1
|
Roy S, Ghosh MK. Ubiquitin proteasome system (UPS): a crucial determinant of the epigenetic landscape in cancer. Epigenomics 2025:1-20. [PMID: 40337853 DOI: 10.1080/17501911.2025.2501524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 04/29/2025] [Indexed: 05/09/2025] Open
Abstract
The ubiquitin proteasome system (UPS), comprising of ubiquitinases, deubiquitinases and 26S proteasome plays a significant role in directly or indirectly regulating epigenetic players. DNA-templated processes like replication, repair and transcription require chromatin decondensation to allow access to specific DNA sequence. A thorough survey of literary articles in PubMed database revealed that the UPS functions as a key regulator, determining the precise state of open and closed chromatin by influencing histones and histone modifiers through proteolytic or non-proteolytic means. However, a comprehensive understanding of how specific UPS components affect particular epigenetic pathways in response to environmental cues remains underexplored. This axis holds substantial potential for deciphering mechanisms of tumorigenesis. Although our current knowledge is limited, it can still guide the development of novel therapeutic strategies that can potentially bridge the gap between cancer chemotherapeutics in bench and bedside.
Collapse
Affiliation(s)
- Srija Roy
- Academy of Scientific and Innovative Research, Ghaziabad, India
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata, India
| | - Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata, India
| |
Collapse
|
2
|
Zhang R, Li G, Zhang Q, Wang Z, Xiang D, Zhang X, Chen J, Hutchins A, Qin D, Su H, Pei D, Li D. c-JUN: a chromatin repressor that limits mesoderm differentiation in human pluripotent stem cells. Nucleic Acids Res 2025; 53:gkaf001. [PMID: 39876710 PMCID: PMC11760979 DOI: 10.1093/nar/gkaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/24/2024] [Accepted: 01/03/2025] [Indexed: 01/30/2025] Open
Abstract
Cell fate determination at the chromatin level is not fully comprehended. Here, we report that c-JUN acts on chromatin loci to limit mesoderm cell fate specification as cells exit pluripotency. Although c-JUN is widely expressed across various cell types in early embryogenesis, it is not essential for maintaining pluripotency. Instead, it functions as a repressor to constrain mesoderm development while having a negligible impact on ectoderm differentiation. c-JUN interacts with MBD3-NuRD complex, which helps maintain chromatin in a low accessibility state at mesoderm-related genes during the differentiation of human pluripotent stem cells into mesoderm. Furthermore, c-JUN specifically inhibits the activation of key mesoderm factors, such as EOMES and GATA4. Knocking out c-JUN or inhibiting it with a JNK inhibitor can alleviate this suppression, promoting mesoderm cell differentiation. Consistently, knockdown of MBD3 enhances mesoderm generation, whereas MBD3 overexpression impedes it. Overexpressing c-JUN redirects differentiation toward a fibroblast-like lineage. Collectively, our findings suggest that c-JUN acts as a chromatin regulator to restrict the mesoderm cell fate.
Collapse
Affiliation(s)
- Ran Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao, 999078, China
| | - Guihuan Li
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, 621 Gangwan Road, Huangpu District, Guangzhou, Guangdong, 510799, China
| | - Qi Zhang
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, 621 Gangwan Road, Huangpu District, Guangzhou, Guangdong, 510799, China
| | - Zhenhua Wang
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, 621 Gangwan Road, Huangpu District, Guangzhou, Guangdong, 510799, China
| | - Dan Xiang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Hong Kong Institute of Science & Innovation, Guangzhou Institutes of Biomedicine and Health, 190 Kaiyuan Avenue, Science Park, Guangzhou, Guangdong 510530, China
| | - Xiaofei Zhang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Hong Kong Institute of Science & Innovation, Guangzhou Institutes of Biomedicine and Health, 190 Kaiyuan Avenue, Science Park, Guangzhou, Guangdong 510530, China
| | - Jiekai Chen
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Hong Kong Institute of Science & Innovation, Guangzhou Institutes of Biomedicine and Health, 190 Kaiyuan Avenue, Science Park, Guangzhou, Guangdong 510530, China
| | - Andrew P Hutchins
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, 518055, China
| | - Dajiang Qin
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, 621 Gangwan Road, Huangpu District, Guangzhou, Guangdong, 510799, China
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao, 999078, China
| | - Duanqing Pei
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, No. 600 Dunyu Road, Xihu District, Hangzhou, 310024, China
| | - Dongwei Li
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, 621 Gangwan Road, Huangpu District, Guangzhou, Guangdong, 510799, China
- Hainan Provincial Key Laboratory for human reproductive medicine and Genetic Research&Key Laboratory of Reproductive Health Diseases Research and Translation, Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, No. 3 Xueyuan Road, Longhua District, Haikou, Hainan, 571101, China
| |
Collapse
|
3
|
Rajanathadurai J, Perumal E, Sindya J. Advances in targeting cancer epigenetics using CRISPR-dCas9 technology: A comprehensive review and future prospects. Funct Integr Genomics 2024; 24:164. [PMID: 39292321 DOI: 10.1007/s10142-024-01455-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/30/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024]
Abstract
Cancer, a complex and multifaceted group of diseases, continues to challenge the boundaries of medical science and healthcare. Its relentless impact on global health, both in terms of prevalence and mortality, underscores the urgent need for a comprehensive understanding of its underlying mechanisms and innovative therapeutic approaches. In recent years, significant progress has been achieved in identifying the genetic and epigenetic mechanisms that cause cancer development and treatment resistance. Researchers are currently investigating the possibility of epigenetic editing such as CRISPR-dCas9 (Clustered Regularly Interspaced Short Palindromic Repeats/deactivated CRISPR-associated protein 9) technologies, for targeting and modifying cancer related epigenetic alterations. A revolutionary form of precision cancer treatment called CRISPR-dCas9 is derived from the bacterial CRISPR-Cas (CRISPR-associated nuclease) system. CRISPR-dCas9 can be combined with epigenetic effectors (EE) to alter malignant epigenetic characteristics associated with cancer. The purpose of this review article is to provide a thorough analysis of recent advancements in utilizing CRISPR-dCas9 technology to target and modify epigenetic changes associated with cancer. This review aims to summarize the latest research developments, evaluate the effectiveness and limitations of CRISPR-dCas9 applications in cancer therapy, identify key challenges such as delivery methods and explore future directions for improving and expanding these technologies. Here, we address the various obstacles that may arise in clinical applications while showcasing the latest advancements and potential future uses of CRISPR-Cas9 in cancer therapy.
Collapse
Affiliation(s)
- Jeevitha Rajanathadurai
- Cancer Genomics Lab, Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105, India
| | - Elumalai Perumal
- Cancer Genomics Lab, Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105, India.
| | - Jospin Sindya
- Cancer Genomics Lab, Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105, India
| |
Collapse
|
4
|
Chen L, Li H, Liu X, Zhang N, Wang K, Shi A, Gao H, Akdis D, Saguner AM, Xu X, Osto E, Van de Veen W, Li G, Bayés-Genís A, Duru F, Song J, Li X, Hu S. PBX/Knotted 1 homeobox-2 (PKNOX2) is a novel regulator of myocardial fibrosis. Signal Transduct Target Ther 2024; 9:94. [PMID: 38644381 PMCID: PMC11033280 DOI: 10.1038/s41392-024-01804-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 02/08/2024] [Accepted: 03/13/2024] [Indexed: 04/23/2024] Open
Abstract
Much effort has been made to uncover the cellular heterogeneities of human hearts by single-nucleus RNA sequencing. However, the cardiac transcriptional regulation networks have not been systematically described because of the limitations in detecting transcription factors. In this study, we optimized a pipeline for isolating nuclei and conducting single-nucleus RNA sequencing targeted to detect a higher number of cell signal genes and an optimal number of transcription factors. With this unbiased protocol, we characterized the cellular composition of healthy human hearts and investigated the transcriptional regulation networks involved in determining the cellular identities and functions of the main cardiac cell subtypes. Particularly in fibroblasts, a novel regulator, PKNOX2, was identified as being associated with physiological fibroblast activation in healthy hearts. To validate the roles of these transcription factors in maintaining homeostasis, we used single-nucleus RNA-sequencing analysis of transplanted failing hearts focusing on fibroblast remodelling. The trajectory analysis suggested that PKNOX2 was abnormally decreased from fibroblast activation to pathological myofibroblast formation. Both gain- and loss-of-function in vitro experiments demonstrated the inhibitory role of PKNOX2 in pathological fibrosis remodelling. Moreover, fibroblast-specific overexpression and knockout of PKNOX2 in a heart failure mouse model induced by transverse aortic constriction surgery significantly improved and aggravated myocardial fibrosis, respectively. In summary, this study established a high-quality pipeline for single-nucleus RNA-sequencing analysis of heart muscle. With this optimized protocol, we described the transcriptional regulation networks of the main cardiac cell subtypes and identified PKNOX2 as a novel regulator in suppressing fibrosis and a potential therapeutic target for future translational studies.
Collapse
Affiliation(s)
- Liang Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Haotong Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Xiaorui Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Ningning Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Kui Wang
- School of Statistics and Data Science, Nankai University, Tianjin, China
| | - Anteng Shi
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Hang Gao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Deniz Akdis
- Department of Cardiology, University Heart Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Ardan M Saguner
- Department of Cardiology, University Heart Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Xinjie Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Elena Osto
- Department of Cardiology, University Heart Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Institute for Clinical Chemistry, University Hospital Zurich and University of Zürich, Zurich, Switzerland
| | - Willem Van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Guangyu Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Antoni Bayés-Genís
- Heart Institute, Hospital Universitari Germans Trias i Pujol, Badalona, CIBERCV, Spain
| | - Firat Duru
- Department of Cardiology, University Heart Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Jiangping Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China.
| | - Xiangjie Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China.
| | - Shengshou Hu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China.
| |
Collapse
|
5
|
Naiyer S, Dwivedi L, Singh N, Phulera S, Mohan V, Kamran M. Role of Transcription Factor BEND3 and Its Potential Effect on Cancer Progression. Cancers (Basel) 2023; 15:3685. [PMID: 37509346 PMCID: PMC10377563 DOI: 10.3390/cancers15143685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/08/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
BEND3 is a transcription factor that plays a critical role in the regulation of gene expression in mammals. While there is limited research on the role of BEND3 as a tumor suppressor or an oncogene and its potential role in cancer therapy is still emerging, several studies suggest that it may be involved in both the processes. Its interaction and regulation with multiple other factors via p21 have already been reported to play a significant role in cancer development, which serves as an indication of its potential role in oncogenesis. Its interaction with chromatin modifiers such as NuRD and NoRC and its role in the recruitment of polycomb repressive complex 2 (PRC2) are some of the additional events indicative of its potential role in cancer development. Moreover, a few recent studies indicate BEND3 as a potential target for cancer therapy. Since the specific mechanisms by which BEND3 may contribute to cancer progression are not yet fully elucidated, in this review, we have discussed the possible pathways BEND3 may take to serve as an oncogenic driver or suppressor.
