-set enrichment analysis (ssGSEA) was applied to assess immune cell infiltration. Transcription regulator (TF) analysis was performed by TRRUST. Results Three ARVC hub modules with 25 hub genes were identified. Functional enrichment analysis of the hub genes indicated that myocardial fibrosis was the dominant pathogenic process. Higher myocardial fibrosis activity existed in ARVC than in normal controls. A complex immune microenvironment was discovered that type 2 T helper cell, type 1 T helper cell, regulatory T cell, plasmacytoid dendritic cell, neutrophil, mast cell, central memory CD4 T cell, macrophage, CD56dim natural killer cell, myeloid-derived suppressor cell, memory B cell, natural killer T cell, and activated CD8 T cell were highly infiltrated in ARVC myocardium. The immune-related hub module was enriched in immune processes and inflammatory disease pathways, with hub genes including CD74, HLA-DRA, ITGAM, CTSS, CYBB, and IRF8. A positive linear correlation existed between immune cell infiltration and fibrosis activity in ARVC. NFKB1 and RELA were the shared TFs of ARVC hub genes and immune-related hub module genes, indicating the critical role of NFκB signaling in both mechanisms. Finally, the potential lncRNA-miRNA-mRNA interaction network for ARVC hub genes was constructed. Conclusion Myocardial fibrosis is the dominant pathogenic process in end-stage ARVC patients. A complex immune microenvironment exists in the diseased myocardium of ARVC, in which T cell subsets are the primary category. A tight relationship exists between myocardial fibrosis activity and immune cell infiltration. NFκB signaling pathway possibly contributes to both mechanisms.
Collapse
Affiliation(s)
- Wenzhao Lu
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Arrhythmia Center, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yao Li
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Arrhythmia Center, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yan Dai
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Arrhythmia Center, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Keping Chen
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Arrhythmia Center, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
23
|
Vallée A. Neuroinflammation in Schizophrenia: The Key Role of the WNT/β-Catenin Pathway. Int J Mol Sci 2022; 23:ijms23052810. [PMID: 35269952 PMCID: PMC8910888 DOI: 10.3390/ijms23052810] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/24/2022] [Accepted: 02/27/2022] [Indexed: 02/06/2023] Open
Abstract
Schizophrenia is a very complex syndrome involving widespread brain multi-dysconnectivity. Schizophrenia is marked by cognitive, behavioral, and emotional dysregulations. Recent studies suggest that inflammation in the central nervous system (CNS) and immune dysfunction could have a role in the pathogenesis of schizophrenia. This hypothesis is supported by immunogenetic evidence, and a higher incidence rate of autoimmune diseases in patients with schizophrenia. The dysregulation of the WNT/β-catenin pathway is associated with the involvement of neuroinflammation in schizophrenia. Several studies have shown that there is a vicious and positive interplay operating between neuroinflammation and oxidative stress. This interplay is modulated by WNT/β-catenin, which interacts with the NF-kB pathway; inflammatory factors (including IL-6, IL-8, TNF-α); factors of oxidative stress such as glutamate; and dopamine. Neuroinflammation is associated with increased levels of PPARγ. In schizophrenia, the expression of PPAR-γ is increased, whereas the WNT/β-catenin pathway and PPARα are downregulated. This suggests that a metabolic-inflammatory imbalance occurs in this disorder. Thus, this research’s triptych could be a novel therapeutic approach to counteract both neuroinflammation and oxidative stress in schizophrenia.
Collapse
Affiliation(s)
- Alexandre Vallée
- Department of Clinical Research and Innovation (DRCI), Foch Hospital, 92150 Suresnes, France
| |
Collapse
|
24
|
Kohela A, van Rooij E. Fibro-fatty remodelling in arrhythmogenic cardiomyopathy. Basic Res Cardiol 2022; 117:22. [PMID: 35441328 PMCID: PMC9018639 DOI: 10.1007/s00395-022-00929-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 01/31/2023]
Abstract
Arrhythmogenic cardiomyopathy (AC) is an inherited disorder characterized by lethal arrhythmias and a risk to sudden cardiac death. A hallmark feature of AC is the progressive replacement of the ventricular myocardium with fibro-fatty tissue, which can act as an arrhythmogenic substrate further exacerbating cardiac dysfunction. Therefore, identifying the processes underlying this pathological remodelling would help understand AC pathogenesis and support the development of novel therapies. In this review, we summarize our knowledge on the different models designed to identify the cellular origin and molecular pathways underlying cardiac fibroblast and adipocyte cell differentiation in AC patients. We further outline future perspectives and how targeting the fibro-fatty remodelling process can contribute to novel AC therapeutics.
Collapse
Affiliation(s)
- Arwa Kohela
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, The Netherlands
| | - Eva van Rooij
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, The Netherlands ,Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
25
|
Li J, Gong L, Xu Q. Purinergic 2X7 receptor is involved in adipogenesis and lipid degradation. Exp Ther Med 2021; 23:81. [PMID: 34934450 PMCID: PMC8652400 DOI: 10.3892/etm.2021.11004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/20/2021] [Indexed: 12/03/2022] Open
Abstract
Obesity and dyslipidemia are two metabolic syndrome disorders that have serious effects on the health of patients. Purinergic 2X receptor ligand-gated ion channel 7 (P2X7R) has been reported to play a role in regulating lipid storage and metabolism. However, the role and potential mechanism of P2X7R in adipogenesis and lipid degradation remain unknown. In the present study, a mouse model of obesity was established by feeding mice a high-fat diet, and the 3T3-L1 cell line was used to analyze the function of P2X7R in vitro. Reverse transcription-quantitative PCR and western blot analyses were performed to detect the expression levels of P2X7R, sterol regulatory element-binding protein 1 (SREBP1) and other associated transcription factors. Bioinformatics analysis was used to predict the potential target gene of P2X7R and a dual luciferase reporter assay was used to confirm this prediction. Oil Red O staining was used to evaluate the adipogenic capacity of preadipocytes. AdipoRed assay, cholesterol assay and a free glycerol reagent were used to measure the expression levels of triglyceride (TGs), total cholesterol (TC) and glycerin, respectively. The results indicated that P2X7R was highly expressed in obese mice and that it was involved in adipogenic differentiation in vitro. SREBP1 enhanced the transcription activities of P2X7R to promote its expression. Inhibition of P2X7R significantly reduced the adipogenic capacity of preadipocytes, decreased the expression levels of adipogenesis-associated transcription factors (peroxisome proliferator-activated receptor γ, CCAAT-enhancer-binding protein α and fatty-acid-binding protein 4), enhanced the expression levels of lipolytic enzymes (adipose triglyceride lipase, phosphorylated hormone-sensitive lipase and monoacylglycerol lipase) and regulated the expression of TG, TC and glycerin in mature 3T3-L1 cells. These effects were reversed by a small interfering RNA targeting Wnt3a. Therefore, the results suggested that P2X7R, the transcription activities of which were regulated by SREBP1, regulated adipogenesis and lipid degradation by targeting SREBP1, indicating its potential effects on obesity-associated metabolism.
Collapse
Affiliation(s)
- Jing Li
- Pediatric Department, Yancheng Third People's Hospital, Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, Jiangsu 224000, P.R. China
| | - Linxia Gong
- Pediatric Department, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing, Jiangsu 210024, P.R. China
| | - Qiaolan Xu
- Pediatric Department, Yancheng Third People's Hospital, Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, Jiangsu 224000, P.R. China
| |
Collapse
|
26
|
FGF-2-dependent signaling activated in aged human skeletal muscle promotes intramuscular adipogenesis. Proc Natl Acad Sci U S A 2021; 118:2021013118. [PMID: 34493647 PMCID: PMC8449320 DOI: 10.1073/pnas.2021013118] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 06/23/2021] [Indexed: 01/07/2023] Open
Abstract
Aged skeletal muscle is markedly affected by fatty muscle infiltration, and strategies to reduce the occurrence of intramuscular adipocytes are urgently needed. Here, we show that fibroblast growth factor-2 (FGF-2) not only stimulates muscle growth but also promotes intramuscular adipogenesis. Using multiple screening assays upstream and downstream of microRNA (miR)-29a signaling, we located the secreted protein and adipogenic inhibitor SPARC to an FGF-2 signaling pathway that is conserved between skeletal muscle cells from mice and humans and that is activated in skeletal muscle of aged mice and humans. FGF-2 induces the miR-29a/SPARC axis through transcriptional activation of FRA-1, which binds and activates an evolutionary conserved AP-1 site element proximal in the miR-29a promoter. Genetic deletions in muscle cells and adeno-associated virus-mediated overexpression of FGF-2 or SPARC in mouse skeletal muscle revealed that this axis regulates differentiation of fibro/adipogenic progenitors in vitro and intramuscular adipose tissue (IMAT) formation in vivo. Skeletal muscle from human donors aged >75 y versus <55 y showed activation of FGF-2-dependent signaling and increased IMAT. Thus, our data highlights a disparate role of FGF-2 in adult skeletal muscle and reveals a pathway to combat fat accumulation in aged human skeletal muscle.
