1
|
Grodecki K, Geers J, Kwiecinski J, Lin A, Slipczuk L, Slomka PJ, Dweck MR, Nerlekar N, Williams MC, Berman D, Marwick T, Newby DE, Dey D. Phenotyping atherosclerotic plaque and perivascular adipose tissue: signalling pathways and clinical biomarkers in atherosclerosis. Nat Rev Cardiol 2025:10.1038/s41569-024-01110-1. [PMID: 39743563 DOI: 10.1038/s41569-024-01110-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/20/2024] [Indexed: 01/04/2025]
Abstract
Computed tomography coronary angiography provides a non-invasive evaluation of coronary artery disease that includes phenotyping of atherosclerotic plaques and the surrounding perivascular adipose tissue (PVAT). Image analysis techniques have been developed to quantify atherosclerotic plaque burden and morphology as well as the associated PVAT attenuation, and emerging radiomic approaches can add further contextual information. PVAT attenuation might provide a novel measure of vascular health that could be indicative of the pathogenetic processes implicated in atherosclerosis such as inflammation, fibrosis or increased vascularity. Bidirectional signalling between the coronary artery and adjacent PVAT has been hypothesized to contribute to coronary artery disease progression and provide a potential novel measure of the risk of future cardiovascular events. However, despite the development of more advanced radiomic and artificial intelligence-based algorithms, studies involving large datasets suggest that the measurement of PVAT attenuation contributes only modest additional predictive discrimination to standard cardiovascular risk scores. In this Review, we explore the pathobiology of coronary atherosclerotic plaques and PVAT, describe their phenotyping with computed tomography coronary angiography, and discuss potential future applications in clinical risk prediction and patient management.
Collapse
Affiliation(s)
- Kajetan Grodecki
- Department of Biomedical Sciences, and Department of Medicine, Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA, USA
- 1st Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Jolien Geers
- Department of Biomedical Sciences, and Department of Medicine, Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA, USA
- Department of Cardiology, Centrum Voor Hart- en Vaatziekten (CHVZ), Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Jacek Kwiecinski
- Department of Interventional Cardiology and Angiology, National Institute of Cardiology, Warsaw, Poland
| | - Andrew Lin
- Monash Victorian Heart Institute and Monash Health Heart, Monash University, Victorian Heart Hospital, Melbourne, Victoria, Australia
| | - Leandro Slipczuk
- Division of Cardiology, Montefiore Healthcare Network/Albert Einstein College of Medicine, New York, NY, USA
| | - Piotr J Slomka
- Department of Biomedical Sciences, and Department of Medicine, Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA, USA
| | - Marc R Dweck
- British Heart Foundation Centre of Research Excellence, University of Edinburgh, Edinburgh, UK
| | - Nitesh Nerlekar
- Monash Victorian Heart Institute and Monash Health Heart, Monash University, Victorian Heart Hospital, Melbourne, Victoria, Australia
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Michelle C Williams
- British Heart Foundation Centre of Research Excellence, University of Edinburgh, Edinburgh, UK
| | - Daniel Berman
- Department of Biomedical Sciences, and Department of Medicine, Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA, USA
| | - Thomas Marwick
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - David E Newby
- British Heart Foundation Centre of Research Excellence, University of Edinburgh, Edinburgh, UK
| | - Damini Dey
- Department of Biomedical Sciences, and Department of Medicine, Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Euler G, Parahuleva M. Monocytic microRNAs-Novel targets in atherosclerosis therapy. Br J Pharmacol 2025; 182:206-219. [PMID: 38575391 DOI: 10.1111/bph.16367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/02/2024] [Accepted: 02/16/2024] [Indexed: 04/06/2024] Open
Abstract
Atherosclerosis is a chronic proinflammatory disease of the vascular wall resulting in narrowing of arteries due to plaque formation, thereby causing reduced blood supply that is the leading cause for diverse end-organ damage with high mortality rates. Monocytes/macrophages, activated by elevated circulating lipoproteins, are significantly involved in the formation and development of atherosclerotic plaques. The imbalance between proinflammatory and anti-inflammatory macrophages, arising from dysregulated macrophage polarization, appears to be a driving force in this process. Proatherosclerotic processes acting on monocytes/macrophages include accumulation of cholesterol in macrophages leading to foam cell formation, as well as dysfunctional efferocytosis, all of which contribute to the formation of unstable plaques. In recent years, microRNAs (miRs) were identified as factors that could modulate monocyte/macrophage function and may therefore interfere with the atherosclerotic process. In this review, we present effects of monocyte/macrophage-derived miRs on atherosclerotic processes in order to reveal new treatment options using miRmimics or antagomiRs. LINKED ARTICLES: This article is part of a themed issue Non-coding RNA Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.2/issuetoc.
Collapse
Affiliation(s)
- Gerhild Euler
- Institute of Physiology, Justus Liebig University, Giessen, Germany
| | - Mariana Parahuleva
- Internal Medicine/Cardiology and Angiology, University Hospital of Giessen and Marburg, Marburg, Germany
| |
Collapse
|
3
|
Samara I, Moula AI, Moulas AN, Katsouras CS. The Effect of Retinoids in Vascular Smooth Muscle Cells: From Phenotyping Switching to Proliferation and Migration. Int J Mol Sci 2024; 25:10303. [PMID: 39408632 PMCID: PMC11477379 DOI: 10.3390/ijms251910303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Atherosclerosis, a term derived from the Greek "athero" (atheroma) and "sclerosis" (hardening), is a long-standing process that leads to the formation of atheromatous plaques in the arterial wall, contributing to the development of atherosclerotic cardiovascular disease. The proliferation and migration of vascular smooth muscle cells (VSMCs) and the switching of their phenotype play a crucial role in the whole process. Retinoic acid (RA), a natural derivative of vitamin A, has been used in the treatment of various inflammatory diseases and cell proliferation disorders. Numerous studies have demonstrated that RA has an important inhibitory effect on the proliferation, migration, and dedifferentiation of vascular smooth muscle cells, leading to a significant reduction in atherosclerotic lesions. In this review article, we explore the effects of RA on the pathogenesis of atherosclerosis, focusing on its regulatory action in VSMCs and its role in the phenotypic switching, proliferation, and migration of VSMCs. Despite the potential impact that RA may have on the process of atherosclerosis, further studies are required to examine its safety and efficacy in clinical practice.
Collapse
Affiliation(s)
- Ioanna Samara
- Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
| | - Amalia I. Moula
- Department of Surgery, “Achillopouleion” General Hospital, 38222 Volos, Greece;
| | | | - Christos S. Katsouras
- Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
| |
Collapse
|
4
|
Khandelwal P, Langenberg L, Luebbering N, Lake KE, Butcher A, Bota K, Ramos KN, Taggart C, Choe H, Vasu S, Teusink-Cross A, Koo J, Wallace G, Romick-Rosendale L, Watanabe-Chailland M, Haslam DB, Lane A, Davies SM. A randomized phase 2 trial of oral vitamin A for graft-versus-host disease in children and young adults. Blood 2024; 143:1181-1192. [PMID: 38227933 DOI: 10.1182/blood.2023022865] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/02/2024] [Accepted: 01/02/2024] [Indexed: 01/18/2024] Open
Abstract
ABSTRACT Vitamin A plays a key role in the maintenance of gastrointestinal homeostasis and promotes a tolerogenic phenotype in tissue resident macrophages. We conducted a prospective randomized double-blinded placebo-controlled clinical trial in which 80 recipients of hematopoietic stem cell transplantation (HSCT) were randomized 1:1 to receive pretransplant high-dose vitamin A or placebo. A single oral dose of vitamin A of 4000 IU/kg, maximum 250 000 IU was given before conditioning. The primary end point was incidence of acute graft-versus-host disease (GVHD) at day +100. In an intent-to-treat analysis, incidence of acute GVHD was 12.5% in the vitamin A arm and 20% in the placebo arm (P = .5). Incidence of acute gastrointestinal (GI) GVHD was 2.5% in the vitamin A arm (P = .09) and 12.5% in the placebo arm at day +180. Incidence of chronic GVHD was 5% in the vitamin A arm and 15% in the placebo arm (P = .02) at 1 year. In an "as treated" analysis, cumulative incidence of acute GI GVHD at day +180 was 0% and 12.5% in recipients of vitamin A and placebo, respectively (P = .02), and cumulative incidence of chronic GVHD was 2.7% and 15% in recipients of vitamin A and placebo, respectively (P = .01). The only possibly attributable toxicity was asymptomatic grade 3 hyperbilirubinemia in 1 recipient of vitamin A at day +30, which self-resolved. Absolute CCR9+ CD8+ effector memory T cells, reflecting gut T-cell trafficking, were lower in the vitamin A arm at day +30 after HSCT (P = .01). Levels of serum amyloid A-1, a vitamin A transport protein with proinflammatory effects, were lower in the vitamin A arm. The vitamin A arm had lower interleukin-6 (IL-6), IL-8, and suppressor of tumorigenicity 2 levels and likely a more favorable gut microbiome and short chain fatty acids. Pre-HSCT oral vitamin A is inexpensive, has low toxicity, and reduces GVHD. This trial was registered at www.ClinicalTrials.gov as NCT03202849.
Collapse
Affiliation(s)
- Pooja Khandelwal
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH
| | - Lucille Langenberg
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH
| | - Nathan Luebbering
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH
| | - Kelly E Lake
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH
| | - Abigail Butcher
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Kylie Bota
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH
| | - Kristie N Ramos
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH
| | - Cynthia Taggart
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH
| | - Hannah Choe
- Division of Hematology, The Ohio State Comprehensive Cancer Center, Columbus OH
| | - Sumithira Vasu
- Division of Hematology, The Ohio State Comprehensive Cancer Center, Columbus OH
| | - Ashley Teusink-Cross
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH
- Division of Pharmacy, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Jane Koo
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH
| | - Gregory Wallace
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH
| | - Lindsey Romick-Rosendale
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH
- Division of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Miki Watanabe-Chailland
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH
- Division of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - David B Haslam
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH
- Divison of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Adam Lane
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH
| | - Stella M Davies
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH
| |
Collapse
|
5
|
Samara I, Moulas AN, Karanasiou G, Papadimitropoulou T, Fotiadis D, Michalis LK, Katsouras CS. Is it time for a retinoic acid-eluting stent or retinoic acid-coated balloon? Insights from experimental studies of systemic and local delivery of retinoids. Hellenic J Cardiol 2024; 76:75-87. [PMID: 37567563 DOI: 10.1016/j.hjc.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/22/2023] [Accepted: 08/06/2023] [Indexed: 08/13/2023] Open
Abstract
Although the incidence of restenosis and stent thrombosis has substantially declined during the last decades, they still constitute the two major causes of stent failure. These complications are partially attributed to the currently used cytostatic drugs, which can cause local inflammation, delay or prevent re-endothelialization and essentially cause arterial cell toxicity. Retinoic acid (RA), a vitamin A (retinol) derivative, is a naturally occurring substance used for the treatment of cell proliferation disorders. The agent has pleiotropic effects on vascular smooth muscle cells and macrophages: it influences the proliferation, migration, and transition of smooth muscle cells to other cell types and modulates macrophage activation. These observations are supported by accumulated evidence from in vitro and in vivo experiments. In addition, systemic and topical administration of RA can decrease the development of atherosclerotic plaques and reduce or inhibit restenosis after vascular injury (caused by embolectomy, balloon catheters, or ligation of arteries) in various experimental models. Recently, an RA-drug eluting stent (DES) has been tested in an animal model. In this review, we explore the effects of RA in atherosclerosis and the potential of the local delivery of RA through an RA-DES or RA-coated balloon for targeted therapeutic percutaneous vascular interventions. Despite promising published results, further experimental study is warranted to examine the safety and efficacy of RA-eluting devices in vascular artery disease.
Collapse
Affiliation(s)
- Ioanna Samara
- Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece.
| | | | - Georgia Karanasiou
- Department of Biomedical Research, Institute of Molecular Biology and Biotechnology, Department of Materials Science and Engineering, Unit of Medical Technology and Intelligent Information Systems, University of Ioannina, Ioannina, Greece.
| | | | - Dimitrios Fotiadis
- Department of Biomedical Research, Institute of Molecular Biology and Biotechnology, Department of Materials Science and Engineering, Unit of Medical Technology and Intelligent Information Systems, University of Ioannina, Ioannina, Greece.
| | - Lampros K Michalis
- Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece.
| | - Christos S Katsouras
- Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece.
| |
Collapse
|
6
|
Jebari-Benslaiman S, Galicia-García U, Larrea-Sebal A, Olaetxea JR, Alloza I, Vandenbroeck K, Benito-Vicente A, Martín C. Pathophysiology of Atherosclerosis. Int J Mol Sci 2022; 23:ijms23063346. [PMID: 35328769 PMCID: PMC8954705 DOI: 10.3390/ijms23063346] [Citation(s) in RCA: 382] [Impact Index Per Article: 127.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/12/2022] [Accepted: 03/18/2022] [Indexed: 11/26/2022] Open
Abstract
Atherosclerosis is the main risk factor for cardiovascular disease (CVD), which is the leading cause of mortality worldwide. Atherosclerosis is initiated by endothelium activation and, followed by a cascade of events (accumulation of lipids, fibrous elements, and calcification), triggers the vessel narrowing and activation of inflammatory pathways. The resultant atheroma plaque, along with these processes, results in cardiovascular complications. This review focuses on the different stages of atherosclerosis development, ranging from endothelial dysfunction to plaque rupture. In addition, the post-transcriptional regulation and modulation of atheroma plaque by microRNAs and lncRNAs, the role of microbiota, and the importance of sex as a crucial risk factor in atherosclerosis are covered here in order to provide a global view of the disease.