Collapse
Affiliation(s)
- Sarah Naiyer
- Department of Biomedical Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lalita Dwivedi
- Faculty of Science, Department of Biotechnology, Invertis University, Bareilly 243122, UP, India
| | - Nishant Singh
- Cell and Gene Therapy Division Absorption System, Exton, PA 19341, USA
| | - Swastik Phulera
- Initium Therapeutics, 22 Strathmore Rd., STE 453, Natick, MA 01760, USA
| | - Vijay Mohan
- Department of Biosciences, School of Basic and Applied Sciences, Galgotias University, Greater Noida 203201, UP, India
| | - Mohammad Kamran
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
6
|
Mas G, Santoro F, Blanco E, Gamarra Figueroa GP, Le Dily F, Frigè G, Vidal E, Mugianesi F, Ballaré C, Gutierrez A, Sparavier A, Marti-Renom MA, Minucci S, Di Croce L. In vivo temporal resolution of acute promyelocytic leukemia progression reveals a role of Klf4 in suppressing early leukemic transformation. Genes Dev 2022; 36:451-467. [PMID: 35450883 PMCID: PMC9067408 DOI: 10.1101/gad.349115.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/25/2022] [Indexed: 11/25/2022]
Abstract
In this study, Mas et al. used primary hematopoietic stem and progenitor cells (HSPCs) and leukemic blasts that express the fusion protein PML-RARα as a paradigm to temporally dissect the dynamic changes in the epigenome, transcriptome, and genome architecture induced during oncogenic transformation. Their multiomics-integrated analysis identified Klf4 as an early down-regulated gene in PML-RARα-driven leukemogenesis, and they characterized the dynamic alterations in the Klf4 cis-regulatory network during APL progression and demonstrated that ectopic Klf4 overexpression can suppress self-renewal and reverse the differentiation block induced by PML-RARα. Genome organization plays a pivotal role in transcription, but how transcription factors (TFs) rewire the structure of the genome to initiate and maintain the programs that lead to oncogenic transformation remains poorly understood. Acute promyelocytic leukemia (APL) is a fatal subtype of leukemia driven by a chromosomal translocation between the promyelocytic leukemia (PML) and retinoic acid receptor α (RARα) genes. We used primary hematopoietic stem and progenitor cells (HSPCs) and leukemic blasts that express the fusion protein PML-RARα as a paradigm to temporally dissect the dynamic changes in the epigenome, transcriptome, and genome architecture induced during oncogenic transformation. We found that PML-RARα initiates a continuum of topologic alterations, including switches from A to B compartments, transcriptional repression, loss of active histone marks, and gain of repressive histone marks. Our multiomics-integrated analysis identifies Klf4 as an early down-regulated gene in PML-RARα-driven leukemogenesis. Furthermore, we characterized the dynamic alterations in the Klf4 cis-regulatory network during APL progression and demonstrated that ectopic Klf4 overexpression can suppress self-renewal and reverse the differentiation block induced by PML-RARα. Our study provides a comprehensive in vivo temporal dissection of the epigenomic and topological reprogramming induced by an oncogenic TF and illustrates how topological architecture can be used to identify new drivers of malignant transformation.
Collapse
Affiliation(s)
- Glòria Mas
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain
| | - Fabio Santoro
- Department of Experimental Oncology, European Institute of Oncology (IEO), Milan 20139, Italy.,Department of Oncology and Hemato-oncology, University of Milan, Milan 20139, Italy
| | - Enrique Blanco
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain
| | | | - François Le Dily
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain
| | - Gianmaria Frigè
- Department of Experimental Oncology, European Institute of Oncology (IEO), Milan 20139, Italy.,Department of Oncology and Hemato-oncology, University of Milan, Milan 20139, Italy
| | - Enrique Vidal
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain
| | - Francesca Mugianesi
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain.,Centro Nacional de Análisis Genómico (CNAG), Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Cecilia Ballaré
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain
| | - Arantxa Gutierrez
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain
| | - Aleksandra Sparavier
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain.,Centro Nacional de Análisis Genómico (CNAG), Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Marc A Marti-Renom
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain.,Centro Nacional de Análisis Genómico (CNAG), Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona 08028, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
| | - Saverio Minucci
- Department of Experimental Oncology, European Institute of Oncology (IEO), Milan 20139, Italy.,Department of Oncology and Hemato-oncology, University of Milan, Milan 20139, Italy
| | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
| |
Collapse
|
7
|
IκBα is required for full transcriptional induction of some NFκB-regulated genes in response to TNF in MCF-7 cells. NPJ Syst Biol Appl 2021; 7:42. [PMID: 34853340 PMCID: PMC8636565 DOI: 10.1038/s41540-021-00204-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022] Open
Abstract
Inflammatory stimuli triggers the degradation of three inhibitory κB (IκB) proteins, allowing for nuclear translocation of nuclear factor-κB (NFκB) for transcriptional induction of its target genes. Of these three, IκBα is a well-known negative feedback regulator that limits the duration of NFκB activity. We sought to determine whether IκBα's role in enabling or limiting NFκB activation is important for tumor necrosis factor (TNF)-induced gene expression in human breast cancer cells (MCF-7). Contrary to our expectations, many more TNF-response genes showed reduced induction than enhanced induction in IκBα knockdown cells. Mathematical modeling was used to investigate the underlying mechanism. We found that the reduced activation of some NFκB target genes in IκBα-deficient cells could be explained by the incoherent feedforward loop (IFFL) model. In addition, for a subset of genes, prolonged NFκB activity due to loss of negative feedback control did not prolong their transient activation; this implied a multi-state transcription cycle control of gene induction. Genes encoding key inflammation-related transcription factors, such as JUNB and KLF10, were found to be best represented by a model that contained both the IFFL and the transcription cycle motif. Our analysis sheds light on the regulatory strategies that safeguard inflammatory gene expression from overproduction and repositions the function of IκBα not only as a negative feedback regulator of NFκB but also as an enabler of NFκB-regulated stimulus-responsive inflammatory gene expression. This study indicates the complex involvement of IκBα in the inflammatory response to TNF that is induced by radiation therapy in breast cancer.
Collapse
|
8
|
Abstract
Chromatin is highly dynamic, undergoing continuous global changes in its structure and type of histone and DNA modifications governed by processes such as transcription, repair, replication, and recombination. Members of the chromodomain helicase DNA-binding (CHD) family of enzymes are ATP-dependent chromatin remodelers that are intimately involved in the regulation of chromatin dynamics, altering nucleosomal structure and DNA accessibility. Genetic studies in yeast, fruit flies, zebrafish, and mice underscore essential roles of CHD enzymes in regulating cellular fate and identity, as well as proper embryonic development. With the advent of next-generation sequencing, evidence is emerging that these enzymes are subjected to frequent DNA copy number alterations or mutations and show aberrant expression in malignancies and other human diseases. As such, they might prove to be valuable biomarkers or targets for therapeutic intervention.
Collapse
Affiliation(s)
- Andrej Alendar
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam 1066CX, The Netherlands
| | - Anton Berns
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam 1066CX, The Netherlands
| |
Collapse
|
9
|
Hofmann SR, Carlsson E, Kapplusch F, Carvalho AL, Liloglou T, Schulze F, Abraham S, Northey S, Russ S, Surace AEA, Yoshida N, Tsokos GC, Hedrich CM. Cyclic AMP Response Element Modulator-α Suppresses PD-1 Expression and Promotes Effector CD4 + T Cells in Psoriasis. THE JOURNAL OF IMMUNOLOGY 2021; 207:55-64. [PMID: 34135066 DOI: 10.4049/jimmunol.2100240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/29/2021] [Indexed: 11/19/2022]
Abstract
Effector CD4+ T lymphocytes contribute to inflammation and tissue damage in psoriasis, but the underlying molecular mechanisms remain poorly understood. The transcription factor CREMα controls effector T cell function in people with systemic autoimmune diseases. The inhibitory surface coreceptor PD-1 plays a key role in the control of effector T cell function and its therapeutic inhibition in patients with cancer can cause psoriasis. In this study, we show that CD4+ T cells from patients with psoriasis and psoriatic arthritis exhibit increased production of IL-17 but decreased expression of IL-2 and PD-1. In genetically modified mice and Jurkat T cells CREMα expression was linked to low PD-1 levels. We demonstrate that CREMα is recruited to the proximal promoter of PDCD1 in which it trans-represses gene expression and corecruits DNMT3a-mediating DNA methylation. As keratinocytes limit inflammation by PD-1 ligand expression and, in this study, reported reduced expression of PD-1 on CD4+ T cells is linked to low IL-2 and high IL-17A production, our studies reveal a molecular pathway in T cells from people with psoriasis that can deserve clinical exploitation.
Collapse
Affiliation(s)
- Sigrun R Hofmann
- Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Emil Carlsson
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Franz Kapplusch
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Ana L Carvalho
- Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Triantafillos Liloglou
- Department of Molecular and Clinical Cancer Medicine, The Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Felix Schulze
- Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Susanne Abraham
- Klinik und Poliklinik für Dermatologie, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Sarah Northey
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Susanne Russ
- Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Anna E A Surace
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Nobuya Yoshida
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - George C Tsokos
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Christian M Hedrich
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom; .,Department of Rheumatology, Alder Hey Children's National Health Service Foundation Trust Hospital, Liverpool, United Kingdom; and.,National Institute for Health Research Alder Hey Clinical Research Facility, Alder Hey Children's National Health Service Foundation Trust Hospital, Liverpool, United Kingdom
| |
Collapse
|
10
|
Chang CL, Huang CR, Chang SJ, Wu CC, Chen HH, Luo CW, Yip HK. CHD4 as an important mediator in regulating the malignant behaviors of colorectal cancer. Int J Biol Sci 2021; 17:1660-1670. [PMID: 33994851 PMCID: PMC8120460 DOI: 10.7150/ijbs.56976] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/28/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) has ranked first in terms of incidence in Taiwan. Surgical resection combined with chemo-, radio-, or targeted-therapies are the main treatments for CRC patients in current clinical practice. However, many CRC patients still respond poorly to these treatments, leading to tumor recurrence and an unacceptably high incidence of metastasis and death. Therefore, appropriate diagnosis, treatment, and drug selection are pressing issues in clinical practice. The Mi-2/nucleosome remodeling and deacetylase complex is an important epigenetic regulator of chromatin structure and gene expression. An important component of this complex is chromodomain-helicase-DNA-binding protein 4 (CHD4), which is involved in DNA repair after injury. Recent studies have indicated that CHD4 has oncogenic functions that inhibit multiple tumor suppressor genes through epigenetic regulation. However, the role of CHD4 in CRC has not yet been well investigated. In this study, we compared CHD4 expression in CRC patients from The Cancer Genome Atlas database. We found higher levels of CHD4 expression in CRC patients. In a series of in vitro experiments, we found that CHD4 affected cell motility and drug sensitivity in CRC cells. In animal models, the depletion of CHD4 affected CRC tumor growth, and the combination of a histone deacetylase 1 (HDAC1) inhibitor and platinum drugs inhibited CHD4 expression and increased the cytotoxicity of platinum drugs. Moreover, CHD4 expression was also a prognostic biomarker in CRC patients. Based on the above results, we believe that CHD4 expression is a viable biomarker for predicting metastasis CRC patients, and it has the potential to become a target for drug development.
Collapse
Affiliation(s)
- Chia-Lo Chang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chi-Ruei Huang
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shu-Jyuan Chang
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Pathology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chun-Chieh Wu
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Hong-Hwa Chen
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chi-Wen Luo
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Division of Breast Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Hon-Kan Yip
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital Kaohsiung, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Department of Nursing, Asia University Taichung, Taiwan.,Division of Cardiology, Department of Internal Medicine, Xiamen Chang Gung Hospital, Xiamen, Fujian, China
| |
Collapse
|
11
|
Mattar P, Jolicoeur C, Dang T, Shah S, Clark BS, Cayouette M. A Casz1-NuRD complex regulates temporal identity transitions in neural progenitors. Sci Rep 2021; 11:3858. [PMID: 33594190 PMCID: PMC7886867 DOI: 10.1038/s41598-021-83395-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/02/2021] [Indexed: 12/14/2022] Open
Abstract
Neural progenitor cells undergo identity transitions during development to ensure the generation different types of neurons and glia in the correct sequence and proportions. A number of temporal identity factors that control these transitions in progenitor competence have been identified, but the molecular mechanisms underlying their function remain unclear. Here, we asked how Casz1, the mammalian orthologue of Drosophila castor, regulates competence during retinal development. We show that Casz1 is required to control the transition between neurogenesis and gliogenesis. Using BioID proteomics, we reveal that Casz1 interacts with the nucleosome remodeling and deacetylase (NuRD) complex in retinal cells. Finally, we show that both the NuRD and the polycomb repressor complexes are required for Casz1 to promote the rod fate and suppress gliogenesis. As additional temporal identity factors have been found to interact with the NuRD complex in other contexts, we propose that these factors might act through this common biochemical process to regulate neurogenesis.