Collapse
|
27
|
van der Voorn SM, Te Riele ASJM, Basso C, Calkins H, Remme CA, van Veen TAB. Arrhythmogenic cardiomyopathy: pathogenesis, pro-arrhythmic remodelling, and novel approaches for risk stratification and therapy. Cardiovasc Res 2021; 116:1571-1584. [PMID: 32246823 PMCID: PMC7526754 DOI: 10.1093/cvr/cvaa084] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/10/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is a life-threatening cardiac disease caused by mutations in genes predominantly encoding for desmosomal proteins that lead to alterations in the molecular composition of the intercalated disc. ACM is characterized by progressive replacement of cardiomyocytes by fibrofatty tissue, ventricular dilatation, cardiac dysfunction, and heart failure but mostly dominated by the occurrence of life-threatening arrhythmias and sudden cardiac death (SCD). As SCD appears mostly in apparently healthy young individuals, there is a demand for better risk stratification of suspected ACM mutation carriers. Moreover, disease severity, progression, and outcome are highly variable in patients with ACM. In this review, we discuss the aetiology of ACM with a focus on pro-arrhythmic disease mechanisms in the early concealed phase of the disease. We summarize potential new biomarkers which might be useful for risk stratification and prediction of disease course. Finally, we explore novel therapeutic strategies to prevent arrhythmias and SCD in the early stages of ACM.
Collapse
Affiliation(s)
- Stephanie M van der Voorn
- Division of Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht, PO Box 85060, Utrecht 3508 AB, The Netherlands
| | - Anneline S J M Te Riele
- Division of Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, PO Box 85060, Utrecht 3508 AB, The Netherlands
| | - Cristina Basso
- Cardiovascular Pathology Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua Medical School, Via A. Gabelli, 61 35121 Padova, Italy
| | - Hugh Calkins
- Johns Hopkins Hospital, Sheikh Zayed Tower 7125R, Baltimore, MD 21287, USA
| | - Carol Ann Remme
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam 1105AZ, The Netherlands
| | - Toon A B van Veen
- Division of Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht, PO Box 85060, Utrecht 3508 AB, The Netherlands
| |
Collapse
|
28
|
Manoharan I, Swafford D, Shanmugam A, Patel N, Prasad PD, Thangaraju M, Manicassamy S. Activation of Transcription Factor 4 in Dendritic Cells Controls Th1/Th17 Responses and Autoimmune Neuroinflammation. THE JOURNAL OF IMMUNOLOGY 2021; 207:1428-1436. [PMID: 34348977 DOI: 10.4049/jimmunol.2100010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 06/28/2021] [Indexed: 12/25/2022]
Abstract
Dendritic cells (DCs) are professional APCs that play a crucial role in initiating robust immune responses against invading pathogens while inducing regulatory responses to the body's tissues and commensal microorganisms. A breakdown of DC-mediated immunological tolerance leads to chronic inflammation and autoimmune disorders. However, cell-intrinsic molecular regulators that are critical for programming DCs to a regulatory state rather than to an inflammatory state are not known. In this study, we show that the activation of the TCF4 transcription factor in DCs is critical for controlling the magnitude of inflammatory responses and limiting neuroinflammation. DC-specific deletion of TCF4 in mice increased Th1/Th17 responses and exacerbated experimental autoimmune encephalomyelitis pathology. Mechanistically, loss of TCF4 in DCs led to heightened activation of p38 MAPK and increased levels of proinflammatory cytokines IL-6, IL-23, IL-1β, TNF-α, and IL-12p40. Consistent with these findings, pharmacological blocking of p38 MAPK activation delayed experimental autoimmune encephalomyelitis onset and diminished CNS pathology in TCF4ΔDC mice. Thus, manipulation of the TCF4 pathway in DCs could provide novel opportunities for regulating chronic inflammation and represents a potential therapeutic approach to control autoimmune neuroinflammation.
Collapse
Affiliation(s)
- Indumathi Manoharan
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA.,Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA
| | - Daniel Swafford
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA
| | | | - Nikhil Patel
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA; and
| | - Puttur D Prasad
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA
| | - Muthusamy Thangaraju
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA
| | - Santhakumar Manicassamy
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA; .,Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA.,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA
| |
Collapse
|
29
|
Hanse EA, Pan M, Liu W, Yang Y, Ishak Gabra MB, Tran TQ, Lowman XH, Ruiz B, Wang QA, Kong M. The B56α subunit of PP2A is necessary for mesenchymal stem cell commitment to adipocyte. EMBO Rep 2021; 22:e51910. [PMID: 34232566 DOI: 10.15252/embr.202051910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 05/13/2021] [Accepted: 05/27/2021] [Indexed: 11/09/2022] Open
Abstract
Adipose tissue plays a major role in maintaining organismal metabolic equilibrium. Control over the fate decision from mesenchymal stem cells (MSCs) to adipocyte differentiation involves coordinated command of phosphorylation. Protein phosphatase 2A plays an important role in Wnt pathway and adipocyte development, yet how PP2A complexes actively respond to adipocyte differentiation signals and acquire specificity in the face of the promiscuous activity of its catalytic subunit remains unknown. Here, we report the PP2A phosphatase B subunit B56α is specifically induced during adipocyte differentiation and mediates PP2A to dephosphorylate GSK3β, thereby blocking Wnt activity and driving adipocyte differentiation. Using an inducible B56α knock-out mouse, we further demonstrate that B56α is essential for gonadal adipose tissue development in vivo and required for the fate decision of adipocytes over osteoblasts. Moreover, we show B56α expression is driven by the adipocyte transcription factor PPARγ thereby establishing a novel link between PPARγ signaling and Wnt blockade. Overall, our results reveal B56α is a necessary part of the machinery dictating the transition from pre-adipocyte to mature adipocyte and provide fundamental insights into how PP2A complex specifically and actively regulates unique signaling pathway in biology.
Collapse
Affiliation(s)
- Eric A Hanse
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Min Pan
- Department of Computational Biology, St. Jude Medical Center, Memphis, TN, USA
| | - Wenzhu Liu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Ying Yang
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Mari B Ishak Gabra
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Thai Q Tran
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Xazmin H Lowman
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Bryan Ruiz
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Qiong A Wang
- Department of Molecular Endocrinology, Diabetes and Metabolism Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Mei Kong
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
30
|
Low JL, Du W, Gocha T, Oguz G, Zhang X, Chen MW, Masirevic S, Yim DGR, Tan IBH, Ramasamy A, Fan H, DasGupta R. Molecular docking-aided identification of small molecule inhibitors targeting β-catenin-TCF4 interaction. iScience 2021; 24:102544. [PMID: 34142050 PMCID: PMC8184503 DOI: 10.1016/j.isci.2021.102544] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/20/2020] [Accepted: 05/12/2021] [Indexed: 12/11/2022] Open
Abstract
Here we report a molecular docking-based approach to identify small molecules that can target the β-catenin (β-cat)-TCF4 protein-protein interaction (PPI), a key effector complex for nuclear Wnt signaling activity. Specifically, we developed and optimized a computational model of β-cat using publicly available β-cat protein crystal structures, and existing β-cat-TCF4 interaction inhibitors as the training set. Using our computational model to an in silico screen predicted 27 compounds as good binders to β-cat, of which 3 were identified to be effective against a Wnt-responsive luciferase reporter. In vitro functional validation experiments revealed GB1874 as an inhibitor of the Wnt pathway that targets the β-cat-TCF4 PPI. GB1874 also affected the proliferation and stemness of Wnt-addicted colorectal cancer (CRC) cells in vitro. Encouragingly, GB1874 inhibited the growth of CRC tumor xenografts in vivo, thus demonstrating its potential for further development into therapeutics against Wnt-associated cancer indications.