Collapse
Affiliation(s)
- Shifa Jebari-Benslaiman
- Department of Biochemistry and Molecular Biology, Universidad del País Vasco UPV/EHU, 48940 Leioa, Bizkaia, Spain; (S.J.-B.); (I.A.); (K.V.)
- Biofisika Institute (UPV/EHU, CSIC), Barrio Sarriena s/n., 48940 Leioa, Bizkaia, Spain; (U.G.-G.); (A.L.-S.)
| | - Unai Galicia-García
- Biofisika Institute (UPV/EHU, CSIC), Barrio Sarriena s/n., 48940 Leioa, Bizkaia, Spain; (U.G.-G.); (A.L.-S.)
- Fundación Biofisika Bizkaia, Barrio Sarriena s/n., 48940 Leioa, Bizkaia, Spain
| | - Asier Larrea-Sebal
- Biofisika Institute (UPV/EHU, CSIC), Barrio Sarriena s/n., 48940 Leioa, Bizkaia, Spain; (U.G.-G.); (A.L.-S.)
- Fundación Biofisika Bizkaia, Barrio Sarriena s/n., 48940 Leioa, Bizkaia, Spain
| | | | - Iraide Alloza
- Department of Biochemistry and Molecular Biology, Universidad del País Vasco UPV/EHU, 48940 Leioa, Bizkaia, Spain; (S.J.-B.); (I.A.); (K.V.)
- Inflammation & Biomarkers Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Bizkaia, Spain
| | - Koen Vandenbroeck
- Department of Biochemistry and Molecular Biology, Universidad del País Vasco UPV/EHU, 48940 Leioa, Bizkaia, Spain; (S.J.-B.); (I.A.); (K.V.)
- Inflammation & Biomarkers Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Bizkaia, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Bizkaia, Spain
| | - Asier Benito-Vicente
- Department of Biochemistry and Molecular Biology, Universidad del País Vasco UPV/EHU, 48940 Leioa, Bizkaia, Spain; (S.J.-B.); (I.A.); (K.V.)
- Biofisika Institute (UPV/EHU, CSIC), Barrio Sarriena s/n., 48940 Leioa, Bizkaia, Spain; (U.G.-G.); (A.L.-S.)
- Correspondence: (A.B.-V.); (C.M.); Tel.: +34-946-01-2741 (C.M.)
| | - César Martín
- Department of Biochemistry and Molecular Biology, Universidad del País Vasco UPV/EHU, 48940 Leioa, Bizkaia, Spain; (S.J.-B.); (I.A.); (K.V.)
- Biofisika Institute (UPV/EHU, CSIC), Barrio Sarriena s/n., 48940 Leioa, Bizkaia, Spain; (U.G.-G.); (A.L.-S.)
- Correspondence: (A.B.-V.); (C.M.); Tel.: +34-946-01-2741 (C.M.)
| |
Collapse
|
7
|
Geng S, Zhang Y, Yi Z, Lu R, Li L. Resolving monocytes generated through TRAM deletion attenuate atherosclerosis. JCI Insight 2021; 6:e149651. [PMID: 34499622 PMCID: PMC8564896 DOI: 10.1172/jci.insight.149651] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 09/08/2021] [Indexed: 02/06/2023] Open
Abstract
Polarization of low-grade inflammatory monocytes facilitates the pathogenesis of atherosclerosis. However, underlying mechanisms as well as approaches for resolving monocyte polarization conducive to the regression of atherosclerosis are not well established. In this report, we demonstrate that TRIF-related adaptor molecule (TRAM) mediated monocyte polarization in vivo and in vitro. TRAM controlled monocyte polarization through activating Src family kinase c-SRC, which not only induces STAT1/STAT5-regulated inflammatory mediators CCR2 and SIRP-α but also suppresses PPARγ-regulated resolving mediator CD200R. Enhanced PPARγ and Pex5 due to TRAM deficiency facilitated peroxisome homeostasis and reduction of cellular reactive oxygen species, further contributing to the establishment of a resolving monocyte phenotype. TRAM-deficient monocytes propagated the resolving phenotype to neighboring monocytes through CD200R-mediated intercellular communication. At the translational level, we show that TRAM-deficient mice were resistant to high-fat diet-induced pathogenesis of atherosclerosis. We further document that intravenous transfusion of TRAM-deficient resolving monocytes into atherosclerotic mice potently reduced the progression of atherosclerosis. Together, our data reveal that targeting TRAM may facilitate the effective generation of resolving monocytes conducive for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Shuo Geng
- Department of Biological Sciences and
| | - Yao Zhang
- Department of Biological Sciences and
| | - Ziyue Yi
- Graduate Program of Genetics, Biotechnology and Computational Biology, Virginia Tech, Blacksburg, Virginia, USA
| | - Ran Lu
- Department of Biological Sciences and
| | - Liwu Li
- Department of Biological Sciences and
- Graduate Program of Genetics, Biotechnology and Computational Biology, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
8
|
Liu F, Wang S, Luo Z. Associations of the miRNA-146a rs2910164 and the miRNA-499a rs3746444 Polymorphisms With Plasma Lipid Levels: A Meta-Analysis. Front Genet 2021; 12:746686. [PMID: 34646311 PMCID: PMC8503190 DOI: 10.3389/fgene.2021.746686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 08/24/2021] [Indexed: 12/02/2022] Open
Abstract
Background: The studies of miRNAs are vibrant and remain at the forefront in the cardiovascular system. Emerging studies indicate that the genetic polymorphisms of the miRNA gene may affect lipid metabolism; this study aims to clarify the specific correlations between the rs2910164 and rs3746444 polymorphisms and lipid levels. Methods and Results: A comprehensive search of literature was performed from December 31, 2020, to May 31, 2021, by searching of the PubMed and the Cochrane databases. The standardized mean difference (SMD) and 95% confidence interval (CI) were used to evaluate the differences in lipid levels between the genotypes. rs2910164, a functional polymorphism in the miRNA-146a gene, was associated with increased triglycerides (TG) (SMD = 0.35, 95% CI = 0.15-0.54, p < 0.001), total cholesterol (TC) (SMD = 0.43, 95% CI = 0.16-0.70, p < 0.001), and low-density lipoprotein cholesterol (LDL-C) (SMD = 0.37, 95% CI = 0.11-0.63, p = 0.01) as well as decreased high-density lipoprotein cholesterol (HDL-C) (SMD = -0.27, 95% CI = -0.47-0.07, p = 0.01) levels. rs3746444, a functional polymorphism in the miRNA-499a gene, was only correlated with decreased TG (SMD = -0.09, 95% CI = -0.17-0.01, P = 0.03) levels. Conclusions: The miRNA-146a rs2910164 polymorphism is significantly associated with atherogenic dyslipidemia.
Collapse
Affiliation(s)
- Fuqiang Liu
- Department of Cardiology, First People's Hospital of Chengdu, Chengdu, China
| | - Shengping Wang
- Department of Cardiology, First People's Hospital of Chengdu, Chengdu, China
| | - Zhi Luo
- Department of Internal Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
9
|
Fenizia C, Ibba SV, Vanetti C, Strizzi S, Rossignol JF, Biasin M, Trabattoni D, Clerici M. The Modulation of Cholesterol Metabolism Is Involved in the Antiviral Effect of Nitazoxanide. Infect Dis Rep 2021; 13:636-644. [PMID: 34287319 PMCID: PMC8293206 DOI: 10.3390/idr13030060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/09/2021] [Accepted: 07/11/2021] [Indexed: 11/19/2022] Open
Abstract
We previously investigated the role of Nitazoxanide (NTZ), a thiazolide endowed with antiviral and antiparasitic activity, in HIV-1 infection. NTZ treatment in primary isolated PBMCs was able to reduce HIV-1 infection in vitro by inducing the expression of a number of type-I interferon-stimulated genes. Among them, NTZ was able to induce cholesterol-25-hydroxylase (CH25H), which is involved in cholesterol metabolism. In the present study, we wanted to deepen our knowledge about the antiviral mechanism of action of NTZ. Indeed, by inducing CH25H, which catalyzes the formation of 25-hydroxycholesterol from cholesterol, NTZ treatment repressed cholesterol biosynthetic pathways and promoted cholesterol mobilization and efflux from the cell. Such effects were even more pronounced upon stimulation with FLU antigens in combination. It is already well known how lipid metabolism and virus replication are tightly interconnected; thus, it is not surprising that the antiviral immune response employs genes related to cholesterol metabolism. Indeed, NTZ was able to modulate cholesterol metabolism in vitro and, by doing so, enhance the antiviral response. These results give us the chance to speculate about the suitability of NTZ as adjuvant for induction of specific natural immunity. Moreover, the putative application of NTZ to alimentary-related diseases should be investigated.
Collapse
Affiliation(s)
- Claudio Fenizia
- Department of Pathophysiology and Transplantation, University of Milan, Via F. Sforza 35, 20122 Milan, Italy; (C.F.); (C.V.)
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi 74, 20157 Milan, Italy; (S.V.I.); (S.S.); (M.B.); (D.T.)
| | - Salomè Valentina Ibba
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi 74, 20157 Milan, Italy; (S.V.I.); (S.S.); (M.B.); (D.T.)
| | - Claudia Vanetti
- Department of Pathophysiology and Transplantation, University of Milan, Via F. Sforza 35, 20122 Milan, Italy; (C.F.); (C.V.)
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi 74, 20157 Milan, Italy; (S.V.I.); (S.S.); (M.B.); (D.T.)
| | - Sergio Strizzi
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi 74, 20157 Milan, Italy; (S.V.I.); (S.S.); (M.B.); (D.T.)
| | | | - Mara Biasin
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi 74, 20157 Milan, Italy; (S.V.I.); (S.S.); (M.B.); (D.T.)
| | - Daria Trabattoni
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi 74, 20157 Milan, Italy; (S.V.I.); (S.S.); (M.B.); (D.T.)
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, University of Milan, Via F. Sforza 35, 20122 Milan, Italy; (C.F.); (C.V.)
- IRCCS Fondazione Don Carlo Gnocchi, Via A. Capecelatro 66, 20148 Milan, Italy
- Correspondence: ; Tel.: +39-02-5031-9678
| |
Collapse
|
10
|
Ge L, Zhang Y, Zhao X, Wang J, Zhang Y, Wang Q, Yu H, Zhang Y, You Y. EIF2AK2 selectively regulates the gene transcription in immune response and histones associated with systemic lupus erythematosus. Mol Immunol 2021; 132:132-141. [PMID: 33588244 DOI: 10.1016/j.molimm.2021.01.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 01/21/2021] [Accepted: 01/28/2021] [Indexed: 12/13/2022]
Abstract
PKR, also known as EIF2AK2, is an IFN-stimulated gene (ISG) and shows a higher expression in probands with systemic lupus erythematosus (SLE), which is likely responsible for the impaired translational and proliferative responses to mitogens in T cells from SLE patients. In this study, we overexpressed EIF2AK2 in HeLa cells to study EIF2AK2-regulated genes using RNA-seq technology, followed by bioinformatic analysis of target genes of EIF2AK2-regulated transcriptional factors (TFs). Overexpression of EIF2AK2 promotes HeLa cell apoptosis. EIF2AK2 selectively represses the transcription of histone protein genes associated with SLE, immune response genes and TF genes, which was validated by RT-qPCR experiments. Analysis of motifs overrepresented in the promoter regions of EIF2AK2-regulated genes revealed eighteen EIF2AK2-regulated TFs involved in establishing the EIF2AK2 network. Eight out of these predicted EIF2AK2-regulated TFs were further verified by RT-qPCR selectively in both HeLa and Jurkat cells, and most such as HEY2, TFEC, BATF2, GATA3 and ATF3 and FOXO6 are known to regulate immune response. Our results suggest that the dsRNA-dependent kinase EIF2AK2 selectively regulates the transcription of immune response and SLE-associated histone protein genes, and such a selectivity is likely to be operated by EIF2AK2-targeted TFs. The EIF2AK2-TFs axis potentially offers new therapeutic targets for counteracting immunological disease in the future.