Collapse
Affiliation(s)
- Pierre Mattar
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC, H2W 1R7, Canada. .,Department of Cell and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada. .,Ottawa Health Research Institute (OHRI), Ottawa, ON, K1H 8L6, Canada.
| | - Christine Jolicoeur
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC, H2W 1R7, Canada
| | - Thanh Dang
- Department of Cell and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.,Ottawa Health Research Institute (OHRI), Ottawa, ON, K1H 8L6, Canada
| | - Sujay Shah
- Department of Cell and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.,Ottawa Health Research Institute (OHRI), Ottawa, ON, K1H 8L6, Canada
| | - Brian S Clark
- John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA.,Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Michel Cayouette
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC, H2W 1R7, Canada. .,Department of Anatomy and Cell Biology, and Division of Experimental Medicine, McGill University, Montreal, QC, H3A 0G4, Canada. .,Department of Medicine, Université de Montréal, Montreal, QC, H3T 1J4, Canada.
| |
Collapse
|
12
|
Shi Y, Shi Q, Shen Q, Zhang Q, Cao X. Dicer-independent snRNA/snoRNA-derived nuclear RNA 3 regulates tumor-associated macrophage function by epigenetically repressing inducible nitric oxide synthase transcription. Cancer Commun (Lond) 2021; 41:140-153. [PMID: 33455092 PMCID: PMC7896748 DOI: 10.1002/cac2.12131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Small RNAs (sRNAs) extensively mediate gene-specific chromatin regulation in lower organisms. As a dominant type of functional sRNAs in mature mammals, microRNAs mainly regulate gene expression at post-transcription level in the cytoplasm. Currently, whether there exists a type of nuclear-localized sRNAs mediating gene-specific epigenetic regulation in mature mammalian cells remains largely unclear. Here, we profiled sRNAs enriched in the nucleus and investigated their function in mediating gene-specific epigenetic regulation in anti-tumor immunity. METHODS We established cytoplasmic and nuclear transcriptomes of sRNAs of dendritic cells (DCs) using high-throughput sequencing. Transcription abundances of sRNAs and mRNAs were analyzed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) assay. The associations between sRNAs and Argonaute (AGO) proteins were detected by RNA immunoprecipitation analysis. Synthesized sRNAs and locked nucleic acid (LNA) -modified sRNA inhibitors were used to screen the function of sRNAs in innate immune cells. The effect of sRNA on the enrichment of either chromatin remodeler or histone modification at the gene promoter was analyzed by chromatin immunoprecipitation (ChIP)-qPCR assay. Chromatin accessibility qPCR assay was used to detect the accessibility of gene promoters. A B16 melanoma-bearing mouse model was established to determine the function of sRNAs in tumor-associated macrophages (TAMs) and their effect on tumor growth. RESULTS We identified a new class of nucleus-localized sRNAs, named snRNA/snoRNA-derived nuclear RNAs (sdnRNAs). Some sdnRNAs were Dicer-independent and had no association with Argonaute proteins. sdnRNA-3, the most abundant Dicer-independent sdnRNAs identified in our analysis, was selected as a representative to examine the biological function of sdnRNAs. sdnRNA-3 selectively inhibited the transcription of Nos2 in macrophages during innate immune response by repressing the chromatin accessibility at Nos2 gene promoter. sdnRNA-3 promoted the enrichments of repressive chromatin-remodeling regulator Mi-2β and the repressive histone modification H3K27me3 at Nos2 gene promoter. In the B16 melanoma mouse model, we found higher expression of sdnRNA-3 in M2 TAMs than M1 TAMs and DCs. Transfer of sdnRNA-3-silenced macrophages inhibited tumor growth with increased expression of inducible nitric oxide synthase (iNOS) in TAMs. CONCLUSIONS Our results demonstrated that the sdnRNA-3 repressed the transcription of Nos2 by repressing chromatin accessibility at the promoter, providing new insights into the regulation of macrophage function in tumor immunity.
Collapse
Affiliation(s)
- Yang Shi
- Institute of ImmunologyZhejiang University School of MedicineHangzhouZhejiang310058P. R. China
| | - Qingzhu Shi
- Institute of ImmunologyZhejiang University School of MedicineHangzhouZhejiang310058P. R. China
| | - Qicong Shen
- National Key Laboratory of Medical Immunology & Institute of ImmunologySecond Military Medical UniversityShanghai200433P. R. China
| | - Qian Zhang
- National Key Laboratory of Medical Immunology & Institute of ImmunologySecond Military Medical UniversityShanghai200433P. R. China
| | - Xuetao Cao
- Institute of ImmunologyZhejiang University School of MedicineHangzhouZhejiang310058P. R. China
- National Key Laboratory of Medical Immunology & Institute of ImmunologySecond Military Medical UniversityShanghai200433P. R. China
- Department of ImmunologyInstitute of Basic Medical ResearchChinese Academy of Medical SciencesBeijing100005P. R. China
| |
Collapse
|
13
|
Wang Z, Wang P, Li Y, Peng H, Zhu Y, Mohandas N, Liu J. Interplay between cofactors and transcription factors in hematopoiesis and hematological malignancies. Signal Transduct Target Ther 2021; 6:24. [PMID: 33468999 PMCID: PMC7815747 DOI: 10.1038/s41392-020-00422-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/16/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023] Open
Abstract
Hematopoiesis requires finely tuned regulation of gene expression at each stage of development. The regulation of gene transcription involves not only individual transcription factors (TFs) but also transcription complexes (TCs) composed of transcription factor(s) and multisubunit cofactors. In their normal compositions, TCs orchestrate lineage-specific patterns of gene expression and ensure the production of the correct proportions of individual cell lineages during hematopoiesis. The integration of posttranslational and conformational modifications in the chromatin landscape, nucleosomes, histones and interacting components via the cofactor–TF interplay is critical to optimal TF activity. Mutations or translocations of cofactor genes are expected to alter cofactor–TF interactions, which may be causative for the pathogenesis of various hematologic disorders. Blocking TF oncogenic activity in hematologic disorders through targeting cofactors in aberrant complexes has been an exciting therapeutic strategy. In this review, we summarize the current knowledge regarding the models and functions of cofactor–TF interplay in physiological hematopoiesis and highlight their implications in the etiology of hematological malignancies. This review presents a deep insight into the physiological and pathological implications of transcription machinery in the blood system.
Collapse
Affiliation(s)
- Zi Wang
- Department of Hematology, Institute of Molecular Hematology, The Second Xiangya Hospital, Central South University, 410011, ChangSha, Hunan, China. .,Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, 410078, Changsha, Hunan, China.
| | - Pan Wang
- Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, 410078, Changsha, Hunan, China
| | - Yanan Li
- Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, 410078, Changsha, Hunan, China
| | - Hongling Peng
- Department of Hematology, Institute of Molecular Hematology, The Second Xiangya Hospital, Central South University, 410011, ChangSha, Hunan, China
| | - Yu Zhu
- Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, 410078, Changsha, Hunan, China
| | - Narla Mohandas
- Red Cell Physiology Laboratory, New York Blood Center, New York, NY, USA
| | - Jing Liu
- Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, 410078, Changsha, Hunan, China.
| |
Collapse
|
14
|
Ansari I, Chaturvedi A, Chitkara D, Singh S. CRISPR/Cas mediated epigenome editing for cancer therapy. Semin Cancer Biol 2021; 83:570-583. [PMID: 33421620 DOI: 10.1016/j.semcancer.2020.12.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023]
Abstract
The understanding of the relationship between epigenetic alterations, their effects on gene expression and the knowledge that these epigenetic alterations are reversible, have opened up new therapeutic pathways for treating various diseases, including cancer. This has led the research for a better understanding of the mechanism and pathways of carcinogenesis and provided the opportunity to develop the therapeutic approaches by targeting such pathways. Epi-drugs, DNA methyl transferase (DNMT) inhibitors and histone deacetylase (HDAC) inhibitors are the best examples of epigenetic therapies with clinical applicability. Moreover, precise genome editing technologies such as CRISPR/Cas has proven their efficacy in epigenome editing, including the alteration of epigenetic markers, such as DNA methylation or histone modification. The main disadvantage with DNA gene editing technologies is off-target DNA sequence alteration, which is not an issue with epigenetic editing. It is known that cancer is linked with epigenetic alteration, and thus CRISPR/Cas system shows potential for cancer therapy via epigenome editing. This review outlines the epigenetic therapeutic approach for cancer therapy using CRISPR/Cas, from the basic understanding of cancer epigenetics to potential applications of CRISPR/Cas in treating cancer.
Collapse
Affiliation(s)
- Imran Ansari
- Department of Pharmacy, Birla Institute of Technology and Science (BITS)-Pilani, Pilani Campus, Vidya Vihar, Pilani, 333 031, Rajasthan, India
| | | | - Deepak Chitkara
- Department of Pharmacy, Birla Institute of Technology and Science (BITS)-Pilani, Pilani Campus, Vidya Vihar, Pilani, 333 031, Rajasthan, India.
| | - Saurabh Singh
- Novartis Healthcare Pvt Ltd., Hyderabad 500032, Telangana, India.
| |
Collapse
|
15
|
Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells 2020; 9:cells9112423. [PMID: 33167477 PMCID: PMC7716236 DOI: 10.3390/cells9112423] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023] Open
Abstract
Acute promyelocytic leukemia (APL) is a hematological disease characterized by a balanced reciprocal translocation that leads to the synthesis of the oncogenic fusion protein PML-RARα. APL is mainly managed by a differentiation therapy based on the administration of all-trans retinoic acid (ATRA) and arsenic trioxide (ATO). However, therapy resistance, differentiation syndrome, and relapses require the development of new low-toxicity therapies based on the induction of blasts differentiation. In keeping with this, we reasoned that a better understanding of the molecular mechanisms pivotal for ATRA-driven differentiation could definitely bolster the identification of new therapeutic strategies in APL patients. We thus performed an in-depth high-throughput transcriptional profile analysis and metabolic characterization of a well-established APL experimental model based on NB4 cells that represent an unevaluable tool to dissect the complex mechanism associated with ATRA-induced granulocytic differentiation. Pathway-reconstruction analysis using genome-wide transcriptional data has allowed us to identify the activation/inhibition of several cancer signaling pathways (e.g., inflammation, immune cell response, DNA repair, and cell proliferation) and master regulators (e.g., transcription factors, epigenetic regulators, and ligand-dependent nuclear receptors). Furthermore, we provide evidence of the regulation of a considerable set of metabolic genes involved in cancer metabolic reprogramming. Consistently, we found that ATRA treatment of NB4 cells drives the activation of aerobic glycolysis pathway and the reduction of OXPHOS-dependent ATP production. Overall, this study represents an important resource in understanding the molecular “portfolio” pivotal for APL differentiation, which can be explored for developing new therapeutic strategies.
Collapse
|
16
|
Hoxha S, Shepard A, Troutman S, Diao H, Doherty JR, Janiszewska M, Witwicki RM, Pipkin ME, Ja WW, Kareta MS, Kissil JL. YAP-Mediated Recruitment of YY1 and EZH2 Represses Transcription of Key Cell-Cycle Regulators. Cancer Res 2020; 80:2512-2522. [PMID: 32409309 DOI: 10.1158/0008-5472.can-19-2415] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 03/11/2020] [Accepted: 04/22/2020] [Indexed: 11/16/2022]
Abstract
The Hippo pathway regulates cell proliferation and organ size through control of the transcriptional regulators YAP (yes-associated protein) and TAZ. Upon extracellular stimuli such as cell-cell contact, the pathway negatively regulates YAP through cytoplasmic sequestration. Under conditions of low cell density, YAP is nuclear and associates with enhancer regions and gene promoters. YAP is mainly described as a transcriptional activator of genes involved in cell proliferation and survival. Using a genome-wide approach, we show here that, in addition to its known function as a transcriptional activator, YAP functions as a transcriptional repressor by interacting with the multifunctional transcription factor Yin Yang 1 (YY1) and Polycomb repressive complex member enhancer of zeste homologue 2 (EZH2). YAP colocalized with YY1 and EZH2 on the genome to transcriptionally repress a broad network of genes mediating a host of cellular functions, including repression of the cell-cycle kinase inhibitor p27, whose role is to functionally promote contact inhibition. This work unveils a broad and underappreciated aspect of YAP nuclear function as a transcriptional repressor and highlights how loss of contact inhibition in cancer is mediated in part through YAP repressive function. SIGNIFICANCE: This study provides new insights into YAP as a broad transcriptional repressor of key regulators of the cell cycle, in turn influencing contact inhibition and tumorigenesis.