Collapse
Affiliation(s)
- Joo-Leng Low
- Laboratory of Precision Oncology and Cancer Evolution, Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore 138672, Singapore
| | - Weina Du
- Structure-Based Ligand Discovery and Design, Bioinformatics Institute, Agency for Science, Technology and Research (A∗STAR), Singapore 138671, Singapore
| | - Tenzin Gocha
- Laboratory of Precision Oncology and Cancer Evolution, Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore 138672, Singapore
| | - Gokce Oguz
- Bioinformatics Consulting and Training Platform, Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore 138672, Singapore
| | - Xiaoqian Zhang
- Laboratory of Precision Oncology and Cancer Evolution, Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore 138672, Singapore
| | - Ming Wei Chen
- Biomolecular Interactions Platform, School of Biological Sciences, Nanyang Technological University (NTU), Singapore 637551, Singapore
| | - Srdan Masirevic
- Structure-Based Ligand Discovery and Design, Bioinformatics Institute, Agency for Science, Technology and Research (A∗STAR), Singapore 138671, Singapore
| | - Daniel Guo Rong Yim
- Laboratory of Precision Oncology and Cancer Evolution, Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore 138672, Singapore
| | - Iain Bee Huat Tan
- Division of Medical Oncology, National Cancer Centre Singapore (NCCS), Singapore 169610, Singapore
- Laboratory of Applied Cancer Genomics, Genome Institute of Singapore, Singapore 138672, Singapore
- Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| | - Adaikalavan Ramasamy
- Bioinformatics Consulting and Training Platform, Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore 138672, Singapore
| | - Hao Fan
- Structure-Based Ligand Discovery and Design, Bioinformatics Institute, Agency for Science, Technology and Research (A∗STAR), Singapore 138671, Singapore
| | - Ramanuj DasGupta
- Laboratory of Precision Oncology and Cancer Evolution, Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore 138672, Singapore
| |
Collapse
|
31
|
Vallée A, Lecarpentier Y, Vallée JN. Interplay of Opposing Effects of the WNT/β-Catenin Pathway and PPARγ and Implications for SARS-CoV2 Treatment. Front Immunol 2021; 12:666693. [PMID: 33927728 PMCID: PMC8076593 DOI: 10.3389/fimmu.2021.666693] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023] Open
Abstract
The Coronavirus disease 2019 (COVID-19), caused by the novel coronavirus SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), has quickly reached pandemic proportions. Cytokine profiles observed in COVID-19 patients have revealed increased levels of IL-1β, IL-2, IL-6, and TNF-α and increased NF-κB pathway activity. Recent evidence has shown that the upregulation of the WNT/β-catenin pathway is associated with inflammation, resulting in a cytokine storm in ARDS (acute respire distress syndrome) and especially in COVID-19 patients. Several studies have shown that the WNT/β-catenin pathway interacts with PPARγ in an opposing interplay in numerous diseases. Furthermore, recent studies have highlighted the interesting role of PPARγ agonists as modulators of inflammatory and immunomodulatory drugs through the targeting of the cytokine storm in COVID-19 patients. SARS-CoV2 infection presents a decrease in the angiotensin-converting enzyme 2 (ACE2) associated with the upregulation of the WNT/β-catenin pathway. SARS-Cov2 may invade human organs besides the lungs through the expression of ACE2. Evidence has highlighted the fact that PPARγ agonists can increase ACE2 expression, suggesting a possible role for PPARγ agonists in the treatment of COVID-19. This review therefore focuses on the opposing interplay between the canonical WNT/β-catenin pathway and PPARγ in SARS-CoV2 infection and the potential beneficial role of PPARγ agonists in this context.
Collapse
Affiliation(s)
- Alexandre Vallée
- Department of Clinical Research and Innovation, Foch Hospital, Suresnes, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), Meaux, France
| | - Jean-Noël Vallée
- University Hospital Center (CHU) Amiens Picardie, University of Picardie Jules Verne (UPJV), Amiens, France.,Laboratory of Mathematics and Applications (LMA), Unité Mixte de Recherche (UMR) Centre National de la Recherche Scientifique (CNRS) 7348, University of Poitiers, Poitiers, France
| |
Collapse
|
32
|
Cancer-Associated Adipocytes in Breast Cancer: Causes and Consequences. Int J Mol Sci 2021; 22:ijms22073775. [PMID: 33917351 PMCID: PMC8038661 DOI: 10.3390/ijms22073775] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer progression is highly dependent on the heterotypic interaction between tumor cells and stromal cells of the tumor microenvironment. Cancer-associated adipocytes (CAAs) are emerging as breast cancer cell partners favoring proliferation, invasion, and metastasis. This article discussed the intersection between extracellular signals and the transcriptional cascade that regulates adipocyte differentiation in order to appreciate the molecular pathways that have been described to drive adipocyte dedifferentiation. Moreover, recent studies on the mechanisms through which CAAs affect the progression of breast cancer were reviewed, including adipokine regulation, metabolic reprogramming, extracellular matrix remodeling, and immune cell modulation. An in-depth understanding of the complex vicious cycle between CAAs and breast cancer cells is crucial for designing novel strategies for new therapeutic interventions.
Collapse
|
33
|
He HP, Gu S. The PPAR-γ/SFRP5/Wnt/β-catenin signal axis regulates the dexamethasone-induced osteoporosis. Cytokine 2021; 143:155488. [PMID: 33814272 DOI: 10.1016/j.cyto.2021.155488] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND The inhibition of glucocorticoid (GC) on osteoblastic differentiation of bone marrow stromal stem cells (BMSC) is an important pathway for GC to reduce bone formation. Recent studies implicated an important role of peroxisome proliferator-activated receptor-gamma (PPAR-γ) in GC-mediated cell proliferation and differentiation. Thus, our purpose is to investigate the role of PPAR-γ in regulating rat BMSC (rBMSC) osteoblastic differentiation. METHODS The rBMSC treated with dexamethasone (Dex) was used to construct an in vitro cell model of GC-induced osteoporosis. The expressions of PPAR-γ, RUNX2, ALP, OPN and SFRP5 in cells were detected by RT-qPCR and western blot assays. Osteogenic differentiation of rBMSC was measured by Alizarin Red S (ARS) staining analysis. Lentivirus-delivered shRNA was used to knock down PPAR-γ or SFRP5, and lentivirus-delivered constructs were used to overexpress SFRP5 in rBMSC to verify the effect of PPAR-γ or SFRP5 on cell osteogenic differentiation. RESULTS Dex significantly reduced rBMSC osteoblastic differentiation. The expression of PPAR-γ was enhanced in Dex treated rBMSC. PPAR-γ down-regulation improved Dex inhibition of rBMSC osteogenic differentiation. Moreover, PPAR-γ knockdown promoted protein levels of RUNX2, ALP, OPN and Dex-decreased rBMSC osteogenic differentiation. The expression of SFRP5 was reduced while Wnt and β-catenin were increased in PPAR-γ knockdown and Dex treated rBMSC. Moreover, the up-regulation of SFRP5 reversed the osteogenic differentiation of rBMSC induced by PPAR-γ knockdown. CONCLUSION These data indicated that in GC-induced osteoporosis, PPAR-γ/SFRP5 affects osteogenic differentiation by regulating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Hai-Peng He
- Shenzhen Institute of ENT & Longgang ENT Hospital, Shenzhen 518172, China
| | - Shan Gu
- Shenzhen Institute of ENT & Longgang ENT Hospital, Shenzhen 518172, China.
| |
Collapse
|
34
|
To JC, Chiu AP, Tschida BR, Lo LH, Chiu CH, Li XX, Kuka TP, Linden MA, Amin K, Chan WC, Bell JB, Moriarity BS, Largaespada DA, Keng VW. ZBTB20 regulates WNT/CTNNB1 signalling pathway by suppressing PPARG during hepatocellular carcinoma tumourigenesis. JHEP Rep 2020; 3:100223. [PMID: 33604532 PMCID: PMC7873381 DOI: 10.1016/j.jhepr.2020.100223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/17/2020] [Accepted: 12/03/2020] [Indexed: 01/19/2023] Open
Abstract
Background & Aims Zinc finger and BTB domain containing 20 (ZBTB20) has been implicated as a potential oncogene in liver cancer. However, knockout studies have shown it to be a transcriptional repressor of the alpha-foetoprotein (Afp) gene in adult liver, and reduced levels of ZBTB20 allow for upregulation of AFP with increased tumour severity in certain cases of hepatocellular carcinoma (HCC). As there are many discrepancies in the literature regarding its role in liver tumourigenesis, the aim of this study was to elucidate the role of ZBTB20 in HCC tumourigenesis. Methods A reverse genetic study using the Sleeping Beauty (SB) transposon system in mice was performed to elucidate the role of ZBTB20 in HCC tumourigenesis. In vitro ZBTB20 gain- and loss-of-function experiments were used to assess the relationship amongst ZBTB20, peroxisome proliferator activated receptor gamma (PPARG) and catenin beta 1 (CTNNB1). Results Transgenic overexpression of ZBTB20 in hepatocytes and in the context of transformation related protein (T r p53) inactivation induced hepatic hypertrophy, activation of WNT/CTNNB1 signalling, and development of liver tumours. In vitro overexpression and knockout experiments using CRISPR/Cas9 demonstrated the important role for ZBTB20 in downregulating PPARG, resulting in activation of the WNT/CTNNB1 signalling pathway and its downstream effectors in HCC tumourigenesis. Conclusions These findings demonstrate a novel interaction between ZBTB20 and PPARG, which leads to activation of the WNT/CTNNB1 signalling pathway in HCC tumourigenesis. Lay summary ZBTB20 has been implicated as a potential oncogene in liver cancer. Herein, we uncover its important role in liver cancer development. We show that it interacts with PPARG to upregulate the WNT/CTNNB1 signalling pathway, leading to tumourigenesis.