Collapse
Affiliation(s)
- Lan Ge
- Department of Dermatology, Southwest Hospital, Third Military Medical University(Army Medical University), Chongqing, 400038, China.
| | - Yuhong Zhang
- Laboratory of Human Health and Genome Regulation, ABLife Inc., Wuhan, Hubei 430075, China; Center for Genome Analysis, ABLife Inc., Wuhan, Hubei 430075, China.
| | - Xingwang Zhao
- Department of Dermatology, Southwest Hospital, Third Military Medical University(Army Medical University), Chongqing, 400038, China.
| | - Juan Wang
- Department of Dermatology, Southwest Hospital, Third Military Medical University(Army Medical University), Chongqing, 400038, China.
| | - Yu Zhang
- Center for Genome Analysis, ABLife Inc., Wuhan, Hubei 430075, China.
| | - Qi Wang
- Center for Genome Analysis, ABLife Inc., Wuhan, Hubei 430075, China.
| | - Han Yu
- Laboratory of Human Health and Genome Regulation, ABLife Inc., Wuhan, Hubei 430075, China.
| | - Yi Zhang
- Laboratory of Human Health and Genome Regulation, ABLife Inc., Wuhan, Hubei 430075, China; Center for Genome Analysis, ABLife Inc., Wuhan, Hubei 430075, China.
| | - Yi You
- Department of Dermatology, Southwest Hospital, Third Military Medical University(Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
11
|
Chen SY, Chen YZ, Lee YJ, Jiang CL, Lu SC, Lin FJ. Maternal hypercholesterolemia exacerbates atherosclerosis lesions in female offspring through potentiating macrophage polarization toward an inflammatory M1 phenotype. J Nutr Biochem 2020; 90:108575. [PMID: 33387610 DOI: 10.1016/j.jnutbio.2020.108575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 11/24/2020] [Accepted: 12/03/2020] [Indexed: 10/22/2022]
Abstract
Maternal hypercholesterolemia induces early onset of cardiovascular diseases in offspring; however, its underlying mechanism remains poorly understood. We hypothesized that maternal hypercholesterolemia increases offspring susceptibility to atherosclerosis in adulthood through developmental modifications of macrophages. Female apolipoprotein E (ApoE)-deficient mice were fed a Western-type diet (WD) or a control diet (CD) prior to and throughout gestation and lactation. The offspring were all fed a WD after weaning. Sixteen-week-old female offspring of WD-fed dams showed a significant increase in atherosclerotic lesions of the aorta and aortic root compared with those of CD-fed dams. This effect was associated with increased macrophage accumulation within lesions, macrophage inflammation and an increase in circulating Ly6Chigh monocyte and F4/80 macrophage counts. We further evidenced that in utero WD exposure promoted macrophage polarization toward the M1 phenotype by elevating M1 markers (Cd86, Inos/Nos2) without affecting M2 markers (Cd206, Arg1). Proinflammatory cytokine synthesis was also enhanced in response to LPS. Finally, maternal WD intake strongly inhibited the macrophage expression of Pparg and Lxra, which was associated with aberrant DNA methylation of Lxra promoter. Our findings demonstrate that maternal hypercholesterolemia exacerbates atherosclerosis, in part by altering the epigenetic state of the macrophage genome of the offspring, imprinting gene expression, and changing macrophage polarization, which ultimately contributes to plaque macrophage burden.
Collapse
Affiliation(s)
- Sin-Yu Chen
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Yi-Zhen Chen
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Yi-Jing Lee
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Chung-Lin Jiang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Shao-Chun Lu
- Department of Biochemistry and Molecular Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Fu-Jung Lin
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan; Research Center for Development Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
12
|
Zhao C, Yang S, Lu W, Liu J, Wei Y, Guo H, Zhang Y, Shi J. Increased NFATC4 Correlates With Poor Prognosis of AML Through Recruiting Regulatory T Cells. Front Genet 2020; 11:573124. [PMID: 33329712 PMCID: PMC7728998 DOI: 10.3389/fgene.2020.573124] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/27/2020] [Indexed: 12/13/2022] Open
Abstract
Despite that immune responses play important roles in acute myeloid leukemia (AML), immunotherapy is still not widely used in AML due to lack of an ideal target. Therefore, we identified key immune genes and cellular components in AML by an integrated bioinformatics analysis, trying to find potential targets for AML. Eighty-six differentially expressed immune genes (DEIGs) were identified from 751 differentially expressed genes (DEGs) between AML patients with fair prognosis and poor prognosis from the TCGA database. Among them, nine prognostic immune genes, including NCR2, NPDC1, KIR2DL4, KLC3, TWIST1, SNORD3B-1, NFATC4, XCR1, and LEFTY1, were identified by univariate Cox regression analysis. A multivariable prediction model was established based on prognostic immune genes. Kaplan–Meier survival curve analysis indicated that patients in the high-risk group had a shorter survival rate and higher mortality than those in the low-risk group (P < 0.001), indicating good effectiveness of the model. Furthermore, nuclear factors of activated T cells-4 (NFATC4) was recognized as the key immune gene identified by co-expression of differentially expressed transcription factors (DETFs) and prognostic immune genes. ATP-binding cassette transporters (ABC transporters) were the downstream KEGG pathway of NFATC4, identified by gene set variation analysis (GSVA) and gene set enrichment analysis (GSEA). To explore the immune responses NFATC4 was involved in, an immune gene set of T cell co-stimulation was identified by single-cell GSEA (ssGSEA) and Pearson correlation analysis, positively associated with NFATC4 in AML (R = 0.323, P < 0.001, positive). In order to find out the immune cell types affected by NFATC4, the CIBERSORT algorithm and Pearson correlation analysis were applied, and it was revealed that regulatory T cells (Tregs) have the highest correlation with NFATC4 (R = 0.526, P < 0.001, positive) in AML from 22 subsets of tumor-infiltrating immune cells. The results of this study were supported by multi-omics database validation. In all, our study indicated that NFATC4 was the key immune gene in AML poor prognosis through recruiting Tregs, suggesting that NFATC4 might serve as a new therapy target for AML.
Collapse
Affiliation(s)
- Chong Zhao
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Shaoxin Yang
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Lu
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiali Liu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yanyu Wei
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hezhou Guo
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanjie Zhang
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Shi
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
IRAK family in inflammatory autoimmune diseases. Autoimmun Rev 2020; 19:102461. [DOI: 10.1016/j.autrev.2020.102461] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 08/29/2019] [Indexed: 12/22/2022]
|
14
|
van der Vorst EPC, Mandl M, Müller M, Neideck C, Jansen Y, Hristov M, Gencer S, Peters LJF, Meiler S, Feld M, Geiselhöringer AL, de Jong RJ, Ohnmacht C, Noels H, Soehnlein O, Drechsler M, Weber C, Döring Y. Hematopoietic ChemR23 (Chemerin Receptor 23) Fuels Atherosclerosis by Sustaining an M1 Macrophage-Phenotype and Guidance of Plasmacytoid Dendritic Cells to Murine Lesions-Brief Report. Arterioscler Thromb Vasc Biol 2020; 39:685-693. [PMID: 30786742 DOI: 10.1161/atvbaha.119.312386] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Objective- Expression of the chemokine-like receptor ChemR23 (chemerin receptor 23) has been specifically attributed to plasmacytoid dendritic cells (pDCs) and macrophages and ChemR23 has been suggested to mediate an inflammatory immune response in these cells. Because chemokine receptors are important in perpetuating chronic inflammation, we aimed to establish the role of ChemR23-deficiency on macrophages and pDCs in atherosclerosis. Approach and Results- ChemR23-knockout/knockin mice expressing eGFP (enhanced green fluorescent protein) were generated and after crossing with apolipoprotein E-deficient ( Apoe-/- ChemR23 e/e) animals were fed a western-type diet for 4 and 12 weeks. Apoe-/- ChemR23 e/e mice displayed reduced lesion formation and reduced leukocyte adhesion to the vessel wall after 4 weeks, as well as diminished plaque growth, a decreased number of lesional macrophages with an increased proportion of M2 cells and a less inflammatory lesion composition after 12 weeks of western-type diet feeding. Hematopoietic ChemR23-deficiency similarly reduced atherosclerosis. Additional experiments revealed that ChemR23-deficiency induces an alternatively activated macrophage phenotype, an increased cholesterol efflux and a systemic reduction in pDC frequencies. Consequently, expression of the pDC marker SiglecH in atherosclerotic plaques of Apoe-/- ChemR23 e/e mice was declined. ChemR23-knockout pDCs also exhibited a reduced migratory capacity and decreased CCR (CC-type chemokine receptor)7 expression. Finally, adoptive transfer of sorted wild-type and knockout pDCs into Apoe-/- recipient mice revealed reduced accumulation of ChemR23-deficient pDCs in atherosclerotic lesions. Conclusions- Hematopoietic ChemR23-deficiency increases the proportion of alternatively activated M2 macrophages in atherosclerotic lesions and attenuates pDC homing to lymphatic organs and recruitment to atherosclerotic lesions, which synergistically restricts atherosclerotic plaque formation and progression.
Collapse
Affiliation(s)
- Emiel P C van der Vorst
- From the Institute for Cardiovascular Prevention (IPEK), LMU Munich, Germany (E.P.C.v.d.V., M. Mandl, M. Müller, C.N., Y.J., M.H., S.G., L.J.F.P., S.M., O.S., M.D., C.W., Y.D.).,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Germany (E.P.C.v.d.V., O.S., C.W., Y.D.)
| | - Manuela Mandl
- From the Institute for Cardiovascular Prevention (IPEK), LMU Munich, Germany (E.P.C.v.d.V., M. Mandl, M. Müller, C.N., Y.J., M.H., S.G., L.J.F.P., S.M., O.S., M.D., C.W., Y.D.)
| | - Madeleine Müller
- From the Institute for Cardiovascular Prevention (IPEK), LMU Munich, Germany (E.P.C.v.d.V., M. Mandl, M. Müller, C.N., Y.J., M.H., S.G., L.J.F.P., S.M., O.S., M.D., C.W., Y.D.)
| | - Carlos Neideck
- From the Institute for Cardiovascular Prevention (IPEK), LMU Munich, Germany (E.P.C.v.d.V., M. Mandl, M. Müller, C.N., Y.J., M.H., S.G., L.J.F.P., S.M., O.S., M.D., C.W., Y.D.)
| | - Yvonne Jansen
- From the Institute for Cardiovascular Prevention (IPEK), LMU Munich, Germany (E.P.C.v.d.V., M. Mandl, M. Müller, C.N., Y.J., M.H., S.G., L.J.F.P., S.M., O.S., M.D., C.W., Y.D.)
| | - Michael Hristov
- From the Institute for Cardiovascular Prevention (IPEK), LMU Munich, Germany (E.P.C.v.d.V., M. Mandl, M. Müller, C.N., Y.J., M.H., S.G., L.J.F.P., S.M., O.S., M.D., C.W., Y.D.)
| | - Selin Gencer
- From the Institute for Cardiovascular Prevention (IPEK), LMU Munich, Germany (E.P.C.v.d.V., M. Mandl, M. Müller, C.N., Y.J., M.H., S.G., L.J.F.P., S.M., O.S., M.D., C.W., Y.D.)
| | - Linsey J F Peters
- From the Institute for Cardiovascular Prevention (IPEK), LMU Munich, Germany (E.P.C.v.d.V., M. Mandl, M. Müller, C.N., Y.J., M.H., S.G., L.J.F.P., S.M., O.S., M.D., C.W., Y.D.)
| | - Svenja Meiler
- From the Institute for Cardiovascular Prevention (IPEK), LMU Munich, Germany (E.P.C.v.d.V., M. Mandl, M. Müller, C.N., Y.J., M.H., S.G., L.J.F.P., S.M., O.S., M.D., C.W., Y.D.)
| | - Micha Feld
- Department of Dermatology and Venereology, Hamad Medical Corporation and School of Medicine, Weill Cornell University-Qatar, Qatar University, Doha (M.F.)
| | - Anna-Lena Geiselhöringer
- Center of Allergy Environment (ZAUM), Helmholtz Center and TU Munich, Neuherberg, Germany (A.-L.G., R.J.d.J., C.O.)
| | - Renske J de Jong
- Center of Allergy Environment (ZAUM), Helmholtz Center and TU Munich, Neuherberg, Germany (A.-L.G., R.J.d.J., C.O.)
| | - Caspar Ohnmacht
- Center of Allergy Environment (ZAUM), Helmholtz Center and TU Munich, Neuherberg, Germany (A.-L.G., R.J.d.J., C.O.)
| | - Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital Aachen, RWTH Aachen University, Germany (H.N.)
| | - Oliver Soehnlein
- From the Institute for Cardiovascular Prevention (IPEK), LMU Munich, Germany (E.P.C.v.d.V., M. Mandl, M. Müller, C.N., Y.J., M.H., S.G., L.J.F.P., S.M., O.S., M.D., C.W., Y.D.).,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Germany (E.P.C.v.d.V., O.S., C.W., Y.D.).,Department of Physiology and Pharmacology (FyFa), Karolinska Institutet, Stockholm, Sweden (O.S.)