Collapse
Affiliation(s)
- Sany Hoxha
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida
| | - Alyssa Shepard
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida
| | - Scott Troutman
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida
| | - Huitian Diao
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida
| | - Joanne R Doherty
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida
| | | | - Robert M Witwicki
- Genetic Perturbation Screening Core, The Scripps Research Institute, Jupiter, Florida
| | - Matthew E Pipkin
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida
| | - William W Ja
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida
| | - Michael S Kareta
- Genetics and Genomics Group, Sanford Research, Sioux Falls, South Dakota
| | - Joseph L Kissil
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida.
| |
Collapse
|
17
|
Lee CH, Shih YP, Ho MR, Wang AHJ. The C-terminal D/E-rich domain of MBD3 is a putative Z-DNA mimic that competes for Zα DNA-binding activity. Nucleic Acids Res 2019; 46:11806-11821. [PMID: 30304469 PMCID: PMC6294567 DOI: 10.1093/nar/gky933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 10/04/2018] [Indexed: 12/25/2022] Open
Abstract
The Z-DNA binding domain (Zα), derived from the human RNA editing enzyme ADAR1, can induce and stabilize the Z-DNA conformation. However, the biological function of Zα/Z-DNA remains elusive. Herein, we sought to identify proteins associated with Zα to gain insight into the functional network of Zα/Z-DNA. By pull-down, biophysical and biochemical analyses, we identified a novel Zα-interacting protein, MBD3, and revealed that Zα interacted with its C-terminal acidic region, an aspartate (D)/glutamate (E)-rich domain, with high affinity. The D/E-rich domain of MBD3 may act as a DNA mimic to compete with Z-DNA for binding to Zα. Dimerization of MBD3 via intermolecular interaction of the D/E-rich domain and its N-terminal DNA binding domain, a methyl-CpG-binding domain (MBD), attenuated the high affinity interaction of Zα and the D/E-rich domain. By monitoring the conformation transition of DNA, we found that Zα could compete with the MBD domain for binding to the Z-DNA forming sequence, but not vice versa. Furthermore, co-immunoprecipitation experiments confirmed the interaction of MBD3 and ADAR1 in vivo. Our findings suggest that the interplay of Zα and MBD3 may regulate the transition of the DNA conformation between B- and Z-DNA and thereby modulate chromatin accessibility, resulting in alterations in gene expression.
Collapse
Affiliation(s)
- Chi-Hua Lee
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Yan-Ping Shih
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Meng-Ru Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Andrew H-J Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
18
|
Bracken AP, Brien GL, Verrijzer CP. Dangerous liaisons: interplay between SWI/SNF, NuRD, and Polycomb in chromatin regulation and cancer. Genes Dev 2019; 33:936-959. [PMID: 31123059 PMCID: PMC6672049 DOI: 10.1101/gad.326066.119] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this review, Bracken et al. discuss the functional organization and biochemical activities of remodelers and Polycomb and explore how they work together to control cell differentiation and the maintenance of cell identity. They also discuss how mutations in the genes encoding these various chromatin regulators contribute to oncogenesis by disrupting the chromatin equilibrium. Changes in chromatin structure mediated by ATP-dependent nucleosome remodelers and histone modifying enzymes are integral to the process of gene regulation. Here, we review the roles of the SWI/SNF (switch/sucrose nonfermenting) and NuRD (nucleosome remodeling and deacetylase) and the Polycomb system in chromatin regulation and cancer. First, we discuss the basic molecular mechanism of nucleosome remodeling, and how this controls gene transcription. Next, we provide an overview of the functional organization and biochemical activities of SWI/SNF, NuRD, and Polycomb complexes. We describe how, in metazoans, the balance of these activities is central to the proper regulation of gene expression and cellular identity during development. Whereas SWI/SNF counteracts Polycomb, NuRD facilitates Polycomb repression on chromatin. Finally, we discuss how disruptions of this regulatory equilibrium contribute to oncogenesis, and how new insights into the biological functions of remodelers and Polycombs are opening avenues for therapeutic interventions on a broad range of cancer types.
Collapse
Affiliation(s)
- Adrian P Bracken
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Gerard L Brien
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - C Peter Verrijzer
- Department of Biochemistry, Erasmus University Medical Center, 3000 DR Rotterdam, the Netherlands
| |
Collapse
|
19
|
Tsuboi M, Kishi Y, Yokozeki W, Koseki H, Hirabayashi Y, Gotoh Y. Ubiquitination-Independent Repression of PRC1 Targets during Neuronal Fate Restriction in the Developing Mouse Neocortex. Dev Cell 2019; 47:758-772.e5. [PMID: 30562514 DOI: 10.1016/j.devcel.2018.11.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/05/2018] [Accepted: 11/13/2018] [Indexed: 02/06/2023]
Abstract
Polycomb repressive complex (PRC) 1 maintains developmental genes in a poised state through monoubiquitination (Ub) of histone H2A. Although Ub-independent functions of PRC1 have also been suggested, it has remained unclear whether Ub-dependent and -independent functions of PRC1 operate differentially in a developmental context. Here, we show that the E3 ubiquitin ligase activity of Ring1B, a core component of PRC1, is necessary for the temporary repression of key neuronal genes in neurogenic (early-stage) neural stem or progenitor cells (NPCs) but is dispensable for the persistent repression of these genes associated with the loss of neurogenic potential in astrogliogenic (late-stage) NPCs. Our results also suggest that histone deacetylase (HDAC) activity of the NuRD/MBD3 complex and Phc2-dependent PRC1 clustering are necessary for the transition from the Ub-dependent to -independent function of PRC1. Together, these results indicate that Ub-independent mode of repression by PRC1 plays a key role in mammalian development during cell fate restriction.
Collapse
Affiliation(s)
- Masafumi Tsuboi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yusuke Kishi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan.
| | - Wakana Yokozeki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Haruhiko Koseki
- RIKEN Center for Integrative Medical Sciences, Kanagawa 230-0045, Japan
| | - Yusuke Hirabayashi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; PRESTO, JST, TokyoJapan
| | - Yukiko Gotoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo 113-0033, Japan.
| |
Collapse
|
20
|
Long noncoding RNAs in cancer cells. Cancer Lett 2019; 419:152-166. [PMID: 29414303 DOI: 10.1016/j.canlet.2018.01.053] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/15/2018] [Accepted: 01/18/2018] [Indexed: 12/11/2022]
Abstract
Long noncoding RNA (lncRNA) has recently been investigated as key modulators that regulate many biological processes in human cancers via diverse mechanisms. LncRNAs can interact with macromolecules such as DNA, RNA, or protein to exert cellular effects and to act as either tumor promoters or tumor suppressors in various malignancies. Moreover, the aberrant expression of lncRNAs may be detected in multiple cancer phenotypes by employing the rapidly developing modern gene chip technology and bioinformatics analysis. Herein, we highlight the mechanisms of action of lncRNAs, their functional cellular roles and their involvement in cancer progression. Finally, we provide an overview of recent progress in the lncRNA field and future potential for lncRNAs as cancer diagnostic markers and therapeutics.
Collapse
|
21
|
Morgan RG, Ridsdale J, Payne M, Heesom KJ, Wilson MC, Davidson A, Greenhough A, Davies S, Williams AC, Blair A, Waterman ML, Tonks A, Darley RL. LEF-1 drives aberrant β-catenin nuclear localization in myeloid leukemia cells. Haematologica 2019; 104:1365-1377. [PMID: 30630973 PMCID: PMC6601079 DOI: 10.3324/haematol.2018.202846] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 01/03/2019] [Indexed: 12/24/2022] Open
Abstract
Canonical Wnt/β-catenin signaling is frequently dysregulated in myeloid leukemias and is implicated in leukemogenesis. Nuclear-localized β-catenin is indicative of active Wnt signaling and is frequently observed in acute myeloid leukemia (AML) patients; however, some patients exhibit little or no nuclear β-catenin even where cytosolic β-catenin is abundant. Control of the subcellular localization of β-catenin therefore represents an additional mechanism regulating Wnt signaling in hematopoietic cells. To investigate the factors mediating the nuclear-localization of β-catenin, we carried out the first nuclear/cytoplasmic proteomic analysis of the β-catenin interactome in myeloid leukemia cells and identified putative novel β-catenin interactors. Comparison of interacting factors between Wnt-responsive cells (high nuclear β-catenin) versus Wnt-unresponsive cells (low nuclear β-catenin) suggested the transcriptional partner, LEF-1, could direct the nuclear-localization of β-catenin. The relative levels of nuclear LEF-1 and β-catenin were tightly correlated in both cell lines and in primary AML blasts. Furthermore, LEF-1 knockdown perturbed β-catenin nuclear-localization and transcriptional activation in Wnt-responsive cells. Conversely, LEF-1 overexpression was able to promote both nuclear-localization and β-catenin-dependent transcriptional responses in previously Wnt-unresponsive cells. This is the first β-catenin interactome study in hematopoietic cells and reveals LEF-1 as a mediator of nuclear β- catenin level in human myeloid leukemia.
Collapse
Affiliation(s)
- Rhys G Morgan
- School of Life Sciences, University of Sussex, Brighton, UK .,School of Cellular and Molecular Medicine, University of Bristol, UK
| | - Jenna Ridsdale
- Department of Haematology, Division of Cancer and Genetics, School of Medicine, Cardiff University, UK
| | - Megan Payne
- School of Life Sciences, University of Sussex, Brighton, UK
| | | | | | | | | | - Sara Davies
- Department of Haematology, Division of Cancer and Genetics, School of Medicine, Cardiff University, UK
| | - Ann C Williams
- School of Life Sciences, University of Sussex, Brighton, UK
| | - Allison Blair
- School of Life Sciences, University of Sussex, Brighton, UK
| | - Marian L Waterman
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA, USA
| | - Alex Tonks
- Department of Haematology, Division of Cancer and Genetics, School of Medicine, Cardiff University, UK
| | - Richard L Darley
- Department of Haematology, Division of Cancer and Genetics, School of Medicine, Cardiff University, UK
| |
Collapse
|
22
|
Mohd-Sarip A, Teeuwssen M, Bot AG, De Herdt MJ, Willems SM, Baatenburg de Jong RJ, Looijenga LHJ, Zatreanu D, Bezstarosti K, van Riet J, Oole E, van Ijcken WFJ, van de Werken HJG, Demmers JA, Fodde R, Verrijzer CP. DOC1-Dependent Recruitment of NURD Reveals Antagonism with SWI/SNF during Epithelial-Mesenchymal Transition in Oral Cancer Cells. Cell Rep 2018; 20:61-75. [PMID: 28683324 DOI: 10.1016/j.celrep.2017.06.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 04/24/2017] [Accepted: 06/04/2017] [Indexed: 11/30/2022] Open
Abstract
The Nucleosome Remodeling and Deacetylase (NURD) complex is a key regulator of cell differentiation that has also been implicated in tumorigenesis. Loss of the NURD subunit Deleted in Oral Cancer 1 (DOC1) is associated with human oral squamous cell carcinomas (OSCCs). Here, we show that restoration of DOC1 expression in OSCC cells leads to a reversal of epithelial-mesenchymal transition (EMT). This is caused by the DOC1-dependent targeting of NURD to repress key transcriptional regulators of EMT. NURD recruitment drives extensive epigenetic reprogramming, including eviction of the SWI/SNF remodeler, formation of inaccessible chromatin, H3K27 deacetylation, and binding of PRC2 and KDM1A, followed by H3K27 methylation and H3K4 demethylation. Strikingly, depletion of SWI/SNF mimics the effects of DOC1 re-expression. Our results suggest that SWI/SNF and NURD function antagonistically to control chromatin state and transcription. We propose that disturbance of this dynamic equilibrium may lead to defects in gene expression that promote oncogenesis.