Collapse
Key Words
- AFP, alpha-foetoprotein
- BTB/POZ, broad complex
- CTNNB1
- CTNNB1, catenin beta 1
- Fah, fumarylacetoacetate hydrolase
- GSK3B, glycogen synthase kinase 3 beta
- HCC, hepatocellular carcinoma
- HHL, immortalized human hepatic cell line
- Hepatocellular carcinoma
- IF, immunofluorescence
- NTBC, 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione
- OFP, orange fluorescent protein
- PHI, post-hydrodynamic injection
- POK, POZ and Kruppel
- PPARG
- PPARG, peroxisome proliferator activated receptor gamma
- Reverse genetic screen
- SB, Sleeping Beauty
- Sleeping Beauty
- ZBTB20
- ZBTB20, zinc finger and BTB domain containing 20
- qPCR, quantitative RT-PCR
- tramtrack, bric a brac/poxvirus and zinc finger
Collapse
Affiliation(s)
- Jeffrey C To
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR
| | - Amy P Chiu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR
| | - Barbara R Tschida
- Masonic Cancer Center, Department of Pediatrics, and Center for Genome Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Lilian H Lo
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR
| | - Cynthia H Chiu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR
| | - Xiao-Xiao Li
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR
| | - Timothy P Kuka
- Masonic Cancer Center, Department of Pediatrics, and Center for Genome Engineering, University of Minnesota, Minneapolis, MN, 55455, USA.,College of Natural Sciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Michael A Linden
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Khalid Amin
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Wing-Cheung Chan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR
| | - Jason B Bell
- Masonic Cancer Center, Department of Pediatrics, and Center for Genome Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Branden S Moriarity
- Masonic Cancer Center, Department of Pediatrics, and Center for Genome Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - David A Largaespada
- Masonic Cancer Center, Department of Pediatrics, and Center for Genome Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Vincent W Keng
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR.,State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR
| |
Collapse
|
35
|
Reinhold S, Blankesteijn WM, Foulquier S. The Interplay of WNT and PPARγ Signaling in Vascular Calcification. Cells 2020; 9:cells9122658. [PMID: 33322009 PMCID: PMC7763279 DOI: 10.3390/cells9122658] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/02/2022] Open
Abstract
Vascular calcification (VC), the ectopic deposition of calcium phosphate crystals in the vessel wall, is one of the primary contributors to cardiovascular death. The pathology of VC is determined by vascular topography, pre-existing diseases, and our genetic heritage. VC evolves from inflammation, mediated by macrophages, and from the osteochondrogenic transition of vascular smooth muscle cells (VSMC) in the atherosclerotic plaque. This pathologic transition partly resembles endochondral ossification, involving the chronologically ordered activation of the β-catenin-independent and -dependent Wingless and Int-1 (WNT) pathways and the termination of peroxisome proliferator-activated receptor γ (PPARγ) signal transduction. Several atherosclerotic plaque studies confirmed the differential activity of PPARγ and the WNT signaling pathways in VC. Notably, the actively regulated β-catenin-dependent and -independent WNT signals increase the osteochondrogenic transformation of VSMC through the up-regulation of the osteochondrogenic transcription factors SRY-box transcription factor 9 (SOX9) and runt-related transcription factor 2 (RUNX2). In addition, we have reported studies showing that WNT signaling pathways may be antagonized by PPARγ activation via the expression of different families of WNT inhibitors and through its direct interaction with β-catenin. In this review, we summarize the existing knowledge on WNT and PPARγ signaling and their interplay during the osteochondrogenic differentiation of VSMC in VC. Finally, we discuss knowledge gaps on this interplay and its possible clinical impact.
Collapse
Affiliation(s)
- Stefan Reinhold
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands; (S.R.); (W.M.B.)
| | - W. Matthijs Blankesteijn
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands; (S.R.); (W.M.B.)
| | - Sébastien Foulquier
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands; (S.R.); (W.M.B.)
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
- Correspondence: ; Tel.: +31-433881409
| |
Collapse
|
36
|
Icaritin Inhibits Skin Fibrosis through Regulating AMPK and Wnt/β-catenin Signaling. Cell Biochem Biophys 2020; 79:231-238. [PMID: 33125640 DOI: 10.1007/s12013-020-00952-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2020] [Indexed: 10/23/2022]
Abstract
Skin fibrosis is one of the major features of scleroderma. WNT/β-catenin signaling is associated with the progression of skin fibrosis. In this study, we aimed to determine the effect of icaritin (IT), a natural compound, on scleroderma-related skin fibrosis and its mechanisms. We found that IT could reduce the expression of COL1A1, COL1A2, COL3A1, CTGF, and α-SMA in human foreskin fibroblasts (HFF-1 cells), scleroderma skin fibroblasts (SSF cells), and TGF-β-induced HFF-1 cells. Wnt/β-catenin signaling was shown to be suppressed by IT. Additionally, IT activated AMPK signaling in HFF-1 cells. In conclusion, IT has an anti-skin fibrotic effect through activation of AMPK signaling and inhibition of WNT/β-catenin signaling. Our findings indicate the potential role of IT in the treatment of scleroderma and provide novel insight for the selection of drug therapy for scleroderma.
Collapse
|
37
|
Wei Y, Yu J, Zhang X, Mu J, Zhang J, Zeng W, Feng B. ICAT acts as a Coactivator in Regulating PPARγ Transcriptional Activity in Mesangial Cells. Exp Clin Endocrinol Diabetes 2020; 129:365-373. [PMID: 32937668 DOI: 10.1055/a-0879-1846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AIMS Our study aims to explore the role of β-catenin interaction protein-1(ICAT) in regulating peroxisome proliferator-activated receptor γ (PPARγ) transcriptional activity in mesangial cells. The abnormal ICAT expression in mesangial cells under high glucose(HG) contributes to the development of diabetes and its complications such as diabetic nephropathy (DN). METHODS Human mesangial cells (HMCs) were cultured in either 5.5 (normal control) or 30 (high glucose) mmol/L glucose medium. Overexpression and knock-down of ICAT or β-catenin were carried out by transient transfection. PPARγ transcriptional activity was evaluated by luciferase assay. Protein-protein interactions were tested by Coimmunoprecipitation and GST-pull down assay. Cell phenotype transition of HMCs was detected by the expression level of α-SMA and fibronectin, as well as MTT assay. RESULTS High β-catenin protein expression but low ICAT was accompanied by low PPARγ transcriptional activity in HMCs cultured in HG. By using bioinformatics prediction, protein-protein and protein-DNA interaction experimental methods, ICAT and β-catenin were confirmed to act as coactivators in regulating PPARγ transcriptional activity. Overexpression of ICAT could mitigate the decrease of PPARγ transcriptional activity and partly relieve cell phenotype transition in HMCs. CONCLUSIONS β-catenin and ICAT interact as coactivator to modulate PPARγ transcriptional activation. In HMCs cultured in HG, the low expression of ICAT leads to low PPARγ transcriptional activation.