| | - Maik Drechsler
- From the Institute for Cardiovascular Prevention (IPEK), LMU Munich, Germany (E.P.C.v.d.V., M. Mandl, M. Müller, C.N., Y.J., M.H., S.G., L.J.F.P., S.M., O.S., M.D., C.W., Y.D.)
| | - Christian Weber
- From the Institute for Cardiovascular Prevention (IPEK), LMU Munich, Germany (E.P.C.v.d.V., M. Mandl, M. Müller, C.N., Y.J., M.H., S.G., L.J.F.P., S.M., O.S., M.D., C.W., Y.D.).,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Germany (E.P.C.v.d.V., O.S., C.W., Y.D.).,Cardiovascular Research Institute (CARIM), Maastricht University, the Netherlands (C.W.)
| | - Yvonne Döring
- From the Institute for Cardiovascular Prevention (IPEK), LMU Munich, Germany (E.P.C.v.d.V., M. Mandl, M. Müller, C.N., Y.J., M.H., S.G., L.J.F.P., S.M., O.S., M.D., C.W., Y.D.).,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Germany (E.P.C.v.d.V., O.S., C.W., Y.D.)
| |
Collapse
|
15
|
Dantoft W, Robertson KA, Watkins WJ, Strobl B, Ghazal P. Metabolic Regulators Nampt and Sirt6 Serially Participate in the Macrophage Interferon Antiviral Cascade. Front Microbiol 2019; 10:355. [PMID: 30886604 PMCID: PMC6409323 DOI: 10.3389/fmicb.2019.00355] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/11/2019] [Indexed: 11/13/2022] Open
Abstract
Molecular determinants underlying interferon (IFN)-macrophage biology can help delineate enzyme systems, pathways and mechanisms for enabling host-directed therapeutic approaches against infection. Notably, while the IFN antiviral response is known to be directly coupled to mevalonate-sterol biosynthesis, mechanistic insight for providing host pathway-therapeutic targets remain incomplete. Here, we show that Nampt and Sirt6 are coordinately regulated upon immune activation of macrophages and contribute to the IFN-sterol antiviral response. In silico analysis of the Nampt and Sirt6 promoter regions identified multiple core immune gene-regulatory transcription factor sites, including Stat1, implicating a molecular link to IFN control. Experimentally, we show using a range of genetically IFN-defective macrophages that the expression of Nampt is stringently regulated by the Jak/Stat-pathway while Sirt6 activation is temporally displaced in a partial IFN-dependent manner. We further show that pharmacological inhibition of Nampt and small interfering RNA (siRNA)-mediated inhibition of Nampt and Sirt6 promotes viral growth of cytomegalovirus in both fibroblasts and macrophages. Our results support the notion of pharmacologically exploiting immune regulated enzyme systems of macrophages for use as an adjuvant-based therapy for augmenting host protective pathway responses to infection.
Collapse
Affiliation(s)
- Widad Dantoft
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Kevin A Robertson
- Division of Infection and Pathway Medicine, School of Biomedical Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - W John Watkins
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Birgit Strobl
- Institute of Animal Breeding and Genetics, Department for Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Peter Ghazal
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom.,Division of Infection and Pathway Medicine, School of Biomedical Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
16
|
Levenson EA, Martens C, Kanakabandi K, Turner CV, Virtaneva K, Paneru M, Ricklefs S, Sosnovtsev SV, Johnson JA, Porcella SF, Green KY. Comparative Transcriptomic Response of Primary and Immortalized Macrophages to Murine Norovirus Infection. THE JOURNAL OF IMMUNOLOGY 2018; 200:4157-4169. [PMID: 29735480 DOI: 10.4049/jimmunol.1700384] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 04/16/2018] [Indexed: 01/10/2023]
Abstract
Murine norovirus (NoV) is genetically similar to human NoV and offers both an efficient in vitro cell culture system and an animal model by which to investigate the molecular basis of replication. In this study, we present a detailed global view of host alterations to cellular pathways that occur during the progression of a NoV infection. This was accomplished for both Mus musculus BALB/c-derived RAW264.7 (RAW) cells, an immortalized cell line widely used in in vitro replication studies, and primary bone marrow-derived macrophages (BMDM), representing a permissive in vivo target cell in the host. Murine NoV replicated in both cell types, although detected genome copies were approximately one log lower in BMDM compared with RAW cells. RAW and BMDM cells shared an IRF3/7-based IFN response that occurred early in infection. In RAW cells, transcriptional upregulation and INF-β expression were not coupled in that a significant delay in the detection of secreted INF-β was observed. In contrast, primary BMDM showed an early upregulation of transcripts and immediate release of INF-β that might account for lower virus yield. Differences in the transcriptional pathway responses included a marked decrease in expression of key genes in the cell cycle and lipid pathways in RAW cells compared with that of BMDM. Our comparative analysis indicates the existence of varying host responses to virus infection in populations of permissive cells. Awareness of these differences at the gene level will be important in the application of a given permissive culture system to the study of NoV immunity, pathogenesis, and drug development.
Collapse
Affiliation(s)
- Eric A Levenson
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Craig Martens
- Rocky Mountain Laboratories Genomics Unit, Research Technologies Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840
| | - Kishore Kanakabandi
- Rocky Mountain Laboratories Genomics Unit, Research Technologies Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840
| | - Charles V Turner
- Rocky Mountain Laboratories Genomics Unit, Research Technologies Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840
| | - Kimmo Virtaneva
- Rocky Mountain Laboratories Genomics Unit, Research Technologies Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840
| | - Monica Paneru
- Rocky Mountain Laboratories Genomics Unit, Research Technologies Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840
| | - Stacy Ricklefs
- Rocky Mountain Laboratories Genomics Unit, Research Technologies Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840
| | - Stanislav V Sosnovtsev
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Jordan A Johnson
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Stephen F Porcella
- Rocky Mountain Laboratories Genomics Unit, Research Technologies Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840
| | - Kim Y Green
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| |
Collapse
|
17
|
Zhang J, Zhang ZG, Lu M, Wang X, Shang X, Elias SB, Chopp M. MiR-146a promotes remyelination in a cuprizone model of demyelinating injury. Neuroscience 2017; 348:252-263. [PMID: 28237816 DOI: 10.1016/j.neuroscience.2017.02.029] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 02/13/2017] [Accepted: 02/15/2017] [Indexed: 12/30/2022]
Abstract
The death of mature oligodendrocytes (OLs) which are the sole myelinating cells of the central nervous system (CNS), leads to demyelination and functional deficits. Currently, there is lack of effective remyelination therapies for patients with demyelinating diseases. MicroRNAs (miRNAs) mediate OL function. We hypothesized that miR-146a, by inactivating interleukin-1 receptor-associated kinase 1 (IRAK1), promotes differentiation of oligodendrocyte progenitor cells (OPCs) and thereby enhances remyelination. To test this hypothesis, a demyelination model induced by a cuprizone (CPZ) diet was employed, in which C57BL/6J mice were fed with a CPZ diet for 5weeks. After termination of CPZ diet, the mice were randomly treated with continuous infusion of miR-146a mimics or mimic controls into the corpus callosum for 7days. Compared to the mimic control, infusion of miR-146a mimics facilitated remyelination assessed by increased myelin basic proteins in the corpus callosum, which was associated with augmentation of newly generated mature OLs. Infusion of miR-146a mimics also substantially elevated miR-146a levels in the corpus callosum and fluorescently tagged miR-146a mimics were mainly detected in OPCs. Western blot and double immmunofluorescent staining analysis showed that the miR-146a treatment considerably reduced IRAK1 protein levels and the number of IRAK1-positive cells, respectively. Collectively, these data indicate that exogenous miR-146a enhances remyelination, possibly by promoting OPCs to differentiate into myelinated OLs via targeting IRAK1.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, United States.
| | - Zheng Gang Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, United States
| | - Mei Lu
- Biostatistics and Research Epidemiology, Henry Ford Health System, Detroit, MI 48202, United States
| | - Xinli Wang
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, United States
| | - Xia Shang
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, United States
| | - Stanton B Elias
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, United States
| | - Michael Chopp
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, United States; Department of Physics, Oakland University, Rochester, MI 48309, United States
| |
Collapse
|
18
|
Pedigo CE, Ducasa GM, Leclercq F, Sloan A, Mitrofanova A, Hashmi T, Molina-David J, Ge M, Lassenius MI, Forsblom C, Lehto M, Groop PH, Kretzler M, Eddy S, Martini S, Reich H, Wahl P, Ghiggeri G, Faul C, Burke GW, Kretz O, Huber TB, Mendez AJ, Merscher S, Fornoni A. Local TNF causes NFATc1-dependent cholesterol-mediated podocyte injury. J Clin Invest 2016; 126:3336-50. [PMID: 27482889 DOI: 10.1172/jci85939] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 05/26/2016] [Indexed: 12/14/2022] Open
Abstract
High levels of circulating TNF and its receptors, TNFR1 and TNFR2, predict the progression of diabetic kidney disease (DKD), but their contribution to organ damage in DKD remains largely unknown. Here, we investigated the function of local and systemic TNF in podocyte injury. We cultured human podocytes with sera collected from DKD patients, who displayed elevated TNF levels, and focal segmental glomerulosclerosis (FSGS) patients, whose TNF levels resembled those of healthy patients. Exogenous TNF administration or local TNF expression was equally sufficient to cause free cholesterol-dependent apoptosis in podocytes by acting through a dual mechanism that required a reduction in ATP-binding cassette transporter A1-mediated (ABCA1-mediated) cholesterol efflux and reduced cholesterol esterification by sterol-O-acyltransferase 1 (SOAT1). TNF-induced albuminuria was aggravated in mice with podocyte-specific ABCA1 deficiency and was partially prevented by cholesterol depletion with cyclodextrin. TNF-stimulated free cholesterol-dependent apoptosis in podocytes was mediated by nuclear factor of activated T cells 1 (NFATc1). ABCA1 overexpression or cholesterol depletion was sufficient to reduce albuminuria in mice with podocyte-specific NFATc1 activation. Our data implicate an NFATc1/ABCA1-dependent mechanism in which local TNF is sufficient to cause free cholesterol-dependent podocyte injury irrespective of TNF, TNFR1, or TNFR2 serum levels.
Collapse
|
19
|
IRAK regulates macrophage foam cell formation by modulating genes involved in cholesterol uptake and efflux. Bioessays 2016; 38:591-604. [DOI: 10.1002/bies.201600085] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
Centritto F, Paroni G, Bolis M, Garattini SK, Kurosaki M, Barzago MM, Zanetti A, Fisher JN, Scott MF, Pattini L, Lupi M, Ubezio P, Piccotti F, Zambelli A, Rizzo P, Gianni' M, Fratelli M, Terao M, Garattini E. Cellular and molecular determinants of all-trans retinoic acid sensitivity in breast cancer: Luminal phenotype and RARα expression. EMBO Mol Med 2016; 7:950-72. [PMID: 25888236 PMCID: PMC4520659 DOI: 10.15252/emmm.201404670] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Forty-two cell lines recapitulating mammary carcinoma heterogeneity were profiled for all-trans retinoic acid (ATRA) sensitivity. Luminal and ER+ (estrogen-receptor-positive) cell lines are generally sensitive to ATRA, while refractoriness/low sensitivity is associated with a Basal phenotype and HER2 positivity. Indeed, only 2 Basal cell lines (MDA-MB157 and HCC-1599) are highly sensitive to the retinoid. Sensitivity of HCC-1599 cells is confirmed in xenotransplanted mice. Short-term tissue-slice cultures of surgical samples validate the cell-line results and support the concept that a high proportion of Luminal/ER+ carcinomas are ATRA sensitive, while triple-negative (Basal) and HER2-positive tumors tend to be retinoid resistant. Pathway-oriented analysis of the constitutive gene-expression profiles in the cell lines identifies RARα as the member of the retinoid pathway directly associated with a Luminal phenotype, estrogen positivity and ATRA sensitivity. RARα3 is the major transcript in ATRA-sensitive cells and tumors. Studies in selected cell lines with agonists/antagonists confirm that RARα is the principal mediator of ATRA responsiveness. RARα over-expression sensitizes retinoid-resistant MDA-MB453 cells to ATRA anti-proliferative action. Conversely, silencing of RARα in retinoid-sensitive SKBR3 cells abrogates ATRA responsiveness. All this is paralleled by similar effects on ATRA-dependent inhibition of cell motility, indicating that RARα may mediate also ATRA anti-metastatic effects. We define gene sets of predictive potential which are associated with ATRA sensitivity in breast cancer cell lines and validate them in short-term tissue cultures of Luminal/ER+ and triple-negative tumors. In these last models, we determine the perturbations in the transcriptomic profiles afforded by ATRA. The study provides fundamental information for the development of retinoid-based therapeutic strategies aimed at the stratified treatment of breast cancer subtypes.