Collapse
Affiliation(s)
- Adone Mohd-Sarip
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7BL, UK, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands; Department of Biochemistry, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands.
| | - Miriam Teeuwssen
- Department of Pathology, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands
| | - Alice G Bot
- Department of Biochemistry, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands
| | - Maria J De Herdt
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC Cancer Institute, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands
| | - Stefan M Willems
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, the Netherlands
| | - Robert J Baatenburg de Jong
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC Cancer Institute, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands
| | - Leendert H J Looijenga
- Department of Pathology, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands
| | - Diana Zatreanu
- Department of Biochemistry, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands
| | - Karel Bezstarosti
- Proteomics Centre, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands
| | - Job van Riet
- Cancer Computational Biology Center, Erasmus MC Cancer Institute, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands; Department of Urology, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands
| | - Edwin Oole
- Center for Biomics, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands
| | - Wilfred F J van Ijcken
- Center for Biomics, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands
| | - Harmen J G van de Werken
- Cancer Computational Biology Center, Erasmus MC Cancer Institute, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands; Department of Urology, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands
| | - Jeroen A Demmers
- Proteomics Centre, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands
| | - Riccardo Fodde
- Department of Pathology, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands
| | - C Peter Verrijzer
- Department of Biochemistry, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands.
| |
Collapse
|
23
|
Kim DH, Hah J, Wirtz D. Mechanics of the Cell Nucleus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1092:41-55. [DOI: 10.1007/978-3-319-95294-9_3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Kudrin RA, Mironov AA, Stavrovskaya ED. Chromatin and Polycomb: Biology and bioinformatics. Mol Biol 2017. [DOI: 10.1134/s0026893316060121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Hainer SJ, McCannell KN, Yu J, Ee LS, Zhu LJ, Rando OJ, Fazzio TG. DNA methylation directs genomic localization of Mbd2 and Mbd3 in embryonic stem cells. eLife 2016; 5. [PMID: 27849519 PMCID: PMC5111885 DOI: 10.7554/elife.21964] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/01/2016] [Indexed: 12/22/2022] Open
Abstract
Cytosine methylation is an epigenetic and regulatory mark that functions in part through recruitment of chromatin remodeling complexes containing methyl-CpG binding domain (MBD) proteins. Two MBD proteins, Mbd2 and Mbd3, were previously shown to bind methylated or hydroxymethylated DNA, respectively; however, both of these findings have been disputed. Here, we investigated this controversy using experimental approaches and re-analysis of published data and find no evidence for methylation-independent functions of Mbd2 or Mbd3. We show that chromatin localization of Mbd2 and Mbd3 is highly overlapping and, unexpectedly, we find Mbd2 and Mbd3 are interdependent for chromatin association. Further investigation reveals that both proteins are required for normal levels of cytosine methylation and hydroxymethylation in murine embryonic stem cells. Furthermore, Mbd2 and Mbd3 regulate overlapping sets of genes that are also regulated by DNA methylation/hydroxymethylation factors. These findings reveal an interdependent regulatory mechanism mediated by the DNA methylation machinery and its readers.
Collapse
Affiliation(s)
- Sarah J Hainer
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, United States
| | - Kurtis N McCannell
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, United States
| | - Jun Yu
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, United States
| | - Ly-Sha Ee
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, United States
| | - Lihua J Zhu
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, United States.,Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, United States.,Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
| | - Oliver J Rando
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
| | - Thomas G Fazzio
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, United States.,Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
| |
Collapse
|
26
|
Jahani-Asl A, Cheng C, Zhang C, Bonni A. Pathogenesis of Börjeson-Forssman-Lehmann syndrome: Insights from PHF6 function. Neurobiol Dis 2016; 96:227-235. [PMID: 27633282 DOI: 10.1016/j.nbd.2016.09.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 08/07/2016] [Accepted: 09/07/2016] [Indexed: 02/07/2023] Open
Abstract
Intellectual disability encompasses a large set of neurodevelopmental disorders of cognition that are more common in males than females. Although mutations in over 100 X-linked genes associated to intellectual disability have been identified, only a few X-linked intellectual disability proteins have been intensively studied. Hence, the molecular mechanisms underlying the majority of X-linked intellectual disability disorders remain poorly understood. A substantial fraction of X-linked intellectual disability genes encode nuclear proteins, suggesting that elucidating their functions in the regulation of transcription may provide novel insights into the pathogenesis of intellectual disability. Recent studies have uncovered mechanisms by which mutations of the gene encoding plant homeodomain (PHD)-like finger protein 6 (PHF6) contribute to the pathogenesis of the X-linked intellectual disability disorder Börjeson-Forssman-Lehmann syndrome (BFLS). PHF6 plays a critical role in the migration of neurons in the mouse cerebral cortex in vivo, and patient-specific mutations disrupt the ability of PHF6 to promote neuronal migration. Interestingly, PHF6 physically associates with the PAF1 transcriptional elongation complex and thereby drives neuronal migration in the cerebral cortex. PHF6 also interacts with the NuRD chromatin remodeling complex and with the nucleolar transcriptional regulator UBF, though the biological role of these interactions remains to be characterized. In other studies, PHF6 mRNA has been identified as the target of the microRNA miR-128 in the cerebral cortex, providing new insights into regulation of PHF6 function in neuronal migration. Importantly, deregulation of PHF6 function in neuronal migration triggers the formation of white matter heterotopias that harbor neuronal hyperexcitability, which may be relevant to the pathogenesis of intellectual disability and seizures in BFLS. Collectively, these studies are beginning to provide key insights into the molecular pathogenesis of BFLS.
Collapse
Affiliation(s)
- Arezu Jahani-Asl
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO, USA; Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC H3T 1E2, Canada; Lady Davis Research Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
| | - Cheng Cheng
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO, USA
| | - Chi Zhang
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO, USA
| | - Azad Bonni
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
27
|
van den Hurk M, Kenis G, Bardy C, van den Hove DL, Gage FH, Steinbusch HW, Rutten BP. Transcriptional and epigenetic mechanisms of cellular reprogramming to induced pluripotency. Epigenomics 2016; 8:1131-49. [PMID: 27419933 DOI: 10.2217/epi-2016-0032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Enforced ectopic expression of a cocktail of pluripotency-associated genes such as Oct4, Sox2, Klf4 and c-Myc can reprogram somatic cells into induced pluripotent stem cells (iPSCs). The remarkable proliferation ability of iPSCs and their aptitude to redifferentiate into any cell lineage makes these cells a promising tool for generating a variety of human tissue in vitro. Yet, pluripotency induction is an inefficient process, as cells undergoing reprogramming need to overcome developmentally imposed epigenetic barriers. Recent work has shed new light on the molecular mechanisms that drive the reprogramming of somatic cells to iPSCs. Here, we present current knowledge on the transcriptional and epigenetic regulation of pluripotency induction and discuss how variability in epigenetic states impacts iPSCs' inherent biological properties.
Collapse
Affiliation(s)
- Mark van den Hurk
- Department of Psychiatry & Neuropsychology, Division of Translational Neuroscience, Maastricht University, Maastricht, 6200 MD, The Netherlands.,European Graduate School of Neuroscience (EURON), Maastricht University, Maastricht, 6200 MD, The Netherlands.,Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Gunter Kenis
- Department of Psychiatry & Neuropsychology, Division of Translational Neuroscience, Maastricht University, Maastricht, 6200 MD, The Netherlands.,European Graduate School of Neuroscience (EURON), Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - Cedric Bardy
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Daniel L van den Hove
- Department of Psychiatry & Neuropsychology, Division of Translational Neuroscience, Maastricht University, Maastricht, 6200 MD, The Netherlands.,European Graduate School of Neuroscience (EURON), Maastricht University, Maastricht, 6200 MD, The Netherlands.,Laboratory of Translational Neuroscience, Department of Psychiatry, Psychosomatics & Psychotherapy, University of Wuerzburg, 97080 Wuerzburg, Germany
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Harry W Steinbusch
- Department of Psychiatry & Neuropsychology, Division of Translational Neuroscience, Maastricht University, Maastricht, 6200 MD, The Netherlands.,European Graduate School of Neuroscience (EURON), Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - Bart P Rutten
- Department of Psychiatry & Neuropsychology, Division of Translational Neuroscience, Maastricht University, Maastricht, 6200 MD, The Netherlands.,European Graduate School of Neuroscience (EURON), Maastricht University, Maastricht, 6200 MD, The Netherlands
| |
Collapse
|
28
|
Aranda S, Mas G, Di Croce L. Regulation of gene transcription by Polycomb proteins. SCIENCE ADVANCES 2015; 1:e1500737. [PMID: 26665172 PMCID: PMC4672759 DOI: 10.1126/sciadv.1500737] [Citation(s) in RCA: 248] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 09/17/2015] [Indexed: 05/14/2023]
Abstract
The Polycomb group (PcG) of proteins defines a subset of factors that physically associate and function to maintain the positional identity of cells from the embryo to adult stages. PcG has long been considered a paradigmatic model for epigenetic maintenance of gene transcription programs. Despite intensive research efforts to unveil the molecular mechanisms of action of PcG proteins, several fundamental questions remain unresolved: How many different PcG complexes exist in mammalian cells? How are PcG complexes targeted to specific loci? How does PcG regulate transcription? In this review, we discuss the diversity of PcG complexes in mammalian cells, examine newly identified modes of recruitment to chromatin, and highlight the latest insights into the molecular mechanisms underlying the function of PcGs in transcription regulation and three-dimensional chromatin conformation.
Collapse
Affiliation(s)
- Sergi Aranda
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain
| | - Gloria Mas
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain
| | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain
- Institucio Catalana de Recerca i Estudis Avançats, Pg Lluis Companys 23, Barcelona 08010, Spain
- Corresponding author. E-mail:
| |
Collapse
|
29
|
Libertini E, Lebreton A, Lakisic G, Dillies MA, Beck S, Coppée JY, Cossart P, Bierne H. Overexpression of the Heterochromatinization Factor BAHD1 in HEK293 Cells Differentially Reshapes the DNA Methylome on Autosomes and X Chromosome. Front Genet 2015; 6:339. [PMID: 26648976 PMCID: PMC4664705 DOI: 10.3389/fgene.2015.00339] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 11/12/2015] [Indexed: 01/08/2023] Open
Abstract
BAH domain-containing protein 1 (BAHD1) is involved in heterochromatin formation and gene repression in human cells. BAHD1 also localizes to the inactive X chromosome (Xi), but the functional significance of this targeting is unknown. So far, research on this protein has been hampered by its low endogenous abundance and its role in epigenetic regulation remains poorly explored. In this work, we used whole-genome bisulfite sequencing (BS-seq) to compare the DNA methylation profile of HEK293 cells expressing low levels of BAHD1 (HEK-CT) to that of isogenic cells stably overexpressing BAHD1 (HEK-BAHD1). We show that increasing BAHD1 levels induces de novo DNA methylation on autosomes and a marked hypomethylation on the X chromosome (chrX). We identified 91,358 regions that have different methylation patterns in HEK-BAHD1 compared to HEK-CT cells (termed "BAHD1-DMRs"), of which 83,850 mapped on autosomes and 7508 on the X chromosome (chrX). Autosomal BAHD1-DMRs were predominantly hypermethylated and located to satellites, interspersed repeats, and intergenic regions. In contrast, BAHD1-DMRs on chrX were mainly hypomethylated and located to gene bodies and enhancers. We further found that BAHD1-DMRs display a higher-order organization by being clustered within large chromosomal domains. Half of these "BAHD1-Associated differentially methylated Domains" (BADs) overlapped with lamina-associated domains (LADs). Based on these results, we propose that BAHD1-mediated heterochromatin formation is linked to DNA methylation and may play a role in the spatial architecture of the genome.