Collapse
Affiliation(s)
- Yi Wei
- Department of Nephrology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jiawei Yu
- Department of Nephrology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | | | - Jiao Mu
- Department of Nephrology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jun Zhang
- Department of Nephrology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Wei Zeng
- Department of Nephrology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Bing Feng
- Department of Nephrology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
38
|
Kwon S, Riggs J, Crowley G, Lam R, Young IR, Nayar C, Sunseri M, Mikhail M, Ostrofsky D, Veerappan A, Zeig-Owens R, Schwartz T, Colbeth H, Liu M, Pompeii ML, St-Jules D, Prezant DJ, Sevick MA, Nolan A. Food Intake REstriction for Health OUtcome Support and Education (FIREHOUSE) Protocol: A Randomized Clinical Trial. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E6569. [PMID: 32916985 PMCID: PMC7559064 DOI: 10.3390/ijerph17186569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 01/08/2023]
Abstract
Fire Department of New York (FDNY) rescue and recovery workers exposed to World Trade Center (WTC) particulates suffered loss of forced expiratory volume in 1 s (FEV1). Metabolic Syndrome increased the risk of developing WTC-lung injury (WTC-LI). We aim to attenuate the deleterious effects of WTC exposure through a dietary intervention targeting these clinically relevant disease modifiers. We hypothesize that a calorie-restricted Mediterranean dietary intervention will improve metabolic risk, subclinical indicators of cardiopulmonary disease, quality of life, and lung function in firefighters with WTC-LI. To assess our hypothesis, we developed the Food Intake REstriction for Health OUtcome Support and Education (FIREHOUSE), a randomized controlled clinical trial (RCT). Male firefighters with WTC-LI and a BMI > 27 kg/m2 will be included. We will randomize subjects (1:1) to either: (1) Low Calorie Mediterranean (LoCalMed)-an integrative multifactorial, technology-supported approach focused on behavioral modification, nutritional education that will include a self-monitored diet with feedback, physical activity recommendations, and social cognitive theory-based group counseling sessions; or (2) Usual Care. Outcomes include reduction in body mass index (BMI) (primary), improvement in FEV1, fractional exhaled nitric oxide, pulse wave velocity, lipid profiles, targeted metabolic/clinical biomarkers, and quality of life measures (secondary). By implementing a technology-supported LoCalMed diet our FIREHOUSE RCT may help further the treatment of WTC associated pulmonary disease.
Collapse
Affiliation(s)
- Sophia Kwon
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, School of Medicine, New York University, New York, NY 10016, USA; (S.K.); (J.R.); (G.C.); (R.L.); (I.R.Y.); (C.N.); (M.S.); (M.M.); (D.O.); (A.V.)
| | - Jessica Riggs
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, School of Medicine, New York University, New York, NY 10016, USA; (S.K.); (J.R.); (G.C.); (R.L.); (I.R.Y.); (C.N.); (M.S.); (M.M.); (D.O.); (A.V.)
| | - George Crowley
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, School of Medicine, New York University, New York, NY 10016, USA; (S.K.); (J.R.); (G.C.); (R.L.); (I.R.Y.); (C.N.); (M.S.); (M.M.); (D.O.); (A.V.)
| | - Rachel Lam
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, School of Medicine, New York University, New York, NY 10016, USA; (S.K.); (J.R.); (G.C.); (R.L.); (I.R.Y.); (C.N.); (M.S.); (M.M.); (D.O.); (A.V.)
| | - Isabel R. Young
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, School of Medicine, New York University, New York, NY 10016, USA; (S.K.); (J.R.); (G.C.); (R.L.); (I.R.Y.); (C.N.); (M.S.); (M.M.); (D.O.); (A.V.)
| | - Christine Nayar
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, School of Medicine, New York University, New York, NY 10016, USA; (S.K.); (J.R.); (G.C.); (R.L.); (I.R.Y.); (C.N.); (M.S.); (M.M.); (D.O.); (A.V.)
| | - Maria Sunseri
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, School of Medicine, New York University, New York, NY 10016, USA; (S.K.); (J.R.); (G.C.); (R.L.); (I.R.Y.); (C.N.); (M.S.); (M.M.); (D.O.); (A.V.)
| | - Mena Mikhail
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, School of Medicine, New York University, New York, NY 10016, USA; (S.K.); (J.R.); (G.C.); (R.L.); (I.R.Y.); (C.N.); (M.S.); (M.M.); (D.O.); (A.V.)
| | - Dean Ostrofsky
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, School of Medicine, New York University, New York, NY 10016, USA; (S.K.); (J.R.); (G.C.); (R.L.); (I.R.Y.); (C.N.); (M.S.); (M.M.); (D.O.); (A.V.)
| | - Arul Veerappan
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, School of Medicine, New York University, New York, NY 10016, USA; (S.K.); (J.R.); (G.C.); (R.L.); (I.R.Y.); (C.N.); (M.S.); (M.M.); (D.O.); (A.V.)
| | - Rachel Zeig-Owens
- Bureau of Health Services and Office of Medical Affairs, Fire Department of New York, Brooklyn, NY 11201, USA; (R.Z.-O.); (T.S.); (H.C.); (D.J.P.)
- Pulmonary Medicine Division, Department of Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Theresa Schwartz
- Bureau of Health Services and Office of Medical Affairs, Fire Department of New York, Brooklyn, NY 11201, USA; (R.Z.-O.); (T.S.); (H.C.); (D.J.P.)
| | - Hilary Colbeth
- Bureau of Health Services and Office of Medical Affairs, Fire Department of New York, Brooklyn, NY 11201, USA; (R.Z.-O.); (T.S.); (H.C.); (D.J.P.)
| | - Mengling Liu
- Department of Population Health, Division of Biostatistics, New York University School of Medicine, New York, NY 10016, USA;
- Department of Environmental Medicine, School of Medicine, New York University, New York, NY 10016, USA
| | - Mary Lou Pompeii
- Department of Population Health, Division of Health and Behavior, Center for Healthful Behavior Change, School of Medicine, New York University, New York, NY 10016, USA; (M.L.P.); (D.S.-J.); (M.A.S.)
| | - David St-Jules
- Department of Population Health, Division of Health and Behavior, Center for Healthful Behavior Change, School of Medicine, New York University, New York, NY 10016, USA; (M.L.P.); (D.S.-J.); (M.A.S.)
| | - David J. Prezant
- Bureau of Health Services and Office of Medical Affairs, Fire Department of New York, Brooklyn, NY 11201, USA; (R.Z.-O.); (T.S.); (H.C.); (D.J.P.)
- Pulmonary Medicine Division, Department of Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Mary Ann Sevick
- Department of Population Health, Division of Health and Behavior, Center for Healthful Behavior Change, School of Medicine, New York University, New York, NY 10016, USA; (M.L.P.); (D.S.-J.); (M.A.S.)
- Departments of Medicine, Division of Endocrinology, School of Medicine, New York University, New York, NY 10016, USA
| | - Anna Nolan
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, School of Medicine, New York University, New York, NY 10016, USA; (S.K.); (J.R.); (G.C.); (R.L.); (I.R.Y.); (C.N.); (M.S.); (M.M.); (D.O.); (A.V.)
- Bureau of Health Services and Office of Medical Affairs, Fire Department of New York, Brooklyn, NY 11201, USA; (R.Z.-O.); (T.S.); (H.C.); (D.J.P.)
- Department of Environmental Medicine, School of Medicine, New York University, New York, NY 10016, USA
| |
Collapse
|
39
|
McNeill EP, Zeitouni S, Pan S, Haskell A, Cesarek M, Tahan D, Clough BH, Krause U, Dobson LK, Garcia M, Kung C, Zhao Q, Saunders WB, Liu F, Kaunas R, Gregory CA. Characterization of a pluripotent stem cell-derived matrix with powerful osteoregenerative capabilities. Nat Commun 2020; 11:3025. [PMID: 32541821 PMCID: PMC7295745 DOI: 10.1038/s41467-020-16646-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 05/13/2020] [Indexed: 12/31/2022] Open
Abstract
Approximately 10% of fractures will not heal without intervention. Current treatments can be marginally effective, costly, and some have adverse effects. A safe and manufacturable mimic of anabolic bone is the primary goal of bone engineering, but achieving this is challenging. Mesenchymal stem cells (MSCs), are excellent candidates for engineering bone, but lack reproducibility due to donor source and culture methodology. The need for a bioactive attachment substrate also hinders progress. Herein, we describe a highly osteogenic MSC line generated from induced pluripotent stem cells that generates high yields of an osteogenic cell-matrix (ihOCM) in vitro. In mice, the intrinsic osteogenic activity of ihOCM surpasses bone morphogenic protein 2 (BMP2) driving healing of calvarial defects in 4 weeks by a mechanism mediated in part by collagen VI and XII. We propose that ihOCM may represent an effective replacement for autograft and BMP products used commonly in bone tissue engineering. Production of a safe and manufacturable material to mimic anabolic bone for tissue engineering has been hard to achieve to date. Here the authors use a mesenchymal stem cell line generated from induced pluripotent stem cells to produce osteogenic cell-matrix, displaying significant healing properties in mice.