Collapse
Affiliation(s)
- Floriana Centritto
- Laboratory of Molecular Biology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Gabriela Paroni
- Laboratory of Molecular Biology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Marco Bolis
- Laboratory of Molecular Biology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Silvio Ken Garattini
- Laboratory of Molecular Biology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Mami Kurosaki
- Laboratory of Molecular Biology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Maria Monica Barzago
- Laboratory of Molecular Biology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Adriana Zanetti
- Laboratory of Molecular Biology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - James Neil Fisher
- Laboratory of Molecular Biology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Mark Francis Scott
- Laboratory of Molecular Biology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Linda Pattini
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Monica Lupi
- Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Paolo Ubezio
- Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | | | | | - Paola Rizzo
- Gene Therapy and Cellular Reprogramming, IRCCS- Istituto di Ricerche Farmacologiche "Mario Negri", Bergamo, Italy
| | - Maurizio Gianni'
- Laboratory of Molecular Biology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Maddalena Fratelli
- Laboratory of Molecular Biology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Mineko Terao
- Laboratory of Molecular Biology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Enrico Garattini
- Laboratory of Molecular Biology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| |
Collapse
|
21
|
Perez J, Dansou B, Hervé R, Levi C, Tamouza H, Vandermeersch S, Demey-Thomas E, Haymann JP, Zafrani L, Klatzmann D, Boissier MC, Letavernier E, Baud L. Calpains Released by T Lymphocytes Cleave TLR2 To Control IL-17 Expression. THE JOURNAL OF IMMUNOLOGY 2015; 196:168-81. [DOI: 10.4049/jimmunol.1500749] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 10/30/2015] [Indexed: 02/06/2023]
|
22
|
IRAK1 mediates TLR4-induced ABCA1 downregulation and lipid accumulation in VSMCs. Cell Death Dis 2015; 6:e1949. [PMID: 26512959 PMCID: PMC5399175 DOI: 10.1038/cddis.2015.212] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 06/23/2015] [Accepted: 06/30/2015] [Indexed: 12/14/2022]
Abstract
The activation of Toll-like receptor 4 (TLR4) signaling has an important role in promoting lipid accumulation and pro-inflammatory effects in vascular smooth muscle cells (VSMCs), which facilitate atherosclerosis development and progression. Previous studies have demonstrated that excess lipid accumulation in VSMCs is due to an inhibition of the expression of ATP-binding cassette transporter A1 (ABCA1), an important molecular mediator of lipid efflux from VSMCs. However, the underlying molecular mechanisms of this process are unclear. The purpose of this study was to disclose the underlying molecular mechanisms of TLR4 signaling in regulating ABCA1 expression. Primary cultured VSMCs were stimulated with 50 μg/ml oxidized low-density lipoprotein (oxLDL). We determined that enhancing TLR4 signaling using oxLDL significantly downregulated ABCA1 expression and induced lipid accumulation in VSMCs. However, TLR4 knockout significantly rescued oxLDL-induced ABCA1 downregulation and lipid accumulation. In addition, IL-1R-associated kinase 1 (IRAK1) was involved in the effects of TLR4 signaling on ABCA1 expression and lipid accumulation. Silencing IRAK1 expression using a specific siRNA reversed TLR4-induced ABCA1 downregulation and lipid accumulation in vitro. These results were further confirmed by our in vivo experiments. We determined that enhancing TLR4 signaling by administering a 12-week-long high-fat diet (HFD) to mice significantly increased IRAK1 expression, which downregulated ABCA1 expression and induced lipid accumulation. In addition, TLR4 knockout in vivo reversed the effects of the HFD on IRAK1 and ABCA1 expression, as well as on lipid accumulation. In conclusion, IRAK1 is involved in TLR4-mediated downregulation of ABCA1 expression and lipid accumulation in VSMCs.
Collapse
|
23
|
miR-146a-5p Antagonized AGEs- and P.g-LPS-Induced ABCA1 and ABCG1 Dysregulation in Macrophages via IRAK-1 Downregulation. Inflammation 2015; 38:1761-8. [DOI: 10.1007/s10753-015-0153-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Baker B, Geng S, Chen K, Diao N, Yuan R, Xu X, Dougherty S, Stephenson C, Xiong H, Chu HW, Li L. Alteration of lysosome fusion and low-grade inflammation mediated by super-low-dose endotoxin. J Biol Chem 2015; 290:6670-8. [PMID: 25586187 PMCID: PMC4358298 DOI: 10.1074/jbc.m114.611442] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 01/02/2015] [Indexed: 11/06/2022] Open
Abstract
Subclinical super-low-dose endotoxin LPS is a risk factor for the establishment of low-grade inflammation during the pathogenesis and progression of chronic diseases. However, the underlying mechanisms are not well understood. At the cellular level, a disruption of lysosome fusion with endosomes or autophagosomes may contribute to the potentiation of low-grade inflammation. In this study, we identified that subclinical super-low-dose endotoxin LPS can potently inhibit the process of endosome acidification and lysosome fusion with endosomes or autophagosomes in primary macrophages. Super-low-dose LPS induced the inhibitory phosphorylation of VPS34, thus leading to the disruption of endosome-lysosome fusion. This effect may depend upon the clearance and relocation of Tollip in macrophages by super-low-dose LPS. Consistent with this notion, Tollip-deficient macrophages had constitutively elevated levels of VPS34 inhibitory phosphorylation and constitutive disruption of endosome-lysosome fusion. By employing a skin excision wound-healing model, we observed that Tollip-deficient mice had significantly elevated levels of cell stress and reduced wound repair. This study reveals a novel mechanism responsible for the modulation of endosome-lysosome fusion and low-grade inflammation in innate macrophages.
Collapse
Affiliation(s)
- Bianca Baker
- From the Laboratory of Inflammation Biology, Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0910
| | - Shuo Geng
- From the Laboratory of Inflammation Biology, Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0910
| | - Keqiang Chen
- From the Laboratory of Inflammation Biology, Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0910
| | - Na Diao
- From the Laboratory of Inflammation Biology, Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0910
| | - Ruoxi Yuan
- From the Laboratory of Inflammation Biology, Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0910
| | - Xiguang Xu
- From the Laboratory of Inflammation Biology, Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0910
| | - Sean Dougherty
- From the Laboratory of Inflammation Biology, Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0910
| | - Caroline Stephenson
- From the Laboratory of Inflammation Biology, Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0910
| | - Huabao Xiong
- the Department of Medicine, Mt. Sinai School of Medicine, New York, New York 10029, and
| | - Hong Wei Chu
- the Department of Medicine, National Jewish Health, Denver, Colorado 80206
| | - Liwu Li
- From the Laboratory of Inflammation Biology, Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0910,
| |
Collapse
|
25
|
Peled M, Fisher EA. Dynamic Aspects of Macrophage Polarization during Atherosclerosis Progression and Regression. Front Immunol 2014; 5:579. [PMID: 25429291 PMCID: PMC4228913 DOI: 10.3389/fimmu.2014.00579] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 10/29/2014] [Indexed: 12/14/2022] Open
Abstract
It is well recognized that macrophages in many contexts in vitro and in vivo display a spectrum of inflammatory features and functional properties. A convenient system to group together different subsets of macrophages has been the M1 (inflammatory)/M2 (anti-inflammatory) classification. In addition to other sites of inflammation, it is now established that atherosclerotic plaques contain both M1 and M2 macrophages. We review results made possible by a number of recent mouse models of atherosclerotic regression that, taken with other literature, have shown the M1/M2 balance in plaques to be dynamic, with M1 predominating in disease progression and M2 in regression. The regulation of the macrophage phenotype in plaques and the functional consequences of the M1 and M2 states in atherosclerosis will also be discussed.
Collapse
Affiliation(s)
- Michael Peled
- The Marc and Ruti Bell Program in Vascular Biology, Department of Medicine, Leon H. Charney Division of Cardiology, New York University School of Medicine , New York, NY , USA
| | - Edward A Fisher
- The Marc and Ruti Bell Program in Vascular Biology, Department of Medicine, Leon H. Charney Division of Cardiology, New York University School of Medicine , New York, NY , USA
| |
Collapse
|
26
|
Baker B, Maitra U, Geng S, Li L. Molecular and cellular mechanisms responsible for cellular stress and low-grade inflammation induced by a super-low dose of endotoxin. J Biol Chem 2014; 289:16262-9. [PMID: 24759105 PMCID: PMC4047395 DOI: 10.1074/jbc.m114.569210] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 04/16/2014] [Indexed: 01/05/2023] Open
Abstract
Super-low-dose endotoxemia in experimental animals and humans is linked to low-grade chronic inflammatory diseases. However, the underlying molecular and cellular mechanisms are not well understood. In this study, we examined the effects of a super-low dose of LPS on low-grade inflammation in macrophages as well as underlying mechanisms. We observed that a super-low dose of LPS induces mitochondrial fission and cell necroptosis in primary murine macrophages, dependent upon interleukin 1 receptor-associated kinase (IRAK-1). Mechanistically, our study reveals that a super-low dose of LPS causes protein ubiquitination and degradation of mitofusin 1 (Mfn1), a molecule required for maintaining proper mitochondrial fusion. A super-low dose of LPS also leads to dephosphorylation and activation of Drp1, a molecule responsible for mitochondrial fission and cell necroptosis. Furthermore, we demonstrated that a super-low dose of LPS activates receptor interacting protein 3 kinase (RIP3), a key molecule critical for the assembly of the necrosome complex, the initiation of Drp1 dephosphorylation, and necroptosis. The effects of a super-low dose of LPS are abolished in macrophages harvested from IRAK-1-deficient mice. Taken together, our study identified a novel molecular pathway that leads to cellular stress and necroptosis in macrophages challenged with a super-low dose of endotoxin. This may reconcile low-grade inflammation often associated with low-grade endotoxemia.
Collapse
Affiliation(s)
- Bianca Baker
- From the Laboratory of Inflammation Biology, Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061-0910
| | - Urmila Maitra
- From the Laboratory of Inflammation Biology, Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061-0910
| | - Shuo Geng
- From the Laboratory of Inflammation Biology, Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061-0910
| | - Liwu Li
- From the Laboratory of Inflammation Biology, Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061-0910
| |
Collapse
|
27
|
Dahiya S, Liu Y, Nonnemacher MR, Dampier W, Wigdahl B. CCAAT enhancer binding protein and nuclear factor of activated T cells regulate HIV-1 LTR via a novel conserved downstream site in cells of the monocyte-macrophage lineage. PLoS One 2014; 9:e88116. [PMID: 24551078 PMCID: PMC3925103 DOI: 10.1371/journal.pone.0088116] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 01/03/2014] [Indexed: 12/11/2022] Open
Abstract
Transcriptional control of the human immunodeficiency virus type 1 (HIV-1) promoter, the long terminal repeat (LTR), is achieved by interactions with cis-acting elements present both upstream and downstream of the start site. In silico transcription factor binding analysis of the HIV-1 subtype B LTR sequences revealed a potential downstream CCAAT enhancer binding protein (C/EBP) binding site. This binding site (+158 to+172), designated DS3, was found to be conserved in 67% of 3,858 unique subtype B LTR sequences analyzed in terms of nucleotide sequence as well as physical location in the LTR. DS3 was found to be well represented in other subtypes as well. Interestingly, DS3 overlaps with a previously identified region that bind members of the nuclear factor of activated T cells (NFAT) family of proteins. NFATc2 exhibited a higher relative affinity for DS3 as compared with members of the C/EBP family (C/EBP α and β). DS3 was able to compete efficiently with the low-affinity upstream C/EBP binding site I with respect to C/EBP binding, suggesting utilization of both NFAT and C/EBP. Moreover, cyclosporine A treatment, which has been shown to prevent dephosphorylation and nuclear translocation of NFAT isoforms, resulted in enhanced C/EBPα binding. The interactions at DS3 were also validated in an integrated HIV-1 LTR in chronically infected U1 cells. A binding knockout of DS3 demonstrated reduced HIV-1 LTR-directed transcription under both basal and interleukin-6-stimulated conditions only in cells of the monocyte-macrophage lineage cells and not in cells of T-cell origin. Thus, the events at DS3 positively regulate the HIV-1 promoter in cells of the monocyte-macrophage lineage.