Collapse
Affiliation(s)
- Emanuele Libertini
- Plate-forme Transcriptome et Epigénome, Département Génomes et Génétique, Institut PasteurParis, France
- Medical Genomics Group, UCL Cancer Institute, University College LondonLondon, UK
| | - Alice Lebreton
- Unité des Interactions Bactéries-Cellules, Institut PasteurParis, France
- Institut National de la Santé et de la Recherche Médicale U604Paris, France
- Institut National de la Recherche Agronomique USC2020Paris, France
| | - Goran Lakisic
- Unité des Interactions Bactéries-Cellules, Institut PasteurParis, France
- Institut National de la Santé et de la Recherche Médicale U604Paris, France
- Institut National de la Recherche Agronomique USC2020Paris, France
- Institut National de la Recherche Agronomique, UMR1319 MICALISJouy-en-Josas, France
- AgroParistech, UMR MICALISJouy-en-Josas, France
| | - Marie-Agnès Dillies
- Plate-forme Transcriptome et Epigénome, Département Génomes et Génétique, Institut PasteurParis, France
| | - Stephan Beck
- Medical Genomics Group, UCL Cancer Institute, University College LondonLondon, UK
| | - Jean-Yves Coppée
- Plate-forme Transcriptome et Epigénome, Département Génomes et Génétique, Institut PasteurParis, France
| | - Pascale Cossart
- Unité des Interactions Bactéries-Cellules, Institut PasteurParis, France
- Institut National de la Santé et de la Recherche Médicale U604Paris, France
- Institut National de la Recherche Agronomique USC2020Paris, France
| | - Hélène Bierne
- Unité des Interactions Bactéries-Cellules, Institut PasteurParis, France
- Institut National de la Santé et de la Recherche Médicale U604Paris, France
- Institut National de la Recherche Agronomique USC2020Paris, France
- Institut National de la Recherche Agronomique, UMR1319 MICALISJouy-en-Josas, France
- AgroParistech, UMR MICALISJouy-en-Josas, France
| |
Collapse
|
30
|
Cole CB, Verdoni AM, Ketkar S, Leight ER, Russler-Germain DA, Lamprecht TL, Demeter RT, Magrini V, Ley TJ. PML-RARA requires DNA methyltransferase 3A to initiate acute promyelocytic leukemia. J Clin Invest 2015; 126:85-98. [PMID: 26595813 DOI: 10.1172/jci82897] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 10/14/2015] [Indexed: 12/27/2022] Open
Abstract
The DNA methyltransferases DNMT3A and DNMT3B are primarily responsible for de novo methylation of specific cytosine residues in CpG dinucleotides during mammalian development. While loss-of-function mutations in DNMT3A are highly recurrent in acute myeloid leukemia (AML), DNMT3A mutations are almost never found in AML patients with translocations that create oncogenic fusion genes such as PML-RARA, RUNX1-RUNX1T1, and MLL-AF9. Here, we explored how DNMT3A is involved in the function of these fusion genes. We used retroviral vectors to express PML-RARA, RUNX1-RUNX1T1, or MLL-AF9 in bone marrow cells derived from WT or DNMT3A-deficient mice. Additionally, we examined the phenotypes of hematopoietic cells from Ctsg-PML-RARA mice, which express PML-RARA in early hematopoietic progenitors and myeloid precursors, with or without DNMT3A. We determined that the methyltransferase activity of DNMT3A, but not DNMT3B, is required for aberrant PML-RARA-driven self-renewal ex vivo and that DNMT3A is dispensable for RUNX1-RUNX1T1- and MLL-AF9-driven self-renewal. Furthermore, both the PML-RARA-driven competitive transplantation advantage and development of acute promyelocytic leukemia (APL) required DNMT3A. Together, these findings suggest that PML-RARA requires DNMT3A to initiate APL in mice.
Collapse
|
31
|
Tong Q, Gong AY, Zhang XT, Lin C, Ma S, Chen J, Hu G, Chen XM. LincRNA-Cox2 modulates TNF-α-induced transcription of Il12b gene in intestinal epithelial cells through regulation of Mi-2/NuRD-mediated epigenetic histone modifications. FASEB J 2015; 30:1187-97. [PMID: 26578685 DOI: 10.1096/fj.15-279166] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 11/09/2015] [Indexed: 12/18/2022]
Abstract
Long intergenic noncoding RNAs (lincRNAs) can regulate the transcription of inflammatory genes and thus may represent a new group of inflammatory mediators with a potential pathogenic role in inflammatory diseases. Here, our genome-wide transcriptomic data show that TNF-α stimulation caused up-regulation of 171 lincRNAs and down-regulation of 196 lincRNAs in murine intestinal epithelial cells in culture. One of the up-regulated lincRNAs, lincRNA-Cox2, is an early-responsive lincRNA induced by TNF-α through activation of the NF-ĸB signaling pathway. Knockdown of lincRNA-Cox2 resulted in reprogramming of the gene expression profile in intestinal epithelial cells in response to TNF-α stimulation. Specifically, lincRNA-Cox2 silencing significantly (P < 0.05) enhanced the transcription of Il12b, a secondary late-responsive gene induced by TNF-α. Mechanistically, lincRNA-Cox2 promoted the recruitment of the Mi-2/nucleosome remodeling and deacetylase (Mi-2/NuRD) repressor complex to the Il12b promoter region. Recruitment of the Mi-2/NuRD complex was associated with decreased H3K27 acetylation and increased H3K27 dimethylation at the Il12b promoter region, which might contribute to Il12b trans-suppression by lincRNA-Cox2. Thus, our data demonstrate a novel mechanism of epigenetic modulation by lincRNA-Cox2 on Il12b transcription, supporting an important role for lincRNAs in the regulation of intestinal epithelial inflammatory responses.
Collapse
Affiliation(s)
- Qiang Tong
- *Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska, USA; Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ai-Yu Gong
- *Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska, USA; Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xin-Tian Zhang
- *Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska, USA; Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Chengchi Lin
- *Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska, USA; Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Shibin Ma
- *Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska, USA; Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jing Chen
- *Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska, USA; Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Guoku Hu
- *Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska, USA; Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xian-Ming Chen
- *Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska, USA; Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
32
|
Guan D, Kao HY. The function, regulation and therapeutic implications of the tumor suppressor protein, PML. Cell Biosci 2015; 5:60. [PMID: 26539288 PMCID: PMC4632682 DOI: 10.1186/s13578-015-0051-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/28/2015] [Indexed: 12/21/2022] Open
Abstract
The tumor suppressor protein, promyelocytic leukemia protein (PML), was originally identified in acute promyelocytic leukemia due to a chromosomal translocation between chromosomes 15 and 17. PML is the core component of subnuclear structures called PML nuclear bodies (PML-NBs), which are disrupted in acute promyelocytic leukemia cells. PML plays important roles in cell cycle regulation, survival and apoptosis, and inactivation or down-regulation of PML is frequently found in cancer cells. More than 120 proteins have been experimentally identified to physically associate with PML, and most of them either transiently or constitutively co-localize with PML-NBs. These interactions are associated with many cellular processes, including cell cycle arrest, apoptosis, senescence, transcriptional regulation, DNA repair and intermediary metabolism. Importantly, PML inactivation in cancer cells can occur at the transcriptional-, translational- or post-translational- levels. However, only a few somatic mutations have been found in cancer cells. A better understanding of its regulation and its role in tumor suppression will provide potential therapeutic opportunities. In this review, we discuss the role of PML in multiple tumor suppression pathways and summarize the players and stimuli that control PML protein expression or subcellular distribution.
Collapse
Affiliation(s)
- Dongyin Guan
- Department of Biochemistry, School of Medicine, Case Western Reserve University, and Comprehensive Cancer Center of Case Western Reserve University, Cleveland, 10900 Euclid Avenue, Cleveland, OH 44106 USA
| | - Hung-Ying Kao
- Department of Biochemistry, School of Medicine, Case Western Reserve University, and Comprehensive Cancer Center of Case Western Reserve University, Cleveland, 10900 Euclid Avenue, Cleveland, OH 44106 USA
| |
Collapse
|
33
|
Du Q, Luu PL, Stirzaker C, Clark SJ. Methyl-CpG-binding domain proteins: readers of the epigenome. Epigenomics 2015; 7:1051-73. [DOI: 10.2217/epi.15.39] [Citation(s) in RCA: 265] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
How DNA methylation is interpreted and influences genome regulation remains largely unknown. Proteins of the methyl-CpG-binding domain (MBD) family are primary candidates for the readout of DNA methylation as they recruit chromatin remodelers, histone deacetylases and methylases to methylated DNA associated with gene repression. MBD protein binding requires both functional MBD domains and methyl-CpGs; however, some MBD proteins also bind unmethylated DNA and active regulatory regions via alternative regulatory domains or interaction with the nucleosome remodeling deacetylase (NuRD/Mi-2) complex members. Mutations within MBD domains occur in many diseases, including neurological disorders and cancers, leading to loss of MBD binding specificity to methylated sites and gene deregulation. Here, we summarize the current state of knowledge about MBD proteins and their role as readers of the epigenome.
Collapse
Affiliation(s)
- Qian Du
- Epigenetics Research Laboratory, Genomics & Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Phuc-Loi Luu
- Epigenetics Research Laboratory, Genomics & Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Clare Stirzaker
- Epigenetics Research Laboratory, Genomics & Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
- St Vincent's Clinical School, University of NSW, Darlinghurst, NSW 2010, Australia
| | - Susan J Clark
- Epigenetics Research Laboratory, Genomics & Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
- St Vincent's Clinical School, University of NSW, Darlinghurst, NSW 2010, Australia
| |
Collapse
|
34
|
Wang W, Qin JJ, Voruganti S, Nag S, Zhou J, Zhang R. Polycomb Group (PcG) Proteins and Human Cancers: Multifaceted Functions and Therapeutic Implications. Med Res Rev 2015; 35:1220-67. [PMID: 26227500 DOI: 10.1002/med.21358] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Polycomb group (PcG) proteins are transcriptional repressors that regulate several crucial developmental and physiological processes in the cell. More recently, they have been found to play important roles in human carcinogenesis and cancer development and progression. The deregulation and dysfunction of PcG proteins often lead to blocking or inappropriate activation of developmental pathways, enhancing cellular proliferation, inhibiting apoptosis, and increasing the cancer stem cell population. Genetic and molecular investigations of PcG proteins have long been focused on their PcG functions. However, PcG proteins have recently been shown to exert non-classical-Pc-functions, contributing to the regulation of diverse cellular functions. We and others have demonstrated that PcG proteins regulate the expression and function of several oncogenes and tumor suppressor genes in a PcG-independent manner, and PcG proteins are associated with the survival of patients with cancer. In this review, we summarize the recent advances in the research on PcG proteins, including both the Pc-repressive and non-classical-Pc-functions. We specifically focus on the mechanisms by which PcG proteins play roles in cancer initiation, development, and progression. Finally, we discuss the potential value of PcG proteins as molecular biomarkers for the diagnosis and prognosis of cancer, and as molecular targets for cancer therapy.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106.,Center for Cancer Biology and Therapy, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106
| | - Jiang-Jiang Qin
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106
| | - Sukesh Voruganti
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106
| | - Subhasree Nag
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106
| | - Jianwei Zhou
- Department of Molecular Cell Biology and Toxicology, Cancer Center, School of Public Health, Nanjing Medical University, Nanjing, 210029, P. R. China
| | - Ruiwen Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106.,Center for Cancer Biology and Therapy, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106
| |
Collapse
|
35
|
Abstract
Abnormal activation of SETBP1 through overexpression or missense mutations is highly recurrent in various myeloid malignancies; however, it is unclear whether such activation alone is able to induce leukemia development. Here we show that Setbp1 overexpression in mouse bone marrow progenitors through retroviral transduction is capable of initiating leukemia development in irradiated recipient mice. Before leukemic transformation, Setbp1 overexpression significantly enhances the self-renewal of hematopoietic stem cells (HSCs) and expands granulocyte macrophage progenitors (GMPs). Interestingly, Setbp1 overexpression also causes transcriptional repression of critical hematopoiesis regulator gene Runx1 and this effect is crucial for Setbp1-induced transformation. Runx1 repression is induced by Setbp1-mediated recruitment of a nucleosome remodeling deacetylase (NuRD) complex to Runx1 promoters and can be reversed by treatment with histone deacetylase (HDAC) inhibitors Entinostat and Vorinostat. Moreover, treatment with these inhibitors caused efficient differentiation of Setbp1 activation-induced leukemia cells in vitro, and significantly extended the survival of mice transplanted with such leukemias, suggesting that HDAC inhibition could be an effective strategy for treating myeloid malignancies with SETBP1 activation.
Collapse
|
36
|
Dege C, Hagman J. Mi-2/NuRD chromatin remodeling complexes regulate B and T-lymphocyte development and function. Immunol Rev 2015; 261:126-40. [PMID: 25123281 DOI: 10.1111/imr.12209] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mi-2/nucleosomal remodeling and deacetylase (NuRD) complexes are important epigenetic regulators of chromatin structure and gene expression. Mi-2/NuRD complexes are an assemblage of proteins that combine key epigenetic regulators necessary for (i) histone deacetylation and demethylation, (ii) binding to methylated DNA, (iii) mobilization of nucleosomes, and (iv) recruitment of additional regulatory proteins. Depending on their context in chromatin, Mi-2/NuRD complexes either activate or repress gene transcription. In this regard, they are important regulators of hematopoiesis and lymphopoiesis. Mi-2/NuRD complexes maintain pools of hematopoietic stem cells. Specifically, components of these complexes control multiple stages of B-cell development by regulating B-cell specific transcription. With one set of components, they inhibit terminal differentiation of germinal center B cells into plasma B cells. They also mediate gene repression together with Blimp-1 during plasma cell differentiation. In cooperation with Ikaros, Mi-2/NuRD complexes also play important roles in T-cell development, including CD4 versus CD8 fate decisions and peripheral T-cell responses. Dysregulation of NuRD during lymphopoiesis promotes leukemogenesis. Here, we review general properties of Mi-2/NuRD complexes and focus on their functions in gene regulation and development of lymphocytes.