Collapse
Affiliation(s)
- Eoin P McNeill
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, TX, 77843, USA
| | - Suzanne Zeitouni
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, TX, 77843, USA
| | - Simin Pan
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, TX, 77843, USA
| | - Andrew Haskell
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, TX, 77843, USA
| | - Michael Cesarek
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, TX, 77843, USA
| | - Daniel Tahan
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, TX, 77843, USA
| | - Bret H Clough
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, TX, 77843, USA
| | - Ulf Krause
- Institute for Transfusion Medicine and Cellular Medicine, University Hospital Muenster, Muenster, Germany
| | - Lauren K Dobson
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Mayra Garcia
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, TX, 77843, USA
| | - Christopher Kung
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, TX, 77843, USA
| | - Qingguo Zhao
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, TX, 77843, USA
| | - W Brian Saunders
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Fei Liu
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, TX, 77843, USA
| | - Roland Kaunas
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA.
| | - Carl A Gregory
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, TX, 77843, USA.
| |
Collapse
|
40
|
Sen B, Paradise CR, Xie Z, Sankaran J, Uzer G, Styner M, Meyer M, Dudakovic A, van Wijnen AJ, Rubin J. β-Catenin Preserves the Stem State of Murine Bone Marrow Stromal Cells Through Activation of EZH2. J Bone Miner Res 2020; 35:1149-1162. [PMID: 32022326 PMCID: PMC7295671 DOI: 10.1002/jbmr.3975] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 01/23/2020] [Accepted: 01/29/2020] [Indexed: 12/11/2022]
Abstract
During bone marrow stromal cell (BMSC) differentiation, both Wnt signaling and the development of a rigid cytoskeleton promote commitment to the osteoblastic over adipogenic lineage. β-catenin plays a critical role in the Wnt signaling pathway to facilitate downstream effects on gene expression. We show that β-catenin was additive with cytoskeletal signals to prevent adipogenesis, and β-catenin knockdown promoted adipogenesis even when the actin cytoskeleton was depolymerized. β-catenin also prevented osteoblast commitment in a cytoskeletal-independent manner, with β-catenin knockdown enhancing lineage commitment. Chromatin immunoprecipitation (ChIP)-sequencing demonstrated binding of β-catenin to the promoter of enhancer of zeste homolog 2 (EZH2), a key component of the polycomb repressive complex 2 (PRC2) complex that catalyzes histone methylation. Knockdown of β-catenin reduced EZH2 protein levels and decreased methylated histone 3 (H3K27me3) at osteogenic loci. Further, when EZH2 was inhibited, β-catenin's anti-differentiation effects were lost. These results indicate that regulating EZH2 activity is key to β-catenin's effects on BMSCs to preserve multipotentiality. © 2020 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Buer Sen
- Department of Medicine, University of North Carolina Chapel Hill, Raleigh, NC, USA
| | - Christopher R Paradise
- Department of Orthopedic Surgery and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.,Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Zhihui Xie
- Department of Medicine, University of North Carolina Chapel Hill, Raleigh, NC, USA
| | - Jeyantt Sankaran
- Department of Medicine, University of North Carolina Chapel Hill, Raleigh, NC, USA
| | - Gunes Uzer
- Department of Mechanical and Biomedical Engineering, Boise State University, Boise, ID, USA
| | - Maya Styner
- Department of Medicine, University of North Carolina Chapel Hill, Raleigh, NC, USA
| | - Mark Meyer
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA
| | - Amel Dudakovic
- Department of Orthopedic Surgery and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Andre J van Wijnen
- Department of Orthopedic Surgery and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.,Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Janet Rubin
- Department of Medicine, University of North Carolina Chapel Hill, Raleigh, NC, USA
| |
Collapse
|
41
|
Peng T, Wang G, Cheng S, Xiong Y, Cao R, Qian K, Ju L, Wang X, Xiao Y. The role and function of PPARγ in bladder cancer. J Cancer 2020; 11:3965-3975. [PMID: 32328200 PMCID: PMC7171493 DOI: 10.7150/jca.42663] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/08/2020] [Indexed: 12/15/2022] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ), a member of the nuclear receptor superfamily, participates in multiple physiological and pathological processes. Extensive studies have revealed the relationship between PPARγ and various tumors. However, the expression and function of PPARγ in bladder cancer seem to be controversial. It has been demonstrated that PPARγ affects the occurrence and progression of bladder cancer by regulating proliferation, apoptosis, metastasis, and reactive oxygen species (ROS) and lipid metabolism, probably through PPARγ-SIRT1 feedback loops, the PI3K-Akt signaling pathway, and the WNT/β-catenin signaling pathway. Considering the frequent relapses after chemotherapy, some researchers have focused on the relationship between PPARγ and chemotherapy sensitivity in bladder cancer. Moreover, the feasibility of PPARγ ligands as potential therapeutic targets for bladder cancer has been uncovered. Taken together, this review summarizes the relevant literature and our findings to explore the complicated role and function of PPARγ in bladder cancer.
Collapse
Affiliation(s)
- Tianchen Peng
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Wuhan, China
| | - Gang Wang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China
| | - Songtao Cheng
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Wuhan, China
| | - Yaoyi Xiong
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Wuhan, China
| | - Rui Cao
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Kaiyu Qian
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China
| | - Lingao Ju
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yu Xiao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China.,Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Wuhan, China
| |
Collapse
|
42
|
Meszaros K, Patocs A. Glucocorticoids Influencing Wnt/β-Catenin Pathway; Multiple Sites, Heterogeneous Effects. Molecules 2020; 25:molecules25071489. [PMID: 32218328 PMCID: PMC7181001 DOI: 10.3390/molecules25071489] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/17/2020] [Accepted: 03/23/2020] [Indexed: 02/06/2023] Open
Abstract
Glucocorticoid hormones are vital; their accurate operation is a necessity at all ages and in all life situations. Glucocorticoids regulate diverse physiological processes and they use many signaling pathways to fulfill their effect. As the operation of these hormones affects many organs, the excess of glucocorticoids is actually detrimental to the whole human body. The endogenous glucocorticoid excess is a relatively rare condition, but a significant proportion of adult people uses glucocorticoid medication for the treatment of chronic illnesses, therefore they are exposed to the side effects of long-term glucocorticoid treatment. Our review summarizes the adverse effects of glucocorticoid excess affecting bones, adipose tissue, brain and skin, focusing on those effects which involve the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
| | - Attila Patocs
- Hereditary Tumours Research Group, 1089 Budapest, Hungary;
- Department of Laboratory Medicine, Semmelweis University, 1089 Budapest, Hungary
- Department of Molecular Genetics, National Institute of Oncology, 1122 Budapest, Hungary
- Correspondence: ; Tel.: +36-1-266-0926; Fax: +36-1-266-0816
| |
Collapse
|
43
|
Caputo T, Tran VDT, Bararpour N, Winkler C, Aguileta G, Trang KB, Giordano Attianese GMP, Wilson A, Thomas A, Pagni M, Guex N, Desvergne B, Gilardi F. Anti-adipogenic signals at the onset of obesity-related inflammation in white adipose tissue. Cell Mol Life Sci 2020; 78:227-247. [PMID: 32157317 PMCID: PMC7867564 DOI: 10.1007/s00018-020-03485-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 02/07/2020] [Accepted: 02/17/2020] [Indexed: 12/17/2022]
Abstract
Chronic inflammation that affects primarily metabolic organs, such as white adipose tissue (WAT), is considered as a major cause of human obesity-associated co-morbidities. However, the molecular mechanisms initiating this inflammation in WAT are poorly understood. By combining transcriptomics, ChIP-seq and modeling approaches, we studied the global early and late responses to a high-fat diet (HFD) in visceral (vWAT) and subcutaneous (scWAT) AT, the first being more prone to obesity-induced inflammation. HFD rapidly triggers proliferation of adipocyte precursors within vWAT. However, concomitant antiadipogenic signals limit vWAT hyperplastic expansion by interfering with the differentiation of proliferating adipocyte precursors. Conversely, in scWAT, residing beige adipocytes lose their oxidizing properties and allow storage of excessive fatty acids. This phase is followed by tissue hyperplastic growth and increased angiogenic signals, which further enable scWAT expansion without generating inflammation. Our data indicate that scWAT and vWAT differential ability to modulate adipocyte number and differentiation in response to obesogenic stimuli has a crucial impact on the different susceptibility to obesity-related inflammation of these adipose tissue depots.