Collapse
Affiliation(s)
- Satinder Dahiya
- Department of Microbiology and Immunology, and Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Yujie Liu
- Department of Microbiology and Immunology, and Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Michael R. Nonnemacher
- Department of Microbiology and Immunology, and Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Will Dampier
- Department of Microbiology and Immunology, and Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Brian Wigdahl
- Department of Microbiology and Immunology, and Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
28
|
D'Amore S, Vacca M, Graziano G, D'Orazio A, Cariello M, Martelli N, Di Tullio G, Salvia R, Grandaliano G, Belfiore A, Pellegrini F, Palasciano G, Moschetta A. Nuclear receptors expression chart in peripheral blood mononuclear cells identifies patients with Metabolic Syndrome. Biochim Biophys Acta Mol Basis Dis 2013; 1832:2289-301. [PMID: 24060638 DOI: 10.1016/j.bbadis.2013.09.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 09/11/2013] [Accepted: 09/15/2013] [Indexed: 01/27/2023]
Abstract
BACKGROUND Nuclear receptors are a class of 48 ligand-activated transcription factors identified as key players of metabolic and developmental processes. Most of these receptors are potential targets for pharmacological strategies in the Metabolic Syndrome. In the present study, we analyzed changes in the mRNA expression of nuclear receptors in the peripheral blood mononuclear cells of patients with Metabolic Syndrome, in order to identify novel biomarkers of disease and candidate targets for putative therapeutical approaches. METHODS AND RESULTS We enrolled thirty healthy controls (14 M:16 F) and thirty naïve patients (16 M: 14 F; >3 criteria for Metabolic Syndrome upon Adult Treatment Panel III) without organ damage. Using quantitative real-time PCR, we assessed the expression patterns of nuclear receptors in peripheral blood mononuclear cells. 33/48 nuclear receptors were expressed in peripheral blood mononuclear cells. In patients with Metabolic Syndrome, we found a significant down-regulation of the entire PPAR, NR4A and RAR families, together with a repression of RXRα, VDR, and Rev-Erbα. Furthermore, we performed a novel statistical analysis with classification trees, which allowed us to depict a predictive core of nuclear receptor expression patterns characterizing subjects with Metabolic Syndrome. Random Forest Analysis identified NOR1 and PPARδ, which were both reduced in peripheral blood mononuclear cells and specifically in CD14(+) cells (mostly monocytes), as classifiers of Metabolic Syndrome, with high specificity and sensitivity. CONCLUSIONS Our results point to the use of PPAR and NR4A mRNA levels in the overall peripheral blood mononuclear cells as biomarkers of Metabolic Syndrome and bona fide putative targets of pharmacological therapy.
Collapse
Affiliation(s)
- Simona D'Amore
- Clinica Medica "A. Murri", "Aldo Moro" University of Bari, Italy; National Cancer Research Center, IRCCS Oncologico Giovanni Paolo II, Bari, Italy; Laboratory of Lipid Metabolism and Cancer, Consorzio Mario Negri Sud, Santa Maria Imbaro (Chieti), Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Trčka F, Šmarda J, Knopfová L, Kuziaková K, Beneš P. Nuclear factor of activated T-cells 1 increases sensitivity of v-myb transformed monoblasts to all-trans retinoic acid. Cell Signal 2013; 25:1546-55. [PMID: 23571271 DOI: 10.1016/j.cellsig.2013.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 03/12/2013] [Accepted: 03/26/2013] [Indexed: 11/28/2022]
Abstract
Nuclear factors of activated T-cells (NFATs) are important regulators of the cytokine gene expression in activated T-cells. In the last decade, NFATs have been shown to regulate cell cycle, differentiation and apoptosis in cells of various origins revealing their importance for cell homeostasis. In this study, we investigated the effects of NFAT1 on proliferation and differentiation of v-myb-transformed BM2 monoblasts. In contrast to many other leukemic cell lines, BM2 cells do not respond to retinoic acid. However, once overexpressing NFAT1, they became sensitive to all-trans retinoic acid (ATRA). The ATRA-treated BM2NFAT1 cells differentiated along monocyte/macrophage pathway as evidenced by changes in cell morphology, adherence, phagocytic and non-specific esterase activities, reactive oxygen species production, and vimentin expression. Furthermore, overexpressed NFAT1 either alone or in combination with the ATRA-driven signalling pathway deregulated cyclin A and retinoic acid receptor proteins in BM2 cells. Data presented in this study indicate that the NFAT1 and ATRA signalling pathways synergize in control of proliferation and differentiation of BM2 monoblasts.
Collapse
Affiliation(s)
- Filip Trčka
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | | | | | | | | |
Collapse
|
30
|
Kurakula K, Hamers AAJ, de Waard V, de Vries CJM. Nuclear Receptors in atherosclerosis: a superfamily with many 'Goodfellas'. Mol Cell Endocrinol 2013; 368:71-84. [PMID: 22664910 DOI: 10.1016/j.mce.2012.05.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 05/23/2012] [Accepted: 05/25/2012] [Indexed: 01/07/2023]
Abstract
Nuclear Receptors form a superfamily of 48 transcription factors that exhibit a plethora of functions in steroid hormone signaling, regulation of metabolism, circadian rhythm and cellular differentiation. In this review, we describe our current knowledge on the role of Nuclear Receptors in atherosclerosis, which is a multifactorial disease of the vessel wall. Various cell types are involved in this chronic inflammatory pathology in which multiple cellular processes and numerous genes are dysregulated. Systemic risk factors for atherosclerosis are among others adverse blood lipid profiles, enhanced circulating cytokine levels, as well as increased blood pressure. Since many Nuclear Receptors modulate lipid profiles or regulate blood pressure they indirectly affect atherosclerosis. In the present review, we focus on the functional involvement of Nuclear Receptors within the atherosclerotic vessel wall, more specifically on their modulation of cellular functions in endothelial cells, smooth muscle cells and macrophages. Collectively, this overview shows that most of the Nuclear Receptors are athero-protective in atherosclerotic lesions.
Collapse
Affiliation(s)
- Kondababu Kurakula
- Department of Medical Biochemistry, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
31
|
Nagy ZS, Czimmerer Z, Nagy L. Nuclear receptor mediated mechanisms of macrophage cholesterol metabolism. Mol Cell Endocrinol 2013; 368:85-98. [PMID: 22546548 DOI: 10.1016/j.mce.2012.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 04/05/2012] [Accepted: 04/10/2012] [Indexed: 10/28/2022]
Abstract
Macrophages comprise a family of multi-faceted phagocytic effector cells that differentiate "in situ" from circulating monocytes to exert various functions including clearance of foreign pathogens as well as debris derived from host cells. Macrophages also possess the ability to engulf and metabolize lipids and this way connect lipid metabolism and inflammation. The molecular link between these processes is provided by certain members of the nuclear receptor family. For instance, peroxisome proliferator activated receptors (PPAR) and liver X receptors (LXR) are able to sense the dynamically changing lipid environment and translate it to gene expression changes in order to modulate the cellular phenotype. Atherosclerosis embodies both sides of this coin: it is a disease in which macrophages with altered cholesterol metabolism keep the arteries in a chronically inflamed state. A large body of publications has accumulated during the past few decades describing the role of nuclear receptors in the regulation of macrophage cholesterol homeostasis, their contribution to the formation of atherosclerotic plaques and their crosstalk with inflammatory pathways. This review will summarize the most recent findings from this field narrowly focusing on the contribution of various nuclear receptors to macrophage cholesterol metabolism.
Collapse
Affiliation(s)
- Zsuzsanna S Nagy
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, University of Debrecen Medical and Health Science Center, H-4032 Debrecen, Nagyerdei krt 98, Hungary.
| | | | | |
Collapse
|
32
|
Surace MJ, Li L. Potent suppression of arginase 1 expression in murine macrophages by low dose endotoxin. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL IMMUNOLOGY 2013; 2:117-123. [PMID: 23885329 PMCID: PMC3714206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 01/25/2013] [Indexed: 06/02/2023]
Abstract
Macrophages can respond to diverse signals and adopt multiple phenotypes. Although interleukin-4 (IL-4) is shown to potently induce the expression of arginase 1 and contribute to differentiation of macrophages to the anti-inflammatory M2 phenotype, other modulators may potentiate or reduce the effect of IL-4. In this report, we focus on the combinatorial effects of IL-4 with all-trans retinoic acid (ATRA) and lipopolysaccharide (LPS). ATRA has been shown to contribute to the resolution of inflammation, however it has not been linked to arginase 1 expression in macrophages. We demonstrate that although ATRA alone has no effect on the expression or activities of arginase 1, ATRA can dramatically potentiate the induction of arginase 1 by IL-4. On the other hand, high doses of LPS, such as those seen in septic shock, can induce the expression of both M1 and M2 mediators in macrophages. The effects of subclinical doses of LPS, which are prevalent in humans with adverse health conditions, on macrophage differentiation are not well studied. We demonstrate that low dose LPS can effectively suppress the expression of arginase 1 induced by IL-4 and ATRA. Mechanistically, we report that the interleukin-1 receptor-associated kinase 1 (IRAK-1) and Toll-interacting-protein (Tollip) are involved in the suppressive effect of low dose LPS. Our study reveals dynamic modulation of arginase 1 expression in macrophages by competing agonists, and bears relevance for potential intervention of chronic diseases.
Collapse
Affiliation(s)
- Michael J Surace
- Department of Biological Sciences, Virginia Tech Blacksburg, VA 24061-0910
| | | |
Collapse
|
33
|
Maitra U, Li L. Molecular mechanisms responsible for the reduced expression of cholesterol transporters from macrophages by low-dose endotoxin. Arterioscler Thromb Vasc Biol 2012; 33:24-33. [PMID: 23117655 DOI: 10.1161/atvbaha.112.300049] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Atherosclerosis is characterized as a chronic inflammatory condition that involves cholesterol deposition in arteries. Together with scavenger receptor B1 (SR-B1), the ATP-binding cassette transporters ABCA1 and ABCG1 are the major components of macrophage cholesterol efflux. Recent studies have shown that low-grade inflammation plays a distinct regulatory role in the expression of SR-B1 and ABCA1/ABCG1. However, the mechanisms linking low-grade inflammation and cholesterol accumulation are poorly understood. METHODS AND RESULTS Using primary bone-marrow-derived macrophages, we demonstrate that subclinical low-dose lipopolysaccharide potently reduces the expression of SR-B1 and ABCA1/ABCG1, as well as cholesterol efflux from macrophages through interleukin-1 receptor-associated kinase 1 and Toll-interacting-protein. Low-dose lipopolysaccharide downregulates the nuclear levels of retinoic acid receptor-α, leading to their reduced binding to the promoters of SR-B1 and ABCA1/ABCG1. We observe that glycogen synthase kinase 3β activation by low-dose lipopolysaccharide through interleukin-1 receptor-associated kinase 1 and Toll-interacting-protein is responsible for reduced levels of retinoic acid receptor-α, and reduced expression of SR-B1 and ABCA1/ABCG1. Interleukin-1 receptor-associated kinase M, however, counteracts the function of interleukin-1 receptor associated kinase 1. CONCLUSIONS Collectively, our data reveal a novel intracellular network regulated by low-dose endotoxemia that disrupts cholesterol efflux from macrophages and leads to the pathogenesis of atherosclerosis.
Collapse
MESH Headings
- ATP Binding Cassette Transporter 1
- ATP Binding Cassette Transporter, Subfamily G, Member 1
- ATP-Binding Cassette Transporters/drug effects
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/metabolism
- Animals
- Apolipoprotein A-I/metabolism
- Atherosclerosis/chemically induced
- Atherosclerosis/metabolism
- Binding Sites
- Cells, Cultured
- Cholesterol/metabolism
- Cholesterol, HDL/metabolism
- Dose-Response Relationship, Drug
- Down-Regulation
- Endotoxins/pharmacology
- Endotoxins/toxicity
- Foam Cells/drug effects
- Foam Cells/metabolism
- Glycogen Synthase Kinase 3/genetics
- Glycogen Synthase Kinase 3/metabolism
- Glycogen Synthase Kinase 3 beta
- Interleukin-1 Receptor-Associated Kinases/genetics
- Interleukin-1 Receptor-Associated Kinases/metabolism
- Intracellular Signaling Peptides and Proteins/metabolism
- Lipoproteins/drug effects
- Lipoproteins/genetics
- Lipoproteins/metabolism
- Macrophages/drug effects
- Macrophages/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Promoter Regions, Genetic
- Receptors, Retinoic Acid/metabolism
- Retinoic Acid Receptor alpha
- Scavenger Receptors, Class B/drug effects
- Scavenger Receptors, Class B/genetics
- Scavenger Receptors, Class B/metabolism
Collapse
Affiliation(s)
- Urmila Maitra
- Laboratory of Inflammation Biology, Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | | |
Collapse
|
34
|
Jiang H, Badralmaa Y, Yang J, Lempicki R, Hazen A, Natarajan V. Retinoic acid and liver X receptor agonist synergistically inhibit HIV infection in CD4+ T cells by up-regulating ABCA1-mediated cholesterol efflux. Lipids Health Dis 2012; 11:69. [PMID: 22676378 PMCID: PMC3391983 DOI: 10.1186/1476-511x-11-69] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 06/07/2012] [Indexed: 01/01/2023] Open
Abstract
Background Retinoic acids regulate the reverse cholesterol transport by inducing the ATP binding cassette transporter A1 (ABCA1) dependent cholesterol efflux in macrophages, neuronal as well as intestine cells. In the present study, we aim to test the effect of all trans retinoic acid (ATRA) on ABCA1 expression in human CD4+ T cells and the involvement of cholesterol in ATRA mediated anti-HIV effect. Results Treatment with ATRA dramatically up-regulated ABCA1 expression in CD4+ T cells in a time and dose dependent manner. The expression of ABCA1 paralleled with increased ABCA1-dependent cholesterol efflux. This induction was dependent on T cell receptor (TCR) signaling and ATRA failed to induce ABCA1 expression in resting T cells. Moreover, ATRA and liver X receptor (LXR) agonist-TO-901317 together had synergistic effect on ABCA1 expression as well as cholesterol efflux. Increased ABCA1 expression was associated with lower cellular cholesterol staining. Cells treated with either ATRA or TO-901317 were less vulnerable to HIV-1 infection. Combination of retinoic acid and TO-901317 further inhibited HIV-1 entry and their inhibitory effects could be reversed by cholesterol replenishment. Methods ABCA1 RNA and protein were determined by real-time PCR and immuno blot methods in cells treated with ATRA. Cholesterol efflux rate was measured in cells treated with ATRA and TO-901317. Conclusions ATRA up-regulates ABCA1 expression and cholesterol efflux in CD4+ T cells and combination of ATRA and liver X receptor (LXR) agonist further enhanced these effects. Increased cholesterol efflux contributed to reduced HIV-1 entry, suggesting that anti-HIV effect of ATRA is mediated through ABCA1.