Collapse
Affiliation(s)
- Carissa Dege
- Integrated Department of Immunology, National Jewish Health and School of Medicine, University of Colorado, Denver, Aurora, CO, USA
| | | |
Collapse
|
37
|
Mayes K, Qiu Z, Alhazmi A, Landry JW. ATP-dependent chromatin remodeling complexes as novel targets for cancer therapy. Adv Cancer Res 2015; 121:183-233. [PMID: 24889532 DOI: 10.1016/b978-0-12-800249-0.00005-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The progression to advanced stage cancer requires changes in many characteristics of a cell. These changes are usually initiated through spontaneous mutation. As a result of these mutations, gene expression is almost invariably altered allowing the cell to acquire tumor-promoting characteristics. These abnormal gene expression patterns are in part enabled by the posttranslational modification and remodeling of nucleosomes in chromatin. These chromatin modifications are established by a functionally diverse family of enzymes including histone and DNA-modifying complexes, histone deposition pathways, and chromatin remodeling complexes. Because the modifications these enzymes deposit are essential for maintaining tumor-promoting gene expression, they have recently attracted much interest as novel therapeutic targets. One class of enzyme that has not generated much interest is the chromatin remodeling complexes. In this review, we will present evidence from the literature that these enzymes have both causal and enabling roles in the transition to advanced stage cancers; as such, they should be seriously considered as high-value therapeutic targets. Previously published strategies for discovering small molecule regulators to these complexes are described. We close with thoughts on future research, the field should perform to further develop this potentially novel class of therapeutic target.
Collapse
Affiliation(s)
- Kimberly Mayes
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Zhijun Qiu
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Aiman Alhazmi
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Joseph W Landry
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA.
| |
Collapse
|
38
|
di Masi A, Leboffe L, De Marinis E, Pagano F, Cicconi L, Rochette-Egly C, Lo-Coco F, Ascenzi P, Nervi C. Retinoic acid receptors: from molecular mechanisms to cancer therapy. Mol Aspects Med 2015; 41:1-115. [PMID: 25543955 DOI: 10.1016/j.mam.2014.12.003] [Citation(s) in RCA: 256] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 12/15/2014] [Indexed: 02/07/2023]
Abstract
Retinoic acid (RA), the major bioactive metabolite of retinol or vitamin A, induces a spectrum of pleiotropic effects in cell growth and differentiation that are relevant for embryonic development and adult physiology. The RA activity is mediated primarily by members of the retinoic acid receptor (RAR) subfamily, namely RARα, RARβ and RARγ, which belong to the nuclear receptor (NR) superfamily of transcription factors. RARs form heterodimers with members of the retinoid X receptor (RXR) subfamily and act as ligand-regulated transcription factors through binding specific RA response elements (RAREs) located in target genes promoters. RARs also have non-genomic effects and activate kinase signaling pathways, which fine-tune the transcription of the RA target genes. The disruption of RA signaling pathways is thought to underlie the etiology of a number of hematological and non-hematological malignancies, including leukemias, skin cancer, head/neck cancer, lung cancer, breast cancer, ovarian cancer, prostate cancer, renal cell carcinoma, pancreatic cancer, liver cancer, glioblastoma and neuroblastoma. Of note, RA and its derivatives (retinoids) are employed as potential chemotherapeutic or chemopreventive agents because of their differentiation, anti-proliferative, pro-apoptotic, and anti-oxidant effects. In humans, retinoids reverse premalignant epithelial lesions, induce the differentiation of myeloid normal and leukemic cells, and prevent lung, liver, and breast cancer. Here, we provide an overview of the biochemical and molecular mechanisms that regulate the RA and retinoid signaling pathways. Moreover, mechanisms through which deregulation of RA signaling pathways ultimately impact on cancer are examined. Finally, the therapeutic effects of retinoids are reported.
Collapse
Affiliation(s)
- Alessandra di Masi
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, Roma I-00146, Italy
| | - Loris Leboffe
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, Roma I-00146, Italy
| | - Elisabetta De Marinis
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Corso della Repubblica 79, Latina I-04100
| | - Francesca Pagano
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Corso della Repubblica 79, Latina I-04100
| | - Laura Cicconi
- Department of Biomedicine and Prevention, University of Roma "Tor Vergata", Via Montpellier 1, Roma I-00133, Italy; Laboratory of Neuro-Oncohematology, Santa Lucia Foundation, Via Ardeatina, 306, Roma I-00142, Italy
| | - Cécile Rochette-Egly
- Department of Functional Genomics and Cancer, IGBMC, CNRS UMR 7104 - Inserm U 964, University of Strasbourg, 1 rue Laurent Fries, BP10142, Illkirch Cedex F-67404, France.
| | - Francesco Lo-Coco
- Department of Biomedicine and Prevention, University of Roma "Tor Vergata", Via Montpellier 1, Roma I-00133, Italy; Laboratory of Neuro-Oncohematology, Santa Lucia Foundation, Via Ardeatina, 306, Roma I-00142, Italy.
| | - Paolo Ascenzi
- Interdepartmental Laboratory for Electron Microscopy, Roma Tre University, Via della Vasca Navale 79, Roma I-00146, Italy.
| | - Clara Nervi
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Corso della Repubblica 79, Latina I-04100.
| |
Collapse
|
39
|
Basta J, Rauchman M. The nucleosome remodeling and deacetylase complex in development and disease. Transl Res 2015; 165:36-47. [PMID: 24880148 PMCID: PMC4793962 DOI: 10.1016/j.trsl.2014.05.003] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/02/2014] [Accepted: 05/05/2014] [Indexed: 02/07/2023]
Abstract
The nucleosome remodeling and deacetylase (NuRD) complex is one of the major chromatin remodeling complexes found in cells. It plays an important role in regulating gene transcription, genome integrity, and cell cycle progression. Through its impact on these basic cellular processes, increasing evidence indicates that alterations in the activity of this macromolecular complex can lead to developmental defects, oncogenesis, and accelerated aging. Recent genetic and biochemical studies have elucidated the mechanisms of NuRD action in modifying the chromatin landscape. These advances have the potential to lead to new therapeutic approaches to birth defects and cancer.
Collapse
Affiliation(s)
- Jeannine Basta
- Department of Internal Medicine, Saint Louis University, St. Louis, Missouri; Department of Biochemistry and Molecular Biology, Saint Louis University, St. Louis, Missouri; John Cochran Division, VA St. Louis Health Care System, St. Louis, Missouri
| | - Michael Rauchman
- Department of Internal Medicine, Saint Louis University, St. Louis, Missouri; Department of Biochemistry and Molecular Biology, Saint Louis University, St. Louis, Missouri; John Cochran Division, VA St. Louis Health Care System, St. Louis, Missouri.
| |
Collapse
|
40
|
Signolet J, Hendrich B. The function of chromatin modifiers in lineage commitment and cell fate specification. FEBS J 2014; 282:1692-702. [PMID: 25354247 PMCID: PMC4508967 DOI: 10.1111/febs.13132] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 10/20/2014] [Accepted: 10/23/2014] [Indexed: 12/28/2022]
Abstract
Proteins that modify the structure of chromatin are known to be important for various aspects of metazoan biology including development, disease and possibly ageing. Yet functional details of why these proteins are important, i.e. how their action influences a given biological process, are lacking. While it is now possible to describe the biochemistry of how these proteins remodel chromatin, their chromatin binding profiles in cell lines, or gene expression changes upon loss of a given protein, in very few cases has this easily translated into an understanding of how the function of that protein actually influences a developmental process. Given that many chromatin modifying proteins will largely exert their influence through control of gene expression, it is useful to consider developmental processes as changes in the gene regulatory network (GRN), with each cell type exhibiting a unique gene expression profile. In this essay we consider the impact of two abundant and highly conserved chromatin modifying complexes, namely the nucleosome remodelling and deacetylation (NuRD) complex and the polycomb repressive complex 2 (PRC2), on the change in GRNs associated with lineage commitment during early mammalian development. We propose that while the NuRD complex limits the stability of cell states and defines the developmental trajectory between two stable states, PRC2 activity is important for stabilizing a new GRN once established. Although these two complexes display different biochemical activities, chromatin binding profiles and mutant phenotypes, we propose a model to explain how they cooperate to facilitate the transition through cell states that is development.
Collapse
Affiliation(s)
- Jason Signolet
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, UK
| | | |
Collapse
|
41
|
Abstract
Human UTX, a member of the Jumonji C family of proteins, associates with mixed-lineage leukemia 3/4 complexes. Stimulation with retinoic acid leads to the recruitment of UTX-containing complexes to HOX genes, which results in demethylation of histone H3 lysine 27 and concomitant methylation of histone H3 lysine 4. Here, we show that UTX interacts with the retinoic acid receptor α (RARα) and that this interaction is essential for proper differentiation of leukemic U937 cells in response to retinoic acid. UTX occupies the promoters of several RAR target genes and regulates their transcriptional output by modulating ASH2L complex recruitment. Overexpression of UTX in promyelocytic NB4 cells results in enhanced cellular differentiation upon retinoic acid treatment. Our results show that UTX is important for RAR-mediated transcription and provide insight into the critical role of cross talk between histone H3 lysine 4 methylation and histone H3 lysine 27 demethylation during cellular differentiation.
Collapse
|
42
|
Rice KL, de Thé H. The acute promyelocytic leukaemia success story: curing leukaemia through targeted therapies. J Intern Med 2014; 276:61-70. [PMID: 24635409 DOI: 10.1111/joim.12208] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The recent finding that almost all patients with acute promyelocytic leukaemia (APL) may be cured using a combination of retinoic acid (RA) and arsenic trioxide (As(2)O(3)) (N Engl J Med, 369, 2013 and 111) highlights the progress made in our understanding of APL pathogenesis and therapeutic approaches over the past 25 years. The study of APL has revealed many important lessons related to transcriptional control, nuclear organization, epigenetics and the role of proteolysis in biological control. Even more important has been the clinical demonstration that molecularly targeted therapy can eradicate disease.
Collapse
Affiliation(s)
- K L Rice
- Université Paris Diderot, Sorbonne Paris Cité, Hôpital St. Louis, Paris Cedex, France; INSERM UMR 944, Equipe labellisée par la Ligue Nationale contre le Cancer, Institut Universitaire d'Hématologie, Hôpital St. Louis, Paris Cedex, France; CNRS UMR 7212, Hôpital St. Louis, Paris Cedex, France
| | | |
Collapse
|
43
|
Aranda S, Rutishauser D, Ernfors P. Identification of a large protein network involved in epigenetic transmission in replicating DNA of embryonic stem cells. Nucleic Acids Res 2014; 42:6972-86. [PMID: 24852249 PMCID: PMC4066787 DOI: 10.1093/nar/gku374] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Pluripotency of embryonic stem cells (ESCs) is maintained by transcriptional activities and chromatin modifying complexes highly organized within the chromatin. Although much effort has been focused on identifying genome-binding sites, little is known on their dynamic association with chromatin across cell divisions. Here, we used a modified version of the iPOND (isolation of proteins at nascent DNA) technology to identify a large protein network enriched at nascent DNA in ESCs. This comprehensive and unbiased proteomic characterization in ESCs reveals that, in addition to the core replication machinery, proteins relevant for pluripotency of ESCs are present at DNA replication sites. In particular, we show that the chromatin remodeller HDAC1–NuRD complex is enriched at nascent DNA. Interestingly, an acute block of HDAC1 in ESCs leads to increased acetylation of histone H3 lysine 9 at nascent DNA together with a concomitant loss of methylation. Consistently, in contrast to what has been described in tumour cell lines, these chromatin marks were found to be stable during cell cycle progression of ESCs. Our results are therefore compatible with a rapid deacetylation-coupled methylation mechanism during the replication of DNA in ESCs that may participate in the preservation of pluripotency of ESCs during replication.