Collapse
Affiliation(s)
- Tiziana Caputo
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Van Du T Tran
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Nasim Bararpour
- Unit of Forensic Toxicology and Chemistry, CURML, Lausanne University Hospital, Geneva University Hospitals, Lausanne, Switzerland.,Faculty Unit of Toxicology, Faculty of Biology and Medicine, CURML, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Carine Winkler
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Gabriela Aguileta
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Khanh Bao Trang
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | | | - Anne Wilson
- Department of Oncology, University of Lausanne, Epalinges, Switzerland
| | - Aurelien Thomas
- Unit of Forensic Toxicology and Chemistry, CURML, Lausanne University Hospital, Geneva University Hospitals, Lausanne, Switzerland.,Faculty Unit of Toxicology, Faculty of Biology and Medicine, CURML, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Marco Pagni
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Nicolas Guex
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.,Bioinformatics Competence Center, University of Lausanne, Lausanne, Switzerland
| | - Béatrice Desvergne
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.
| | - Federica Gilardi
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland. .,Unit of Forensic Toxicology and Chemistry, CURML, Lausanne University Hospital, Geneva University Hospitals, Lausanne, Switzerland. .,Faculty Unit of Toxicology, Faculty of Biology and Medicine, CURML, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
44
|
Abstract
Arrhythmogenic cardiomyopathy is a genetic disorder characterized by the risk of life-threatening arrhythmias, myocardial dysfunction and fibrofatty replacement of myocardial tissue. Mutations in genes that encode components of desmosomes, the adhesive junctions that connect cardiomyocytes, are the predominant cause of arrhythmogenic cardiomyopathy and can be identified in about half of patients with the condition. However, the molecular mechanisms leading to myocardial destruction, remodelling and arrhythmic predisposition remain poorly understood. Through the development of animal, induced pluripotent stem cell and other models of disease, advances in our understanding of the pathogenic mechanisms of arrhythmogenic cardiomyopathy over the past decade have brought several signalling pathways into focus. These pathways include canonical and non-canonical WNT signalling, the Hippo-Yes-associated protein (YAP) pathway and transforming growth factor-β signalling. These studies have begun to identify potential therapeutic targets whose modulation has shown promise in preclinical models. In this Review, we summarize and discuss the reported molecular mechanisms underlying the pathogenesis of arrhythmogenic cardiomyopathy.
Collapse
|
45
|
Park IS, Kim B, Han Y, Yang H, Cho U, Kim SI, Kim JH, Yoon Park JH, Lee KW, Song YS. Decursin and Decursinol Angelate Suppress Adipogenesis through Activation of β-catenin Signaling Pathway in Human Visceral Adipose-Derived Stem Cells. Nutrients 2019; 12:13. [PMID: 31861646 PMCID: PMC7020042 DOI: 10.3390/nu12010013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 12/14/2022] Open
Abstract
Visceral adiposity is closely associated with metabolic disorders and cardiovascular diseases. Angelica gigas Nakai (AGN) has been reported to possess anti-obesity effects and higher amounts of coumarin compounds are present in AGN. However, the active compounds suppressing adipogenesis in AGN and mechanisms of action have not been investigated in adipose-derived stem cells (ASCs) isolated from visceral adipose tissue (VAT). Among four coumarin compounds of AGN, decursin (D) and decursinol angelate (DA) significantly inhibited adipocyte differentiation from ASCs. D and DA downregulated CCAAT/enhancer binding protein α (C/EBPα), peroxisome proliferator-activated receptor γ (PPARγ), adipocyte fatty acid binding protein (aP2), fatty acid synthase (FAS), and acetyl-CoA carboxylase (ACC) at both mRNA and protein levels. Next, treatment with adipogenic differentiation medium (ADM) on ASCs downregulated β-catenin expression at protein level, while addition of D and DA could restore protein expression and nuclear translocation of β-catenin suppressed by ADM. D and DA treatment on ADM treated ASCs increased inhibitory phosphorylation of Glycogen synthase kinase (GSK)-3β, thereby preventing β-catenin from degradation. Additionally, si-β-catenin transfection significantly upregulated protein expression of C/EBPα and PPARγ, alleviating the anti-adipogenic effect of D and DA on ADM treated ASCs. Overall, D and DA, active compounds from AGN, suppressed adipogenesis through activation of β-catenin signaling pathway in ASCs derived from human VAT, possibly using as natural anti-visceral adiposity agents.
Collapse
Affiliation(s)
- In Sil Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea; (I.S.P.); (H.Y.)
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea; (B.K.); (Y.H.)
| | - Boyun Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea; (B.K.); (Y.H.)
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Youngjin Han
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea; (B.K.); (Y.H.)
- Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Hee Yang
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea; (I.S.P.); (H.Y.)
| | - Untack Cho
- Interdisciplinary Program in Cancer Biology, Seoul National University, Seoul 03080, Korea;
| | - Se Ik Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Korea;
| | - Jong Hun Kim
- Department of Food Science and Biotechnology, Sungshin Women’s University, Seoul 01133, Korea;
| | - Jung Han Yoon Park
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea;
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon 16229, Korea
| | - Ki Won Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea; (I.S.P.); (H.Y.)
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon 16229, Korea
| | - Yong Sang Song
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea; (B.K.); (Y.H.)
- Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Korea;
| |
Collapse
|
46
|
Lecarpentier Y, Schussler O, Hébert JL, Vallée A. Multiple Targets of the Canonical WNT/β-Catenin Signaling in Cancers. Front Oncol 2019; 9:1248. [PMID: 31803621 PMCID: PMC6876670 DOI: 10.3389/fonc.2019.01248] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/29/2019] [Indexed: 12/16/2022] Open
Abstract
Canonical WNT/β-catenin signaling is involved in most of the mechanisms that lead to the formation and development of cancer cells. It plays a central role in three cyclic processes, which are the cell division cycle, the immune cycle, and circadian rhythms. When the canonical WNT pathway is upregulated as in cancers, the increase in β-catenin in the nucleus leads to activation of the expression of numerous genes, in particular CYCLIN D1 and cMYC, where the former influences the G1 phase of the cell division cycle, and the latter, the S phase. Every stage of the immune cycle is disrupted by the canonical WNT signaling. In numerous cancers, the dysfunction of the canonical WNT pathway is accompanied by alterations of the circadian genes (CLOCK, BMAL1, PER). Induction of these cyclic phenomena leads to the genesis of thermodynamic mechanisms that operate far from equilibrium, and that have been called “dissipative structures.” Moreover, upregulation of the canonical WNT/β-catenin signaling is important in the myofibroblasts of the cancer stroma. Their differentiation is controlled by the canonical WNT /TGF-β1 signaling. Myofibroblasts present ultraslow contractile properties due to the presence of the non-muscle myosin IIA. Myofibroblats also play a role in the inflammatory processes, often found in cancers and fibrosis processes. Finally, upregulated canonical WNT deviates mitochondrial oxidative phosphorylation toward the Warburg glycolysis metabolism, which is characteristic of cancers. Among all these cancer-generating mechanisms, the upregulated canonical WNT pathway would appear to offer the best hope as a therapeutic target, particularly in the field of immunotherapy.
Collapse
Affiliation(s)
- Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien, Meaux, France
| | - Olivier Schussler
- Research Laboratory, Department of Cardiovascular Surgery, Geneva University Hospitals, Geneva, Switzerland
| | - Jean-Louis Hébert
- Institut de Cardiologie, Hôpital de la Pitié-Salpétrière, Paris, France
| | - Alexandre Vallée
- Hypertension and Cardiovascular Prevention Unit, Diagnosis and Therapeutic Center, Hôtel-Dieu Hospital, AP-HP, Paris, France.,DACTIM-MIS, LMA, UMR CNRS 7348, CHU de Poitiers, Université de Poitiers, Poitiers, France
| |
Collapse
|
47
|
Benchamana A, Mori H, MacDougald OA, Soodvilai S. Regulation of adipocyte differentiation and metabolism by lansoprazole. Life Sci 2019; 239:116897. [PMID: 31644894 DOI: 10.1016/j.lfs.2019.116897] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/17/2019] [Accepted: 09/20/2019] [Indexed: 12/20/2022]
Abstract
AIMS Lansoprazole (LPZ) is one of the most commonly prescribed drugs for treatment of acid-related diseases, and it is increasingly recognized for its potential application as an anti-diabetic therapy. Although LPZ target tissues remain poorly understood, possible sites of action include adipose tissue. In this study, we assessed effects of LPZ on adipocyte differentiation and function by using 3T3-L1 preadipocytes and HFD-induced obesity mice as an in vitro and in vivo model, respectively. MAIN METHODS Oil red O staining and intracellular triacylglycerol content were used to determine lipid accumulation. Glucose uptake was performed to measure mature adipocyte function. Expression of adipocyte genes was determined by qRT-PCR and immunoblotting. KEY FINDINGS LPZ has dual effects on differentiation of 3T3-L1 cells. At low concentrations, LPZ enhanced adipocyte differentiation via induction of PPARγ and C/EBPα, two master adipogenic transcription factors, as well as lipogenic proteins, ACC1 and FASN. Increasing of adipocyte number subsequently increased basal and insulin-stimulated glucose uptake, and expression of Glut4 mRNA. Conversely, high concentrations of LPZ strongly inhibited differentiation and expression of PPARγ and C/EBPα, and maintained expression of preadipocytes markers, β-catenin and Pref-1. Inhibition of adipogenesis by LPZ reduced mature adipocyte number, Glut4 mRNA expression and insulin-stimulated glucose uptake. In addition, treatment with LPZ at 200 mg/kg significantly reduced body weight gain and total fat mass in HFD-induced obese mice. SIGNIFICANCE These results indicate that effects of LPZ on adipocyte differentiation are dependent on concentration and are correlated with PPARγ and C/EBPα.