Collapse
Affiliation(s)
- Hong Jiang
- Laboratory of Molecular Cell Biology, SAIC-Frederick, Inc, Frederick National Laboratory, Frederick, MD 21702, USA
| | | | | | | | | | | |
Collapse
|
35
|
Research Advances of Cholesterol Efflux in Atherosclerosis*. PROG BIOCHEM BIOPHYS 2012. [DOI: 10.3724/sp.j.1206.2011.00301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Glaros T, Fu Y, Xing J, Li L. Molecular mechanism underlying persistent induction of LCN2 by lipopolysaccharide in kidney fibroblasts. PLoS One 2012; 7:e34633. [PMID: 22514649 PMCID: PMC3326042 DOI: 10.1371/journal.pone.0034633] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 03/02/2012] [Indexed: 12/13/2022] Open
Abstract
The neutrophil gelatinase-associated lipocalin 2 (LCN2) is a critical inflammatory mediator persistently induced during endotoxemia, contributing to tubular damage and kidney failure. The intracellular process responsible for persistent induction of LCN2 by bacterial endotoxin Lipopolysaccharide (LPS) is not well understood. Using primary kidney fibroblasts, we observed that LPS-induced LCN2 expression requires a coupled circuit involving an early transient phase of AP-1 path and a late persistent phase of C/EBPδ path, both of which are dependent upon the interleukin 1 receptor associated kinase 1 (IRAK-1). Using immunoprecipitation analysis we observed transient binding of AP-1 to the promoters of both TNFα and C/ebpδ. On the other hand, we only observed persistent binding of C/EBPδ to its own promoter but not on TNFα. Blockage of new protein synthesis using cyclohexamide significantly reduced the expression of C/EBPδ as well as LCN2. By chromatin immunoprecipitation analyses, we demonstrated that LPS recruited C/EBPδ to the Lcn2 promoter in WT, but not IRAK-1 deficient fibroblasts. A differential equation-based computational model captured the dynamic circuit leading to the persistent induction of LCN2. In vivo, we observed elevated levels of LCN2 in kidneys harvested from LPS-injected WT mice as compared to IRAK-1 deficient mice. Taken together, this study has identified an integrated intracellular network involved in the persistent induction of LCN2 by LPS.
Collapse
Affiliation(s)
- Trevor Glaros
- Laboratory of Innate Immunity and Inflammation, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- Department of Biological Science, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Yan Fu
- Department of Biological Science, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- Interdisciplinary Program of Genetics, Bioinformatics and Computational Biology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Jianhua Xing
- Department of Biological Science, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Liwu Li
- Laboratory of Innate Immunity and Inflammation, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- Department of Biological Science, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- * E-mail:
| |
Collapse
|
37
|
Nicolaou G, Goodall AH, Erridge C. Diverse bacteria promote macrophage foam cell formation via Toll-like receptor-dependent lipid body biosynthesis. J Atheroscler Thromb 2011; 19:137-48. [PMID: 22123216 DOI: 10.5551/jat.10249] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM Atherosclerotic lesions contain DNA signatures from a wide variety of bacteria, although little is known of how exposure to these organisms may modulate the accumulation of lipids in macrophages. METHODS To address this, a panel of nine bacteria representing those most frequently reported to be present in human atheroma were examined for their potential to promote lipid accumulation in human primary monocytes and murine J774 macrophages. RESULTS All bacteria examined, and defined stimulants of Toll-like receptors (TLRs) 2, 3, 4, 5 and 9, induced lipid body formation and cholesterol ester accumulation in a dose-dependent manner. The mechanisms of bacteria-mediated foam cell formation were found to be dependent on TLR2 and/or TLR4 signalling, but independent of lipoprotein oxidation pathways, since lipid accumulation was significantly inhibited by the TLR4 inhibitors polymyxin-B and TAK-242, or the TLR2 and TLR4 inhibitor oxidised palmitoyl-arachidonyl-phosphatidyl-choline, but not by the scavenger receptor blocker polyinosinic acid or the antioxidant butylated hydroxytoluene. A number of genes involved in lipid body biosynthesis, including perilipin-A, stearoyl-coenzyme-A desaturase 1, fatty acid synthase and HMG-CoA reductase were upregulated in response to TLR4 stimulation. CONCLUSIONS The bacterial debris observed in human atheroma, which is currently considered to be harmless, may have potential to contribute to disease progression via TLR-dependent lipid body formation in macrophages.
Collapse
Affiliation(s)
- Giovanna Nicolaou
- Department of Cardiovascular Sciences, Glenfield Hospital, Leicester, UK
| | | | | |
Collapse
|
38
|
Emerging roles for retinoids in regeneration and differentiation in normal and disease states. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:213-21. [PMID: 21855651 DOI: 10.1016/j.bbalip.2011.08.002] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 07/29/2011] [Accepted: 08/02/2011] [Indexed: 12/22/2022]
Abstract
The vitamin A (retinol) metabolite, all-trans retinoic acid (RA), is a signaling molecule that plays key roles in the development of the body plan and induces the differentiation of many types of cells. In this review the physiological and pathophysiological roles of retinoids (retinol and related metabolites) in mature animals are discussed. Both in the developing embryo and in the adult, RA signaling via combinatorial Hox gene expression is important for cell positional memory. The genes that require RA for the maturation/differentiation of T cells are only beginning to be cataloged, but it is clear that retinoids play a major role in expression of key genes in the immune system. An exciting, recent publication in regeneration research shows that ALDH1a2 (RALDH2), which is the rate-limiting enzyme in the production of RA from retinaldehyde, is highly induced shortly after amputation in the regenerating heart, adult fin, and larval fin in zebrafish. Thus, local generation of RA presumably plays a key role in fin formation during both embryogenesis and in fin regeneration. HIV transgenic mice and human patients with HIV-associated kidney disease exhibit a profound reduction in the level of RARβ protein in the glomeruli, and HIV transgenic mice show reduced retinol dehydrogenase levels, concomitant with a greater than 3-fold reduction in endogenous RA levels in the glomeruli. Levels of endogenous retinoids (those synthesized from retinol within cells) are altered in many different diseases in the lung, kidney, and central nervous system, contributing to pathophysiology. This article is part of a Special Issue entitled Retinoid and Lipid Metabolism.
Collapse
|
39
|
Blanc M, Hsieh WY, Robertson KA, Watterson S, Shui G, Lacaze P, Khondoker M, Dickinson P, Sing G, Rodríguez-Martín S, Phelan P, Forster T, Strobl B, Müller M, Riemersma R, Osborne T, Wenk MR, Angulo A, Ghazal P. Host defense against viral infection involves interferon mediated down-regulation of sterol biosynthesis. PLoS Biol 2011; 9:e1000598. [PMID: 21408089 PMCID: PMC3050939 DOI: 10.1371/journal.pbio.1000598] [Citation(s) in RCA: 225] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 01/26/2011] [Indexed: 01/05/2023] Open
Abstract
Little is known about the protective role of inflammatory processes in modulating lipid metabolism in infection. Here we report an intimate link between the innate immune response to infection and regulation of the sterol metabolic network characterized by down-regulation of sterol biosynthesis by an interferon regulatory loop mechanism. In time-series experiments profiling genome-wide lipid-associated gene expression of macrophages, we show a selective and coordinated negative regulation of the complete sterol pathway upon viral infection or cytokine treatment with IFNγ or β but not TNF, IL1β, or IL6. Quantitative analysis at the protein level of selected sterol metabolic enzymes upon infection shows a similar level of suppression. Experimental testing of sterol metabolite levels using lipidomic-based measurements shows a reduction in metabolic output. On the basis of pharmacologic and RNAi inhibition of the sterol pathway we show augmented protection against viral infection, and in combination with metabolite rescue experiments, we identify the requirement of the mevalonate-isoprenoid branch of the sterol metabolic network in the protective response upon statin or IFNβ treatment. Conditioned media experiments from infected cells support an involvement of secreted type 1 interferon(s) to be sufficient for reducing the sterol pathway upon infection. Moreover, we show that infection of primary macrophages containing a genetic knockout of the major type I interferon, IFNβ, leads to only a partial suppression of the sterol pathway, while genetic knockout of the receptor for all type I interferon family members, ifnar1, or associated signaling component, tyk2, completely abolishes the reduction of the sterol biosynthetic activity upon infection. Levels of the proteolytically cleaved nuclear forms of SREBP2, a key transcriptional regulator of sterol biosynthesis, are reduced upon infection and IFNβ treatment at both the protein and de novo transcription level. The reduction in srebf2 gene transcription upon infection and IFN treatment is also found to be strictly dependent on ifnar1. Altogether these results show that type 1 IFN signaling is both necessary and sufficient for reducing the sterol metabolic network activity upon infection, thereby linking the regulation of the sterol pathway with interferon anti-viral defense responses. These findings bring a new link between sterol metabolism and interferon antiviral response and support the idea of using host metabolic modifiers of innate immunity as a potential antiviral strategy.
Collapse
Affiliation(s)
- Mathieu Blanc
- Division of Pathway Medicine and Centre for Infectious Diseases, University of Edinburgh, Edinburgh, United Kingdom
| | - Wei Yuan Hsieh
- Division of Pathway Medicine and Centre for Infectious Diseases, University of Edinburgh, Edinburgh, United Kingdom
| | - Kevin A. Robertson
- Division of Pathway Medicine and Centre for Infectious Diseases, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Systems Biology at Edinburgh, The King's Buildings, Edinburgh, United Kingdom
| | - Steven Watterson
- Division of Pathway Medicine and Centre for Infectious Diseases, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Systems Biology at Edinburgh, The King's Buildings, Edinburgh, United Kingdom
| | - Guanghou Shui
- Department of Biochemistry and Department of Biological Sciences, National University of Singapore, Singapore
| | - Paul Lacaze
- Division of Pathway Medicine and Centre for Infectious Diseases, University of Edinburgh, Edinburgh, United Kingdom
| | - Mizanur Khondoker
- Division of Pathway Medicine and Centre for Infectious Diseases, University of Edinburgh, Edinburgh, United Kingdom
| | - Paul Dickinson
- Division of Pathway Medicine and Centre for Infectious Diseases, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Systems Biology at Edinburgh, The King's Buildings, Edinburgh, United Kingdom
| | - Garwin Sing
- Division of Pathway Medicine and Centre for Infectious Diseases, University of Edinburgh, Edinburgh, United Kingdom
| | - Sara Rodríguez-Martín
- Division of Pathway Medicine and Centre for Infectious Diseases, University of Edinburgh, Edinburgh, United Kingdom
| | - Peter Phelan
- Metabolic Signaling Diseases Program, Sanford-Burnham Medical Research Institute, Orlando, Florida, United States of America
| | - Thorsten Forster
- Division of Pathway Medicine and Centre for Infectious Diseases, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Systems Biology at Edinburgh, The King's Buildings, Edinburgh, United Kingdom
| | - Birgit Strobl
- Institute of Animal Breeding and Genetics, Veterinary University of Vienna, Vienna, Austria
| | - Matthias Müller
- Institute of Animal Breeding and Genetics, Veterinary University of Vienna, Vienna, Austria
| | - Rudolph Riemersma
- Centre for Cardiovascular Disease, University of Edinburgh, Edinburgh, United Kingdom
| | - Timothy Osborne
- Metabolic Signaling Diseases Program, Sanford-Burnham Medical Research Institute, Orlando, Florida, United States of America
| | - Markus R. Wenk
- Department of Biochemistry and Department of Biological Sciences, National University of Singapore, Singapore
| | - Ana Angulo
- Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Spain
| | - Peter Ghazal
- Division of Pathway Medicine and Centre for Infectious Diseases, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Systems Biology at Edinburgh, The King's Buildings, Edinburgh, United Kingdom
| |
Collapse
|
40
|
Maitra U, Gan L, Chang S, Li L. Low-Dose Endotoxin Induces Inflammation by Selectively Removing Nuclear Receptors and Activating CCAAT/Enhancer-Binding Protein δ. THE JOURNAL OF IMMUNOLOGY 2011; 186:4467-73. [DOI: 10.4049/jimmunol.1003300] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
41
|
Zhao Y, Van Berkel TJ, Van Eck M. Relative roles of various efflux pathways in net cholesterol efflux from macrophage foam cells in atherosclerotic lesions. Curr Opin Lipidol 2010; 21:441-53. [PMID: 20683325 DOI: 10.1097/mol.0b013e32833dedaa] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Cholesterol efflux mechanisms are essential for macrophage cholesterol homeostasis. HDL, an important cholesterol efflux acceptor, comprises a class of heterogeneous particles that induce cholesterol efflux via distinct pathways. This review focuses on the understanding of the different cholesterol efflux pathways and physiological acceptors involved, and their regulation in atherosclerotic lesions. RECENT FINDINGS The synergistic interactions of ATP-binding cassette transporters A1 and G1 as well as ATP-binding cassette transporter A1 and scavenger receptor class B type I are essential for cellular cholesterol efflux and the prevention of macrophage foam cell formation. However, the importance of aqueous diffusion should also not be underestimated. Significant progress has been made in understanding the mechanisms underlying ATP-binding cassette A1-mediated cholesterol efflux and regulation of its expression and trafficking. Conditions locally in the atherosclerotic lesion, for example, lipids, cytokines, oxidative stress, and hypoxia, as well as systemic factors, including inflammation and diabetes, critically influence the expression of cholesterol transporters on macrophage foam cells. Furthermore, HDL modification and remodeling in atherosclerosis, inflammation, and diabetes impairs its function as an acceptor for cellular cholesterol. SUMMARY Recent advances in the understanding of the regulation of cholesterol transporters and their acceptors in atherosclerotic lesions indicate that HDL-based therapies should aim to enhance the activity of cholesterol transporters and improve both the quantity and quality of HDL.