Collapse
Affiliation(s)
- Sergi Aranda
- Unit of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden
| | - Dorothea Rutishauser
- Proteomics Karolinska, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Patrik Ernfors
- Unit of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden
| |
Collapse
|
44
|
Urvalek AM, Gudas LJ. Retinoic acid and histone deacetylases regulate epigenetic changes in embryonic stem cells. J Biol Chem 2014; 289:19519-30. [PMID: 24821725 DOI: 10.1074/jbc.m114.556555] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
All-trans-retinoic acid (RA) is a vitamin A metabolite that plays major roles in regulating stem cell differentiation and development. RA is the ligand of the retinoic acid receptor (RAR) family of transcription factors, which interact with retinoic acid response elements (RAREs) within target gene proximal promoters and enhancers. Although RA-mediated gene activation is well understood, less is known about the mechanisms for repression at RA-regulated genes. Using chromatin immunoprecipitation experiments, we show that in embryonic stem cells in the absence of RA, histone deacetylases (HDACs) differentially bind to various RAREs in proximal promoters or enhancer regions of RA-regulated genes; HDAC1, HDAC2, and HDAC3 bind at RAREs in the Hoxa1 and Cyp26a1 gene regulatory regions, whereas only HDAC1 binds at the RARβ2 RARE. shRNA knockdown of HDAC1, HDAC2, or HDAC3 differentially increases the deposition of the histone 3 lysine 27 acetylation (H3K27ac) epigenetic mark associated with increases in these three transcripts. Importantly, RA treatment differentially mediates the removal of HDACs from the Hoxa1, Cyp26a1, and RARβ2 genes and promotes the deposition of the H3K27ac mark at these genes. Overall, we show that HDACs differentially bind to RA-regulated genes to control key epigenetic marks involved in stem cell differentiation.
Collapse
Affiliation(s)
- Alison M Urvalek
- From the Department of Pharmacology and the Meyer Cancer Center, Weill Cornell Medical College of Cornell University, New York, New York 10065
| | - Lorraine J Gudas
- From the Department of Pharmacology and the Meyer Cancer Center, Weill Cornell Medical College of Cornell University, New York, New York 10065
| |
Collapse
|
45
|
Cai Y, Geutjes EJ, de Lint K, Roepman P, Bruurs L, Yu LR, Wang W, van Blijswijk J, Mohammad H, de Rink I, Bernards R, Baylin SB. The NuRD complex cooperates with DNMTs to maintain silencing of key colorectal tumor suppressor genes. Oncogene 2014; 33:2157-68. [PMID: 23708667 PMCID: PMC3883927 DOI: 10.1038/onc.2013.178] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 03/25/2013] [Accepted: 03/28/2013] [Indexed: 11/09/2022]
Abstract
Many tumor suppressor genes (TSGs) are silenced through synergistic layers of epigenetic regulation including abnormal DNA hypermethylation of promoter CpG islands, repressive chromatin modifications and enhanced nucleosome deposition over transcription start sites. The protein complexes responsible for silencing of many of such TSGs remain to be identified. Our previous work demonstrated that multiple silenced TSGs in colorectal cancer cells can be partially reactivated by DNA demethylation in cells disrupted for the DNA methyltransferases 1 and 3B (DNMT1 and 3B) or by DNMT inhibitors (DNMTi). Herein, we used proteomic and functional genetic approaches to identify additional proteins that cooperate with DNMTs in silencing these key silenced TSGs in colon cancer cells. We discovered that DNMTs and the core components of the NuRD (Mi-2/nucleosome remodeling and deacetylase) nucleosome remodeling complex, chromo domain helicase DNA-binding protein 4 (CHD4) and histone deacetylase 1 (HDAC1) occupy the promoters of several of these hypermethylated TSGs and physically and functionally interact to maintain their silencing. Consistent with this, we find an inverse relationship between expression of HDAC1 and 2 and these TSGs in a large panel of primary colorectal tumors. We demonstrate that DNMTs and NuRD cooperate to maintain the silencing of several negative regulators of the WNT and other signaling pathways. We find that depletion of CHD4 is synergistic with DNMT inhibition in reducing the viability of colon cancer cells in correlation with reactivation of TSGs, suggesting that their combined inhibition may be beneficial for the treatment of colon cancer. Since CHD4 has ATPase activity, our data identify CHD4 as a potentially novel drug target in cancer.
Collapse
Affiliation(s)
- Y Cai
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA
| | - E-J Geutjes
- Division of Molecular Carcinogenesis, Center for Biomedical Genetics and Cancer Genomics Centre, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - K de Lint
- Division of Molecular Carcinogenesis, Center for Biomedical Genetics and Cancer Genomics Centre, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - P Roepman
- Department of Research and Development, Agendia NV, Amsterdam, The Netherlands
| | - L Bruurs
- Division of Molecular Carcinogenesis, Center for Biomedical Genetics and Cancer Genomics Centre, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - L-R Yu
- Division of Systems Biology, Center of Excellence for Proteomics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, USA
| | - W Wang
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA
| | - J van Blijswijk
- Division of Molecular Carcinogenesis, Center for Biomedical Genetics and Cancer Genomics Centre, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - H Mohammad
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA
| | - I de Rink
- Central Microarray and Deep Sequencing Core Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - R Bernards
- Division of Molecular Carcinogenesis, Center for Biomedical Genetics and Cancer Genomics Centre, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - SB Baylin
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
46
|
Lo-Coco F, Hasan SK. Understanding the molecular pathogenesis of acute promyelocytic leukemia. Best Pract Res Clin Haematol 2014; 27:3-9. [DOI: 10.1016/j.beha.2014.04.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Transcriptional regulation by Polycomb group proteins. Nat Struct Mol Biol 2013; 20:1147-55. [PMID: 24096405 DOI: 10.1038/nsmb.2669] [Citation(s) in RCA: 674] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 08/12/2013] [Indexed: 12/12/2022]
Abstract
Polycomb group (PcG) proteins are epigenetic regulators of transcription that have key roles in stem-cell identity, differentiation and disease. Mechanistically, they function within multiprotein complexes, called Polycomb repressive complexes (PRCs), which modify histones (and other proteins) and silence target genes. The dynamics of PRC1 and PRC2 components has been the focus of recent research. Here we discuss our current knowledge of the PRC complexes, how they are targeted to chromatin and how the high diversity of the PcG proteins allows these complexes to influence cell identity.
Collapse
|
48
|
CHD5 is required for neurogenesis and has a dual role in facilitating gene expression and polycomb gene repression. Dev Cell 2013; 26:223-36. [PMID: 23948251 DOI: 10.1016/j.devcel.2013.07.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 04/02/2013] [Accepted: 07/15/2013] [Indexed: 11/23/2022]
Abstract
The chromatin remodeler CHD5 is expressed in neural tissue and is frequently deleted in aggressive neuroblastoma. Very little is known about the function of CHD5 in the nervous system or its mechanism of action. Here we report that depletion of Chd5 in the developing neocortex blocks neuronal differentiation and leads to an accumulation of undifferentiated progenitors. CHD5 binds a large cohort of genes and is required for facilitating the activation of neuronal genes. It also binds a cohort of Polycomb targets and is required for the maintenance of H3K27me3 on these genes. Interestingly, the chromodomains of CHD5 directly bind H3K27me3 and are required for neuronal differentiation. In the absence of CHD5, a subgroup of Polycomb-repressed genes becomes aberrantly expressed. These findings provide insights into the regulatory role of CHD5 during neurogenesis and suggest how inactivation of this candidate tumor suppressor might contribute to neuroblastoma.
Collapse
|
49
|
Fong KW, Li Y, Wang W, Ma W, Li K, Qi RZ, Liu D, Songyang Z, Chen J. Whole-genome screening identifies proteins localized to distinct nuclear bodies. J Cell Biol 2013; 203:149-64. [PMID: 24127217 PMCID: PMC3798253 DOI: 10.1083/jcb.201303145] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 08/19/2013] [Indexed: 12/21/2022] Open
Abstract
The nucleus is a unique organelle that contains essential genetic materials in chromosome territories. The interchromatin space is composed of nuclear subcompartments, which are defined by several distinctive nuclear bodies believed to be factories of DNA or RNA processing and sites of transcriptional and/or posttranscriptional regulation. In this paper, we performed a genome-wide microscopy-based screening for proteins that form nuclear foci and characterized their localizations using markers of known nuclear bodies. In total, we identified 325 proteins localized to distinct nuclear bodies, including nucleoli (148), promyelocytic leukemia nuclear bodies (38), nuclear speckles (27), paraspeckles (24), Cajal bodies (17), Sam68 nuclear bodies (5), Polycomb bodies (2), and uncharacterized nuclear bodies (64). Functional validation revealed several proteins potentially involved in the assembly of Cajal bodies and paraspeckles. Together, these data establish the first atlas of human proteins in different nuclear bodies and provide key information for research on nuclear bodies.
Collapse
Affiliation(s)
- Ka-wing Fong
- Department of Experimental Radiation Oncology, The University of Texas
MD Anderson Cancer Center, Houston, TX 77030
| | - Yujing Li
- Key Laboratory of Gene Engineering of
Ministry of Education and State Key
Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University,
Guangzhou 510275, China
| | - Wenqi Wang
- Department of Experimental Radiation Oncology, The University of Texas
MD Anderson Cancer Center, Houston, TX 77030
| | - Wenbin Ma
- Key Laboratory of Gene Engineering of
Ministry of Education and State Key
Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University,
Guangzhou 510275, China
| | - Kunpeng Li
- Key Laboratory of Gene Engineering of
Ministry of Education and State Key
Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University,
Guangzhou 510275, China
| | - Robert Z. Qi
- State Key Laboratory of Molecular Neuroscience, Division of Life
Science, The Hong Kong University of Science and Technology, Hong Kong,
China
| | - Dan Liu
- The Verna and Marrs McLean Department of Biochemistry and Molecular
Biology, Baylor College of Medicine, Houston, TX 77030
| | - Zhou Songyang
- Key Laboratory of Gene Engineering of
Ministry of Education and State Key
Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University,
Guangzhou 510275, China
- The Verna and Marrs McLean Department of Biochemistry and Molecular
Biology, Baylor College of Medicine, Houston, TX 77030
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas
MD Anderson Cancer Center, Houston, TX 77030
| |
Collapse
|
50
|
Piazzi M, Blalock WL, Bavelloni A, Faenza I, D'Angelo A, Maraldi NM, Cocco L. Phosphoinositide-specific phospholipase C β 1b (PI-PLCβ1b) interactome: affinity purification-mass spectrometry analysis of PI-PLCβ1b with nuclear protein. Mol Cell Proteomics 2013; 12:2220-35. [PMID: 23665500 DOI: 10.1074/mcp.m113.029686] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two isoforms of inositide-dependent phospholipase C β1 (PI-PLCβ1) are generated by alternative splicing (PLCβ1a and PLCβ1b). Both isoforms are present within the nucleus, but in contrast to PLCβ1a, the vast majority of PLCβ1b is nuclear. In mouse erythroid leukemia cells, PI-PLCβ1 is involved in the regulation of cell division and the balance between cell proliferation and differentiation. It has been demonstrated that nuclear localization is crucial for the enzymatic function of PI-PLCβ1, although the mechanism by which this nuclear import occurs has never been fully characterized. The aim of this study was to characterize both the mechanism of nuclear localization and the molecular function of nuclear PI-PLCβ1 by identifying its interactome in Friend's erythroleukemia isolated nuclei, utilizing a procedure that coupled immuno-affinity purification with tandem mass spectrometry analysis. Using this procedure, 160 proteins were demonstrated to be in association with PI-PLCβ1b, some of which have been previously characterized, such as the splicing factor SRp20 (Srsf3) and Lamin B (Lmnb1). Co-immunoprecipitation analysis of selected proteins confirmed the data obtained via mass spectrometry. Of particular interest was the identification of the nuclear import proteins Kpna2, Kpna4, Kpnb1, Ran, and Rangap1, as well as factors involved in hematological malignancies and several anti-apoptotic proteins. These data give new insight into possible mechanisms of nuclear trafficking and functioning of this critical signaling molecule.
Collapse
Affiliation(s)
- Manuela Piazzi
- Cell Signaling Laboratory, Department of Biomedical Science DIBINEM, University of Bologna, 40126 Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|