Collapse
Affiliation(s)
- Ameena Benchamana
- Research Center of Transport Protein for Medical Innovation, Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand; University of Michigan Medical School, Department of Molecular & Integrative Physiology, Ann Arbor, MI, USA
| | - Hiroyuki Mori
- University of Michigan Medical School, Department of Molecular & Integrative Physiology, Ann Arbor, MI, USA
| | - Ormond A MacDougald
- University of Michigan Medical School, Department of Molecular & Integrative Physiology, Ann Arbor, MI, USA
| | - Sunhapas Soodvilai
- Research Center of Transport Protein for Medical Innovation, Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand; Excellent Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
48
|
Zhou P, Zhang X, Guo M, Guo R, Wang L, Zhang Z, Lin Z, Dong M, Dai H, Ji X, Lu H. Ginsenoside Rb1 ameliorates CKD-associated vascular calcification by inhibiting the Wnt/β-catenin pathway. J Cell Mol Med 2019; 23:7088-7098. [PMID: 31423730 PMCID: PMC6787443 DOI: 10.1111/jcmm.14611] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/14/2019] [Accepted: 08/08/2019] [Indexed: 01/04/2023] Open
Abstract
Vascular calcification (VC) is a pathological process underpinning major cardiovascular conditions and has attracted public attention due to its high morbidity and mortality. Chronic kidney disease (CKD) is a common disease related to VC. Ginsenoside Rb1 (Rb1) has been reported to protect the cardiovascular system against vascular diseases, yet its role in VC and the underlying mechanisms remain unclear. In this study, we established a CKD‐associated VC rat model and a β‐glycerophosphate (β‐GP)‐induced vascular smooth muscle cell (VSMC) calcification model to investigate the effects of Rb1 on VC. Our results demonstrated that Rb1 ameliorated calcium deposition and VSMC osteogenic transdifferentiation both in vivo and in vitro. Rb1 treatment inhibited the Wnt/β‐catenin pathway by activating peroxisome proliferator‐activated receptor‐γ (PPAR‐γ), and confocal microscopy was used to show that Rb1 inhibited β‐catenin nuclear translocation in VSMCs. Furthermore, SKL2001, an agonist of the Wnt/β‐catenin pathway, compromised the vascular protective effect of Rb1. GW9662, a PPAR‐γ antagonist, reversed Rb1's inhibitory effect on β‐catenin. These results indicate that Rb1 exerted anticalcific properties through PPAR‐γ/Wnt/β‐catenin axis, which provides new insights into the potential theraputics of VC.
Collapse
Affiliation(s)
- Peng Zhou
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xinyu Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Mengqi Guo
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Rong Guo
- Department of Cardiology, Ji'an Municipal Center People's Hospital, Ji'an, China
| | - Lei Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Zihao Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Zongwei Lin
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Mei Dong
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Hongyan Dai
- Department of Cardiology, Qingdao Municipal Hospital, Qingdao, China
| | - Xiaoping Ji
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Huixia Lu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
49
|
Vallée A, Lecarpentier Y, Vallée JN. Curcumin: a therapeutic strategy in cancers by inhibiting the canonical WNT/β-catenin pathway. J Exp Clin Cancer Res 2019; 38:323. [PMID: 31331376 PMCID: PMC6647277 DOI: 10.1186/s13046-019-1320-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 07/10/2019] [Indexed: 12/13/2022] Open
Abstract
Numerous studies have presented that curcumin could have a positive effect in the prevention of cancer and then in tumor therapy. Several hypotheses have highlighted that curcumin could decreases tumor growth and invasion by acting on both chronic inflammation and oxidative stress. This review focuses on the interest of use curcumin in cancer therapy by acting on the WNT/β-catenin pathway to repress chronic inflammation and oxidative stress. In the cancer process, one of the major signaling pathways involved is the WNT/β-catenin pathway, which appears to be upregulated. Curcumin administration participates to the downregulation of the WNT/β-catenin pathway and thus, through this action, in tumor growth control. Curcumin act as PPARγ agonists. The WNT/β-catenin pathway and PPARγ act in an opposed manner. Chronic inflammation, oxidative stress and circadian clock disruption are common and co-substantial pathological processes accompanying and promoting cancers. Circadian clock disruption related to the upregulation of the WNT/β-catenin pathway is involved in cancers. By stimulating PPARγ expression, curcumin can control circadian clocks through the regulation of many key circadian genes. The administration of curcumin in cancer treatment would thus appear to be an interesting therapeutic strategy, which acts through their role in regulating WNT/β-catenin pathway and PPARγ activity levels.
Collapse
Affiliation(s)
- Alexandre Vallée
- Diagnosis and Therapeutic Center, Hypertension and Cardiovascular Prevention Unit, Hotel-Dieu Hospital, AP-HP, Université Paris Descartes, 1 place du Parvis de Notre-Dame, Paris, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l’Est Francilien (GHEF), 6-8 rue Saint-fiacre, 77100 Meaux, France
| | - Jean-Noël Vallée
- Centre Hospitalier Universitaire (CHU) Amiens Picardie, Université Picardie Jules Verne (UPJV), 80054 Amiens, France
- Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, Université de Poitiers, Poitiers, France
| |
Collapse
|
50
|
Vallée A, Lecarpentier Y, Vallée JN. Targeting the Canonical WNT/β-Catenin Pathway in Cancer Treatment Using Non-Steroidal Anti-Inflammatory Drugs. Cells 2019; 8:cells8070726. [PMID: 31311204 PMCID: PMC6679009 DOI: 10.3390/cells8070726] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/11/2019] [Accepted: 07/14/2019] [Indexed: 12/19/2022] Open
Abstract
Chronic inflammation and oxidative stress are common and co-substantial pathological processes accompanying and contributing to cancers. Numerous epidemiological studies have indicated that non-steroidal anti-inflammatory drugs (NSAIDs) could have a positive effect on both the prevention of cancer and tumor therapy. Numerous hypotheses have postulated that NSAIDs could slow tumor growth by acting on both chronic inflammation and oxidative stress. This review takes a closer look at these hypotheses. In the cancer process, one of the major signaling pathways involved is the WNT/β-catenin pathway, which appears to be upregulated. This pathway is closely associated with both chronic inflammation and oxidative stress in cancers. The administration of NSAIDs has been observed to help in the downregulation of the WNT/β-catenin pathway and thus in the control of tumor growth. NSAIDs act as PPARγ agonists. The WNT/β-catenin pathway and PPARγ act in opposing manners. PPARγ agonists can promote cell cycle arrest, cell differentiation, and apoptosis, and can reduce inflammation, oxidative stress, proliferation, invasion, and cell migration. In parallel, the dysregulation of circadian rhythms (CRs) contributes to cancer development through the upregulation of the canonical WNT/β-catenin pathway. By stimulating PPARγ expression, NSAIDs can control CRs through the regulation of many key circadian genes. The administration of NSAIDs in cancer treatment would thus appear to be an interesting therapeutic strategy, which acts through their role in regulating WNT/β-catenin pathway and PPARγ activity levels.
Collapse
Affiliation(s)
- Alexandre Vallée
- Diagnosis and Therapeutic Center, Hypertension and Cardiovascular Prevention Unit, Hotel-Dieu Hospital, AP-HP, Université Paris Descartes, 75004 Paris, France.
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), 6-8 rue Saint-fiacre, 77100 Meaux, France
| | - Jean-Noël Vallée
- Centre Hospitalier Universitaire (CHU) Amiens Picardie, Université Picardie Jules Verne (UPJV), 80054 Amiens, France
- Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, Université de Poitiers, 86000 Poitiers, France
| |
Collapse
|