Collapse
Affiliation(s)
- Ying Zhao
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, University of Leiden, Leiden, The Netherlands
| | | | | |
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW The differentiation of macrophages into lipid-laden foam cells is central to the development of atherosclerosis. Traditionally, it has been assumed that the uptake of oxidized low-density lipoprotein by macrophage scavenger receptors is largely responsible for this process. However, in light of recent evidence that these mechanisms may not play as large a role as previously thought, alternative mechanisms of foam cell formation are now being explored. RECENT FINDINGS The stimulation of Toll-like receptor (TLR) signalling by bacterial molecules has been shown to promote the accumulation of lipid in macrophages in the form of intracellular inclusions termed 'lipid bodies'. Interactions between TLR-signalling pathways and the liver-X receptor and peroxisome proliferator-activated receptor-γ signalling pathways modulate the formation of lipid bodies in macrophages and thereby cellular accumulation of cholesterol and triglyceride. These pathways appear to involve TLR-mediated regulation of lipid-binding proteins, cellular cholesterol sensors, lipid-body-associated proteins and secreted autocrine factors, but are independent of scavenger receptor or lipoprotein oxidation-dependent pathways. SUMMARY TLR stimulation promotes the accumulation of lipid bodies in macrophages and consequently foam cell formation. The pathways responsible for these processes may constitute novel therapeutic targets for atherosclerosis.
Collapse
Affiliation(s)
- Giovanna Nicolaou
- Department of Cardiovascular Sciences, Glenfield General Hospital, University of Leicester, Leicester, UK
| | | |
Collapse
|
43
|
Kockx M, Jessup W, Kritharides L. Cyclosporin A and atherosclerosis--cellular pathways in atherogenesis. Pharmacol Ther 2010; 128:106-18. [PMID: 20598751 DOI: 10.1016/j.pharmthera.2010.06.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 06/02/2010] [Indexed: 12/31/2022]
Abstract
Cyclosporin A (CsA) is an immunosuppressant drug widely used in organ transplant recipients and people with autoimmune disorders. Long term treatment with CsA is associated with many side effects including hyperlipidemia and an increased risk of atherosclerosis. While its immunosuppressive effects are closely linked to its effects on T cell activation via the inhibition of the nuclear factor of activated T cells (NFAT) pathway, the precise mechanisms underlying its cardiovascular effects appear to involve multiple pathways additional to those relevant for immunosuppression. These include inhibition of calcineurin activity and intracellular cyclophilin peptidylprolyl isomerase and chaperone activities, inhibition of pro-inflammatory extracellular cyclophilin A, and NFAT-independent transcriptional effects. CsA demonstrates complex effects on lipoprotein metabolism and bile acid production, and affects endothelial cells, smooth muscle cells and macrophages, all of which are critical to the atherosclerotic process. Interpretation of the available data is hampered as many experimental models are used to study the effects of CsA in vivo and in vitro, leading to diverse and often contradictory findings. In this review we will describe the cellular mechanisms related to CsA-induced hyperlipidemia and atherosclerosis, with a focus on identifying pro-atherogenic pathways that are distinct from those relevant to its immunosuppressant effects. The potential of CsA analogues to avoid such sequelae will be discussed.
Collapse
Affiliation(s)
- Maaike Kockx
- Macrophage Biology Group, Centre for Vascular Research, University of New South Wales, Sydney, Australia
| | | | | |
Collapse
|
44
|
Thompson PA, Gauthier KC, Varley AW, Kitchens RL. ABCA1 promotes the efflux of bacterial LPS from macrophages and accelerates recovery from LPS-induced tolerance. J Lipid Res 2010; 51:2672-85. [PMID: 20472936 DOI: 10.1194/jlr.m007435] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Macrophages play important roles in both lipid metabolism and innate immunity. We show here that macrophage ATP-binding cassette transporter A1 (ABCA1), a transporter known for its ability to promote apolipoprotein-dependent cholesterol efflux, also participates in the removal of an immunostimulatory bacterial lipid, lipopolysaccharide (LPS). Whereas monocytes require an exogenous lipoprotein acceptor to remove cell-associated LPS, macrophages released LPS in the absence of an exogenous acceptor by a mechanism that was driven, in part, by endogenous apolipoprotein E (apoE). Agents that increased ABCA1 expression increased LPS efflux from wild-type but not ABCA1-deficient macrophages. Preexposure of peritoneal macrophages to LPS for 24 h increased the expression of ABCA1 and increased LPS efflux with a requirement for exogenous apolipoproteins due to suppression of endogenous apoE production. In contrast, LPS preconditioning of ABCA1-deficient macrophages significantly decreased LPS efflux and led to prolonged retention of cell-surface LPS. Although the initial response to LPS was similar in wild-type and ABCA1-deficient macrophages, LPS-induced tolerance was greater and more prolonged in macrophages that lacked ABCA1. Our results define a new role for macrophage ABCA1 in removing cell-associated LPS and restoring normal macrophage responsiveness.
Collapse
Affiliation(s)
- Patricia A Thompson
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | | | |
Collapse
|
45
|
Yin K, Liao DF, Tang CK. ATP-binding membrane cassette transporter A1 (ABCA1): a possible link between inflammation and reverse cholesterol transport. Mol Med 2010; 16:438-49. [PMID: 20485864 DOI: 10.2119/molmed.2010.00004] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 05/11/2010] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is characterized by a chronic inflammatory condition that involves numerous cellular and molecular inflammatory components. A wide array of inflammatory mediators, such as cytokines and proteins produced by macrophages and other cells, play a critical role in the development and progression of the disease. ATP-binding membrane cassette transporter A1 (ABCA1) is crucial for cellular cholesterol efflux and reverse cholesterol transport (RCT) and is also identified as an important target in antiatherosclerosis treatment. Evidence from several recent studies indicates that inflammation, along with other atherogenic-related mediators, plays distinct regulating roles in ABCA1 expression. Proatherogenic cytokines such as interferon (IFN)-γ and interleukin (IL)-1β have been shown to inhibit the expression of ABCA1, while antiatherogenic cytokines, including IL-10 and transforming growth factor (TGF)-β1, have been shown to promote the expression of ABCA1. Moreover, some cytokines such as tumor necrosis factor (TNF)-α seem to regulate ABCA1 expression in species-specific and dose-dependent manners. Inflammatory proteins such as C-reactive protein (CRP) and cyclooxygenase (COX)-2 are likely to inhibit ABCA1 expression during inflammation, and inflammation induced by lipopolysaccharide (LPS) was also found to block the expression of ABCA1. Interestingly, recent experiments revealed ABCA1 can function as an antiinflammatory receptor to suppress the expression of inflammatory factors, suggesting that ABCA1 may be the molecular basis for the interaction between inflammation and RCT. This review aims to summarize recent findings on the role of inflammatory cytokines, inflammatory proteins, inflammatory lipids, and the endotoxin-mediated inflammatory process in expression of ABCA1. Also covered is the current understanding of the function of ABCA1 in modulating the immune response and inflammation through its direct and indirect antiinflammatory mechanisms including lipid transport, high-density lipoprotein (HDL) formation and apoptosis.
Collapse
Affiliation(s)
- Kai Yin
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Life Science Research Center, University of South China, Hengyang, China
| | | | | |
Collapse
|
46
|
Maitra U, Singh N, Gan L, Ringwood L, Li L. IRAK-1 contributes to lipopolysaccharide-induced reactive oxygen species generation in macrophages by inducing NOX-1 transcription and Rac1 activation and suppressing the expression of antioxidative enzymes. J Biol Chem 2010; 284:35403-11. [PMID: 19850916 DOI: 10.1074/jbc.m109.059501] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Inflammatory stimulants such as bacterial endotoxin (lipopolysaccharide (LPS)) are known to induce tissue damage and injury partly through the induction of reactive oxygen species (ROS). Although it is recognized that the induction of ROS in macrophages by LPS depends upon the expression and activation of NADPH oxidase, as well as the suppression of antioxidative enzymes involved in ROS clearance, the underlying molecular mechanisms are poorly defined. In this study, we examined the contribution of the interleukin-1 receptor-associated kinase 1 (IRAK-1) to LPS-induced generation of ROS. We observed that LPS induced significantly less ROS in IRAK-1(-/-) macrophages, indicating that IRAK-1 is critically involved in the induction of ROS. Mechanistically, we observed that IRAK-1 is required for LPS-induced expression of NOX-1, a key component of NADPH oxidase, via multiple transcription factors, including p65/RelA, C/EBPbeta, and C/EBPdelta. On the other hand, we demonstrated that IRAK-1 associated with and activated small GTPase Rac1, a known activator of NOX-1 oxidase enzymatic activity. IRAK-1 forms a close complex with Rac1 via a novel LWPPPP motif within the variable region of IRAK-1. On the other hand, we also observed that IRAK-1 is required for LPS-mediated suppression of peroxisome proliferator-activated receptor alpha and PGC-1alpha, nuclear factors essential for the expression of antioxidative enzymes such as GPX3 and catalase. Consequently, injection of LPS causes significantly less plasma lipid peroxidation in IRAK-1(-/-) mice compared with wild type mice. Taken together, our study reveals IRAK-1 as a novel component involved in the generation of ROS induced by LPS.
Collapse
Affiliation(s)
- Urmila Maitra
- Departments of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | | | | | | | | |
Collapse
|
47
|
Interleukin-1 Receptor-Associated Kinase-1 (IRAK-1) functionally associates with PKCepsilon and VASP in the regulation of macrophage migration. Mol Immunol 2009; 47:1278-82. [PMID: 20044140 DOI: 10.1016/j.molimm.2009.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 12/02/2009] [Accepted: 12/06/2009] [Indexed: 11/22/2022]
Abstract
Macrophage migration is mediated by complex cellular signaling processes and cytoskeleton re-arrangement. In particular, recent advances indicate that the innate immunity signaling process plays a key role in the regulation of macrophage migration. In this report, we have provided evidence demonstrating the involvement of a key innate immunity signaling kinase, Interleukin-1 Receptor-Associated Kinase-1 (IRAK-1) as a critical modulator of macrophage migration. Macrophage migration induced by phorbol 12-myristate 13-acetate (PMA) is significantly attenuated in IRAK-1(-/-) macrophages as compared to wild type macrophages. Mechanistically, we demonstrated that IRAK-1 works downstream of PKCepsilon and upstream of VASP, a member of Ena/VASP family proteins. IRAK-1 forms a close complex with PKCepsilon as well as VASP, and participates in PMA-induced phosphorylation of VASP. Notably, IRAK-1 contains a novel EVH1 domain binding motif (L(167)WPPPP) within its N-terminus, which is responsible for its interaction with VASP. The mutant IRAK-1 (L167A/W168A) fails to associate with VASP. Our findings provide a novel facet regarding the molecular signaling process regulating macrophage migration.
Collapse
|